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We study the effect of site dilution and quantum fluctuations in an antiferromagnetic spin system on a square
lattice within the linear spin-wave approximation. By performing numerical diagonalization in real space and
finite-size scaling, we characterize the nature of the low-energy spin excitations for different dilution fractions
up to the classical percolation threshold. We find nontrivial signatures of fractonlike excitations at high fre-
quencies. Our simulations also confirm the existence of an upper bound for the amount of quantum fluctuations
in the ground state of the system, leading to the persistence of long-range order up to the percolation threshold.
This result is in agreement with recent neutron-scattering experimental data and quantum Monte Carlo nu-
merical calculations. We also show that the absence of a quantum critical point below the classical percolation
threshold holds for a large class of systems whose Hamiltonians can be mapped onto a system of coupled
noninteracting massless bosons.
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I. INTRODUCTION

The problem of the interplay of quantum fluctuations
and disorder in low dimensional systems is of fundamental
importance in modern condensed matter physics. It is rel-
evant for the understanding of the metal-insulator transi-
tion in metal-oxide-semiconductor field-effect transistors
(MOSFETS),1 impurity effects ind-wave superconductors,2

non-Fermi-liquid behavior in U and Ce intermetallics,3 and
the persistence of long-range order(LRO) in two-
dimensional (2D) spin-1/2 quantum antiferromagnets
(AFM),4 among others.

The 2D square lattice with nearest-neighbor hopping un-
dergoes a classical percolation transition upon random dilu-
tion. For the case of site dilution, the transition occurs at the
hole concentrationxc<0.41,5 while for bond dilution the
largest(infinite) connected cluster disappears when exactly
half of the bonds are absent(i.e., xc=1/2).6,7 Thus, no
ground-state long-range order is possible for any model with
short-range interactions in these lattices abovexc. For those
models where order does exist in the clean limit, it is natural
to ask whether dilution can enhance quantum fluctuations to
the point of destroying long-range order at some doping frac-
tion belowxc. This possibility has led to several theoretical
and experimental investigations in a variety of systems.4,8–11

In particular, a recent neutron scattering experiment4 in the
site-diluted S=1/2 Heisenberg quantum AFM
La2Cu1−xsZn,MgdxO4 (LCMO), indicates that LRO exists up
to xc. This fact was corroborated by an extensive quantum
Monte Carlo (QMC) simulation8 and by spin-wave theory
(SWT) analytical calculation in the dilute regime.9 The nu-
merical and experimental data suggest that the disappearance
of order in the ground state is dominated by a classical effect
and no quantum phase transition takes place belowxc. The
analytical calculation,9 on the other hand, points to a non-
trivial dilution-induced softening of low-frequency spin-

wave excitations in determining the magnitude of quantum
fluctuations. However, the latter was carried out within the
T-matrix approximation, which excludes coherent superposi-
tion and interference, and thus could not account for strong
localization effects.

In this work we carry out exact real space numerical di-
agonalizations of the dilute 2D Heisenberg AFM within the
linear spin-wave approximation for dilution fractions ranging
from the clean limit to the the classical percolation threshold.
Although our method cannot be used to investigate systems
as large as those used in previous numerical studies of the
dynamical structure factor alone,12 it provides complete ac-
cess to eigenenergies and eigenvectors, thus allowing us to
probe more carefully into the structure of the excited states
of the site dilute AFM. We find that excitations in this system
break up into different modes as the amount of dilution is
increased. The multipeak structure of the spectral function
shows the simultaneous existence of extended(magnons)
and localized(fractons) excitations, similarly to what was
observed experimentally by Uemura and Birgeneau for dilute
three-dimensionalAFMs several years ago.13

We also argue that the absence of a quantum critical point
in diluted systems belowxc is a universal feature for a large
class of continuous models of the Heisenberg type that can
be mapped into a system of coupled harmonic oscillators
within some approximate scheme. We establish an upper
bound for the amount of quantum fluctuations in these di-
luted noninteracting bosonic systems and show that quantum
fluctuations are bounded even at the percolation threshold for
2D systems. Indeed, one may wonder whether this generic
behavior of diluted bosonic systems is related to universality
classes dictated solely by symmetries of the disordered
Hamiltonian, as in the case of fermionic models.

The paper is organized as follows. In Sec. II we define the
system Hamiltonian and find the corresponding non-
Hermitian eigenvalue matrix problem in lattice coordinates
within the linear spin-wave approximation. In Sec. III we
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present and discuss the numerical methods used to generate
the random dilution, the identification of the largest con-
nected cluster, and the diagonalization of the eigenvalue
problem. The numerical results for the spin-wave excitation
spectrum and the quantum fluctuation corrections to the
AFM ground state are presented and discussed in Sec. IV. In
Sec. V we argue that the absence of quantum phase transi-
tions in site dilute systems occurs for spin Hamiltonians that
can be mapped onto a system of coupled harmonic oscilla-
tors. Finally, in Sec. VI, we draw our conclusions and point
to future directions.

II. DILUTE HEISENBERG ANTIFERROMAGNET IN THE
SPIN-WAVE APPROXIMATION

We begin by reviewing the well-known connection be-
tween magnetic and bosonic systems. In particular, we are
interested in spin Hamiltonians of the form

H = o
ki,jl,a

hih jJaSi
aSj

a, s1d

whereSi
a is thea=x,y,z component of a spinSat sitei, Ja is

the nearest-neighbor exchange constant, andhi =0s1d if the
site is empty(occupied). The empty sites are randomly dis-
tributed over the whole sample with uniform probability.
Calling N the total number of sites, we define the fraction of
occupied sites as

p =
1

N
o
i=1

N

hi . s2d

The dilution fraction is then defined asx=1−p.
The isotropic AFM Heisenberg model corresponds toJa

=J.0 for a=x,y,z. When LRO is present(say, along thez
direction), the spin operators can be written in terms of
bosonic operators using the Holstein-Primakoff method.14

