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We study the distribution of electronic spectral weight in a doped antiferromagnet with various types of
charge order, and compare to angle resolved photoemission experiments on lightly depg&t,CaO,
(LSCO) and electron-doped NdCeCuOy. s Calculations on in-phase stripe and bubble phases for the
electron-doped system are both in good agreement with the experiment, including, in particular, the existence
of in-gap spectral weight. In addition we find that for in-phase stripes, in contrast to antiphase stripes, the
chemical potential is likely to move with doping. For the hole-doped system we find that “staircase” stripes,
which are globally diagonal but locally vertical or horizontal, can reproduce the photoemission data with the
characteristic “Fermi arcs,” whereas pure diagonal stripes cannot. We also calculate the magnetic structure
factors of such staircase stripes and find that as the stripe separation is decreased with increased doping, these
evolve from diagonal to vertical, separated by a coexistence region. The results suggest that the transition from
horizontal to diagonal stripes seen in neutron scattering on underdoped LSCO may be a crossover between a
regime where the typical length of straight stripe segments is longer than the interstripe spacing, to one where
it is shorter and that, locally, the stripes are always aligned with the Cu-O bonds.
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[. INTRODUCTION gether with antiphase domain walls of suppressed field

In several families of superconducting cuprates there i$éngth representing stripes. The spacings of the stripes are
evidence forstripes which are regularly spaced quasi-one- ¢hosen in such a way that the model by construction will
dimensional structures where the doped charge congreljate&eProduce the diffraction response of a stripe-ordered system.
At the same time, there is a well-developed theory of high-The stripe placements are static but may be chosen in an
temperature superconductivity in a system of weakly couplediregular fashion, simulating quenched disorder or dynamic
Hubbard ladder$:* It is thus quite natural to speculate that stripes which are fluctuating slowly compared to time scales
such a theory is, in fact, realized in the cuprates. One obviousf the local electron dynamics. Using this model for a disor-
objection to the stripe scenario of superconductivity is thedered array of quarter-filled “bond-alignéd’stripes, it was
lack of convincing evidence for the existence of stripes infound that the low-energy spectral weight forms a two-
several materials given that the strongest evidence is foundimensional Fermi surface with, in particular, spectral weight
in the relatively lowT, La,_,Sr,CuQ, (LSCO) family.> From in the “nodal regions,” neafw/2,/2), which naively cor-
a theoretical point of view, the lack of direct evidence is notresponds to propagation diagonally with respect to the stripe
immediately discouraging because stripe order is bad for sudirection. A more detailed study of this model was carried
perconductivity, whereas more elusive dynamic charge stripeut in Ref. 13 where it was realized that even a single stripe
correlations are gootl’ However, even in a system such as with one-dimensional states localized transverse to the stripe
LSCO where stripes are well established, there are still issuesptures the qualitative features of the low-energy spectral
about their fundamental implications on the electron dynamweight as seen in ARPES in the under- and optimally doped
ics. In particular, it seems that the distribution of low-energyLSCO with the full spectral weight of the stripe lying
spectral weight irk space as probed by angle-resolved pho-+oughly on the diamond Fermi surface of a half-filled nearest
toemission spectroscogfARPES does not show any clear neighbor tight-binding model. Here also, issues of interac-
evidence of the suggested quasi-one-dimensidiz) nature  tions along a stripe were addressed and it was found that the
of the electronic states, looking instead like the Fermi surdistinct non-Fermi liquid properties of an interacting one-
face of a fully two-dimensional2D) systen® On the other dimensional electron gas may be displayed also in directions
hand, ARPES also provides clear evidence of exotic physicsjot aligned with the stripes.

perhaps electron fractionalizati@rwith spectral functions In the present paper we extend the work of Refs. 11 and
that are typically very broad in energy and not consistenfl3 to look at a broader range of ordered structures. This is
with a Fermi liquid-based quasiparticle descripti§n. motivated by a search for a more comprehensive understand-

A simple model for studying the distribution of single ing of charge order in a doped antiferromagnet, but also by
electron spectral weight in a charge-ordered doped antiferradirect or indirect observations of structures which are not
magnet was introduced by Salkad all! in which all the  consistent with bond-aligned antiphase stripes. In the very
complicated physics, which is responsible for the stripe fordightly doped, nonsuperconducting phase of LSCO there are
mation and integrity, is replaced by a hand-picked potentiatliffraction patterns consistent with diagonal striffe$ in-
which emulates the local environment of electrons in astead of the bond-aligned stripes seen at higher doping. The
stripe-ordered antiferromagnet. The potential is simply dransition between bond-aligned and diagonal stripes coin-
staggered field representing the local antiferromagnetism, tasides with the superconductor to insulator transition at dop-
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ing x=~ 0.055, suggesting a close link between the two prop<orresponding to diagonal stripes along ¥y direction at
erties. Within the noninteracting model considered here, Wém+ §jiag, ™+ Sjiag), for 1=2d the diagonal peaks coexist
cannot directly address the connection between supercondugith four peaks alm, 7+ 8,,) and (7+ 8, ™) correspond-
tivity and stripe orientation, but by comparing the predicteding to the response expected from bond-aligned stripes along
spectral weight of diagonal stripes with that observed inthe % and§ directions, while forl >d there are only the four
ARPES® we gain some insight into the nature of such diag-pong-aligned peaks, but they are now shifted away slightly
onal stripes. Recently, there has also been indirect evidengg,m the square lattice axes. The qualitative features are very

i 17
from nuclear magnetic resonancéNMR),™ thermal — gimijar to what is found from neutron scattering in LSCO as
conductivity;® and magnetoresistariemeasurements  of function of dopingd? although the relative incommensura-

an inhomogeneous charge structure in the electron-do 3
9 9 p(;“lﬂlity ddiag! Ocol IS NOL quite accurately reproduced in the co-

cuprates (Pr,La),_,CeCuQ, (PLCCO. However, in . . hel hi o
electron-doped materials there has been no evidence for ine-X'.Stence regime. 'Nevert eless, t IS suggests a scenario in
commensurate magnetisiheffectively ruling out the possi- which the stripes in the orthorhombic phase of LSCO are

