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We study the effect of site dilution and quantum fluctuations in an antiferromagnetic spin system on a square
lattice within the linear spin-wave approximation. By performing numerical diagonalization in real space and
finite-size scaling, we characterize the nature of the low-energy spin excitations for different dilution fractions
up to the classical percolation threshold. We find nontrivial signatures of fractonlike excitations at high fre-
guencies. Our simulations also confirm the existence of an upper bound for the amount of quantum fluctuations
in the ground state of the system, leading to the persistence of long-range order up to the percolation threshold.
This result is in agreement with recent neutron-scattering experimental data and quantum Monte Carlo nu-
merical calculations. We also show that the absence of a quantum critical point below the classical percolation
threshold holds for a large class of systems whose Hamiltonians can be mapped onto a system of coupled
noninteracting massless bosons.
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[. INTRODUCTION wave excitations in determining the magnitude of quantum

fluctuations. However, the latter was carried out within the

The problem of the interplay of quantum fluctuations T-matrix approximation, which excludes coherent superposi-

and disorder in low dimensional systems is of fundamentation and interference, and thus could not account for strong
importance in modern condensed matter physics. It is rellocalization effects. o
evant for the understanding of the metal-insulator transi- In this work we carry out exact real space numerical di-
tion in metal-oxide-semiconductor field-effect transistors@gonalizations of the dilute 2D Heisenberg AFM within the

(MOSFETS,! impurity effects ind-wave superconductofs, lin€ar spin-wave approximation for dilution fractions ranging
non—Fermi-Ii,quid behavior in U and Ce intermetallicand " from the clean limit to the the classical percolation threshold.

the persistence of long-range ordgtRO) in two- Although our method cannot be used to investigate systems

dmersonal (20) Spin /2. uanum anfetomages S 210 85 hose sed n provious umeral s of e
(AFM),* among others. y tp p

The 2D square lattice with nearest-neighbor hopping unCess to eigenenergies_ and eigenvectors, thus allgwing us to
. . - . probe more carefully into the structure of the excited states
Qergoes a classical p(_arcolgthn transition upon random d'lu()f the site dilute AFM. We find that excitations in this system
tion. For the case of site dilution, the transition occurs at thg) o5 up into different modes as the amount of dilution is
hole concentratiorx,~0.41> while for bond dilution the jncreased. The multipeak structure of the spectral function
largest(infinite) connected cluster disappears when exactlyshows the simultaneous existence of extend@dgnon$
half of the bonds are abserte., x.=1/2).>" Thus, no  and localized(fractong excitations, similarly to what was
ground-state long-range order is possible for any model witlhbserved experimentally by Uemura and Birgeneau for dilute
short-range interactions in these lattices abryeFor those  three-dimensionahFMs several years ags.
models where order does exist in the clean limit, it is natural We also argue that the absence of a quantum critical point
to ask whether dilution can enhance quantum fluctuations tin diluted systems below, is a universal feature for a large
the point of destroying long-range order at some doping fracelass of continuous models of the Heisenberg type that can
tion belowx.. This possibility has led to several theoretical be mapped into a system of coupled harmonic oscillators
and experimental investigations in a variety of systéf8!  within some approximate scheme. We establish an upper
In particular, a recent neutron scattering experithémthe  bound for the amount of quantum fluctuations in these di-
site-diluted S=1/2  Heisenberg  quantum  AFM |uted noninteracting bosonic systems and show that quantum
La,Cu(Zn,Mg),O, (LCMO), indicates that LRO exists up fluctuations are bounded even at the percolation threshold for
to X.. This fact was corroborated by an extensive quantun2D systems. Indeed, one may wonder whether this generic
Monte Carlo(QMC) simulatior? and by spin-wave theory behavior of diluted bosonic systems is related to universality
(SWT) analytical calculation in the dilute reginféThe nu-  classes dictated solely by symmetries of the disordered
merical and experimental data suggest that the disappearandamiltonian, as in the case of fermionic models.
of order in the ground state is dominated by a classical effect The paper is organized as follows. In Sec. Il we define the
and no quantum phase transition takes place bejowhe system Hamiltonian and find the corresponding non-
analytical calculatiod,on the other hand, points to a non- Hermitian eigenvalue matrix problem in lattice coordinates
trivial dilution-induced softening of low-frequency spin- within the linear spin-wave approximation. In Sec. Il we
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present and discuss the numerical methods used to generate square root in Eq¢3) and (6) in powers ofn; and n;,
the random dilution, the identification of the largest con-keeping only linear terms. That allows us to write the ap-
nected cluster, and the diagonalization of the eigenvalugroximate bilinear bosonic Hamiltonian

problem. The numerical results for the spin-wave excitation

spectrum and the quantum fluctuation corrections to the H=~-JS> 7 +JS> n7(afa +blb+ab; +ab)).

AFM ground state are presented and discussed in Sec. IV. In i) (i)

Sec. V we argue that the absence of quantum phase transi- (10
tions in site dilute systems occurs for spin Hamiltonians that

can be mapped onto a system of coupled harmonic oscillathe first term on the right-hand side of E4.0) represents

tors. Finally, in Sec. VI, we draw our conclusions and pointthe classical ground-state energy of the AFM. Using the
to future directions. bosonic commutation relations, we can rearrange the Hamil-

tonian in the following form:
Il. DILUTE HEISENBERG ANTIFERROMAGNET IN THE
SPIN-WAVE APPROXIMATION H~-JSS+1)> 7 7+ How, (12)
We begin by reviewing the well-known connection be- w
tween magnetic and bosonic systems. In particular, we ar@here, now, the first term on the right-hand side represents
interested in spin Hamiltonians of the form the ground-state energy in the absence of quantum fluctua-
tions, while the latter is described by the second term,
H= X 7 79SS, (1)

e How= 203, 7y (ala, + aa) + bib, + b
whereS? is thea=x,y,z component of a spi at sitei, J, is W™ 2 i KN R R b
the nearest-neighbor exchange constant, grdD(1) if the fot ot
site is empty(occupied. The empty sites are randomly dis- +ab; + bja; + ajbj + bjay). (12)
tributed over the whole sample with uniform probability. o eatter we will drop the constant ground-state energy term
Calling N the total number of sites, we define the fraction Ofand will only study the eigenstates bls,,. The spin-wave
occupied sites as Hamiltonian contains bilinear crossed terms which, sepa-
1 N rately, do not conserve particle number. At this point, it is
p:NE 7. (2) worth simplifying the notatic.)n. by dropping the distinction
i=1 between bosonic operators living on different sublattices and

The dilution fraction is then defined as1-p. reordering the summation over sites,

The isotropic AFM Heisenberg model correspondsljo IS N
=J>0 for a=x,y,z. When LRO is presertsay, al_ong the Hsw= = > [Kij(aiTaj + aiajT)+ Aj(aya + a,-TaJT)], (13)
direction), the spin operators can be written in terms of 2iin
bosonic operators using the Holstein-Primakoff metHbd. . . o )
Since the square lattice is bipartite, it can be divided up intgvhere both indexes in the sum run over all sites in the lattice.

