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We study the distribution of electronic spectral weight in a doped antiferromagnet with various types of
charge order, and compare to angle resolved photoemission experiments on lightly doped La2−xSrxCuO4

(LSCO) and electron-doped Nd2−xCexCuO4±d. Calculations on in-phase stripe and bubble phases for the
electron-doped system are both in good agreement with the experiment, including, in particular, the existence
of in-gap spectral weight. In addition we find that for in-phase stripes, in contrast to antiphase stripes, the
chemical potential is likely to move with doping. For the hole-doped system we find that “staircase” stripes,
which are globally diagonal but locally vertical or horizontal, can reproduce the photoemission data with the
characteristic “Fermi arcs,” whereas pure diagonal stripes cannot. We also calculate the magnetic structure
factors of such staircase stripes and find that as the stripe separation is decreased with increased doping, these
evolve from diagonal to vertical, separated by a coexistence region. The results suggest that the transition from
horizontal to diagonal stripes seen in neutron scattering on underdoped LSCO may be a crossover between a
regime where the typical length of straight stripe segments is longer than the interstripe spacing, to one where
it is shorter and that, locally, the stripes are always aligned with the Cu-O bonds.
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I. INTRODUCTION

In several families of superconducting cuprates there is
evidence forstripes, which are regularly spaced quasi-one-
dimensional structures where the doped charge congregates.1

At the same time, there is a well-developed theory of high-
temperature superconductivity in a system of weakly coupled
Hubbard ladders.2–4 It is thus quite natural to speculate that
such a theory is, in fact, realized in the cuprates. One obvious
objection to the stripe scenario of superconductivity is the
lack of convincing evidence for the existence of stripes in
several materials given that the strongest evidence is found
in the relatively low-Tc La2−xSrxCuO4 (LSCO) family.5 From
a theoretical point of view, the lack of direct evidence is not
immediately discouraging because stripe order is bad for su-
perconductivity, whereas more elusive dynamic charge stripe
correlations are good.6,7 However, even in a system such as
LSCO where stripes are well established, there are still issues
about their fundamental implications on the electron dynam-
ics. In particular, it seems that the distribution of low-energy
spectral weight ink space as probed by angle-resolved pho-
toemission spectroscopy(ARPES) does not show any clear
evidence of the suggested quasi-one-dimensional(1D) nature
of the electronic states, looking instead like the Fermi sur-
face of a fully two-dimensional(2D) system.8 On the other
hand, ARPES also provides clear evidence of exotic physics,
perhaps electron fractionalization,9 with spectral functions
that are typically very broad in energy and not consistent
with a Fermi liquid-based quasiparticle description.10

A simple model for studying the distribution of single
electron spectral weight in a charge-ordered doped antiferro-
magnet was introduced by Salkolaet al.11 in which all the
complicated physics, which is responsible for the stripe for-
mation and integrity, is replaced by a hand-picked potential
which emulates the local environment of electrons in a
stripe-ordered antiferromagnet. The potential is simply a
staggered field representing the local antiferromagnetism, to-

gether with antiphase domain walls of suppressed field
strength representing stripes. The spacings of the stripes are
chosen in such a way that the model by construction will
reproduce the diffraction response of a stripe-ordered system.
The stripe placements are static but may be chosen in an
irregular fashion, simulating quenched disorder or dynamic
stripes which are fluctuating slowly compared to time scales
of the local electron dynamics. Using this model for a disor-
dered array of quarter-filled “bond-aligned”12 stripes, it was
found that the low-energy spectral weight forms a two-
dimensional Fermi surface with, in particular, spectral weight
in the “nodal regions,” nearsp /2 ,p /2d, which naively cor-
responds to propagation diagonally with respect to the stripe
direction. A more detailed study of this model was carried
out in Ref. 13 where it was realized that even a single stripe
with one-dimensional states localized transverse to the stripe
captures the qualitative features of the low-energy spectral
weight as seen in ARPES in the under- and optimally doped
LSCO with the full spectral weight of the stripe lying
roughly on the diamond Fermi surface of a half-filled nearest
neighbor tight-binding model. Here also, issues of interac-
tions along a stripe were addressed and it was found that the
distinct non-Fermi liquid properties of an interacting one-
dimensional electron gas may be displayed also in directions
not aligned with the stripes.

In the present paper we extend the work of Refs. 11 and
13 to look at a broader range of ordered structures. This is
motivated by a search for a more comprehensive understand-
ing of charge order in a doped antiferromagnet, but also by
direct or indirect observations of structures which are not
consistent with bond-aligned antiphase stripes. In the very
lightly doped, nonsuperconducting phase of LSCO there are
diffraction patterns consistent with diagonal stripes14,15 in-
stead of the bond-aligned stripes seen at higher doping. The
transition between bond-aligned and diagonal stripes coin-
cides with the superconductor to insulator transition at dop-
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ing x<0.055, suggesting a close link between the two prop-
erties. Within the noninteracting model considered here, we
cannot directly address the connection between superconduc-
tivity and stripe orientation, but by comparing the predicted
spectral weight of diagonal stripes with that observed in
ARPES16 we gain some insight into the nature of such diag-
onal stripes. Recently, there has also been indirect evidence
from nuclear magnetic resonance(NMR),17 thermal
conductivity,18 and magnetoresistance19 measurements of
an inhomogeneous charge structure in the electron-doped
cuprates sPr,Lad2−xCexCuO4 (PLCCO). However, in
electron-doped materials there has been no evidence for in-
commensurate magnetism,20 effectively ruling out the possi-
bility of antiphase stripes. For this reason we have studied
in-phase structures and compared the results to ARPES re-
sults on the Nd2−xCexCuO4±d (NCCO) family.21