bility of antiphase stripes. For this reason we have studie&IWayS Io_caIIy bond-aligned, but in some sense _globally di-
gonal with a crossover as the stripe spacing is decreased

in-phase structures and compared the results to ARPES rggon : . o
sults on the Ngl,Ce,CuOy., (NCCO) family.2 with increased doping and not a first-order transition as sug-
Our results can be summarized as follows: As exemplifie@eSted by the neutron scattering data. Corroborating such a
in Fig. 2 we find that the spectral weight of localized states iscrossover scenario is the fact that the ARPES spectra evolve
centered on the Brillouin zon€éBZ) diagonals, given by smoothly through the diagonal to bond-aligned stripe transi-
cogk,) +cogk,)=0, independently of the magnitude of sec- tion, and that the Fermi velocity in the nodal direction is
ond and third nearest neighbor hoppirigandt”, as well as  roughly independent of doping, indicating that if the low-
the shape and form of the charge “impurity.” This shows€nergy spectral weight is stripe related, the local character of
why, in general, one may not expect any dramatic signaturée stripes does not change dramatically with dopftg.In
of stripes or other inhomogeneous electronic structure on thaddition, the hole mobility at moderate temperatures changes
k-space distribution of low-energy spectral weight, as this iy only a factor of 3 from very ligh(x=0.01) to optimal
where the Fermi surface is located within a nearly half-filled(x=0.17) doping, which is very naturally understood within a
tight-binding model which is dominated by nearest neighboistripe model in which the local character of the stripes is
hopping. However, as shown in Figs. 7 and 12, and 16, @&oughly independent of dopirfg.
defining feature of the stripe states is that they have an en- In Fig. 12 we show the band structure of a system with
ergy which is within the Mott gap of the undoped system.disordered in-phase stripes and in Fig. 11 the corresponding
Such in-gap states appear to be a common feature of thglectron-doped low-energy spectral weight, which is in quali-
evolution of the band structures which doping as measured itative agreement with the ARPES data. The most interesting
ARPES and which we believe is a strong indication of anpart of these results is the evolution of spectral weight in the
inhomogeneous charge distributiéh. nodal region, where at light dopin@%) there is in-gap
We compare the dispersion and distribution of spectrabpectral weight, which at higher dopiigj0%) broadens as a
weight of diagonal and bond-aligned stripes and find thatonsequence of the shorter interstripe distance and reaches
pure diagonal stripes cannot reproduce the characteristibe Fermi surface. The evolution of the Fermi surface with
“Fermi arc” centered around the nodal region which is seemoping can be reproduced in the mean-field theory of the
in ARPES on lightly doped LSCO. Instead we find that theHubbard model with longer range hopping by allowing for a
spectral weight of a hole-doped diagonal stripe is conceneoping-dependent interactiod.?® The difference within a
trated to the “antinodal” BZ regions arouifid,0) with very  stripe model is that the low-energy states are dynamically
little weight in the nodal region. In addition, the band width one dimensional, being localized transverse to the stripes
of states on a diagonal stripe is expected to be roughlyFig. 13 and the existence of in-gap spectral weight. In ad-
2|t’|=0.2 eV, which is inconsistent with the ARPES datadition we find that for in-phase stripes, in contrast to an-
where the band width of the in-gap states is of the order ofiphase stripes, the chemical potential is likely to move into
1 eV (assuming half is segnHowever, it turns out that the the upper Hubbard band with electron doping because the
spectral distribution and band width of bond-aligned stripesn-phase stripe states lie close to the upper and lower Hub-
is qualitatively consistent with the ARPES data. For this reabard bandgFig. 14).
son we suggest that the diagonal stripe phase consists of Finally, we present similar results from a calculation on a
stripes which are globally diagonal but locally bond aligned,“bubble” phase where the doped charge is confined to small
a caricature of which are the “staircase stripes” shown in Fig:zero-dimensional” droplets instead of the one-dimensional
4. Figure 6 shows the low-energy spectral weight, which isstripes. Bubbles would arise naturally instead of stripes in a
concentrated around the nodal region in a hole-doped array-J model with long-range Coulomb repulsion in the limit
of staircase stripes. t<J, because of the lower magnetic energy. Thus in the
An interesting aspect of these staircase stripes is the maglectron-doped materials, which appear to have “stronger”
netic structure factors which depend on the ratio between thantiferromagnetism than the hole-doped materials, one may
length of the bond-aligned segments, the “step” ledgind  speculate that bubbles are favored over stripes. As far as the
the distance between neighboring strigess shown in Fig.  distribution of spectral weight is concernéeigs. 15 and 16
8, we find that the corresponding Bragg peaks can be clasdihere is little qualitative difference between bubbles and
fied in three main regimes. Fdr=d there are two peaks stripes. For the bubbles we find that the nodal spectral weight
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=

broadens as the size of the bubbles increase with doping in
analogy with the increasing density of stripes. .

Il. THE MODEL (2)] (p) (c)

We will consider a tight-binding model on a square lattice  FIG. 1. Graphic representation of the potenti@k,y) for vari-
with first, second, and third nearest neighbor hopping to-ous charge structures. Here, black correspondg=0, gray toV
gether with a static potential that represents stripes or othetrl, white toV=-1 and each square represents a 6itg) on the

charge structures. The Hamiltonian reads lattice. (a) is a bond-aligned antiphase strig#®) is an antiphase
diagonal stripe, an¢c) a bubble.