Since the square lattice is bipartite, it can be divided up into
two square sublattices,A=L+ andB=L−. Thus,

Si z = S− ai
†ai , s3d

Si
+ = f2S− ai

†aig1/2ai , s4d

Si
− = ai

†f2S− ai
†aig1/2, s5d

with i PA, and

Sj z = − S+ bj
†bj , s6d

Sj
+ = bj

†f2S− bj
†bjg1/2, s7d

Sj
− = f2S− bj

†bjg1/2bj , s8d

with j PB. The bosonic operators obey the usual commuta-
tion relations, namely,

fai,ai8
† g = dii8 and fbj,bj8

† g = d j j 8, s9d

with all other commutators equal to zero.
For the large spin casesS@1d or when the number of spin

waves is small(ni =kai ai
†l, nj =kbj bj

†l !S), we can expand

the square root in Eqs.(3) and (6) in powers ofni and nj,
keeping only linear terms. That allows us to write the ap-
proximate bilinear bosonic Hamiltonian

H < − JS2o
ki j l

hih j + JSo
ki j l

hih jsai
†ai + bj

†bj+ aibj + ai
†bj

†d.

s10d

The first term on the right-hand side of Eq.(10) represents
the classical ground-state energy of the AFM. Using the
bosonic commutation relations, we can rearrange the Hamil-
tonian in the following form:

H < − JSsS+ 1do
ki j l

hih j + HSW, s11d

where, now, the first term on the right-hand side represents
the ground-state energy in the absence of quantum fluctua-
tions, while the latter is described by the second term,

HSW =
JS

2 o
ki j l

hih jsai
†ai + aiai

† + bj
†bj + bjbj

†

+ aibj + bjai + ai
†bj

† + bj
†ai

†d. s12d

Hereafter we will drop the constant ground-state energy term
and will only study the eigenstates ofHSW. The spin-wave
Hamiltonian contains bilinear crossed terms which, sepa-
rately, do not conserve particle number. At this point, it is
worth simplifying the notation by dropping the distinction
between bosonic operators living on different sublattices and
reordering the summation over sites,

HSW =
JS

2 o
i,j=1

N

fKijsai
†aj + aiaj

†d+ Di jsaiaj + ai
†aj

†dg, s13d

where both indexes in the sum run over all sites in the lattice.
The matricesK andD are defined as

Kij = di j hio
kil l

hl s14d

(the sum run over all nearest-neighbor sites toi) and

Di j = Hhih j for i, j nearest neighbors

0, otherwise.
s15d

Notice that both matricesK andD are real and symmetric.

A. Bogoliubov transformation

It is possible to diagonalize the spin-wave Hamiltonian
through an operator transformation of the Bogoliubov type,

ai = o
n

suin an + vin an
†d, s16d

ai
† = o

n

svin
* an + uin

* an
†d, s17d

or, in matrix notation,

MUCCIOLO, CASTRO NETO, AND CHAMON PHYSICAL REVIEW B69, 214424(2004)

214424-2



S ā

ā* D = SU V

V* U* DS ā

ā* D , s18d

where the column vectorsā and ā contain the operatorsai
andan, respectively, while theN3N matricesU andV con-
tain the coefficientshuinj and hvinj, respectively, withi ,n
=1, . . . ,N. Assuming that the new operators also obey the
canonical commutation relations,

fan,am
† g = dnm and fan,amg = fan

†,am
† g = 0, s19d

one arrives at the following constraints for the transforma-
tion coefficients:

o
n=1

N

suin
* ujn − vinv jn

* d = di j s20d

and

o
n=1

N

suin v jn − vin ujnd = 0. s21d

In matrix notation,

U U† − V V† = IN s22d

and

U VT − V UT = 0, s23d

whereIN is theN3N unit matrix. These relations can be put
into a more compact form by defining the matrices

T = SU V

V* U* D s24d

and

S = SIN 0

0 − IN
D . s25d

Thus, Eqs.(22) and (23) become one,

T S T† = S. s26d

SinceS2= I2N, we find, after a simple algebra, that

T†S T = S. s27d

As a result we have two additional(though not independent)
sets of orthogonality equations,

o
i=1

N

suin
* uim − vin vim

* d = dnm s28d

and

o
i=1

N

suin
* vim − vin uim

* d = 0. s29d

B. Non-Hermitian eigenvalue problem (Ref. 15)

The transformation defined by Eq.(18) allows us to diag-
onalize the spin-wave Hamiltonian in terms of the new

bosonic operators. For that purpose, we chooseT such that

T†SK D

D K
DT = SV+ 0

0 V−
D , s30d

whereV± are diagonal matrices containing the eigenfrequen-
cies: fV±gnn=vn

s±d for n=1, . . . ,N. The eigenvalue problem
defined by Eq.(30) can be further simplified. Recalling Eq.
(27), we have that

SK D

D K
D T = S T SSV+ 0

0 V−
D . s31d

In fact, it is not difficult to prove that eigenfrequency matri-
ces obey the relationV+=V−

* =V, with V being a diagonal
matrix with real entries only, as one physically expects. As a
result,

SK D

D K
D SU V

V* U* D = S U − V

− V* U* D SV 0

0 V
D . s32d

We can break up this 2N32N matrix equation into two
coupledN3N matrix equations,

K U + D V* = U V,

D U + K V* = − V* V, s33d

or, alternatively, writing explicitly the matrix elements,

o
j

fKij ujn + Di j v jn
* g = vn uin, s34d

o
j

fDi j ujn + Kij v jn
* g = − vn vin

* , s35d

for all n and i. Thus, for a given eigenstaten, we can define
an eigenvalue matrix equation in the usual form, namely,

S K D

− D − K
DSun

vn
* D = vnSun

vn
* D . s36d

(Notice that eachun and vn is now a column vector with
components running through alli =1, . . . ,N lattice sites.) The
2N32N matrix shown in Eq.(36) is clearly non-Hermitian,
but its eigenvalues are all real. Notice also that ifvn is an
eigenvalue with corresponding eigenvectorsun,vn

*d, then −vn

is also an eigenvalue, but withsvn
* ,und as the corresponding

eigenvector. Thus, despite the fact that the non-Hermitian
matrix provides 2N eigenvalues (eigenfrequencies), we
should only keep thoseN that are positive and whose corre-
sponding coefficientsuin andvin satisfy Eqs.(20), (21), (28),
and (29).