two square sublatticesd=£, andB=L_. Thus, The matriceX andA are defined as
- t
§:=S-ga, 3 Kij= & n> n (14
(il
o+ _ t4.71/2
S =[2S-aal™a; (4) (the sum run over all nearest-neighbor site$)tand
S':ai‘f[zs_ aiTai]llzi (5) A= for i,j nearest neighbors (15
with i e A, and 710, otherwise.
S,=-S+ b,-Tbj, (6)  Notice that both matriceK andA are real and symmetric.
S = bjT[zs— bJTbj]l/Z, (7) A. Bogoliubov transformation
It is possible to diagonalize the spin-wave Hamiltonian
§ =[2s- bijj]“ij, (8)  through an operator transformation of the Bogoliubov type,
with j e B. The bosonic operators obey the usual commuta-
tion r]elations namely P ’ 8= 2 (Un an+ o ay), (16)
1 1 n
[a,a)]= 6 and [b.b/]=a;, (9)
T * x ot
with all other commutators equal to zero. &= En: (in @t * U ap), S

For the large spin cag&> 1) or when the number of spin
waves is smalln;=(a; a), nj=(bj b/) <S), we can expand or, in matrix notation,
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20 o))

where the column vectors and « contain the operators;
and «,, respectively, while th& X N matricesU andV con-
tain the coefficientdu;,} and {v;,}, respectively, withi,n

(18)

=1,... N. Assuming that the new operators also obey th

canonical commutation relations,

[a’n-aM = Som and [anyam] = [al,a;] =0, (19

one arrives at the following constraints for the transforma-

tion coefficients:
N

E (ui*nujn - UinU;n) = 5|j (20)
n=1
and
N
2 (Uin Ujn ~ Uin ujn) =0. (21
n=1
In matrix notation,
Uuut-vvi=iy (22)
and
uvi-vu'=o, (23)

wherely is theN X N unit matrix. These relations can be put

into a more compact form by defining the matrices

T= (L{ V*> (24)
vV U
and
In O
E:(g _m>. (25)
Thus, Eqs(22) and(23) become one,
TS TI=3. (26)
Since3?=1,,, we find, after a simple algebra, that
TS T=3. (27)

As a result we have two addition@hough not independent
sets of orthogonality equations,

N

2 (uin Uim = Vin Uim) = Sum
i=1

(28)

and
N

2 (Ui*n Uim ~ Uin Ui*m) =0.
i=1

(29

B. Non-Hermitian eigenvalue problem (Ref. 15)

The transformation defined by E@L8) allows us to diag-
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bosonic operators. For that purpose, we chobsech that
ofs 2ee(% 2.

A K 0 Q.

where(), are diagonal matrices containing the eigenfrequen-
cies: [Qi]nnzwff) for n=1,... N. The eigenvalue problem

(30)

efined by Eq(30) can be further simplified. Recalling Eq.

(27), we have that
(K A

Q, o)
A K '

)T:ETE<0 Q.

(31)

In fact, it is not difficult to prove that eigenfrequency matri-
ces obey the relatiof),=Q" =0, with Q being a diagonal
matrix with real entries only, as one physically expects. As a
result,

2 0 D)0 e
A K\ uU/) \-v u/\o o) (32)

We can break up this X 2N matrix equation into two
coupledN X N matrix equations,

KU+AV'=U Q,

AU+KV ==V Q, (33

or, alternatively, writing explicitly the matrix elements,

*

2 [Kij Ujn + Ajj vjn] = p Uip, (34
i

2 [A” an + K” l);n] =~ wp U:n, (35)

J

for all n andi. Thus, for a given eigenstate we can define
an eigenvalue matrix equation in the usual form, namely,

[ b))

(Notice that eactu, andv,, is now a column vector with
components running through a1, ... N lattice sites. The
2N X 2N matrix shown in Eq(36) is clearly non-Hermitian,
but its eigenvalues are all real. Notice also thaijfis an
eigenvalue with corresponding eigenvedm,v;), then —wy,

is also an eigenvalue, but witlo,,u,) as the corresponding
eigenvector. Thus, despite the fact that the non-Hermitian
matrix provides R eigenvalues (eigenfrequencigs we
should only keep thosK that are positive and whose corre-
sponding coefficients;, andv;, satisfy Eqs(20), (21), (28),
and(29).

The non-Hermitian matrix in Eq.36) contains only inte-
ger elements: 0, 1, 2, or 4 in the diagoiebrresponding to
K, i.e., the number of nearest neighbors to sjitend 0 or 1
in the off-diagonal componentgorresponding ta;, i.e., 1
wheni andj are nearest neighbors and zero otheryikéas
strongly sparse, although without any particularly simple
pattern due to the presence of dilution disorder.

It is easy to verify that there are at least two zero modes in
Eq. (36), i.e., two distinct nontrivial solutions with zero ei-

(36)

onalize the spin-wave Hamiltonian in terms of the newgenvalue:

214424-3



MUCCIOLO, CASTRO NETO, AND CHAMON PHYSICAL REVIEW B69, 214424(2004

u@=1, v@=-1, (37)  does not change. However, the amount of work for numerical
] computations decreases by a factor ¢fetall that diagonal-
foralli=1,... N, and izing aNXx N requiresO(N°) operation
1. ieA We begin by summing and subtracting E¢&}) and(35),
U =v® =1 L icn (38)  obtaining
N
(In order to prove that these are indeed eigenstates, notice E (Kij + M) (Ui = Vi) = @p(Uiy + vin) (46)
J:

that 2}\': Ajj=K;.) These two zero modes do not obey the
orthogonality relation of Eq(28); they have zero hyperbolic

norm instead. and
N
C. Average magnetization per site > (Kij = A (U + vjn) = 0p(Uip = i) (47)
The total staggered magnetization can be written in terms =1

of the expectation value of the spin-wave number operator:,vIultiplying these equations bit-A andK+A, we find the

following eigenvalue equations after a simple manipulation:

N
M?agg=<2 s.-35 z>=Ns—E @a). (39
i=1

. : N
ieA jeB
, , K= A)(K +A) ;i Uiy = vin) = 03U = vj 48
where we have assumed that the sublattices contain the same ng[( X i (Ui =0jo) = 0rlUin = vin) - (48)
number of sitesNy=Ng=N/2. As a result, the average stag-
gered spin per site along ttzedirection can be written as and
MStagy N
= =S-4dm,, 40 _
™= : (40 LK+ A)(K = A) Uy + vj0) = 03U + vy (49)
j=1
with
N Although these equations are in principle decoupled, for the
S = 12 S purpose of finding the local magnetization they are not so,
z- NZ i (41) since we are interested in finding mainlyand notu+uv or
B u-v alone. We will come back to this point later. Equations
and (48) and(49) can also be presented in more revealing form,
namely(here we will drop indices to shorten the notaion
ot = (afa). (42)
2 2 +) — +
Notice that dm, describes the spin-wave correction to the (K2 =A% [A K] =\ ¢, (50)

e e S, ana | WMEred Uy andh =0 AL his o 1 nrestng
P in notice that the nonzero commutator is the cause of non-