Our results can be summarized as follows: As exemplified
in Fig. 2 we find that the spectral weight of localized states is
centered on the Brillouin zone(BZ) diagonals, given by
cosskxd+cosskyd=0, independently of the magnitude of sec-
ond and third nearest neighbor hoppingt8 and t9, as well as
the shape and form of the charge “impurity.” This shows
why, in general, one may not expect any dramatic signature
of stripes or other inhomogeneous electronic structure on the
k-space distribution of low-energy spectral weight, as this is
where the Fermi surface is located within a nearly half-filled
tight-binding model which is dominated by nearest neighbor
hopping. However, as shown in Figs. 7 and 12, and 16, a
defining feature of the stripe states is that they have an en-
ergy which is within the Mott gap of the undoped system.
Such in-gap states appear to be a common feature of the
evolution of the band structures which doping as measured in
ARPES and which we believe is a strong indication of an
inhomogeneous charge distribution.22

We compare the dispersion and distribution of spectral
weight of diagonal and bond-aligned stripes and find that
pure diagonal stripes cannot reproduce the characteristic
“Fermi arc” centered around the nodal region which is seen
in ARPES on lightly doped LSCO. Instead we find that the
spectral weight of a hole-doped diagonal stripe is concen-
trated to the “antinodal” BZ regions aroundsp ,0d with very
little weight in the nodal region. In addition, the band width
of states on a diagonal stripe is expected to be roughly
2ut8u&0.2 eV, which is inconsistent with the ARPES data
where the band width of the in-gap states is of the order of
1 eV (assuming half is seen). However, it turns out that the
spectral distribution and band width of bond-aligned stripes
is qualitatively consistent with the ARPES data. For this rea-
son we suggest that the diagonal stripe phase consists of
stripes which are globally diagonal but locally bond aligned,
a caricature of which are the “staircase stripes” shown in Fig.
4. Figure 6 shows the low-energy spectral weight, which is
concentrated around the nodal region in a hole-doped array
of staircase stripes.

An interesting aspect of these staircase stripes is the mag-
netic structure factors which depend on the ratio between the
length of the bond-aligned segments, the “step” lengthl, and
the distance between neighboring stripesd. As shown in Fig.
8, we find that the corresponding Bragg peaks can be classi-
fied in three main regimes. Forl <d there are two peaks

corresponding to diagonal stripes along thex̂+ ŷ direction at
sp±ddiag,p7ddiagd, for l <2d the diagonal peaks coexist
with four peaks atsp ,p±dcold and sp±dcol,pd correspond-
ing to the response expected from bond-aligned stripes along
the x̂ and ŷ directions, while forl @d there are only the four
bond-aligned peaks, but they are now shifted away slightly
from the square lattice axes. The qualitative features are very
similar to what is found from neutron scattering in LSCO as
a function of doping,15 although the relative incommensura-
bility ddiag/dcol is not quite accurately reproduced in the co-
existence regime. Nevertheless, this suggests a scenario in
which the stripes in the orthorhombic phase of LSCO are
always locally bond-aligned, but in some sense globally di-
agonal with a crossover as the stripe spacing is decreased
with increased doping and not a first-order transition as sug-
gested by the neutron scattering data. Corroborating such a
crossover scenario is the fact that the ARPES spectra evolve
smoothly through the diagonal to bond-aligned stripe transi-
tion, and that the Fermi velocity in the nodal direction is
roughly independent of doping, indicating that if the low-
energy spectral weight is stripe related, the local character of
the stripes does not change dramatically with doping.16,23 In
addition, the hole mobility at moderate temperatures changes
by only a factor of 3 from very lightsx=0.01d to optimal
sx=0.17d doping, which is very naturally understood within a
stripe model in which the local character of the stripes is
roughly independent of doping.24

In Fig. 12 we show the band structure of a system with
disordered in-phase stripes and in Fig. 11 the corresponding
electron-doped low-energy spectral weight, which is in quali-
tative agreement with the ARPES data. The most interesting
part of these results is the evolution of spectral weight in the
nodal region, where at light dopings4%d there is in-gap
spectral weight, which at higher dopings10%d broadens as a
consequence of the shorter interstripe distance and reaches
the Fermi surface. The evolution of the Fermi surface with
doping can be reproduced in the mean-field theory of the
Hubbard model with longer range hopping by allowing for a
doping-dependent interactionU.25 The difference within a
stripe model is that the low-energy states are dynamically
one dimensional, being localized transverse to the stripes
(Fig. 13) and the existence of in-gap spectral weight. In ad-
dition we find that for in-phase stripes, in contrast to an-
tiphase stripes, the chemical potential is likely to move into
the upper Hubbard band with electron doping because the
in-phase stripe states lie close to the upper and lower Hub-
bard bands(Fig. 14).

Finally, we present similar results from a calculation on a
“bubble” phase where the doped charge is confined to small
“zero-dimensional” droplets instead of the one-dimensional
stripes. Bubbles would arise naturally instead of stripes in a
t−J model with long-range Coulomb repulsion in the limit
t!J, because of the lower magnetic energy. Thus in the
electron-doped materials, which appear to have “stronger”
antiferromagnetism than the hole-doped materials, one may
speculate that bubbles are favored over stripes. As far as the
distribution of spectral weight is concerned(Figs. 15 and 16)
there is little qualitative difference between bubbles and
stripes. For the bubbles we find that the nodal spectral weight
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broadens as the size of the bubbles increase with doping in
analogy with the increasing density of stripes.

II. THE MODEL

We will consider a tight-binding model on a square lattice
with first, second, and third nearest neighbor hopping to-
gether with a static potential that represents stripes or other
charge structures. The Hamiltonian reads

H = − t o
krr8ls

scr,s
† cr8s + H. c.d − t8 o

krr8l8s

scr,s
† cr8s + H. c.d

− t9 o
krr8l9s

scr,s
† cr8s + H. c.d

+ mo
x,y,s

ss− 1dx+yVsx,ydcx,y,s
† cx,y,s, s1d

where cr,s is the electron destruction operator at siter
=sx,yd and with spins=±. The hopping is given in a stan-
dard fashion, wherekrr 8l indicates nearest neighbors,krr 8l8
next-nearest neighbors, andkrr 8l9 next-next nearest neigh-
bors. In what follows we will use energy units such thatt
=1 and we taket8 / t,0 andt9 / t.0. The longer range hop-
ping t8 and t9 are included to qualitatively reproduce[Figs.
7(a) and 12(a)] the undoped ARPES measured band structure
of the particular system studied. The physical intuition for
the fieldm is that it is the energy cost of moving a hole from
a stripe into the antiferromagnetic background and it is thus
expected to be of the order of the spin exchangeJ. For sim-
plicity, we will be usingm= t=1 unless stated otherwise. We
also use units such that the lattice constant is equal to one
and"=1.