H=-t > (¢, crp+H.c)-t' X (¢ ,crp+H.C)

(rr’)o (rr')’a

-t 2 (¢ ¢+ H.C)

<rl">"0'

A. Spectral weight of localized states

Here we will show that a stat$|s° localized on an impu-
rit?/ where the staggered field is zero has its spectral weight
. . ¥, 1% centered within a regiom of the cogk,) +cogk,)=0
M2 (= IV Y)CLy oCry.on () diamond, regardless of the values of the longer range hop-
e pingt’ andt” and the geometry of the impurity. This result is
really a trivial consequence of the fact that the nearest neigh-
bor hoppingt connects the two sublattices of the staggered

field whilet” andt” do not, or equivalently the symmetry or

dard fashion, wherérr ) |nd|ca:t(is nearest neighboxst > not of the dispersion, with respect to a shift of the momenta
next-nearest neighbors, add ’)” next-next nearest neigh- by scattering vectots, ) of the staggered field.

bors. In what follows we will use energy units such that We define a potential for an arbitrary impurity
=1 and we takd’/t<<0 andt”/t>0. The longer range hop-

where ¢, , is the electron destruction operator at site
=(x,y) and with spinc=%. The hopping is given in a stan-

ping t" andt” are included to qualitatively reproduggigs. V(x,y) =m(= 1)*Y, {x,y}¢impurity
7(a) and 12a)] the undoped ARPES measured band structure
of the particular system studied. The physical intuition for V(x,y) =0, {X,y} e impurity, (3)

the fieldmis that it is the energy cost of moving a hole from
a stripe into the antiferromagnetic background and it is thu
expected to be of the order of the spin exchadgEor sim- e = PR
plicity, we will be usingm=t=1 unless stated otherwise. We ko oK
also use units such that the lattice constant is equal to one 0
and%=1. e, =~ 2t[cogk,) + cogk,)],

The potential m(-1)**YV(x,y) describes the collective
field which defines the stripe order. We will use the simplest 1_ g _ o
possible form and tak&/(x,y)=1,0 or -1, where V(X,y) 8=~ 4’ codl)codly) ~ 2"[cod2ky) + cod2ky)]. (4)
=1 or —1 represent antiferromagnetic regions related by a \ith this we solve for the eigenstates in the bulk
phase shift an®¥(x,y) =0 are the locations of the stripes. The . L
caseV(x,y)=1 for all x andy corresponds to the standard Yo = age X+ g (M x. (5)
mean-field result of the Hubbard model at half-filfAgjiv- .
ing an upper and lower Hubbard band separated by the Motf'—‘”th energy

§\nd write the tight-binding dispersions

Hubbard gap. Introducing regions whevéx,y)=0 will, in Lt [ 92, 2

general, give rise to localized “impurity” states within the B= et \(g) +m, ©)

gap. and ratio of coefficients

The object which was studied in detail in Ref. 13 is the 0 5

site-centered antiphase stripe given by blag=[-e + (812)2 +m?]/m. (7)

1, x>0 The localized state can be expanded in terms of the com-
plete set of stategy, which are the solutions in the bulk.
Vetripd%,y) =10, x=0 (2 Clearly any state which is localized at the impurity must be

-1, x<0, sensitive to the staggered field. This means that it can only

contain bulk solutions which are substantial superpositions

and displayed graphically in Fig.(@. Here we also show of k andk+, i.e., by/a;~ 1. From the expression, E¢7),

two other charge structures, diagonal stripes and bubble§Or by/a; we find anl/Z(a/b—b/a)mwhich implies thatk
which we will consider in more detail subsequently. In a real K K

. 0
system we want to consider ordered or disordered arrays ¢$ constrained to the volurme | <m.
structures such that at some finite doping the corresponding Figure 2 shows the full spectral weight of the three types
impurity states are partly occupied. of potentials displayed in Fig. 1, confirming our analytic re-
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0.3
ol 0% (@)
-0.3
-0.6
k\l
FIG. 2. (Color onling The spectral weight of various charge -0.9
potentials as follows(a) is a stripe along theg direction withm 9 zi/2 il
=2,t/=-0.1t"=0.1, (b) is a diagonal stripe along+y direction o e (b)
with m=0.5t'=-0.1, andt”=0, and(c) is a size 1< 10 bubble
with m=1,t'=-0.1, andt”=0. —0.1
0%
C . -0.2
sult. The broader distribution ik space for largem is con- g
sistent with a shorter localization length in real space. Note 0 72 n

also that for the diagonal stripe, in Fig(k}, the spectral

weight is concentrated to those segments of the diamond FIG. 3. Dispersions of in-gap states for=t=1, t'=-0.1, and
which have momenta orthogonal to the stripe direction, &’=0 for a bond-aligned stripea) alongy with k =k, and diagonal
feature which will be important when analyzing diagonal stripe (b) along x+y with k=k,+k,. Line marked “0%” indicates
stripes in the next section. no-doped holeshalf-filling).

the qualitative correctness fon=1. In this limit it is trivial
. DIAGONAL STRIPES to solve for the spectrum on the stripe because the problem
reduces to a one-dimensional tight-binding chain. For the

. On_e of th? most interesting recent str|.pe-re.lated observ yond-aligned stripe there is the nearest neighbor hopping
tions is the diagonal stripes seen by quasielastic neutron scal,

tering in the very underdoped insulating phase of LS€O. réllls terzicct)i as a next-nearest neighbor hopping, resulting in
As discussed in Sec. |, there is a crossover region where bofh 'SP

diagonal and bond-aligned stripes appear to coexist, and Mmoo ”

which coincides with the rapid drop of the superconducting ecollky) = —2t cogk) - 2t" cog2k)). (8

transition temperatures with decreasing dopihgointing to  For the diagonal stripe the next-nearest neighbor hopping on

a strong connection between stripes and supercon_ductivityhe 2D latticet’ acts as a nearest neighbor hopping on the
On the other hand, we also noted that other properties, sucty,in giving a dispersion