Uin, WE USE Eqs(16) and(17) tp first write the site magne- Hermiticity in the eigenvalue problem. Had it been zero, the
tization at zero temperature in terms of eigenmodes. Upor'roblem would be become real and symmetric. In fact, it is
taking the ground-state expectation value, we have to recall ' '

that the vacuum contains zero eigenmodes. Hence, flot difficult to show that
{anam = (aga;) = (aﬁam> =0, (43 [A, KT = Aj(Kji = Kjj). (51

while Thus, it is only when all sites have the same number or
o nearest neighbors, i.e., when no dilution is present, that the
(anam) = S (44) problem becomes real and symmeft@nd can therefore be
As a result, solved analytically by a Fourier transfoynDilution always
makes the eigenproblem non-Hermitian, although with real
N ) eigenvaluegeven if we did not know the origin of E@50),
om' = > |vinl*, (45) it would be easy to prove that all eigenvalues 0].
n=2 Let us callM® =K2-A2+[A,K]. An important feature of
where the sum runs only through eigenmodes witisitive ~ these matrices is that the left eigenvecit’ of M® is the
frequency(the zero modes have been subtragted right eigenvector oM™, Thus, if we use an algorithm that
is capable of finding both the right and left eigenvectors of a
non-Hermitian matrix, we only need to solve the problem for
M), for instance. In this case, we may say that thé 2
It is possible to rewrite the X 2N eigenvalue problem X 2N problem has really been reducedNo< N.
as two coupled eigenproblems, each one of oi&rN in- In terms of the eigenvectorg®), the orthogonality rela-
stead. The non-Hermitian character of the matrices involvedions of Egs.(28) and(29) now read

D. Reduction to anN X N non-Hermitian eigenvalue problem
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N that we can simplify the diagonalization by breaking the ma-
DA B+ B H=2 S (52)  trix into diagonal blocks, each one related to a single discon-
i=1 nected cluster. The diagonalizations can then be carried out

separately on each blockor each disconnected cluster
Thus, the first task is to reorganize the matriteand A
N following a hierarchy of disconnected cluster sizes. That in-
S et — g =0, (53)  volves only searching and sorting sites on the laftwighout
i=1 any arithmetic or algebraic manipulatiorMoreover, since
we are interested only in what happens within the largest

respectively. Moreover, using these relations and the definizyqacted clustefthe only one relevant in the thermody-

tion of ¢*), it is straightforward to show that the average site .3 mic limit and below the percolation threshpldwe can
magnetization can be written as concentrate our numerical effort into the diagonalization of
N N the matrix block corresponding to that cluster alone.
- iz > [|¢i(;>|2+ |¢i(;)|2] - l (54) The first step is to create a square Iattiqe of sNzeL
AN o 2 XL (L being the lateral size of the latticevith periodic
boundary conditions in both directions. In order to h&ye
One issue that appears when diagonalizing the probleraNg, we choosé. to be an even number. We fix the number
through solving Eq(50) is that each eigenstaie, may have  of holes as the integer part 6f—p)N and randomly distrib-
an eigenvector corresponding to any linear combination ofite them over the lattice with uniform probability.
theu, andv, vectors, and not just that,+ v, (that is because ~ The second step is to identify all connected clusters that
each, corresponds to at least two eigenfrequencies, namelgxist in the lattice for a given realization of dilution. Since
+w, with w,=V\,)). Provided that there are no other degen-most lattices we work with are quite dengelatively few
eracies, one can sort out which combination is generated biyoleg, we begin by finding all sites that belong to the cluster
noticing the following. Suppose that whose sites are nearest to one of the corners of the lattice.
o o Once all sites in that cluster are found, they are subtracted
¢=c(u-v) and ¢7=c(u+v), (55 from the lattice and the search begins again¥or another clus-
then, it is easy to see that the normalization conditions foter. The process stops when all sites have been visited and
both ¢* andu,v imply c,c_=1. We can then use Eqg!6) the whole lattice is empty. The process of identifying sites

and

om,

and(47) to find that for a particular cluster is the following. Starting from a fixed
sitei (the cluster seedwe check whether its four neighbors
(K=-4A)¢p™ = gd)(—) (56) are occupied or empty. The occupied ones get the same tag
c2 number as the first site visited. Then we move on to the next

side,i+1, and repeat the procedure. We continue until we
reach theNth site.
(K+A)¢O=c w o™, (57) Along with identifying all sites belong'ing to egch clu_ster,
we also count then. That allows us to identify immediately
These equations provide a way of determining the coefficienghe largest connected cluster in the lattice, whose number of
¢, (and thus the actual mixing of degenerate eigenvertorssites we calN.. We set a conversion table where the sequen-

and

For instance, for a given eigenstate, tial number identifying a site in the largest cluster is associ-
N ated to its coordinate in the original lattice. That allows us to
> HK+A) ¢ later retrace the components of the eigenvectors of this clus-
) ij=1 ) ter to their locations in thé X L lattice.
Ci= —)\ ) 20 (58) The process of identifying clusters is carried out under
\ ;l b b hard wall boundary conditions. In fact, it is only after the

largest cluster is found that we force periodic boundary con-
Once thec, coefficient has been determined, it is straightfor-ditions. This is the third step. For that purpose, we sweep the
ward to determine the, andv, vectors corresponding to a bottom and top rows, as well as the right and left columns of
given (positive), nondegenerate eigenfrequenay, in a  the square lattice, and check whether these sites are neigh-
unique way. If additional degeneracy occurs, then one needors of sites belonging to the largest cluster once periodic
to introduce more coefficientand consider combinations of boundary conditions are assumed. It turns out that it is easier

all degenerate eigenvectpiia Eq. (55). and faster to do that than to search and classify clusters di-
rectly from a lattice with periodic boundary conditions.

1. NUMERICAL SOLUTION OF THE NON-HERMITIAN The fourth step consists of storing the information neces-

EIGENPROBLEM sary to assemble the non-Hermitian matrices of the type

shown in Eq.(36) for the largest cluster only. The algorithm
The numerical solution of the eigenproblem representeds quite fast and allows one to generate and find the largest
by Eg. (50) requires the full diagonalization of at least one connected cluster in lattices as largeLas100 in less than a
real nonsymmetric matrix. However, before that, we need tsecond.
generate the random dilution on a square lattice and set the The information generated in the process of identifying
appropriate boundary conditions. Another important point isthe largest cluster and its structure is fed into a second rou-
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FIG. 2. The two dangling structures that occur in th&l=1 (a)
and 2(b) eigenstates. The filled circles indicatg # 0, while the
empty circles have;,=0. All sites in these states havg =0, thus
they do not contribute to the staggered magnetization.

density of states (arbitrary units)

overall trend is a decrease in the number of high-frequency
modes, with the proportional increase in the number of low-
frequency ones. Close to the percolation threshold, another

FIG. 1. Average density of states as a function of energy for four, _
r r r r 2. Thus, w hat th
different site dilution fractionsx=0 (solid line), x=0.1x, (dotted structure appears at around JS= us, we see that the

. ) . . effect of dilution is to shift spectral weight from high to low
line), x=0.5; (dotted-dashed lineandx=x, (dashed lin Notice frequencies in a nonuniforr% way. Thigs tendencg was also
the two structures just below/JS=2 and 3. The latter is already b din Ref. 9 f Il diluti :

visible atx=0.1x., while the former becomes prominent only for observed In Ret. I for small diution.

x=0.4 x.. The data was obtained from 500 to 1000 realizations of a Two _ad(,j'tlonal very sharp peaksiot shovyn n F'g' 1
36x 36 lattice. also exist in the density of states as the dilution increases.