The potential ms−1dx+yVsx,yd describes the collective
field which defines the stripe order. We will use the simplest
possible form and takeVsx,yd=1,0 or −1, where Vsx,yd
=1 or −1 represent antiferromagnetic regions related by ap
phase shift andVsx,yd=0 are the locations of the stripes. The
caseVsx,yd=1 for all x and y corresponds to the standard
mean-field result of the Hubbard model at half-filling26 giv-
ing an upper and lower Hubbard band separated by the Mott-
Hubbard gap. Introducing regions whereVsx,yd=0 will, in
general, give rise to localized “impurity” states within the
gap.

The object which was studied in detail in Ref. 13 is the
site-centered antiphase stripe given by

Vstripesx,yd = 51, x . 0

0, x = 0

− 1, x , 0,

s2d

and displayed graphically in Fig. 1(a). Here we also show
two other charge structures, diagonal stripes and bubbles,
which we will consider in more detail subsequently. In a real
system we want to consider ordered or disordered arrays of
structures such that at some finite doping the corresponding
impurity states are partly occupied.

A. Spectral weight of localized states

Here we will show that a statec
kW
loc

localized on an impu-
rity where the staggered field is zero has its spectral weight
uc

kW
locu2 centered within a regionm of the cosskxd+cosskyd=0

diamond, regardless of the values of the longer range hop-
ping t8 andt9 and the geometry of the impurity. This result is
really a trivial consequence of the fact that the nearest neigh-
bor hoppingt connects the two sublattices of the staggered
field while t8 and t9 do not, or equivalently the symmetry or
not of the dispersion, with respect to a shift of the momenta
by scattering vectorsp ,pd of the staggered field.

We define a potential for an arbitrary impurity

Vsx,yd = ms− 1dx+y, hx,yjP” impurity

Vsx,yd = 0, hx,yj P impurity, s3d

and write the tight-binding dispersions

«kW = «
kW
0

+ «
kW
1
,

«
kW
0

= − 2tfcosskxd + cosskydg,

«
kW
1

= − 4t8 cosskxdcosskyd − 2t9fcoss2kxd + coss2kydg. s4d

With this we solve for the eigenstates in the bulk

ckW = akWe
ikW·xW + bkWe

iskW+pW d·xW , s5d

with energy

EkW = «
kW
1

± Îs«
kW
0d2 + m2, s6d

and ratio of coefficients

bkW/akW = f− «
kW
0

± Îs«
kW
0d2 + m2g/m. s7d

The localized state can be expanded in terms of the com-
plete set of statesckW, which are the solutions in the bulk.
Clearly any state which is localized at the impurity must be
sensitive to the staggered field. This means that it can only
contain bulk solutions which are substantial superpositions

of kW andkW +pW , i.e., bkW /akW ,1. From the expression, Eq.(7),

for bkW /akW we find «
kW
0
=1/2sa/b−b/adm which implies thatkW

is constrained to the volumeu«
kW
0u&m.

Figure 2 shows the full spectral weight of the three types
of potentials displayed in Fig. 1, confirming our analytic re-

FIG. 1. Graphic representation of the potentialVsx,yd for vari-
ous charge structures. Here, black corresponds toV=0, gray toV
=1, white toV=−1 and each square represents a sitesx,yd on the
lattice. (a) is a bond-aligned antiphase stripe,(b) is an antiphase
diagonal stripe, and(c) a bubble.
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sult. The broader distribution ink space for largerm is con-
sistent with a shorter localization length in real space. Note
also that for the diagonal stripe, in Fig. 2(b), the spectral
weight is concentrated to those segments of the diamond
which have momenta orthogonal to the stripe direction, a
feature which will be important when analyzing diagonal
stripes in the next section.

III. DIAGONAL STRIPES

One of the most interesting recent stripe-related observa-
tions is the diagonal stripes seen by quasielastic neutron scat-
tering in the very underdoped insulating phase of LSCO.14

As discussed in Sec. I, there is a crossover region where both
diagonal and bond-aligned stripes appear to coexist, and
which coincides with the rapid drop of the superconducting
transition temperatures with decreasing doping,15 pointing to
a strong connection between stripes and superconductivity.
On the other hand, we also noted that other properties, such
as the nodal Fermi velocity and the hole mobility does not
show any dramatic change across the bond aligned to diag-
onal transition.

What we can contribute to this discussion within our
model is a comparison between the expected distribution of
spectral weight between bond-aligned and diagonal stripes. It
was already shown in Refs. 11 and 13 that a disordered
bond-aligned stripe array can well reproduce the qualitative
features of the near optimally doped samples. It is natural to
do a similar analysis for the lightly doped samplesx
=3–5% studied by ARPES in Ref. 16. Experimentally it is
found that the spectral weight in the antinodal,sp ,0d, re-
gions of the BZ, which is most prominent for the under- and
optimally doped samples, is gapped away from the Fermi
energy, and instead the low-energy spectral weight consists
of disjoint arcs of “Fermi surface” centered near the nodal,
sp /2 ,p /2d, regions. At first glance it is very tempting to
identify these features with that shown in Fig. 2(b) for a
diagonal stripe. However, although it is probably not com-
pletely ruled out that this simple picture is correct,27 a closer
study of the diagonal stripe reveals a serious problem. The
problem is that fort8,0, a less then half-filled, i.e., hole-
doped, diagonal stripe will have very little spectral weight in
the nodal region, but only near the antinodal regions.