The non-Hermitian matrix in Eq.(36) contains only inte-
ger elements: 0, 1, 2, or 4 in the diagonal(corresponding to
Kii , i.e., the number of nearest neighbors to sitei) and 0 or 1
in the off-diagonal components(corresponding toDi j , i.e., 1
when i and j are nearest neighbors and zero otherwise). It is
strongly sparse, although without any particularly simple
pattern due to the presence of dilution disorder.

It is easy to verify that there are at least two zero modes in
Eq. (36), i.e., two distinct nontrivial solutions with zero ei-
genvalue:
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ui0
sad = 1, vi0

sad = − 1, s37d

for all i =1, . . . ,N, and

ui0
sbd = vi0

sbd =H 1, i P A,

− 1, i P B.
s38d

(In order to prove that these are indeed eigenstates, notice
that o j=1

N Di j =Kii .) These two zero modes do not obey the
orthogonality relation of Eq.(28); they have zero hyperbolic
norm instead.

C. Average magnetization per site

The total staggered magnetization can be written in terms
of the expectation value of the spin-wave number operator:

Mz
stagg= Ko

iPA

Si z − o
jPB

Sj zL=NS− o
i=1

N

kai
†ail, s39d

where we have assumed that the sublattices contain the same
number of sites:NA=NB=N/2. As a result, the average stag-
gered spin per site along thez direction can be written as

mz =
Mz

stagg

N
= S− dmz, s40d

with

dmz =
1

N
o
i=1

N

dmi
z, s41d

and

dmi
z = kai

†ail. s42d

Notice that dmz describes the spin-wave correction to the
average staggered magnetization(always a reduction).

In order to expressdmz in terms of the coefficientsvin and
uin, we use Eqs.(16) and (17) to first write the site magne-
tization at zero temperature in terms of eigenmodes. Upon
taking the ground-state expectation value, we have to recall
that the vacuum contains zero eigenmodes. Hence,

kanaml = kan
†am

† l = kan
†aml = 0, s43d

while

kanam
† l = dnm. s44d

As a result,

dmi
z = o

n=2

N

uvinu2, s45d

where the sum runs only through eigenmodes withpositive
frequency(the zero modes have been subtracted).

D. Reduction to anNÃN non-Hermitian eigenvalue problem

It is possible to rewrite the 2N32N eigenvalue problem
as two coupled eigenproblems, each one of orderN3N in-
stead. The non-Hermitian character of the matrices involved

does not change. However, the amount of work for numerical
computations decreases by a factor of 4[recall that diagonal-
izing a N3N requiresOsN3d operations].

We begin by summing and subtracting Eqs.(34) and(35),
obtaining

o
j=1

N

sKij + Di jdsujn − v jnd = vnsuin + vind s46d

and

o
j=1

N

sKij − Di jdsujn + v jnd = vnsuin − vind. s47d

Multiplying these equations byK−D andK+D, we find the
following eigenvalue equations after a simple manipulation:

o
j=1

N

fsK − DdsK + Ddgi jsujn − v jnd = vn
2suin − vind s48d

and

o
j=1

N

fsK + DdsK − Ddgi jsujn + v jnd = vn
2suin + vind. s49d

Although these equations are in principle decoupled, for the
purpose of finding the local magnetization they are not so,
since we are interested in finding mainlyv (and notu+v or
u−v alone). We will come back to this point later. Equations
(48) and (49) can also be presented in more revealing form,
namely(here we will drop indices to shorten the notation),

sK2 − D2 ± fD,Kgdfs±d = l fs±d, s50d

wherefs±d=u±v andl=v2. At this point it is interesting to
notice that the nonzero commutator is the cause of non-
Hermiticity in the eigenvalue problem. Had it been zero, the
problem would be become real and symmetric. In fact, it is
not difficult to show that

fD,Kgi j = Di jsKii − Kjjd. s51d

Thus, it is only when all sites have the same number or
nearest neighbors, i.e., when no dilution is present, that the
problem becomes real and symmetric(and can therefore be
solved analytically by a Fourier transform). Dilution always
makes the eigenproblem non-Hermitian, although with real
eigenvalues[even if we did not know the origin of Eq.(50),
it would be easy to prove that all eigenvalueslù0].

Let us callMs±d=K2−D2± fD ,Kg. An important feature of
these matrices is that the left eigenvectorfs±d of Ms±d is the
right eigenvector ofMs7d. Thus, if we use an algorithm that
is capable of finding both the right and left eigenvectors of a
non-Hermitian matrix, we only need to solve the problem for
Ms+d, for instance. In this case, we may say that the 2N
32N problem has really been reduced toN3N.