as the nodal Fermi velocity and the hole mobility does not
. . . —
er:g\l/vtrzxig;i@am change across the bond aligned to diag caagk) = -2t cogk). 9)
What we can contribute to this discussion within our  Figure 3 shows numerically calculated dispersionsnfor
model is a comparison between the expected distribution of 1, which agree qualitatively with the larga limit. Note
spectral weight between bond-aligned and diagonal stripes. that for the bond-aligned stripe, there is a folding of the BZ
was already shown in Refs. 11 and 13 that a disorderedue to the antiferromagnetic scattering along the stripe direc-
bond-aligned stripe array can well reproduce the qualitativeéion, which is absent for the diagonal stripe. The conclusion
features of the near optimally doped samples. It is natural tove want to draw from these dispersions is that for the diag-
do a similar analysis for the lightly doped sampl&s onal stripe at any finite hole doping, the momenta of filled
=3-5%studied by ARPES in Ref. 16. Experimentally it is states which may contribute to the low-energy spectral
found that the spectral weight in the antinodét,0), re-  weight are confined td,> /2. From the distribution of
gions of the BZ, which is most prominent for the under- andspectral weight for a diagonal stripe, in Figlbg we find
optimally doped samples, is gapped away from the Fermihat this implies that there is very little spectral weight in the
energy, and instead the low-energy spectral weight consistsodal regions. We can easily convince ourselves that this
of disjoint arcs of “Fermi surface” centered near the nodaldistribution of the spectral weight of a diagonal stripe is a
(wl2,712), regions. At first glance it is very tempting to general consequence of the fact that a state with some mo-
identify these features with that shown in FighRfor a  mentumk; will, as shown in Sec. Il A, have its spectral
diagonal stripe. However, although it is probably not com-weight concentrated in the intersection of the lige -k, =k,
pletely ruled out that this simple picture is corrétg closer ~ with the cosk,)+cogk,)=0 diamond. This implies that for
study of the diagonal stripe reveals a serious problem. The|=7 the weight will spread out over the whole intersec-
problem is that fort’ <0, a less then half-filled, i.e., hole- tion, which is a line, while forlk,| < the weight will be
doped, diagonal stripe will have very little spectral weight in concentrated to the two points of intersection.
the nodal region, but only near the antinodal regions. These results for the distribution of the spectral weight of
In order to understand this statement we can consider tha hole-doped diagonal stripe may be contrasted with that of a
dispersion of the diagonal and bond-aligned stripe as a fundond-aligned stripe. Here we find from Fig(aB comple-
tion of the conserved momentum along the stripe. We willmented with Fig. 2a) that for finite hole doping, the spectral
restrict ourselves to the limih— e and numerically confirm  weight may be spread out over the whole diamond. The de-
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FIG. 5. (Color onling An ordered array of staircase stripes with
=8 andd=8, usingt=m=1,t'=-0.1, and”=0. Momentum space
(a) and real spacgb) spectral weight integrated over an energy
window of 0.2 around the Fermi energy at 4% hole doping. The full
system size is 258 256 while in(b) is shown a 10& 100 section.

FIG. 4. Graphical representation of a staircase stripe defined by

the step length and the stripe distanak The rectangle indicates a Vix+1Ly+1)=V(xy),
primitive cell. The potentiaM(x,y) is given by V=0 for darker
gray, V=1 for light gray, andv=-1 for white. V(x+d,y-d)=-V(xy) (10

tails, of course, depend on the doping, the parameters useWF:‘iCh also give the.primitive cell as indicated in th_e figure.
and on the density of stripes. The latter being particularly! '& Same symmetries hold true for the fuILgotenﬂal of Eq.
important in that for a short interstripe distance the striped) Which is simply multiplied by a factof-1)*"Y to account

states will overlap and form bands of momenta transverse " the staggered field. _

stripes(see Fig. 14 We W_|II return to magnetic structure factors of such stair-
One might, in an effective model such as this, attempt t°@S€ Stripes below, but it is easy to see that as lorigas

fit the experimental data by takirtg> 0 which would allow the main magnetic diffraction peaks of such a stglrcasg stripe

for spectral weight concentrated in the nodal region. How-2'€ €quivalent to an array of purely diagonal stripes with the

ever the ARPES data for the lightly doped samples indicatdterstripe distance®along thex andy direction. ,

that most of the additional weight introduced with doping is, e turn now to the distribution of spectral weight of stair-

in fact, in the antinodal region only that it is gapped awayCaS€ Stripes. As an example we look at a system (w8

from the Fermi surface. If we také >0 we would vacate 2andd=8, whered is chosen such that the magnetic structure

the antinodal states and we would not be able to reprodud@ctor has main peaks dtr+6/\2,m 6/v2) with 6/\2

this qualitative feature. Related to this there is a more quan=1/32, which corresponds roughly to tide=1/25 seen in

titative problem for a diagonal stripe as contrasted with theneutron scattering at 4% doping. We diagonalize this system

ARPES data, which should be more general than our modehumerically to find the single particle eigenstatiggk), with

namely that the bandwidth of a purely diagonal stripeenergiesE,, in terms of which we calculate the single par-

is expected to be proportional t8. Values oft’ in the ticle spectral function

literature are less than 0.1 eV, implying a bandwidth R -

Wiiagonar< 0.2 €V, whereas the bandwidth from the in-gap Ak, w) = 2 |¢,(K)28(E, - ), (1)

states seen in ARPES can be estimated\Vaty,<1 €V, “«

which looks more consistent with the band withl, ~2t of  \here §(E,- w) is the Kronecker delta, and the local density

bond-aligned stripes. To summarize, we find thate diag-  of states

onal stripes are not consistent with the ARPES data of lightly

doped LSCO R(F,w) = X, |¢h,(D)?SE, - ), (12)