In order to understand this statement we can consider the
dispersion of the diagonal and bond-aligned stripe as a func-
tion of the conserved momentum along the stripe. We will
restrict ourselves to the limitm→` and numerically confirm

the qualitative correctness form=1. In this limit it is trivial
to solve for the spectrum on the stripe because the problem
reduces to a one-dimensional tight-binding chain. For the
bond-aligned stripe there is the nearest neighbor hoppingt
while t9 acts as a next-nearest neighbor hopping, resulting in
a dispersion

«colskid =
m→`

− 2t cosskid − 2t9 coss2kid. s8d

For the diagonal stripe the next-nearest neighbor hopping on
the 2D latticet8 acts as a nearest neighbor hopping on the
chain, giving a dispersion

«diagskid =
m→`

− 2t8 cosskid. s9d

Figure 3 shows numerically calculated dispersions form
=1, which agree qualitatively with the largem limit. Note
that for the bond-aligned stripe, there is a folding of the BZ
due to the antiferromagnetic scattering along the stripe direc-
tion, which is absent for the diagonal stripe. The conclusion
we want to draw from these dispersions is that for the diag-
onal stripe at any finite hole doping, the momenta of filled
states which may contribute to the low-energy spectral
weight are confined toki .p /2. From the distribution of
spectral weight for a diagonal stripe, in Fig. 2(b), we find
that this implies that there is very little spectral weight in the
nodal regions. We can easily convince ourselves that this
distribution of the spectral weight of a diagonal stripe is a
general consequence of the fact that a state with some mo-
mentum ki will, as shown in Sec. II A, have its spectral
weight concentrated in the intersection of the linekx+ky=ki

with the cosskxd+cosskyd=0 diamond. This implies that for
ukiu=p the weight will spread out over the whole intersec-
tion, which is a line, while forukiu,p the weight will be
concentrated to the two points of intersection.

These results for the distribution of the spectral weight of
a hole-doped diagonal stripe may be contrasted with that of a
bond-aligned stripe. Here we find from Fig. 3(a) comple-
mented with Fig. 2(a) that for finite hole doping, the spectral
weight may be spread out over the whole diamond. The de-

FIG. 2. (Color online) The spectral weight of various charge
potentials as follows:(a) is a stripe along they direction with m
=2,t8=−0.1,t9=0.1, (b) is a diagonal stripe alongx+y direction
with m=0.5,t8=−0.1, andt9=0, and(c) is a size 10310 bubble
with m=1,t8=−0.1, andt9=0.

FIG. 3. Dispersions of in-gap states form= t=1, t8=−0.1, and
t9=0 for a bond-aligned stripe(a) alongy with ki=ky and diagonal
stripe (b) along x+y with ki=kx+ky. Line marked “0%” indicates
no-doped holes(half-filling).
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tails, of course, depend on the doping, the parameters used,
and on the density of stripes. The latter being particularly
important in that for a short interstripe distance the stripe
states will overlap and form bands of momenta transverse to
stripes(see Fig. 14).

One might, in an effective model such as this, attempt to
fit the experimental data by takingt8.0 which would allow
for spectral weight concentrated in the nodal region. How-
ever the ARPES data for the lightly doped samples indicate
that most of the additional weight introduced with doping is,
in fact, in the antinodal region only that it is gapped away
from the Fermi surface. If we taket8.0 we would vacate
the antinodal states and we would not be able to reproduce
this qualitative feature. Related to this there is a more quan-
titative problem for a diagonal stripe as contrasted with the
ARPES data, which should be more general than our model,
namely that the bandwidth of a purely diagonal stripe
is expected to be proportional tot8. Values of t8 in the
literature are less than 0.1 eV, implying a bandwidth
Wdiagonal,0.2 eV, whereas the bandwidth from the in-gap
states seen in ARPES can be estimated atWin-gap&1 eV,
which looks more consistent with the band widthWcol,2t of
bond-aligned stripes. To summarize, we find thatpure diag-
onal stripes are not consistent with the ARPES data of lightly
doped LSCO.

A. Staircase stripes

Given the difficulties with matching the model using a
diagonal stripe configuration to the ARPES data it is instead
tempting to look at bond-aligned stripes. Now, we know
from neutron scattering that bond-aligned stripes are not seen
in these very lightly doped materials, but only diagonal
stripes. This led us to investigating the properties of stripes
which are locally bond-aligned but globally diagonal. A natu-
ral and most simple candidate for such a construction is a
“staircase” stripe. We can define a staircase stripe along the
x+y direction, but letting it run alternately along thex̂ and ŷ
directions with some step lengthl. For an ordered array of
such staircase stripes we also introduce a stripe distanced
defined according to Fig. 4. In the case of antiphase stripes,
the potential has the symmetries

Vsx + l,y + ld = Vsx,yd,

Vsx + d,y − dd = − Vsx,yd, s10d

which also give the primitive cell as indicated in the figure.
The same symmetries hold true for the full potential of Eq.
(1) which is simply multiplied by a factors−1dx+y to account
for the staggered field.

We will return to magnetic structure factors of such stair-
case stripes below, but it is easy to see that as long asl ød
the main magnetic diffraction peaks of such a staircase stripe
are equivalent to an array of purely diagonal stripes with the
interstripe distance 2d along thex andy direction.