They occur at frequencies/JS=1,2 andcorrespond to con-
figurations wherev;,=0 for all sites in the cluster, while

in=0 for all but two sites. Their typical spatial structures are
shown in Fig. 2. Since;,=0 for all sites, these states do not
contribute to the quantum corrections to the staggered mag-
netization.

For the clean case, it is simple to verifpased on the
exact diagonalization of the problgrhat the low frequency
modes provide the largest contributiondm,. For the dilute
lattice, the same is true, as can be seen in Fig. 3, where we
have plotted

tine. There, one assembles both the non-Hermitian matric
of Egs.(36) and(50). We have checked that the solution of
both the N.X 2N, and N. X N, problems provide identical
solutions up to several digits for a particular realization of
the dilution problem at various lattice sizes and dilution frac-
tions. However, only thé\. X N, problem was used to gen-
erate the data presented here.

It is important to point out that there exists an alternative
formulation of the problem defined by E¢L3), using gen-
eralized position and momentum operatgsee Appendix
A). In this formulation one can derive a sequence transfor-
mation that permits the calculation of eigenvalues and eigen- ,
vectors of the system Hamiltonian through the diagonaliza- 1 % nzz oy 8w~ wy)
tion of Hermitian matrices alone. However, from the Smy(w) = — T (59)
computational point of view there is no substantial advantage N N '
of this approach with respect to the non-Hermitian one. > Sow-wy)

Since the solution of the non-Hermitian eigenvalue prob- n=2
lem is less standard than the Hermitian case, we provide a

description of the method in Appendix B. As a result, we see that the transference of eigenmodes from
high to low frequencies is the mechanism by which quantum
IV. RESULTS fluctuations are enhanced as the dilution increases.

N N

We have generated lattices with sizes ranging frbm c . , , , ‘ , .
=12 to 36 and dilution fractions going from=0 to x.. The i e x=01 | ]
number of realizations for a given size and dilution fraction 1025 o i:g-% g
varied between 50(nhearly clean cagdo 1000(at the clas- ; E
sical percolation thresholdThe results of the numerical di-

agonalizations are described below.

A. Density of states

sz( ®) (arbitrary units)

The ensemble averaged density of eigenstates as a func- ; w ' N
tion of frequency fol.=36 is presented in Fig. 1 for several '
dilution fractions and compared to the well-known result for . , ‘ .
the clean cas& For a small dilution, there is little departure 0% 1 2 3 4
from the clean case, although a small structure is already
visible at around»/JS=3. As the dilution increases, a peak FIG. 3. Staggered magnetization per unit of magnetic site as a
and an edge develop at around this frequency. Notice that thanction of energydm,(w), under the same conditions of Fig. 1.

L‘n
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FIG. 5. The average staggered magnetization per unit of mag-
FIG. 4. Average inverse participation ratio, as defined in Eq netic site. The results of th8=1/2 SWT sinulations after finite-
(60), as a function of energy for different lattice sizes and dilution size scalé:ng(cwcles) are Comp""[’gd with ne_utron scattering data
fractions:(a) x=0.1x,, (b) x=0.5X%., and(c) x=x.. As the dilution (squares NQR_ dgta(dlamonds, af‘d the fit to the QMC_data
increases, states become more localized, beginning with those I(f)r_om Ref. 8(solid line). Also shown is the _occupaﬂon fracUo_n of
cated in the high-energy part of the spectrum. Each curve show e largest connected clustdg/ N, (dashed lingand the analytical

corresponds to an average over 500 to 1000 realizations. result from the cglculatloq of _Ref. @ashed-dotted Ilr)elnse_t: the
guantum fluctuation contribution to the staggered magnetization for

L ) different values ofS.
B. Inverse participation ratio

The nature of the eigenstates also changes as the dilution C. Average magnetization
increases. The best way to characterize the nature of the |5 the thermodynamic limit, the magnitude of the stag-
states is through the return probability, that is, the probabilityyered magnetization per unit of lattice site can be written
that after some very long time a particle, moving in the per-5¢
colating lattice, will return to its originating point. The return
probability can be expressed in terms of the inverse partici- m. = <&>(S— om,) (62)
pation ratio(IPR).” Here, we use a definition of the IPR “ \Np '

involving the eigenvector component related to the quantum . . o .
fluctuation corrections to the magnetization, namely, whereN,, is the total number of occupied sites in the lattice

(Nm=pN). While the first factor on the right-hand side of Eq.
N (62) is purely classical, the second factor is purely quantum,
S Sw-w)l namely, it measures how quantum fluctuations redu_qe mag-
= nin netic order. Thus, sincH. vanishes ak;, a q*uantum critical
(w)= , (60) point belowx. can only exist if, for some<’ <x;, we find
om,=S. If, on the contrarygm,< Satx=x., then the order is
= only lost at the percolation threshold and the transition is
essentially classical. It is important to have in mind that the
linear spin-wave approximation is well defined only when
om‘<S, foralli=1,... N. Whenény=Sat a large number
of sites, the approximation is not necessarily quantitatively

N
E A w = wp)

2

where

Ne 4 correct.
2 Vin Figure 5 shows the average staggered magnetization per
l,= % (61)  unit of magnetic site as a function of dilution fractian,(x),
S 5 whenS=1/2. Thepoints were obtained after finite-size scal-
(gl Uin) ing the ensemble averaged data taken from 12 different lat-

tices sizes. As a consistency check, we have also calculated
In Fig. 4 we show the IPR as a function of energy for the staggered magnetization for the clean qas&, no en-

three lattice sizes. According to its definition, the IPR forsemble averagewith the same numerical procedure. We
extended states decreases as the system size increases, whidee found thatm,(0)=0.303, consistent with values ob-
for localized states the IPR is insensitive to any size variatained by other method$.Thus, at least at low dilution, the
tion. These trends are clearly visible in Fig. 4, namely, statespin-wave approximation is quite accurate.
are mostly extended when dilution is small and tend to lo- For comparison, we also show experimental data obtained
calize as one gets closer to the percolation threshold. Fdor LCMO from both neutron scatterifigand nuclear quad-
intermediate dilutior{Fig. 4(c)], we see that the states close rupole resonanc¢éNQR),'° as well as the result of QMC
to w/JS=3 are strongly localized while the remaining statessimulations of the dilute Heisenberg AFM in a square
are quite extended. As expected, the low frequency statdattice® One can see that our simulations, based on the spin-
tend to remain extended up to strong dilution. wave approximation, capture the main features of the experi-
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mental data, namely, a progressive decrease of the staggered
magnetization up to the classical percolation threshold. At a
dilution fraction very close tok, our simulations indicate
that the staggered magnetization should vanish. The inset in
Fig. 5 shows that the vanishing of the staggered magnetiza-
tion occurs becausém, goes to 1/2 very close to the clas-
sical transition point. Thus, the same effect would not arise
had we useds>1/2. The QMC simulations, on the other
hand, predictsdm,<1/2 atx=X., thus indicating that the
transition is purely classical. The relatively small number of
experimental points and the large error bars near the perco-
lation threshold do not allow for an adequate distinction be-
tween a classical and a quantum transition for LCMO.