A. Staircase stripes with zpa(F):l/LXLyE,;é‘z‘sza(IZ) being the eigenfunctions in

Given the difficulties with matching the model using a real space. Figure 5 shows spectral weight distributiok in
diagonal stripe configuration to the ARPES data it is insteadpace and real space when integrated over an energy window
tempting to look at bond-aligned stripes. Now, we knowAw=0.2 around the Fermi energy at 4% doping, i.e., calcu-
from neutron scattering that bond-aligned stripes are not sedating
in these very lightly doped materials, but only diagonal Er+Awl2
stripes. This led us to investigating the properties of stripes |(|Z) = A(IZ, w)dw, (13
which are locally bond-aligned but globally diagonal. A natu- Er-Aw/2
ral and most simple candidate for such a construction is a
“staircase” stripe. We can define a staircase stripe along th%nd
x+y direction, but letting it run alternately along theandy Bpthol2
directions with some step length For an ordered array of R(r) = R(F, w)do. (14)
such staircase stripes we also introduce a stripe distdnce Bp-fw/2
defined according to Fig. 4. In the case of antiphase stripe§Ve find that the low-energy spectral weight is concentrated
the potential has the symmetries near the nodal region. It is highly anisotropic with most of
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bond-aligned stripes. The high enengyway fromEg) spec-
tral weight is concentrated around the antinodal,0), re-
gion whereas the low-energy spectral weight close to the
Fermi energy is focused to the nodal region around
(7/2,712). This is what we would find from a lightly hole
doped bond-aligned stripe with the dispersion in Fi¢p),3
given the fact that the spectral weight is concentrated to the
. . . _ intersection ofk =k, or k, with the BZ diamond.

FIG. 6. (Color onling Same as Fig. 5 but symmetrized with
respect to the stripe orientation and in the first quadrant of the BZ.
Shown is also the intensity map which has a linear scale.

max

1. Magnetic structure factors of staircase stripes

In the previous section we found a qualitative agreement
the spectral weight parallel to the overall stripe directionof the spectral distribution of staircase stripes with that seen
alongx+y in contrast to the pure diagonal stripe shown inexperimentally in lightly doped LSCO. Here, we had to re-
Fig. 2b). We have tried making the step lengdtishorter, strict ourselves to staircase stripes with step lemdgiss than
which gives results closer to the pure diagonal stripe withthe stripe distance as defined in Fig. 4 in order to have a
most of the spectral weight in the antinodal region. In Fig. 6magnetic structure factor which corresponds to diagonal
the results are symmetrized with respect to the stripe direcstripes. A natural extension is to study also stairs Withd.
tion, so that(w, ) =(m7,-m), etc. Here, the disjoint features Certainly, in limit|>d we expect very little influence from
merge into a single piece of “Fermi arc” in each quadrant ofthe kinks and the system will become equivalent to that of
the BZ, similar to what is seen in ARPES. Note that in Fig.bond-aligned stripes, both for the spectral distribution and
5(b) it is not the stripe potentiaV(x,y) which is plotted, but  structure factors. We found that the distribution of spectral
the amplitude in real space of the low-energy states. Noweight could be rationalized in terms of bond-aligned stripes
surprisingly, these follow the potential quite closely, butalready for the system with=d so that forl >d we would
there is some leakage of spectral weight into the antiferronot expect any qualitative difference between the spectral
magnetic regions which appears to smooth the kinks andistribution of staircase stripes with that of bond-aligned
make the stripes more diagonal. An indication that the stairstripes studied in the earlier wotk!3What is more interest-
case stripes are just a caricature with the real stripes probabigg is to study the magnetic structure factor, which is sensi-
being smoother, but nevertheless are locally closer to bontive to the global properties of the system.
aligned than to diagonal. Physically, the relevant entity is the magnetic structure

We can gain a better understanding of these results for thiactor which is the amplitudé¢S%(qg)|? of the Fourier trans-
low-energy spectral weight by studying the spectral functionformed spin density, which at zero temperature reads

A(k,w), over a broader energy window along the high-

symmetry directions, as shown in Fig. 7. The qualitative fea- S(d)= 1/L2_2 €47 0] 1y (1) 2O (B ~ Eo). (15
tures of the spectral weight deriving from the staircase hee
stripes can be directly linked to the properties of ordinaryHowever, for a large system, such as for disordered stripes,
this is difficult to calculate because of the need to diagonal-
ize the system. Much simpler to find is the amplitude squared

E UHB % (a)

1 W \ of the Fourier transform of the stripy potential
nd (=1)*"YV(x,y). We have checked for several ordered stripe

. arrays that close to half-filling the two calculations give very
-1 - similar results. This is expected because the difference is
LHB Y roughly the amplitude on the stripes, which is zero for the

potential, but slightly different from zero for the actual spin
density because of the occupied stripe states.

Tl

E b . . ; .
7 o 7 & Using the symmetry properties of a staircase stripe, Eq.
5 e (10), we find thatV(k,,k,) can only have nonzero compo-
Olg, = — nents for
-1 jii — 2
f T ke + ky = I—TrN, N € integer (16)
T (7T, 1) (7, 0) T
; -1 pr=_ 2
FIG. 7. Band structure of system witlerm=1, t 0.1, and K — ky: —WN’, N’ e odd integer. 17)

t"=0 for (a) no stripes andb) with staircase stripes as in Fig. 5.

UHB and LHB indicate upper and lower Hubbard bands, respec- ) )
tively, andEr is the Fermi energy at 4% hole doping. The spectralFigure 8 shows the structure factors of three different stripe

weight is indicated by the intensity, but on a nonlinear scale thatealizations,|=d, |=2d, and|=5d. We find three very dis-
exaggerates low-intensity featurgb) is symmetrized with respect tinct diffraction patterns, where the first corresponds to diag-
to the stripe direction. onal stripes, the second looks like diagonal stripes coexisting

2d
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FIG. 9. (Color onling Magnetic structure factors of disordered
realizations of staircase stripes with20 and(a) d=5 and(b) d
=6, which could roughly correspond to 10% and 8% doping,
respectively.

exist. This may suggest that the stripes in the LTO phase of
LSCO are always of the staircase type and that the transition
between bond-aligned and diagonal stripes is a crossover
from a regime wheré> 2d to one wherd < 2d. Particularly