In terms of the eigenvectorsfs±d, the orthogonality rela-
tions of Eqs.(28) and (29) now read
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o
i=1

N

ffin
s+d*fim

s−d + fin
s−d*fim

s+dg = 2 dnm s52d

and

o
i=1

N

ffin
s−d*fim

s+d − fin
s+d*fim

s−dg = 0, s53d

respectively. Moreover, using these relations and the defini-
tion of fs±d, it is straightforward to show that the average site
magnetization can be written as

dmz =
1

4N
o
n=2

N

o
i=1

N

fufin
s+du2 + ufin

s−du2g −
1

2
. s54d

One issue that appears when diagonalizing the problem
through solving Eq.(50) is that each eigenstateln may have
an eigenvector corresponding to any linear combination of
theun andvn vectors, and not just thatun±vn (that is because
eachln corresponds to at least two eigenfrequencies, namely
±v, with vn=Îln). Provided that there are no other degen-
eracies, one can sort out which combination is generated by
noticing the following. Suppose that

fs+d = c+su − vd and fs−d = c−su + vd, s55d

then, it is easy to see that the normalization conditions for
both fs±d andu,v imply c+c−=1. We can then use Eqs.(46)
and (47) to find that

sK − Ddfs+d =
v

c+
2fs−d s56d

and

sK + Ddfs−d = c+
2 v fs+d. s57d

These equations provide a way of determining the coefficient
c+ (and thus the actual mixing of degenerate eigenvectors).
For instance, for a given eigenstate,

c+
2 =

1
Îl

o
i,j=1

N

fi
s+dsK + Ddi jf j

s−d

o
i=1

fi
s+dfi

s−d
. s58d

Once thec+ coefficient has been determined, it is straightfor-
ward to determine theun andvn vectors corresponding to a
given (positive), nondegenerate eigenfrequencyvn in a
unique way. If additional degeneracy occurs, then one needs
to introduce more coefficients(and consider combinations of
all degenerate eigenvectors) in Eq. (55).

III. NUMERICAL SOLUTION OF THE NON-HERMITIAN
EIGENPROBLEM

The numerical solution of the eigenproblem represented
by Eq. (50) requires the full diagonalization of at least one
real nonsymmetric matrix. However, before that, we need to
generate the random dilution on a square lattice and set the
appropriate boundary conditions. Another important point is

that we can simplify the diagonalization by breaking the ma-
trix into diagonal blocks, each one related to a single discon-
nected cluster. The diagonalizations can then be carried out
separately on each block(for each disconnected cluster).
Thus, the first task is to reorganize the matricesK and D
following a hierarchy of disconnected cluster sizes. That in-
volves only searching and sorting sites on the lattice(without
any arithmetic or algebraic manipulation). Moreover, since
we are interested only in what happens within the largest
connected cluster(the only one relevant in the thermody-
namic limit and below the percolation threshold),7 we can
concentrate our numerical effort into the diagonalization of
the matrix block corresponding to that cluster alone.

The first step is to create a square lattice of sizeN=L
3L (L being the lateral size of the lattice) with periodic
boundary conditions in both directions. In order to haveNA
=NB, we chooseL to be an even number. We fix the number
of holes as the integer part ofs1−pdN and randomly distrib-
ute them over the lattice with uniform probability.

The second step is to identify all connected clusters that
exist in the lattice for a given realization of dilution. Since
most lattices we work with are quite dense(relatively few
holes), we begin by finding all sites that belong to the cluster
whose sites are nearest to one of the corners of the lattice.
Once all sites in that cluster are found, they are subtracted
from the lattice and the search begins again for another clus-
ter. The process stops when all sites have been visited and
the whole lattice is empty. The process of identifying sites
for a particular cluster is the following. Starting from a fixed
site i (the cluster seed), we check whether its four neighbors
are occupied or empty. The occupied ones get the same tag
number as the first site visited. Then we move on to the next
side, i +1, and repeat the procedure. We continue until we
reach theNth site.

Along with identifying all sites belonging to each cluster,
we also count then. That allows us to identify immediately
the largest connected cluster in the lattice, whose number of
sites we callNc. We set a conversion table where the sequen-
tial number identifying a site in the largest cluster is associ-
ated to its coordinate in the original lattice. That allows us to
later retrace the components of the eigenvectors of this clus-
ter to their locations in theL3L lattice.

The process of identifying clusters is carried out under
hard wall boundary conditions. In fact, it is only after the
largest cluster is found that we force periodic boundary con-
ditions. This is the third step. For that purpose, we sweep the
bottom and top rows, as well as the right and left columns of
the square lattice, and check whether these sites are neigh-
bors of sites belonging to the largest cluster once periodic
boundary conditions are assumed. It turns out that it is easier
and faster to do that than to search and classify clusters di-
rectly from a lattice with periodic boundary conditions.

The fourth step consists of storing the information neces-
sary to assemble the non-Hermitian matrices of the type
shown in Eq.(36) for the largest cluster only. The algorithm
is quite fast and allows one to generate and find the largest
connected cluster in lattices as large asL=100 in less than a
second.

The information generated in the process of identifying
the largest cluster and its structure is fed into a second rou-
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tine. There, one assembles both the non-Hermitian matrices
of Eqs.(36) and (50). We have checked that the solution of
both the 2Nc32Nc and Nc3Nc problems provide identical
solutions up to several digits for a particular realization of
the dilution problem at various lattice sizes and dilution frac-
tions. However, only theNc3Nc problem was used to gen-
erate the data presented here.

It is important to point out that there exists an alternative
formulation of the problem defined by Eq.(13), using gen-
eralized position and momentum operators(see Appendix
A). In this formulation one can derive a sequence transfor-
mation that permits the calculation of eigenvalues and eigen-
vectors of the system Hamiltonian through the diagonaliza-
tion of Hermitian matrices alone. However, from the
computational point of view there is no substantial advantage
of this approach with respect to the non-Hermitian one.

Since the solution of the non-Hermitian eigenvalue prob-
lem is less standard than the Hermitian case, we provide a
description of the method in Appendix B.

IV. RESULTS

We have generated lattices with sizes ranging fromL
=12 to 36 and dilution fractions going fromx=0 to xc. The
number of realizations for a given size and dilution fraction
varied between 500(nearly clean case) to 1000(at the clas-
sical percolation threshold). The results of the numerical di-
agonalizations are described below.

A. Density of states

The ensemble averaged density of eigenstates as a func-
tion of frequency forL=36 is presented in Fig. 1 for several
dilution fractions and compared to the well-known result for
the clean case.16 For a small dilution, there is little departure
from the clean case, although a small structure is already
visible at aroundv /JS=3. As the dilution increases, a peak
and an edge develop at around this frequency. Notice that the

overall trend is a decrease in the number of high-frequency
modes, with the proportional increase in the number of low-
frequency ones. Close to the percolation threshold, another
structure appears at aroundv /JS=2. Thus, we see that the
effect of dilution is to shift spectral weight from high to low
frequencies in a nonuniform way. This tendency was also
observed in Ref. 9 for small dilution.