The discrepancy between our result and the QMC simu-
lations for the staggered magnetization close&tshould be
seen as an indication that, while qualitatively correct, our

approach fails quantitatively when the order parameter mag- n
nitude is significantly reduced locally. This is expected if we
recall the assumption used in the derivation of @4)). Nev- FIG. 6. The density plot of local demagnetizatiom’ for a

ertheless, the spin-wave approximation, having access t@2x32 lattice with periodic boundary conditions at=x.. Only
low-lying excited states and wave functions, allows us tosites belonging to the largest connected cluster are shown. The
understand in more detail, at least qualitatively, how the supweak links present in the cluster are indicated by bullets.
pression of order due to quantum fluctuations takes place
upon dilution. This is not the case for the QMC simulations.stant and the inverse mass tensors, respectifehan alter-
In fact, it is surprising that our calculations seem to agreenative description of the problem in terms of position and
with the experimental data better than the QMC. This can benomentum operators, see AppendiX. Aor the simple
understood by the fact that the experimental system mayhodel of elastic vibrations in a lattice, wheg,=(a
contain extra oxygen atoms that introduce holes in theZC:uO+aiT)/\,E has the meaning of a displacement of itieatom
planes, as well as next-nearest neighboring interactions thatound its equilibrium position, it is well known that the
frustrate the AFM state and also introduce larger quantunMamiltonian of such a system can be mapped onto a problem
fluctuations that are captured by the overestimation producegk diffusion in a disordered latticeAnalytical results for the
in the linear spin-wave theory. In fact, it is known that related diffusive problem, as well as numerical simulations
La,CuQ,, has a nonzero frustrating next-nearest neighboith large systems, allow one to understand several proper-
coupling” That effectively decreases the spin per site to ajes of the diluted vibrational model, such as the density of
value smaller than 1/2, possibly bringing LCMO closer to astategDOS) and the dynamical structure factor. Perhaps one
quantum critical point than the pur8=1/2 Heisenberg of the most distinctive features is the existence of strongly
AFM. localized excitations named fractoffs=or dilution fractions
X<X., these excitations appear in the high-frequency portion
of the spectrum, beyond a certain crossover seglewvhile

We now turn to the question of local fluctuations. We have[he |0W_frequency part is dominated by acoustic phonon |ike,
so far discussed the site-averaged demagnetizatigrand  nearly extended, excitations. At exacthx., the systems
used the criterion that it must be smaller tH&for the order becomes a fracta| and the fractons take over the entire
to persist. However, one could argue that some sites magpectrunf Scaling considerations, as well as numerical

have particularly large fluctuations; if these large fluctuationssimylations, have shown that, for a square lattice, the DOS
take place exactly at weak links of the largest connectegyehaves as

D. Local fluctuations

cluster backbone, then they could be responsible for earlier
destruction of the long-range ordéie have numerical evi- e o < wg 63
dence that this is unlikely, although the relatively small size plw) o3, 0> o, (63)

of our lattices does not allow us to be conclusive. In Fig. 6
we show an intensity plot of the local quantum fluctuationsThe crossover frequency depends critically on the dilution:
am; in the largest connected cluster, very close to the percowc™ (X.—X)°, whereD~91/48. This is an important result
lation threshold, for a typical realization ofla=32. Notice ~ because, for the elastic vibration problem, it is also possible
that the largest fluctuations tend to appear only along deado show that the quantum fluctuation corrections to the clas-
ends or dangling structures, and not in the links connectingical order parameter obey the relation
blobs of the cluster backbone. The same trend is seen in all N N o
realizations that we have inspected. sm= %E 17 f de, (64)

w

n=1 Wn 0

E. Excited states

Equation(13) represents a system bifcoupled harmonic  where{w,} are the nonzero eigenvalues of the corresponding
oscillators withA=K+A andB=K-A being the spring con- Hamiltonian. Thereforegm remains finite below and at the
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percolation threshold, indicating that quantum fluctuationgprogressing breaking and bending of the magnon branch as
are likely not sufficiently enhanced by the dilution to destroythe system becomes more diluted to the appearance of frac-
the existent long-range ord&¥We will get back to this point  tons. Atx=x. the excitation spectrum has little resemblance
in Sec. V. to that ofx=0 and even the long wavelength part is strongly
In order to investigate the existence of such fractons in thénodified. In between these two limits, there is a crossover
dilute 2D Heisenberg AFM, as well as to clarify the nature offfom a magnon-dominated to a fracton-dominated spectrum.

its low-lying excitations, we have calculated the the dynami-A three-branch structure for the spectral function in the spin-
cal structure factor wave approximation was also found in Ref.9 However, the

positioning of those branches and their relative intensity

- Nmo were different from what we observed in our numerical so-

S, ) :f dt g'et Y gIRiTR) x (SO)S () +S(0S(1)).  lution. We believe the cause of this discrepancy is the limited
hj=1 range of applicability of the perturbative treatment, which is

(65) expected to be accurate only in the weak dilution regime.
) ) The gradual appearance, broadening, and motion of the
By using Egs(3), (6), and(18), we can express(q,w) i pranches are better represented in Fig. 8, where the rescaled

terms of Fourier transformations of the site-dependent Bogoaverage dynamical structure factor is shown as a function of

liubov coefficientsu;, andv;,. We find frequency for a fixed momentuiy,=0.4/7 and g,=0. The
A a A A two-peak structure observed in our numerical data has some
S@,0) =25 2 8w = )T (Q)T) (- Q)+ T7 ()55 (- 9) resemblance to the results of inelastic neutron scattering per-
n#0 formed by Uemura and Birgeneau for the compound
+Ef(q)ﬂf(— q)+5;‘(q)ﬁf(— q) +'[]f(q)5;14(— q) Mn,Zn,_F,,'* whose magnetic properties are described by