We turn now to the distribution of spectral weight of stair-
case stripes. As an example we look at a system withl =8
andd=8, whered is chosen such that the magnetic structure
factor has main peaks atsp±d /Î2,p7d /Î2d with d /Î2
=1/32, which corresponds roughly to thed<1/25 seen in
neutron scattering at 4% doping. We diagonalize this system

numerically to find the single particle eigenstatescaskWd, with
energiesEa, in terms of which we calculate the single par-
ticle spectral function

AskW,vd = o
a

ucaskWdu2dsEa − vd, s11d

wheredsEa−vd is the Kronecker delta, and the local density
of states

RsrW,vd = o
a

ucasrWdu2dsEa − vd, s12d

with casrWd=1/LxLyokWe
ikW·rWcaskWd being the eigenfunctions in

real space. Figure 5 shows spectral weight distribution ink
space and real space when integrated over an energy window
Dv=0.2 around the Fermi energy at 4% doping, i.e., calcu-
lating

IskWd =E
EF−Dv/2

EF+Dv/2

AskW,vddv, s13d

and

RsrWd =E
EF−Dv/2

EF+Dv/2

RsrW,vddv. s14d

We find that the low-energy spectral weight is concentrated
near the nodal region. It is highly anisotropic with most of

FIG. 4. Graphical representation of a staircase stripe defined by
the step lengthl and the stripe distanced. The rectangle indicates a
primitive cell. The potentialVsx,yd is given by V=0 for darker
gray,V=1 for light gray, andV=−1 for white.

FIG. 5. (Color online) An ordered array of staircase stripes with
l =8 andd=8, usingt=m=1, t8=−0.1, andt9=0. Momentum space
(a) and real space(b) spectral weight integrated over an energy
window of 0.2 around the Fermi energy at 4% hole doping. The full
system size is 2563256 while in(b) is shown a 1003100 section.
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the spectral weight parallel to the overall stripe direction
along x+y in contrast to the pure diagonal stripe shown in
Fig. 2(b). We have tried making the step lengthl shorter,
which gives results closer to the pure diagonal stripe with
most of the spectral weight in the antinodal region. In Fig. 6
the results are symmetrized with respect to the stripe direc-
tion, so thatsp ,pd=sp ,−pd, etc. Here, the disjoint features
merge into a single piece of “Fermi arc” in each quadrant of
the BZ, similar to what is seen in ARPES. Note that in Fig.
5(b) it is not the stripe potentialVsx,yd which is plotted, but
the amplitude in real space of the low-energy states. Not
surprisingly, these follow the potential quite closely, but
there is some leakage of spectral weight into the antiferro-
magnetic regions which appears to smooth the kinks and
make the stripes more diagonal. An indication that the stair-
case stripes are just a caricature with the real stripes probably
being smoother, but nevertheless are locally closer to bond
aligned than to diagonal.

We can gain a better understanding of these results for the
low-energy spectral weight by studying the spectral function,

AskW ,vd, over a broader energy window along the high-
symmetry directions, as shown in Fig. 7. The qualitative fea-
tures of the spectral weight deriving from the staircase
stripes can be directly linked to the properties of ordinary

bond-aligned stripes. The high energy(away fromEF) spec-
tral weight is concentrated around the antinodal,sp ,0d, re-
gion whereas the low-energy spectral weight close to the
Fermi energy is focused to the nodal region around
sp /2 ,p /2d. This is what we would find from a lightly hole
doped bond-aligned stripe with the dispersion in Fig. 3(a),
given the fact that the spectral weight is concentrated to the
intersection ofki=kx or ky with the BZ diamond.

1. Magnetic structure factors of staircase stripes

In the previous section we found a qualitative agreement
of the spectral distribution of staircase stripes with that seen
experimentally in lightly doped LSCO. Here, we had to re-
strict ourselves to staircase stripes with step lengthl less than
the stripe distanced as defined in Fig. 4 in order to have a
magnetic structure factor which corresponds to diagonal
stripes. A natural extension is to study also stairs withl .d.
Certainly, in limit l @d we expect very little influence from
the kinks and the system will become equivalent to that of
bond-aligned stripes, both for the spectral distribution and
structure factors. We found that the distribution of spectral
weight could be rationalized in terms of bond-aligned stripes
already for the system withl =d so that forl .d we would
not expect any qualitative difference between the spectral
distribution of staircase stripes with that of bond-aligned
stripes studied in the earlier work.11,13What is more interest-
ing is to study the magnetic structure factor, which is sensi-
tive to the global properties of the system.

Physically, the relevant entity is the magnetic structure
factor which is the amplitudeuSzsqWdu2 of the Fourier trans-
formed spin density, which at zero temperature reads

SzsqWd = 1/L2 o
rW,a,s

eiqW·rWsucassrWdu2QsEF − Ead. s15d

However, for a large system, such as for disordered stripes,
this is difficult to calculate because of the need to diagonal-
ize the system. Much simpler to find is the amplitude squared
of the Fourier transform of the stripy potential
s−1dx+yVsx,yd. We have checked for several ordered stripe
arrays that close to half-filling the two calculations give very
similar results. This is expected because the difference is
roughly the amplitude on the stripes, which is zero for the
potential, but slightly different from zero for the actual spin
density because of the occupied stripe states.

Using the symmetry properties of a staircase stripe, Eq.
(10), we find thatVskx,kyd can only have nonzero compo-
nents for

kx + ky =
2p

l
N, N P integer s16d

kx − ky =
2p

2d
N8, N8 P odd integer. s17d

Figure 8 shows the structure factors of three different stripe
realizations,l =d, l =2d, and l =5d. We find three very dis-
tinct diffraction patterns, where the first corresponds to diag-
onal stripes, the second looks like diagonal stripes coexisting

FIG. 6. (Color online) Same as Fig. 5 but symmetrized with
respect to the stripe orientation and in the first quadrant of the BZ.
Shown is also the intensity map which has a linear scale.