Two additional very sharp peaks(not shown in Fig. 1)
also exist in the density of states as the dilution increases.
They occur at frequenciesv /JS=1,2 andcorrespond to con-
figurations wherevin=0 for all sites in the cluster, while
uin=0 for all but two sites. Their typical spatial structures are
shown in Fig. 2. Sincevin=0 for all sites, these states do not
contribute to the quantum corrections to the staggered mag-
netization.

For the clean case, it is simple to verify(based on the
exact diagonalization of the problem) that the low frequency
modes provide the largest contribution todmz. For the dilute
lattice, the same is true, as can be seen in Fig. 3, where we
have plotted

dmzsvd =
1

N

Ko
i=1

N

o
n=2

N

dmi
z dsv − vndL

Ko
n=2

N

dsv − vndL . s59d

As a result, we see that the transference of eigenmodes from
high to low frequencies is the mechanism by which quantum
fluctuations are enhanced as the dilution increases.

FIG. 1. Average density of states as a function of energy for four
different site dilution fractions:x=0 (solid line), x=0.1 xc (dotted
line), x=0.5 xc (dotted-dashed line), andx=xc (dashed line). Notice
the two structures just belowv /JS=2 and 3. The latter is already
visible at x=0.1 xc, while the former becomes prominent only for
x*0.4 xc. The data was obtained from 500 to 1000 realizations of a
36336 lattice.

FIG. 2. The two dangling structures that occur in thev /J=1 (a)
and 2 (b) eigenstates. The filled circles indicateuinÞ0, while the
empty circles haveuin=0. All sites in these states havevin=0, thus
they do not contribute to the staggered magnetization.

FIG. 3. Staggered magnetization per unit of magnetic site as a
function of energy,dmzsvd, under the same conditions of Fig. 1.
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B. Inverse participation ratio

The nature of the eigenstates also changes as the dilution
increases. The best way to characterize the nature of the
states is through the return probability, that is, the probability
that after some very long time a particle, moving in the per-
colating lattice, will return to its originating point. The return
probability can be expressed in terms of the inverse partici-
pation ratio (IPR).17 Here, we use a definition of the IPR
involving the eigenvector component related to the quantum
fluctuation corrections to the magnetization, namely,

Isvd =

o
n=2

N

dsv − vndIn

o
n=2

N

dsv − vnd

, s60d

where

In =

o
i=1

Nc

vin
4

So
i=1

Nc

vin
2 D2 . s61d

In Fig. 4 we show the IPR as a function of energy for
three lattice sizes. According to its definition, the IPR for
extended states decreases as the system size increases, while
for localized states the IPR is insensitive to any size varia-
tion. These trends are clearly visible in Fig. 4, namely, states
are mostly extended when dilution is small and tend to lo-
calize as one gets closer to the percolation threshold. For
intermediate dilution[Fig. 4(c)], we see that the states close
to v /JS=3 are strongly localized while the remaining states
are quite extended. As expected, the low frequency states
tend to remain extended up to strong dilution.

C. Average magnetization

In the thermodynamic limit, the magnitude of the stag-
gered magnetization per unit of lattice sitemz can be written
as

mz = S Nc

Nm
DsS− dmzd, s62d

whereNm is the total number of occupied sites in the lattice
sNm=pNd. While the first factor on the right-hand side of Eq.
(62) is purely classical, the second factor is purely quantum,
namely, it measures how quantum fluctuations reduce mag-
netic order. Thus, sinceNc vanishes atxc, a quantum critical
point belowxc can only exist if, for somex* ,xc, we find
dmz=S. If, on the contrary,dmz,Sat x=xc, then the order is
only lost at the percolation threshold and the transition is
essentially classical. It is important to have in mind that the
linear spin-wave approximation is well defined only when
dmi

z!S, for all i =1, . . . ,N. Whendmi
z<S at a large number

of sites, the approximation is not necessarily quantitatively
correct.

Figure 5 shows the average staggered magnetization per
unit of magnetic site as a function of dilution fraction,mzsxd,
whenS=1/2. Thepoints were obtained after finite-size scal-
ing the ensemble averaged data taken from 12 different lat-
tices sizes. As a consistency check, we have also calculated
the staggered magnetization for the clean case(x=0, no en-
semble average) with the same numerical procedure. We
have found thatmzs0d<0.303, consistent with values ob-
tained by other methods.18 Thus, at least at low dilution, the
spin-wave approximation is quite accurate.

For comparison, we also show experimental data obtained
for LCMO from both neutron scattering4 and nuclear quad-
rupole resonance(NQR),19 as well as the result of QMC
simulations of the dilute Heisenberg AFM in a square
lattice.8 One can see that our simulations, based on the spin-
wave approximation, capture the main features of the experi-

FIG. 4. Average inverse participation ratio, as defined in Eq.
(60), as a function of energy for different lattice sizes and dilution
fractions:(a) x=0.1 xc, (b) x=0.5 xc, and(c) x=xc. As the dilution
increases, states become more localized, beginning with those lo-
cated in the high-energy part of the spectrum. Each curve shown
corresponds to an average over 500 to 1000 realizations.