FIG. 8. (Color onling The magnetic structure factors of the interesting are the more detailed experimental data from neu-
three different regimes of staircase stripes discussed in text. The lefton scattering on the underdoped superconducting regime
column shows the unit cells which {@) is 80x 80 with step length  x~10%. From the staircase stripe scenario we would expect
1=20 and stripe distancé=20, in (d) is 40x40 with1=20,d=10 7 Jarger angle of deviation from the tetragonal axes than for
and in(g) is 80X 80 with1=20,d=4. The stripes where the poten- the samples with higher doping, possibly together with sec-
tial is zero are black, the twar-shifted domains of the antiferro- ondary peaks in the diagonal direction or on the tetragonal
magnetic order and the rectangles are primitive cells are gray angxes as shown in Fig. 9.
white. The middle columntb), (€), and(h), shows the correspond- — \ye shoyld note that the correspondence between the ex-
Ing structure factors in reciprocal lattice units centered around,ojment and our results for staircase stripes is not perfect. In
(1/2,1/2=(, m). The right COlumn(C).’ () and(i), give the struc- particular there appears to be a discrepancy with the relation
ture factors of a sum over ten 880 disordered configurations of %etween the “incommensurabilty defined as the shift of a

the corresponding ordered states to the left, where the length of th K f f the di | and bond-ali d
legs and the distance between stripes are allowed to vary with a 42 rom(w, ), O . € lagong and bon -—a \gne CQL“F’O'
ts. For the staircase stripes we fif}ag=dcol/ V2,

random distribution without allowing stripes to come closer thanM€n ; :
one site separation. The width of the peaks of the right column i¢vhereas experimentally is seéfag= o0 The former rela-

simply related to the fraction of the BZ viewed, given that in all tion follows directly from the symmetry of the stripy poten-
calculations, the same correlation length is used. tial, Eqg. (17), and consequently is not sensitive to small
changes of the potential such as for instance smoothing of
with both vertical and horizontal bond-aligned stripes, andthe kinks.
the last looks like vertical and horizontal stripes, but with an
orientation which deviates slightly from bond-aligned. We IV. IN-PHASE STRIPES
also show diffraction patterns of samplings over disordered , o
stripe configurations where we find that, in general, only the e now turn to a study of the spectral weight distribution
primary peaks survive with secondary, lower intensity peaksOf in-phase stripes. As discussed in Sec. | there is indirect
getting washed out, although this does not happen for thgvidence for an inhomogeneous charge distribution in the
second configuration with coexisting bond-aligned and diag€!ectron-doped PLCCT? In fact, the possibility of in-
onal peaks. We have also studied stripe arrays with larggp@se stripes had already been suggested from the theory for
unit cells wherd is not an integer factor af. For disordered  hole-doped stripes at lower hole densiiés. .
realizations it appears that these roughly fall into one of the The experimental hallmark of antiphase stripes is the in-
three characteristic regimes, with only a quite narrow win-commensurate magnetism detected by neutron diffraction,
dow of | =~ 2d showing both diagonal and bond-aligned peaksvhere the weight is shifted away from the antiferromagnetic
of appreciable amplitude. ordering vectorQ=(m, ). A system with ordered in-phase
These results for the diffraction pattern of staircase stripestripes, on the other hand, will have a main diffraction peak
appear qualitatively very similar to what is seen in neutronat the antiferromagneticAF) ordering vector with satellites
diffraction experiments on LSCO in the low-temperatureat positions shifted by integer multiples ofr2d, whered is
orthorhombic (LTO) phase® In the nonsuperconducting the distance between stripes. However, if the stripes are not
phase at very low doping= 6%), peaks are consistent with static and ordered, but fluctuating or disordered, the satellite
diagonal stripes, whereas at higher dopirng=10-13% a  peaks will easily be washed out and the weight absorbed into
pattern is consistent with stripes that are close to bondhe AF peak. Figure 10 shows the amplitude squared of the
aligned but shifted by a few degrees from the tetragonaFourier transform of the stripe potentiat1)**¥V(x,y) along
axes. More recently it was found that very close to the insuthe transverse direction for ordered and disordered antiphase
lator to superconducting transitigr~ 6%) both patterns co- and in-phase stripes and for the charge density represented
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(a) (b) E ¥/ vHB | (a)
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FIG. 10. Structure factor@n arbitrary unit$ of spin and charge % " 0%
. . . . . SE 3 g
density for antiphase and in-phase stripes as a function of momen- 0 7 |
tum transverse to the stripes in r.l.u. The left column shows ordered -1 f; Bl
arrays with stripe distancg=4 and the right disordered with a flat | ——
distributiond=2-6. (a) and (b) show the spin order for antiphase = = (,r 0‘) =

stripes,(c) and(d) show the spin order for in-phase stripes, &ed

and (f) show the charge order which is independent of the type of FIG. 12. The band structure of the system withm=1, t’'=
stripe. In all figures a finite correlation length of 40 sites is used and-0.2, andt”=0.1 and in-phase stripes as in Fig. (d).is no stripes,
the disordered systems are averaged over 1000 samples. (b) mean stripe period 12 an@d) mean stripe period 4.

by [V(x,y)|. For the charge order there is no difference be-aan 12 and 1—7 with mean 4 for a system viitim=1,
tween antiphase and in-phase stripes. Nevertheless, chargg_o_zy andt’=0.1. The parameterg andt” are chosen