FIG. 7. Band structure of system witht=m=1, t8=−0.1, and
t9=0 for (a) no stripes and(b) with staircase stripes as in Fig. 5.
UHB and LHB indicate upper and lower Hubbard bands, respec-
tively, andEF is the Fermi energy at 4% hole doping. The spectral
weight is indicated by the intensity, but on a nonlinear scale that
exaggerates low-intensity features.(b) is symmetrized with respect
to the stripe direction.
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with both vertical and horizontal bond-aligned stripes, and
the last looks like vertical and horizontal stripes, but with an
orientation which deviates slightly from bond-aligned. We
also show diffraction patterns of samplings over disordered
stripe configurations where we find that, in general, only the
primary peaks survive with secondary, lower intensity peaks,
getting washed out, although this does not happen for the
second configuration with coexisting bond-aligned and diag-
onal peaks. We have also studied stripe arrays with larger
unit cells wherel is not an integer factor ofd. For disordered
realizations it appears that these roughly fall into one of the
three characteristic regimes, with only a quite narrow win-
dow of l <2d showing both diagonal and bond-aligned peaks
of appreciable amplitude.

These results for the diffraction pattern of staircase stripes
appear qualitatively very similar to what is seen in neutron
diffraction experiments on LSCO in the low-temperature
orthorhombic (LTO) phase.15 In the nonsuperconducting
phase at very low dopingsx&6%d, peaks are consistent with
diagonal stripes, whereas at higher dopingsx<10–13%d a
pattern is consistent with stripes that are close to bond
aligned but shifted by a few degrees from the tetragonal
axes. More recently it was found that very close to the insu-
lator to superconducting transitionsx<6%d both patterns co-

exist. This may suggest that the stripes in the LTO phase of
LSCO are always of the staircase type and that the transition
between bond-aligned and diagonal stripes is a crossover
from a regime wherel .2d to one wherel ,2d. Particularly
interesting are the more detailed experimental data from neu-
tron scattering on the underdoped superconducting regime
x<10%. From the staircase stripe scenario we would expect
a larger angle of deviation from the tetragonal axes than for
the samples with higher doping, possibly together with sec-
ondary peaks in the diagonal direction or on the tetragonal
axes as shown in Fig. 9.

We should note that the correspondence between the ex-
periment and our results for staircase stripes is not perfect. In
particular there appears to be a discrepancy with the relation
between the “incommensurabilty”d, defined as the shift of a
peak fromsp ,pd, of the diagonal and bond-aligned compo-
nents. For the staircase stripes we findddiag=dcol/Î2,
whereas experimentally is seenddiag<dcol. The former rela-
tion follows directly from the symmetry of the stripy poten-
tial, Eq. (17), and consequently is not sensitive to small
changes of the potential such as for instance smoothing of
the kinks.

IV. IN-PHASE STRIPES

We now turn to a study of the spectral weight distribution
of in-phase stripes. As discussed in Sec. I there is indirect
evidence for an inhomogeneous charge distribution in the
electron-doped PLCCO.17–19 In fact, the possibility of in-
phase stripes had already been suggested from the theory for
hole-doped stripes at lower hole densities.28

The experimental hallmark of antiphase stripes is the in-
commensurate magnetism detected by neutron diffraction,
where the weight is shifted away from the antiferromagnetic

ordering vectorQW =sp ,pd. A system with ordered in-phase
stripes, on the other hand, will have a main diffraction peak
at the antiferromagnetic(AF) ordering vector with satellites
at positions shifted by integer multiples of 2p /d, whered is
the distance between stripes. However, if the stripes are not
static and ordered, but fluctuating or disordered, the satellite
peaks will easily be washed out and the weight absorbed into
the AF peak. Figure 10 shows the amplitude squared of the
Fourier transform of the stripe potentials−1dx+yVsx,yd along
the transverse direction for ordered and disordered antiphase
and in-phase stripes and for the charge density represented

FIG. 8. (Color online) The magnetic structure factors of the
three different regimes of staircase stripes discussed in text. The left
column shows the unit cells which in(a) is 80380 with step length
l =20 and stripe distanced=20, in (d) is 40340 with l =20, d=10
and in(g) is 80380 with l =20, d=4. The stripes where the poten-
tial is zero are black, the twop-shifted domains of the antiferro-
magnetic order and the rectangles are primitive cells are gray and
white. The middle column,(b), (e), and(h), shows the correspond-
ing structure factors in reciprocal lattice units centered around
s1/2,1/2d=sp ,pd. The right column,(c), (f) and(i), give the struc-
ture factors of a sum over ten 80380 disordered configurations of
the corresponding ordered states to the left, where the length of the
legs and the distance between stripes are allowed to vary with a flat
random distribution without allowing stripes to come closer than
one site separation. The width of the peaks of the right column is
simply related to the fraction of the BZ viewed, given that in all
calculations, the same correlation length is used.

FIG. 9. (Color online) Magnetic structure factors of disordered
realizations of staircase stripes withl =20 and(a) d=5 and (b) d
=6, which could roughly correspond to 10% and 8% doping,
respectively.
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by uVsx,ydu. For the charge order there is no difference be-
tween antiphase and in-phase stripes. Nevertheless, charge
order is more difficult to detect, even for systems with static
order. The reason for this is that neutrons do not couple
directly to the charge order and that the superlattice peaks
related to charge stripe order arise from modulations of the

uniform charge density,QW =s0,0d, which dominates the
structure factor. As shown in Fig. 10, these peaks are also
readily destroyed by disorder.(In fact, the charge structure
factor as estimated here is equivalent to the spin structure
factor of in-phase stripes but shifted byp.) Direct signatures
of in-phase stripes from neutron or x-ray scattering will thus
be much more difficult to find, most likely requiring a stripe
ordered material.

Nevertheless, given the indirect indications for the exis-
tence of in-phase stripes in electron-doped cuprates, it may
be interesting to study the implications of such structures to
the distribution of spectral weight. In Fig. 11 is shown the
integrated spectral weight close to the Fermi energy for dis-
ordered in-phase stripes with interstripe distances 9–15 with

mean 12 and 1–7 with mean 4 for a system witht=m=1,
t8=−0.2, andt9=0.1. The parameterst8 and t9 are chosen
such as to roughly reproduce the band structure of the un-
doped system seen in ARPES on the electron-doped NCCO21

with the smallest spectral gap atsp /2 ,p /2d as shown in Fig.
12(a). The density of stripes is assumed to be roughly as in
the hole-doped materials with stripe spacingd given by the
doping n according ton<1/2d, which for electron doping
corresponds to 3/4-filled stripes.