B, A B, \~B ~B, \~B the three-dimensional site-diluted random Heisenberg model
+0n (@)U (= Q) + 0 (@up (- )+ Uy (@Uy () + 1. with S=5/2. These authors observed two broad peaks which
(66) were associated with magno®w-energy, extendgdand
) i B ) fractons (high-energy, localized excitations. The relative
where the partial terms involvirig,"* are given by the Fou- amplitude, width, and dispersion relations of these excita-
rier transformation ofl,, namely, tions were measured and were found consistent with the the-
W@ = S u, & 67) oretical predictions by Orbach and Ybuand Aharony and
n n ’ co-workers?? The scaling theory of the latter predicts that a
two-peak spectrum appears at momeqtaé !, where¢ is
and analogously fd5;"". Notice that the sum over sites runs the percolation correlation lengthe., the typical linear size
only over one of the sublattices} or B, depending on the of the disconnected clusters when<x,). The relatively
particular term. Thus, only four two-dimensional Fourier small size of theL=32 lattice does not allow us to make a
transformations are required in order to evalustg, w). similar quantitative comparison between these theories and
We have computed numerically the Fourier transforma-our numerical results.
tions and calculated the average dynamical structure factor While we do observe a two-peak structure at sufficiently
for lattices of sizeL=32 at several dilution fractions. Only large dilution, we also see a third peak, although quite weak.
sites within the largest connected cluster were taken into acFhis additional peak may be characteristic of square lattices;
count. Averages were performed over 50 realizations foin the body-centered-cubic Man,_F,, there might exist a
each case. The results are presented in the form of intensitjifferent multipeak structure. Moreover, th elarge broadening
plots in Fig. 7. To provide a better contrast, we have rescalegdnd limited energy resolution of the neutron-scattering ex-
(S(q,w)) by the function,f(w) =2, (S(q,w)). Only the data  periments may have made such features unobservable in the
along two particular directions in momentum space aredata of Ref. 13. However, one aspect which seems different
shown, namelyq=q,=q, and q=gq,,q,=0, with O<sq<=  between the experimental data and our numerical simulations
(the lattice spacing is taken to be yniFor small dilution, is the way the spectral weight is transferred between mag-
the structure factor resembles closely that of the clean casapns and fractons as a function of dilution. While Uemura
with some small broadening of the magnon branch due to thand Birgeneau see an incregsecreasgof high-frequency
weak destruction of translation invariance. However, particufractons(low-frequency magnonswe see the opposite: The
larly along theqg, =0 direction, one can already notice a small low-frequency portion of the spectrum becomes more in-
hump at aroundv/JS=3, consistent with the peak-and-edge tense.
structure seen in Fig. 1. This feature becomes more promi- The averaging procedure recovers, to some extent, the
nent with increasing dilution. For dilution fractions larger translation invariance broken by the dilution. This allowed us
than 0.&;, another hump becomes visible at arount]S  to identify the large momentum part of the branches which,
=2, again consistent with the feature observed in Fig. 1 at thetherwise, would not be visible. However, the low momen-
same frequency. Close to the percolation threshold, there etam part is clearly visible even when no averaging is per-
ist three clear broad branches in the spectrum. While théormed on the daténot shown. This fact, together with the
dispersion of the high-frequency branch atJS>3 is  strong dispersion of the lower energy branches, suggests that
hardly affected by the dilution, the opposite occurs with thelong wavelength propagating magnons are present for dilu-
low-frequency one, atv/JS<2, where the slopgémagnon tion fractions below the percolation threshold, and lose out to
velocity) decreases with increasing dilution. We interpret thefractons ak=x.. At T=0, these modes are responsible for the

ieAB
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quantum fluctuations that bring down the long range orderdower-dimensional character, our data is not conclusive.

Their spectral weight becomes more important as the high-

fre_quency_ states beg:ome morelloca_llized with increasing di; ;ppER BOUND FOR QUANTUM FLUCTUATIONS IN

lution. This featurg is masked in Fig. 7 by the frequen_cy— BOSONIC SYSTEMS

dependent rescaling, but is clear from Fig. 1. The high-

frequency, high momentum modes are much less dispersive The possibility of a classification of quantum random sys-

than the low-frequency, low momentum ones. In fact, partems into universality classes is an important theoretical

ticularly below w/JS=3, the magnon branch ig indepen-  problem with relevance to experiments. Random matrix clas-

dent(i.e., broad in momentujrand thus strongly localized. sification schemes introduced by Wigner limited the classes
The low-frequency modes are likely not fully ballistic of problems initially to the orthogonal, unitary, and symplec-

(cohereny, given the large broadening seen in the structurdic classe$? but these were later extended to encompass the

factor, but should rather have a diffusive propagation at largelasses of chiral modets and models where the particle

scales. As to whether they remain two dimensional or gain @aumber is not a conserved quanfiy&hile most of the ran-
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o
in

O?=AB or Q3=BA. (69

Since, in generalA,B] is nonzero, the matrice®? and Q3
are non-Hermitian and distinct. However, it is simple to
show that they have exactly the same real eigenvalugs,
for n=1,... N. This is also true for the matrice§g
=BY2ABY2 and )2=AL2BA2 Therefore, the fluctuations of

the position and momentum, averaged over all sites, can be
written ag’

£
~

=
w

o
)

y

o
=

S(w,q =04/m,q =0)/f(®) (arbitrary units)

(=)

1 b.
o= ﬁtr(B QY =< PR (70)

FIG. 8. Slice of the rescaled average dynamical structure factor 1
for gy=0.4/pi andq,=0 for L=32 and different dilution fractions. p?=—tr(A ﬁc—l) < %K (71
N 2

dom matrix problems are related to fermionic spectra, thergynere a. and b. denote the maximum eigenvalues of the

is renewed interest in the problem of bosonic random matrixemipositive definite matrices andB, respectively, and we
theory?® Of particular importance is its application to the ysed that

problem of diluted quantum magnets since these systems, in

the limit of large spinS, can be approximately described, via 1 4 1~ @max 1
linear spin-wave theory, as a problem of noninteracting K‘Ntr Qc ‘Ntr Qe = o do plw)o™,  (72)
bosons*

One of the main differences between fermions and bosongncegc andﬁc share the same eigenvalu@s,,, being the
; ; i ; ; ax
is that, in addition to the symmetries of the underlying|argeg; “with spectral density(w). Thus, the finiteness of
Ham"“’”."?‘”’ one must ensure .that the_ t_)osqnlc Spectrum Ig,q guantum fluctuations reduces to the problem of the con-
semipositive definite; this stability condition is not an |ssueVergence of the integral in EG72) (quantum mechanics re-
in fermionic systems. However, it is automatically satisﬁedquires thait? p2= 1/4). Notice that the quantum fluctuation

when the disorder is caused b_y site _d|Iut|on. correction to the order parameter per unit of lattice site can
Let us concentrate our discussion on systems WhoSgg \\ritten as

Hamiltonian can be mapped onto a setMNfcoupled har-

monic oscillators of the following kind: M=a ®+Bp’+y, (73
whereq, B, andy are constants that depend on the particular
1 N model and order parameter under consideration.
H==> (g A g +pi By p)- (68) We now turn to applying these general results to specific
2ii5 bosonic models based on Heisenberg Hamiltonians.
A. O(2) model

Here, N is the total number of sites of the square lattice, . . . .
while g; and p; represent generalized position and momen- Th's m_odel is realized, for gxample, In an array ofJo:_seph—
tum operators at a lattice site respectively, such that son junctions, where the variables correspond to the lin-
[q.p.]=i 8, withi,j=1, ... N. TheN X N matricesA andB earlged phase of the superconductor order parartfeterhe

P ! atrices in Eq(68) take the simple formsy; =K;;-4A;; and

are real, symmetric, and semipositive; in the most genergl “" = ) .
case, they do not commute. The magnitude of quantum fluc=1 =(U/9);, whereA;;=1(0) when the nearest-neighboring