FIG. 5. The average staggered magnetization per unit of mag-
netic site. The results of theS=1/2 SWT simulations after finite-
size scaling(circles) are compared with neutron scattering data
(squares),4 NQR data(diamonds),19 and the fit to the QMC data
from Ref. 8 (solid line). Also shown is the occupation fraction of
the largest connected clusterNc/Nm (dashed line) and the analytical
result from the calculation of Ref. 9(dashed-dotted line). Inset: the
quantum fluctuation contribution to the staggered magnetization for
different values ofS.
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mental data, namely, a progressive decrease of the staggered
magnetization up to the classical percolation threshold. At a
dilution fraction very close toxc, our simulations indicate
that the staggered magnetization should vanish. The inset in
Fig. 5 shows that the vanishing of the staggered magnetiza-
tion occurs becausedmz goes to 1/2 very close to the clas-
sical transition point. Thus, the same effect would not arise
had we usedS.1/2. The QMC simulations, on the other
hand, predictsdmz,1/2 at x=xc, thus indicating that the
transition is purely classical. The relatively small number of
experimental points and the large error bars near the perco-
lation threshold do not allow for an adequate distinction be-
tween a classical and a quantum transition for LCMO.

The discrepancy between our result and the QMC simu-
lations for the staggered magnetization close toxc should be
seen as an indication that, while qualitatively correct, our
approach fails quantitatively when the order parameter mag-
nitude is significantly reduced locally. This is expected if we
recall the assumption used in the derivation of Eq.(10). Nev-
ertheless, the spin-wave approximation, having access to
low-lying excited states and wave functions, allows us to
understand in more detail, at least qualitatively, how the sup-
pression of order due to quantum fluctuations takes place
upon dilution. This is not the case for the QMC simulations.
In fact, it is surprising that our calculations seem to agree
with the experimental data better than the QMC. This can be
understood by the fact that the experimental system may
contain extra oxygen atoms that introduce holes in the CuO2
planes, as well as next-nearest neighboring interactions that
frustrate the AFM state and also introduce larger quantum
fluctuations that are captured by the overestimation produced
in the linear spin-wave theory. In fact, it is known that
La2CuO4, has a nonzero frustrating next-nearest neighbor
coupling.4 That effectively decreases the spin per site to a
value smaller than 1/2, possibly bringing LCMO closer to a
quantum critical point than the pureS=1/2 Heisenberg
AFM.

D. Local fluctuations

We now turn to the question of local fluctuations. We have
so far discussed the site-averaged demagnetizationdmz and
used the criterion that it must be smaller thanS for the order
to persist. However, one could argue that some sites may
have particularly large fluctuations; if these large fluctuations
take place exactly at weak links of the largest connected
cluster backbone, then they could be responsible for earlier
destruction of the long-range order.11 We have numerical evi-
dence that this is unlikely, although the relatively small size
of our lattices does not allow us to be conclusive. In Fig. 6
we show an intensity plot of the local quantum fluctuations
dmi in the largest connected cluster, very close to the perco-
lation threshold, for a typical realization of aL=32. Notice
that the largest fluctuations tend to appear only along dead-
ends or dangling structures, and not in the links connecting
blobs of the cluster backbone. The same trend is seen in all
realizations that we have inspected.

E. Excited states

Equation(13) represents a system ofN coupled harmonic
oscillators withA=K+D andB=K−D being the spring con-

stant and the inverse mass tensors, respectively(for an alter-
native description of the problem in terms of position and
momentum operators, see Appendix A). For the simple
model of elastic vibrations in a lattice, whenqi =sai

+ai
†d /Î2 has the meaning of a displacement of theith atom

around its equilibrium position, it is well known that the
Hamiltonian of such a system can be mapped onto a problem
of diffusion in a disordered lattice.6 Analytical results for the
related diffusive problem, as well as numerical simulations
with large systems, allow one to understand several proper-
ties of the diluted vibrational model, such as the density of
states(DOS) and the dynamical structure factor. Perhaps one
of the most distinctive features is the existence of strongly
localized excitations named fractons.20 For dilution fractions
x,xc, these excitations appear in the high-frequency portion
of the spectrum, beyond a certain crossover scalevc, while
the low-frequency part is dominated by acoustic phonon like,
nearly extended, excitations. At exactlyx=xc, the systems
becomes a fractal and the fractons take over the entire
spectrum.6 Scaling considerations, as well as numerical
simulations, have shown that, for a square lattice, the DOS
behaves as

rsvd ~ H v, v , vc

v1/3, v . vc.
s63d

The crossover frequency depends critically on the dilution:
vc~ sxc−xdD, whereD<91/48. This is an important result
because, for the elastic vibration problem, it is also possible
to show that the quantum fluctuation corrections to the clas-
sical order parameter obey the relation

dm=
1

N
o
n=1

N
1

vn
→

N→`E
0

vmax

dv
rsvd

v
, s64d

wherehvnj are the nonzero eigenvalues of the corresponding
Hamiltonian. Therefore,dm remains finite below and at the

FIG. 6. The density plot of local demagnetizationdmi
z for a

32332 lattice with periodic boundary conditions atx<xc. Only
sites belonging to the largest connected cluster are shown. The
weak links present in the cluster are indicated by bullets.
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percolation threshold, indicating that quantum fluctuations
are likely not sufficiently enhanced by the dilution to destroy
the existent long-range order.10 We will get back to this point
in Sec. V.

In order to investigate the existence of such fractons in the
dilute 2D Heisenberg AFM, as well as to clarify the nature of
its low-lying excitations, we have calculated the the dynami-
cal structure factor,

Ssq,vd =E dt e−ivt o
i,j=1

Nm

eiq·sRi−R jd 3 kSi
+s0dSj

−std + Si
−s0dSj

+stdl.

s65d

By using Eqs.(3), (6), and (18), we can expressSsq ,vd in
terms of Fourier transformations of the site-dependent Bogo-
liubov coefficientsuin andvin. We find

Ssq,vd = 2S o
vnÞ0

dsv − vndfũn
Asqdũn

As− qd+ ṽn
Asqdṽn

As− qd

+ ũn
Asqdṽn

Bs− qd+ ṽn
Asqdũn

Bs− qd + ũn
Bsqdṽn

As− qd

+ ṽn
Bsqdũn

As− qd + ṽn
Bsqdṽn

Bs− qd+ ũn
Bsqdũn

Bs− qd + g,

s66d

where the partial terms involvingũn
A,B are given by the Fou-

rier transformation ofun, namely,

ũn
A,Bsqd = o

iPA,B
uin eiq·r i , s67d

and analogously forṽn
A,B. Notice that the sum over sites runs

only over one of the sublattices,A or B, depending on the
particular term. Thus, only four two-dimensional Fourier
transformations are required in order to evaluateSsq ,vd.