order is more difficult to detect, even for systems with staticg;,cpy as to roughly reproduce the band structure of the un-
o_rder. The reason for this is that neutrons do not COUp"Boped system seen in ARPES on the electron-doped NECO
directly to the chargg order and_ that the superla_ttlce peakgith the smallest spectral gap@t/2,7/2) as shown in Fig.
related to charge stripe OJder arise from modulations of thq_z(a). The density of stripes is assumed to be roughly as in
uniform charge densityQ=(0,0), which dominates the the hole-doped materials with stripe spacihgiven by the
structure factor. As shown in Fig. 10, these peaks are alsdoping n according ton=1/2d, which for electron doping
readily destroyed by disordefin fact, the charge structure corresponds to 3/4-filled stripes.
factor as estimated here is equivalent to the spin structure Clearly these results reproduce the experimental Fermi
factor of in-phase stripes but shifted lay) Direct signatures  surface quite well; at light doping there are patches of spec-
of in-phase stripes from neutron or x-ray scattering will thustral weight around =, 0) while at higher doping the weight
be much more difficult to find, most likely requiring a stripe starts to look more like a full Fermi surface closed around
ordered material. (7, ), but with weight missing at “hot-spots,” where the
Nevertheless, given the indirect indications for the exis-putative Fermi surface cuts the BZ diagon@liamond.
tence of in-phase stripes in electron-doped cuprates, it magimilar results have been reproduced by the mean-field
be interesting to study the implications of such structures t@heory of thet-t’ —t"-U Hubbard model by allowing for a
the distribution of spectral weight. In Fig. 11 is shown thedoping-dependerm_25 This is, in fact, the model we con-
integrated spectral weight close to the Fermi energy for dissider, but without the stripes and with a magnitude of the
ordered in-phase stripes with interstripe distances 9—15 witBtaggered fieldn which depends otJ. Here, we keep the
parameters fixed, but vary the stripe spacing as a function of
doping. There are, however, very distinct differences be-
tween the implications of the two scenarios. In the stripe
model there are midgap states, not present for the model with
a uniform staggered field. This is particularly visible for the
lightly doped system, Fig. 1B), where along thé'=(0,0) to
(7, r) direction there is spectral weight betweep and the
lower Hubbard band. Precisely, such a feature is seen in the
FIG. 11. (Color onling Spectral weight close t&r (window ARPES data for the 4% doped sample. Secondly, the low-
0.2) of disordered in-phase stripes witkm=1, t'=-0.2, andt” energy states of the stripe model are dynamically one dimen-
=0.1. Mean stripe distance i) is 12 withE at 4% doping and in ~ Sional, i.e., they are localized transverse to a stripe but have
(b) mean distance is 4 witfEr at 10% doping. The results are a well-defined momentum along the stripe, as shown in Fig.
symmetrized with respect to the stripe direction. The system size i83. Thus, one of the main conclusions is that the distribution
320x% 320. of low-energy spectral weight, the “Fermi surface,” may be
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0.2 (a)| [0-02 (b) function of doping and is not necessarily pinned within the
gap. This is particularly evident in comparing the 0% and
4% samples, as shown in Figs.(4Rand 12b), where in the
x i former the chemical potential is in the gdp0.6<u<
100 200 300 n/2 3n/2 . .
-0.2), whereas in the latter it has moved up to cut the upper

FIG. 13. Example of a single statf of system in Fig. 1&), Hubbard bandx=0). The motion of the chemical potential
with energyE~0 and momentum along stripe directibp==/2, is a necessary consequence of the dispersion of in-phase
showing localization in the transverse stripe direction@rthe real  stripes as shown in Fig. {&), with the stripe states “hug-
space amplitudgy(x,y)|* is shown as a function of transverse di- ging” the upper and lower Hubbard bands. This is in sharp
rectionx for arbitraryy and in(b) the k-space amplitudé/(k)|>.  contrast to antiphase stripé&igs. 7 and 3 where the spec-
We can estimate a localization lengtk 2 from the real space peak trg| weight of the stripe states is “midgap,” implying that the
amplitude. chemical potential may stay fixed with doping. Motion of the

o . . chemical potential with doping is thus not necessarily an
indistinguishable from a homogeneous two-dimensional Sysfpdication of the absence of strip&s®

tem even though the states are dynamically one dimensional.
Let us now look at how we can understand this evolution
of spectral weight with doping and corresponding increasing A. Bubbles
stripe density from the properties of a single in-phase stripe.
Figure 14 shows the spectra of systems with sparse, me

SIS;?:ecitrlizésanléji densi’hemset?inedg;e':ggeari’ Cslgg:;es\'/i;glret ﬁarge order in these materials. The microscopic motivation
P pes, Fig. 14, P y for stripe formation is the tendency of the antiferromagnet to

as the |so!ated In-gap bands.. Because there is no broadenlggpel extra charge which will disrupt the local antiferromag-
of the stripe states, the stripes are clearly sufficiently far

. : 4 . netism. The formation of stripes is then a compromise be-
apart as to be effectively independent. We find that in-phas L : :
stripes at moderate have a band structure that is distinctly een the minimizing of the magnetic energy by concentrat

X : . . ing the holes, of the kinetic energy by allowing holes to
different from that of antiphase stripes, as shown in Fg),3 : : : .
with the former staying close to the upper and lower Hub_delocallze along the stripes, and possibly of the charging

9 . - energy due to long-range Coulomb repulsion by not allowing
\?v?]rdr bﬁﬂdﬁ' (Wenzavr?ti c::eckeqmthat ": the :I\:nznn_tmih dIa_macroscopic charge inhomogenétty.
periign qu ?g)e iz coarlrecptlyasrgpsro dpuecseg eali?)ufo? Ei:n-i)haese S However, if the magnetism is relatively stronger than the
stripes) As the stripe density is increased, the stripe str:ltek'nGtIC energy contribution, the system may prefer to keep

) . Stal®he extra charge in zero-dimensional “bubblgste Fig.
will overlap and form bands transverse to the stripes, in F|g_1(c)] in order to minimize the disruption of the local mag-

;f](ebr)' WEZS;?E: (;E%Tc,é?c?elf\;\;leerste)rzpaﬁsc:r?ssI:gvtgr?h'(:elee:;nsl etic ordef? Roughly speaking, for a completely filled stripe
gy. ' y Ith two electrons per site on a one-site wide stripe there are

Strirr']g.lymlogr?gﬁtedOaitsgg)c‘:v? .'r?_ Fr'%‘sfs'tr. es. which is dem_three bad bonds where the spin exchange is destroyed per
Imp PO ut in-p Ipes, which 1 stripe site, while for a bubble there are only two bad bonds
onstrated here is that the chemical potential may move as

Ser site.(The sites on the perimeter of the bubble have three
bad bondg. In addition, because of charging energy, the
bubbles would have to be limited to a microscopic size.
Clearly, the putative stripes or bubbles are not completely
filled in the electron-doped materials, due presumably to ki-
netic energy considerations, as this would imply an insulat-
ing system.