Clearly these results reproduce the experimental Fermi
surface quite well; at light doping there are patches of spec-
tral weight aroundsp ,0d while at higher doping the weight
starts to look more like a full Fermi surface closed around
sp ,pd, but with weight missing at “hot-spots,” where the
putative Fermi surface cuts the BZ diagonal(diamond).
Similar results have been reproduced by the mean-field
theory of thet− t8− t9−U Hubbard model by allowing for a
doping-dependentU.25 This is, in fact, the model we con-
sider, but without the stripes and with a magnitude of the
staggered fieldm which depends onU. Here, we keep the
parameters fixed, but vary the stripe spacing as a function of
doping. There are, however, very distinct differences be-
tween the implications of the two scenarios. In the stripe
model there are midgap states, not present for the model with
a uniform staggered field. This is particularly visible for the
lightly doped system, Fig. 12(b), where along theG=s0,0d to
sp ,pd direction there is spectral weight betweenEF and the
lower Hubbard band. Precisely, such a feature is seen in the
ARPES data for the 4% doped sample. Secondly, the low-
energy states of the stripe model are dynamically one dimen-
sional, i.e., they are localized transverse to a stripe but have
a well-defined momentum along the stripe, as shown in Fig.
13. Thus, one of the main conclusions is that the distribution
of low-energy spectral weight, the “Fermi surface,” may be

FIG. 10. Structure factors(in arbitrary units) of spin and charge
density for antiphase and in-phase stripes as a function of momen-
tum transverse to the stripes in r.l.u. The left column shows ordered
arrays with stripe distanced=4 and the right disordered with a flat
distributiond=2−6. (a) and (b) show the spin order for antiphase
stripes,(c) and(d) show the spin order for in-phase stripes, and(e)
and (f) show the charge order which is independent of the type of
stripe. In all figures a finite correlation length of 40 sites is used and
the disordered systems are averaged over 1000 samples.

FIG. 11. (Color online) Spectral weight close toEF (window
0.2) of disordered in-phase stripes witht=m=1, t8=−0.2, andt9
=0.1. Mean stripe distance in(a) is 12 withEF at 4% doping and in
(b) mean distance is 4 withEF at 10% doping. The results are
symmetrized with respect to the stripe direction. The system size is
3203320.

FIG. 12. The band structure of the system witht=m=1, t8=
−0.2, andt9=0.1 and in-phase stripes as in Fig. 11.(a) is no stripes,
(b) mean stripe period 12 and(c) mean stripe period 4.
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indistinguishable from a homogeneous two-dimensional sys-
tem even though the states are dynamically one dimensional.

Let us now look at how we can understand this evolution
of spectral weight with doping and corresponding increasing
stripe density from the properties of a single in-phase stripe.
Figure 14 shows the spectra of systems with sparse, mean
distance 12, and dense, mean distance 4, stripes. For the
sparse stripes, Fig. 14(a), the stripe states are clearly visible
as the isolated in-gap bands. Because there is no broadening
of the stripe states, the stripes are clearly sufficiently far
apart as to be effectively independent. We find that in-phase
stripes at moderatem have a band structure that is distinctly
different from that of antiphase stripes, as shown in Fig. 3(a),
with the former staying close to the upper and lower Hub-
bard bands.29 (We have checked that in the limitm→`,
where in-phase and antiphase stripes are equivalent, the dis-
persion Eq.(8) is correctly reproduced also for in-phase
stripes.) As the stripe density is increased, the stripe states
will overlap and form bands transverse to the stripes, in Fig.
14(b), with states from the lower branch crossing the Fermi
energy. Because of disorder, these states may nevertheless be
strongly localized as shown in Fig. 13.

An important point about in-phase stripes, which is dem-
onstrated here is that the chemical potential may move as a

function of doping and is not necessarily pinned within the
gap. This is particularly evident in comparing the 0% and
4% samples, as shown in Figs. 12(a) and 12(b), where in the
former the chemical potential is in the gaps−0.6,m,
−0.2d, whereas in the latter it has moved up to cut the upper
Hubbard bandsm<0d. The motion of the chemical potential
is a necessary consequence of the dispersion of in-phase
stripes as shown in Fig. 14(a), with the stripe states “hug-
ging” the upper and lower Hubbard bands. This is in sharp
contrast to antiphase stripes(Figs. 7 and 3), where the spec-
tral weight of the stripe states is “midgap,” implying that the
chemical potential may stay fixed with doping. Motion of the
chemical potential with doping is thus not necessarily an
indication of the absence of stripes.21,30

A. Bubbles

Because of the lack of direct diffraction evidence for
stripes, one may be free to speculate on other forms of
charge order in these materials. The microscopic motivation
for stripe formation is the tendency of the antiferromagnet to
expel extra charge which will disrupt the local antiferromag-
netism. The formation of stripes is then a compromise be-
tween the minimizing of the magnetic energy by concentrat-
ing the holes, of the kinetic energy by allowing holes to
delocalize along the stripes, and possibly of the charging
energy due to long-range Coulomb repulsion by not allowing
a macroscopic charge inhomogeneity.31

However, if the magnetism is relatively stronger than the
kinetic energy contribution, the system may prefer to keep
the extra charge in zero-dimensional “bubbles”[see Fig.
1(c)] in order to minimize the disruption of the local mag-
netic order.32 Roughly speaking, for a completely filled stripe
with two electrons per site on a one-site wide stripe there are
three bad bonds where the spin exchange is destroyed per
stripe site, while for a bubble there are only two bad bonds
per site.(The sites on the perimeter of the bubble have three
bad bonds.) In addition, because of charging energy, the
bubbles would have to be limited to a microscopic size.
Clearly, the putative stripes or bubbles are not completely
filled in the electron-doped materials, due presumably to ki-
netic energy considerations, as this would imply an insulat-
ing system.