We have computed numerically the Fourier transforma-
tions and calculated the average dynamical structure factor
for lattices of sizeL=32 at several dilution fractions. Only
sites within the largest connected cluster were taken into ac-
count. Averages were performed over 50 realizations for
each case. The results are presented in the form of intensity
plots in Fig. 7. To provide a better contrast, we have rescaled
kSsq ,vdl by the function,fsvd=oq kSsq ,vdl. Only the data
along two particular directions in momentum space are
shown, namelyq=qx=qy and q=qx,qy=0, with 0øqøp
(the lattice spacing is taken to be unit). For small dilution,
the structure factor resembles closely that of the clean case,
with some small broadening of the magnon branch due to the
weak destruction of translation invariance. However, particu-
larly along theqy=0 direction, one can already notice a small
hump at aroundv /JS=3, consistent with the peak-and-edge
structure seen in Fig. 1. This feature becomes more promi-
nent with increasing dilution. For dilution fractions larger
than 0.6xc, another hump becomes visible at aroundv /JS
=2, again consistent with the feature observed in Fig. 1 at the
same frequency. Close to the percolation threshold, there ex-
ist three clear broad branches in the spectrum. While the
dispersion of the high-frequency branch atv /JS.3 is
hardly affected by the dilution, the opposite occurs with the
low-frequency one, atv /JS,2, where the slope(magnon
velocity) decreases with increasing dilution. We interpret the

progressing breaking and bending of the magnon branch as
the system becomes more diluted to the appearance of frac-
tons. At x=xc the excitation spectrum has little resemblance
to that ofx=0 and even the long wavelength part is strongly
modified. In between these two limits, there is a crossover
from a magnon-dominated to a fracton-dominated spectrum.
A three-branch structure for the spectral function in the spin-
wave approximation was also found in Ref.9 However, the
positioning of those branches and their relative intensity
were different from what we observed in our numerical so-
lution. We believe the cause of this discrepancy is the limited
range of applicability of the perturbative treatment, which is
expected to be accurate only in the weak dilution regime.

The gradual appearance, broadening, and motion of the
branches are better represented in Fig. 8, where the rescaled
average dynamical structure factor is shown as a function of
frequency for a fixed momentumqx=0.4/p and qy=0. The
two-peak structure observed in our numerical data has some
resemblance to the results of inelastic neutron scattering per-
formed by Uemura and Birgeneau for the compound
MnxZn1−xF2,

13 whose magnetic properties are described by
the three-dimensional site-diluted random Heisenberg model
with S=5/2.These authors observed two broad peaks which
were associated with magnons(low-energy, extended) and
fractons (high-energy, localized) excitations. The relative
amplitude, width, and dispersion relations of these excita-
tions were measured and were found consistent with the the-
oretical predictions by Orbach and Yu,21 and Aharony and
co-workers.22 The scaling theory of the latter predicts that a
two-peak spectrum appears at momentaq,j−1, wherej is
the percolation correlation length(i.e., the typical linear size
of the disconnected clusters whenx,xc). The relatively
small size of theL=32 lattice does not allow us to make a
similar quantitative comparison between these theories and
our numerical results.

While we do observe a two-peak structure at sufficiently
large dilution, we also see a third peak, although quite weak.
This additional peak may be characteristic of square lattices;
in the body-centered-cubic MnxZn1−xF2, there might exist a
different multipeak structure. Moreover, th elarge broadening
and limited energy resolution of the neutron-scattering ex-
periments may have made such features unobservable in the
data of Ref. 13. However, one aspect which seems different
between the experimental data and our numerical simulations
is the way the spectral weight is transferred between mag-
nons and fractons as a function of dilution. While Uemura
and Birgeneau see an increase(decrease) of high-frequency
fractons(low-frequency magnons), we see the opposite: The
low-frequency portion of the spectrum becomes more in-
tense.

The averaging procedure recovers, to some extent, the
translation invariance broken by the dilution. This allowed us
to identify the large momentum part of the branches which,
otherwise, would not be visible. However, the low momen-
tum part is clearly visible even when no averaging is per-
formed on the data(not shown). This fact, together with the
strong dispersion of the lower energy branches, suggests that
long wavelength propagating magnons are present for dilu-
tion fractions below the percolation threshold, and lose out to
fractons atx=xc. At T=0, these modes are responsible for the
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quantum fluctuations that bring down the long range order.
Their spectral weight becomes more important as the high-
frequency states become more localized with increasing di-
lution. This feature is masked in Fig. 7 by the frequency-
dependent rescaling, but is clear from Fig. 1. The high-
frequency, high momentum modes are much less dispersive
than the low-frequency, low momentum ones. In fact, par-
ticularly below v /JS=3, the magnon branch isq indepen-
dent (i.e., broad in momentum) and thus strongly localized.

The low-frequency modes are likely not fully ballistic
(coherent), given the large broadening seen in the structure
factor, but should rather have a diffusive propagation at large
scales. As to whether they remain two dimensional or gain a

lower-dimensional character, our data is not conclusive.