For simplicity we look at square bubbles, and because this
problem is fully two dimensional, with a large unit cell, we
only consider ordered systems. For the previous study of
in-phase stripes we chose stripe spacings and fillings that
were based on the corresponding values for antiphase stripes
in the hole-doped systems. For the bubble phase we have
even less to guide us on how to choose the size and period of
the bubbles. However, assuming that the putative bubble for-
mation is due to competition between the magnetic energy
and the charging energy, we can get a simple estimate of the
variation of bubble size with doping, completely ignoring the

FIG. 14. Spectrum fofE| <2 of in-phase stripe systems as in Kinetic energy. It is easy to see that for a classical antiferro-
Fig. 12 with mean stripe period 12 {@) and 4 in(b) as a function ~Magnet, we decrease the number of bad bonds that are not
of momentumk,=k, parallel to the stripe directioy. The black ~connecting antiferromagnetically aligned spins by two per
curves indicate the bounds of the upper and lower Hubbard banddoped electron by forming bubbles instead of a homoge-
for the corresponding system without stripes. neous(Wigner crysta) distribution of the doped charge. This

Because of the lack of direct diffraction evidence for
ripes, one may be free to speculate on other forms of

0 /2 7T
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E W (a)
1 °
ofEe \\;,.: 4 4%
-1 if” | |
By )
FIG. 15. (Color onling Spectral weight within energy window 1 :
0.2 of Eg of ordered array of bubbles wittrm=1, t'=-0.2, and Br 10%
t”=0.1. In(a) the unit cell is 12 12 with the bubble size % 4 and 0 . =
Eg is at 4% electron doping. Ith) the unit cell is 20< 20 with the -1 £ i
bubble size 16 10 andEg at 10% doping. { | =
r (7, ) (7, 0) T

gives an energy gaifE,-~-JL?, whereJ is the AF ex-
change, which is typically of the order of 0.1 eV, dnds the
linear dimension of the bubble. The charging energy due t
movingL? electrons together from a closest distance tb/a
closest distance 1 is given o~ QL3(1-n), assuming a
Coulomb interactionV=Q/r with r in units of the lattice
constants. Her®=(e?/4meyea) ~0.3 eV, assuming a lattice
constant ofa=5 A and a dielectric constart=1033 Mini-
mizing the total energy with respect to the bubble dize

FIG. 16. The band structure of the system in Fig. 15. The band
gtructure without bubbles is the same as in Figal2

We find that pure diagonal stripes cannot reproduce the
distribution of spectral weight found in ARPES on the very
underdoped LSCO in the “diagonal stripe” phase. Instead we
introduce “staircase” stripes, which are locally vertical or
givesL~[J/Q(1-n)], so that for small dopingp, we find horiz_on_tal, but globally diagonal, in terms of which the
the bubble size proportional to the doping. The prefadta qualitative featu.res of the ARPES data are readily repro-
seems somewhat on the small side, but does not rule o&uped. Calcglatmg the structure facFors of.such staircase
bubbles as a viable scenario. Clearly largeor “strong” ~ Stipes, we find that these evolve with doping and corre-
antiferromagnetism, will favor the bubble scenario. This isSPonding stripe density in a way that is very similar to the
the reason why we suggest it for the electron-doped materf€utron scattering data in the LTO phase of LSCO over the
als, which in general show antiferromagnetism over a muchvhole doping range from very light to optimal. The results
wider doping range than do hole-doped materials. suggest that the horizontal to diagonal stripe transition may

For the calculations presented here we choose a bubblee a crossover between a regime where the typical length of
sizeL=10 and let the distance between bubbles vary withstraight(horizontal or verticglstripe segments is longer than
doping, such as to correspond to roughly 3/4-filled bubblesthe interstripe spacing to one where it is shorter and that the
Figure 15 shows the integrated spectral weight near thetripes are always locally bond-aligned in LSCO.

Fermi energy for two realizations, at 4% and 10% doping, We find that in-phase stripes can qualitatively reproduce
and in Fig. 16, the corresponding band structure. The resulhe ARPES data and evolution with doping in the electron-
are qualitatively similar to what was found for in-phase doped cuprate NCCO. Particularly revealing is the spectral
stripes. The evolution of the weight neés,0) does not weight in the nodal region, nedrr/2,/2), where at low
_depend_ crucially on the bubbles but can be understood frorﬂoping there is “stripy” spectral weight in the gap, which at
increasing the filling of the upper Hubbard band. The nodahjgher doping broadens as a result of increased stripe density
weight near(w/2,m/2) on the other is clearly an effect of 54 crosses the Fermi energy. For in-phase stripes, in con-
the additional states deriving from the bubbles. trast to antiphase stripes, we find that the in-gap states lie
close to the upper and lower Hubbard bands implying that
V. CONCLUSIONS the chemical potential is likely to move with doping. We also
) . o ] consider bubble structures and find that these produce similar

We have investigated the distribution of electronic specyegyts for the distribution of spectral weight to that of in-
tral weight in various charge ordered antiferromagnets. W‘?)hase stripes by allowing the bubble size to grow with dop-
find that the spectral weight of states localized on a stripe Ofhg. We argue that these may be an alternative to stripes in

Other (_:harge structure is centered on and spread out over the electron-doped materials where there is a broad doping
Brllloum zone dlag(_)nalicos(kx)+cos{ky):0_]. The distribu- range with antiferromagnetic order.

tion of spectral weight close to the Fermi energy may thus
look fully two dimensional and practically indistinguishable
from a homogeneous system even though the low-energy
states are dynamically one or even zero dimensional, local-
ized on stripes or bubbles. On the other hand, the stripe states
will, in general, lie within the energy gap of the undoped The author would like to thank S.A. Kivelson and Y.
system making the appearance of “in-gap” states an expectéthdo for valuable discussions. This work was supported by
consequence of an inhomogeneous charge distribution.  the Swedish Research Council.
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