. . . . . —_ N
tuations are characterized by the mean-square deviation GiteS!.] are both occupiedotherwisg and K;;=g; i, 4y,

the average value of these operators in the ground &fate: € Kii counts the number of nearest neighbors of site
=3, <Qi2>/N andp?=3, <pi2>/N. As mentioned in Sec. IV C, if Here,J denotes the Josephson coupling ahds the island

quantum fluctuations are unbounded at the percolating rec_harglng energyusually, J>U). The same structure occurs

gime, then these mean values diverge and LRO is not pod! the case of vibrations in a diluted lattifezor the @2)

: . . : del, the frequency eigenvalues are obtained fram
sible, implying that order has to be destroyed befrras TO = )
reached; that is, a quantum critical point should exist before_(U/‘])A' The _pr_oblem 9f determining the density of states
f the connectivity matriXA can be mapped onto a problem

the percolation threshold. Here we show that this is not th&! the conne ) _
case and that LRO can persist up to and including\s for of diffusion in a disordered Iatnc?elt*can be shown that the
the spin Hamiltonians approximated by E8), the exact density of states of) goesp(w)“cgd . Up to the percola-
disappearance of magnetic LRO may also depend on the spiion threshold,d"=d=2, while d'=d~4/3 exactly atx=x,.

value. Therefore, the site-averaged fluctuations are bounded, and
The eigenfrequencies of the harmonic oscillators of Eqthe linear approximatioias well as ordéris maintained as
(68) can be shown to be those of long the ratioJ/U is large enough.
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B. Heisenberg antiferromagnetic model gressive, nonuniform shift of spectral weight in the spin-

When we takel,=J,=J, the matrices take the form; wave_ex_citaﬁon spectrum from high and to low frequency as
=K —A; andB; =K, +A;. It is useful to define a matrix _the dilution increases, Wlth_the hlgh—fr_equency part becom-
o : . ing more localized. The higher density of low-frequency,
=A" that has the effect of changing the signsjpandp; for  |5ng wavelength excitations leads to strong quantum fluctua-
all sitesi in one of the two sublattices. ThuB=AAA, and  tjons and a decrease in the magnitude of the staggered mag-
Ozr=AAAA. Notice thatl'=AA, is not semipositive definite netization. For dilutions very close to the classical percola-
(in fact it is non-Hermitiap, but has real eigenvalues with tion threshold, we have found that quantum fluctuations are
the same magnitude as those(df sufficiently strong to nearly match the clean-limit magnitude

In the 2) model, becaus@2cc A, one can directly relate of the magnetization wheS=1/2, but not forhigher spins.
the energy eigenvalues 6f to those of the matribA. In the  This is consistent with recent neutron-scattering experiments
AFM case, we need to obtain the density of stated’of with the S=1/2 dilute Heisenberg antiferromagnet
=AA, which is not simply related to that & (since[A,A] La,Cuy;_,(Zn,Mg), 0,4, which show that long-range order dis-
#0 in general for diluted systemsThis nontrivial relation appears at around the classical percolation threshold. How-
between the eigenvalues 6f and A is generally present in ever, quantum Monte Carlo simulations suggest that quan-
bosonic problems. For example, a similar problem also aptum fluctuations should remain small and that the destruction
pears in the work of Gurarie and Chalker in the relationOf Iong-range order is controlled only by the disappearance
between their stiffness and frequency eigenvafées. of the infinite connected cluster. We understand this discrep-

The problem of determining the density of stated'dbr ~ &NCY between the quantum Montg Carlo resu!ts and the linear
a random dilution problem is one of the interesting openSPin-wave theory near the classical percolation threshold as
questions related to the important difference between rando@ indication that the latter has its validity limited, as the
fermionic and bosonic systems. In a fermionic problem thigsT@gnitude of the order parameter is too small. _
question would be already answered by matching the sym- While perhaps not quantitatively accurate, our simulations

metries of " to the Cartan classification tati®However, do allow us to probe into nature of the low-lying excited
one cannot substitute the matx by an arbitrary random states of the dilute antiferromagnet. We observe two clear

matrix with similar symmetries, that would violate the semi- "UmMps in the density of states at frequenaiggS=2 and 3.
positive definite constraint. In this work we do not attempt toBY calculating the ensemble-averaged dynamical structure
analytically resolve this problem; however, we find numeri-factor, we were able to associate the appearance of these

cal evidence that the density of stated8ffollows that of A~ humps with the breaking of the clean-limit magnon branch
at low energies. into three distinct but broad branches. The new branches tend

Our simulations show that the site-averaged fluctuation&? P€ strongly localizednondispersiveat high frequencies
e are bounded, both below and at the percolation thresh@nd ha_lve a dlffus!ve, rather than ba_\lllsnc, nature at low fre-
old. This means that order should exist up to and includingiuencies. In the literature, the multipeak structure had been
the critical dilutionx,, as long assm is small compared to associated with thg appearance of fractons in 'ghe excitation
the value of the spifs. Recalling Eq(62), we conclude that spectrum as the qnutlor_] increases. From our S|mulat|on§, it
there could be a minimum valug,;, for the spin, below S&€MS that the picture is somevx_/hat more cor_nplex. Besides
which there is a quantum phase transition for dilutisrsx,. e overall broadening, the position of the high-frequency
An effective local spin smaller than 1/2 can be realized in &Pranch remains close to the corresponding portion of original

bilayer system with antiferromagnetic interlayer coupRfg. Ccl€an-limit magnon branch, while the magnon velocitye
dw/dq slope in the low-frequency branch is continuously

C. XXZ model reduced with increasing dilution. T_herefore, it appears that
' the fracton character also contaminates the low-frequency
In this caseJ,=J,#J,. We then haveA;=Kj;—4A;; and  branch. However, the lack of resolution due to the finite size
Bjj=Kjj—¥Aj;, where y measures the anisotropy. Alterna- of our lattices does not allow for a conclusive picture. We did
tively, we can writeB=(1+y/2)A+(1-y/2)AAA, and so not attempt, however, to study fracton states which can pos-
02=(1+7y/2)A%+(1-y/2) AAAA (notice that fory—-1 we  sibly occur above the percolation thresh&ld?
have the same problem as the AREMhe analysis is similar It is important to remark that, in principle, due to Ander-
to the previous two cases. The amount of fluctuations is conson localization in two dimensions, we expect that in the
trolled by the anisotropy, and it can be shown to be boundethfinite system all excitations should in fact be localized for

if the density of states follows that of the AFM case. any finite dilution. In order to probe more carefully strong
localization and the consequent exponential decay in real
VI. DISCUSSION AND CONCLUSIONS space, we need not only much larger lattices, but also to

calculate two-point correlators, which goes beyond the appli-
In this work we have studied the role played by site dilu-cability of linear spin-wave approximation. For that same
tion in enhancing quantum fluctuations in the ground state ofeason, we were not able to evaluate quantities such as the
the Heisenberg antiferromagnet in a square lattice. Using thepin stiffness, which involves matrix elements of higher than
linear spin-wave approximation for this model, we have per-tilinear operators.
formed exact numerical diagonalizations for lattices up to We also studied the question of local quantum fluctuations
36X 36, with dilution fractions going from the clean limit to as a way to destroy long-range order. For finite-size lattices,
the classical percolation threshold. Our results indicate a prowe found that the weak links do not show strong quantum
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renormalizations. That provides some indication that local U'BU=b (diagona) (A4)

quantum fluctuations may not be sufficient to change the i _

dominance of the classical percolation picture. and define new coordinates such that