For simplicity we look at square bubbles, and because this
problem is fully two dimensional, with a large unit cell, we
only consider ordered systems. For the previous study of
in-phase stripes we chose stripe spacings and fillings that
were based on the corresponding values for antiphase stripes
in the hole-doped systems. For the bubble phase we have
even less to guide us on how to choose the size and period of
the bubbles. However, assuming that the putative bubble for-
mation is due to competition between the magnetic energy
and the charging energy, we can get a simple estimate of the
variation of bubble size with doping, completely ignoring the
kinetic energy. It is easy to see that for a classical antiferro-
magnet, we decrease the number of bad bonds that are not
connecting antiferromagnetically aligned spins by two per
doped electron by forming bubbles instead of a homoge-
neous(Wigner crystal) distribution of the doped charge. This

FIG. 13. Example of a single statec of system in Fig. 12(c),
with energyE<0 and momentum along stripe directionky=p /2,
showing localization in the transverse stripe direction. In(a) the real
space amplitudeucsx,ydu2 is shown as a function of transverse di-
rection x for arbitrary y and in (b) the k-space amplitudeucskxdu2.
We can estimate a localization lengthj<2 from the real space peak
amplitude.

FIG. 14. Spectrum foruEu,2 of in-phase stripe systems as in
Fig. 12 with mean stripe period 12 in(a) and 4 in(b) as a function
of momentumki=ky parallel to the stripe directiony. The black
curves indicate the bounds of the upper and lower Hubbard bands
for the corresponding system without stripes.
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gives an energy gainEAF,−JL2, where J is the AF ex-
change, which is typically of the order of 0.1 eV, andL is the
linear dimension of the bubble. The charging energy due to
movingL2 electrons together from a closest distance 1/n to a
closest distance 1 is given byEQ,QL3s1−nd, assuming a
Coulomb interactionV=Q/ r with r in units of the lattice
constants. HereQ=se2/4pe0ead<0.3 eV, assuming a lattice
constant ofa=5 Å and a dielectric constante=10.33 Mini-
mizing the total energy with respect to the bubble sizeL
gives L,fJ/Qs1−ndg, so that for small doping,n, we find
the bubble size proportional to the doping. The prefactorJ/Q
seems somewhat on the small side, but does not rule out
bubbles as a viable scenario. Clearly largeJ, or “strong”
antiferromagnetism, will favor the bubble scenario. This is
the reason why we suggest it for the electron-doped materi-
als, which in general show antiferromagnetism over a much
wider doping range than do hole-doped materials.

For the calculations presented here we choose a bubble
sizeL=100n and let the distance between bubbles vary with
doping, such as to correspond to roughly 3/4-filled bubbles.
Figure 15 shows the integrated spectral weight near the
Fermi energy for two realizations, at 4% and 10% doping,
and in Fig. 16, the corresponding band structure. The results
are qualitatively similar to what was found for in-phase
stripes. The evolution of the weight nearsp ,0d does not
depend crucially on the bubbles but can be understood from
increasing the filling of the upper Hubbard band. The nodal
weight nearsp /2 ,p /2d on the other is clearly an effect of
the additional states deriving from the bubbles.

V. CONCLUSIONS

We have investigated the distribution of electronic spec-
tral weight in various charge ordered antiferromagnets. We
find that the spectral weight of states localized on a stripe or
other charge structure is centered on and spread out over the
Brillouin zone diagonalsfcosskxd+cosskyd=0g. The distribu-
tion of spectral weight close to the Fermi energy may thus
look fully two dimensional and practically indistinguishable
from a homogeneous system even though the low-energy
states are dynamically one or even zero dimensional, local-
ized on stripes or bubbles. On the other hand, the stripe states
will, in general, lie within the energy gap of the undoped
system making the appearance of “in-gap” states an expected
consequence of an inhomogeneous charge distribution.

We find that pure diagonal stripes cannot reproduce the
distribution of spectral weight found in ARPES on the very
underdoped LSCO in the “diagonal stripe” phase. Instead we
introduce “staircase” stripes, which are locally vertical or
horizontal, but globally diagonal, in terms of which the
qualitative features of the ARPES data are readily repro-
duced. Calculating the structure factors of such staircase
stripes, we find that these evolve with doping and corre-
sponding stripe density in a way that is very similar to the
neutron scattering data in the LTO phase of LSCO over the
whole doping range from very light to optimal. The results
suggest that the horizontal to diagonal stripe transition may
be a crossover between a regime where the typical length of
straight(horizontal or vertical) stripe segments is longer than
the interstripe spacing to one where it is shorter and that the
stripes are always locally bond-aligned in LSCO.

We find that in-phase stripes can qualitatively reproduce
the ARPES data and evolution with doping in the electron-
doped cuprate NCCO. Particularly revealing is the spectral
weight in the nodal region, nearsp /2 ,p /2d, where at low
doping there is “stripy” spectral weight in the gap, which at
higher doping broadens as a result of increased stripe density
and crosses the Fermi energy. For in-phase stripes, in con-
trast to antiphase stripes, we find that the in-gap states lie
close to the upper and lower Hubbard bands implying that
the chemical potential is likely to move with doping. We also
consider bubble structures and find that these produce similar
results for the distribution of spectral weight to that of in-
phase stripes by allowing the bubble size to grow with dop-
ing. We argue that these may be an alternative to stripes in
the electron-doped materials where there is a broad doping
range with antiferromagnetic order.
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FIG. 15. (Color online) Spectral weight within energy window
0.2 of EF of ordered array of bubbles witht=m=1, t8=−0.2, and
t9=0.1. In(a) the unit cell is 12312 with the bubble size 434 and
EF is at 4% electron doping. In(b) the unit cell is 20320 with the
bubble size 10310 andEF at 10% doping.

FIG. 16. The band structure of the system in Fig. 15. The band
structure without bubbles is the same as in Fig. 12(a).
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