Using a more ggneral analytical formulation, we have ar- q=Uq and p=Up'. (A5)

gued that there exists an upper bound for the quantum fluc-

tuations in any model with a classically ordered ground stat®efining A’=UTA U, we then have that

whose Hamiltonians can be mapped onto that of a system of IS

coupled harmonic oscillators. The amount of quantum fluc- H=—(q'TA" q +p''b p') (AB)

tuations depends directly on the low-energy behavior of the 2

density of states of the associated bosonic problems. Oynq

exact diagonalization of the linear spin wave Hamiltonian on

a percolating lattice led us to identify the value of the upper

bound for one particular type of model and can readily be

used to find similar values for any other bosonic model. This ) . ) )

could be used to study a large class of spin Hamiltonians that !t is not difficult to prove that all elements in the diagonal

can be bosonized in the ordered phase. of b are positive except ondy, which is zero. In order to
eliminate this zero mode, we subtract the corresponding row
or line in all vectors and matrices, which amounts to a re-

ACKNOWLEDGMENTS duction in the Hilbert spacéor, alternatively, to set|,=0):

We thank |. Affleck, H. Baranger, J. Chalker, A. Cherny- {a }N,—>{q e and {piiy—{pin-e. AlSO, h LA ]NXN”
shev, M. Greven, J. Moore, C. Mudry, A. Sandvik, T. Senthil,_>[A In-1xn-1 and[b]’\‘x“.‘_)[p]“‘“”‘l' Notice that now a
0. Sushkov, O. Vajk, A. Vishwanath, and M. Vojta for useful b>0, k=2, .. N. Thus, in this new space, we can perform

conversations. We acknowledge financial support fromthe following rescaling:

1 1
om=_ [’ g’ +tr((p’ p' "] - > (AD)

CNPqg and PRONEX in Braz{E.R.M), and from the NSF q'=bY%q'" and p’=bY%’, (A8)
through Grants No. DMR-010300&.R.M.), No. DMR- ) ]
0343790(A.H.C.N.), and No. DMR-0305482C.C). which allows us to write
JS
H= _(qHTAr/ q// + p”Tp”); (Ag)
APPENDIX A: FORMULATION IN TERMS OF COUPLED 2

HARMONIC OSCILLATOR with A"=b2A"b12 as well as

The spin-wave Hamiltonian of Eq.13) can be repre- 1 1
sented in terms of position and momentum operators. In this  sm= —[tr(b(q"q"™) + tr(b™Xp" p" ™))+ (p'3)] - =,
language, it becomes more transparent that the problem of 2N 2
finding the eigenvalues and eigenvectors of the Hamiltonian (A10)

can be solved by the diagonalization of two real symmetric L
matrices, an alternative to the non-Hermitian eigenvalue forVhere the last term within the square brackets reflects the
mulation of Sec. Il B. existence of a zero mode. It is useful now to return to the site

Let us perform the following operator transformation: ~ P@Sis by carrying out the inverse rotation,

ai + ai_'_ a1 _ a1_'_ q/// = Uq/! and pH/ — U pH, (All)
G = V2 and = iV2 (AD) such that
for all i=1,... N. Notice that the operatorg and p; obey H= J_S(qmc q"+p" p") (A12)
the canonical position-momentum commutation relations. It 2 '

is convenient to adopt a matrix formulation for the problem,

— T i i
namely, where C=U A” U' is the new connectivity matrix. If we

define
Y= JES(qTA q+p'B p), (A2) BY2=y p2UT and BY2=U b 2UT (A13)

~within the subspaceN-1XN-1 where no zero mode is
wherex={x}i-;..n and p={pi}i-1..n denote vectors of posi- yresent, we can write the connectivity matrix as
tion and momentum operators, whilé J;;=Kj; +4;;, and on el
[B];=Kij=Aj. The quantum fluctuation correction to the C=B""AB™". (A14)
sublattice magnetization can be written as Also, notice that the inverse rotation does not change the
1 1 expression of the sublattice magnetization,
om=_Stl(@ a+(p pOI - -. (A3)

1 1
Sm= ﬁ[tr(b—l<q///q///T>) + tr(b<p///p///T>) + <p/(2)>] _ 5
We can diagonaliz8& through an orthogonal transformation
U, (A15)
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We can now perform the last operation, namely, the di-

agonalization of the connectivity matrix,

qiv - qu and piv =V pm’ (A16)
yielding
JS . ) ) )
H= E(qm TC qlv + plv Tplv), (Al?)
where
VIC V=c (diagona), (A18)

with all ¢,>0,n=1,...N-1. We finally arrive to a system of

PHYSICAL REVIEW B69, 214424(2004

cC=02 (A23)

where

Q=BY20 B2 (A24)
Thus, it is easy to see that@ were a positive matrix, then
we would be able to write/TcYv =CY2=(. That would
allow us to simplify the expression for the sublattice magne-
tization a step further. However, the connectivity matrix is
not necessarily positive.

decoupled harmonic oscillators. The quantum fluctuatiolyppenDIX B: NUMERICAL DIAGONALIZATION OF THE

part of the magnetization becomes

1 oo .
Sm= ﬁ[tr(b—lvT<qluqlv T>V) + tr(b VT<pluplv T>V)

+(p'H]- % (A19)
However, we know that
(" Von= don (D= Sk (A20)
and
[ B D= Sl H=30CH2 (A21)
Therefore,

L 1
om= - [tr(b™ VT ¢ V) +tr(b VT M2 V) +(p'g%)] - 5.

(A22)

It is interesting to notice that, sincdk=0 B O, we have
that

NON-HERMITIAN MATRIX

The diagonalization of the non-Hermitian matrices con-
sists of five steps. First, the redbut asymmetrig matrix
M®) is reduced to an upper Hessenberg form through an
orthogonal transformation, namel=QM®QT. This is
done by using theAarACK subroutine®GEHRD andDORGHR
Second, we use theaPACK subroutineDHSEQRto perform
the Schur factorization of the Hessenberg mattixzZTZ .
That allows us to obtain the eigenvalues and the Schur vec-
tors, which are contained in the orthogonal ma#ixThird,
using anotherLAPACK subroutine, DTREVC, we extract from
Z both right and left eigenvectors ™). In the fourth step
we renormalize all eigenvectofg®} such that they satisfy
Eq. (52) [the condition in Eq(53) is automatically satisfigd
sort the eigenvalued\,,} in ascending order, and extract the
zero mode from the spectrum. For some realizations, the
lowest eigenvalues next to the zero mode cannot be distin-
guished from the zero mode itself and are therefore ne-
glected. Finally, the correct linear combination qbf) that
provides the_correcti, and v, for each positive eigenfre-
guencyw,=V\, is obtained according to the algorithm pre-
sented in Sec. Il D.
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