V. UPPER BOUND FOR QUANTUM FLUCTUATIONS IN
BOSONIC SYSTEMS

The possibility of a classification of quantum random sys-
tems into universality classes is an important theoretical
problem with relevance to experiments. Random matrix clas-
sification schemes introduced by Wigner limited the classes
of problems initially to the orthogonal, unitary, and symplec-
tic classes,23 but these were later extended to encompass the
classes of chiral models24 and models where the particle
number is not a conserved quantity.25 While most of the ran-

FIG. 7. Gray plots of the res-
caled average dynamical structure
factor sliced along two distinct di-
rections in momentum space:qx

=qy=q [(a), (c), and (e)] and qx

=q,qy=0 [(b), (d), and (f)]. Plots
at different dilution fractions do
not necessarily have the same ar-
bitrary scale for the gray intensity.
The most prominent branches are
marked with dashed lines. Averag-
ing for each plot was performed
over 50 realizations of dilution.
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dom matrix problems are related to fermionic spectra, there
is renewed interest in the problem of bosonic random matrix
theory.26 Of particular importance is its application to the
problem of diluted quantum magnets since these systems, in
the limit of large spinS, can be approximately described, via
linear spin-wave theory, as a problem of noninteracting
bosons.14

One of the main differences between fermions and bosons
is that, in addition to the symmetries of the underlying
Hamiltonian, one must ensure that the bosonic spectrum is
semipositive definite; this stability condition is not an issue
in fermionic systems. However, it is automatically satisfied
when the disorder is caused by site dilution.

Let us concentrate our discussion on systems whose
Hamiltonian can be mapped onto a set ofN coupled har-
monic oscillators of the following kind:

H =
1

2 o
i,j=1

N

sqi Aij qj + pi Bij pjd. s68d

Here, N is the total number of sites of the square lattice,
while qi and pi represent generalized position and momen-
tum operators at a lattice sitei, respectively, such that
fqi ,pjg= i di j , with i , j =1, . . . ,N. TheN3N matricesA andB
are real, symmetric, and semipositive; in the most general
case, they do not commute. The magnitude of quantum fluc-
tuations are characterized by the mean-square deviation of
the average value of these operators in the ground state:q̄2

=oi kqi
2l /N andp̄2=oi kpi

2l /N. As mentioned in Sec. IV C, if
quantum fluctuations are unbounded at the percolating re-
gime, then these mean values diverge and LRO is not pos-
sible, implying that order has to be destroyed beforexc is
reached; that is, a quantum critical point should exist before
the percolation threshold. Here we show that this is not the
case and that LRO can persist up to and includingxc. As for
the spin Hamiltonians approximated by Eq.(68), the exact
disappearance of magnetic LRO may also depend on the spin
value.

The eigenfrequencies of the harmonic oscillators of Eq.
(68) can be shown to be those of

VL
2 = AB or VR

2 = BA. s69d

Since, in general,fA,Bg is nonzero, the matricesVL
2 andVR

2

are non-Hermitian and distinct. However, it is simple to
show that they have exactly the same real eigenvalues,vn

2,
for n=1, . . . ,N. This is also true for the matricesVC

2

=B1/2AB1/2 andṼC
2 =A1/2BA1/2. Therefore, the fluctuations of

the position and momentum, averaged over all sites, can be
written as27

q̄2 =
1

2N
trsB VC

−1d ø
b*

2
k, s70d

p̄2 =
1

2N
trsA ṼC

−1d ø
a*

2
k, s71d

where a* and b* denote the maximum eigenvalues of the
semipositive definite matricesA andB, respectively, and we
used that

k =
1

N
tr VC

−1 =
1

N
tr ṼC

−1 =E
0

vmax

dv rsvdv−1, s72d

sinceVC andṼC share the same eigenvalues(vmax being the
largest), with spectral densityrsvd. Thus, the finiteness of
the quantum fluctuations reduces to the problem of the con-
vergence of the integral in Eq.(72) (quantum mechanics re-
quires thatq̄2 p̄2ù1/4). Notice that the quantum fluctuation
correction to the order parameter per unit of lattice site can
be written as

dmz = a q̄2 + b p̄2 + g, s73d

wherea, b, andg are constants that depend on the particular
model and order parameter under consideration.

We now turn to applying these general results to specific
bosonic models based on Heisenberg Hamiltonians.

A. O(2) model

This model is realized, for example, in an array of Joseph-
son junctions, where the variablesqi correspond to the lin-
earized phase of the superconductor order parameter.10,11The
matrices in Eq.(68) take the simple formsAij =Kij −Di j and
Bij =sU /Jddi j , whereDi j =1s0d when the nearest-neighboring
sites i , j are both occupied(otherwise) and Kij =di j ol=1

N Dil ,
i.e., Kii counts the number of nearest neighbors of sitei.
Here,J denotes the Josephson coupling andU is the island
charging energy(usually,J@U). The same structure occurs
in the case of vibrations in a diluted lattice.6 For the O(2)
model, the frequency eigenvalues are obtained fromV2

=sU /JdA. The problem of determining the density of states
of the connectivity matrixA can be mapped onto a problem
of diffusion in a disordered lattice.6 It can be shown that the
density of states ofV goesrsvd~vd*−1. Up to the percola-

tion threshold,d* =d=2, while d* = d̃<4/3 exactly atx=xc.
Therefore, the site-averaged fluctuations are bounded, and
the linear approximation(as well as order) is maintained as
long the ratioJ/U is large enough.

FIG. 8. Slice of the rescaled average dynamical structure factor
for qx=0.4/pi andqy=0 for L=32 and different dilution fractions.
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B. Heisenberg antiferromagnetic model

When we takeJx=Jy=Jz, the matrices take the formAij
=Kij −Di j andBij =Kij +Di j . It is useful to define a matrixL
=LT that has the effect of changing the signs ofqi andpi for
all sites i in one of the two sublattices. Thus,B=LAL, and
VR

2 =LALA. Notice thatG=LA, is not semipositive definite
(in fact it is non-Hermitian), but has real eigenvalues with
the same magnitude as those ofV.

In the O(2) model, becauseV2~A, one can directly relate
the energy eigenvalues ofV to those of the matrixA. In the
AFM case, we need to obtain the density of states ofG
=LA, which is not simply related to that ofA (sincefL ,Ag
Þ0 in general for diluted systems). This nontrivial relation
between the eigenvalues ofV andA is generally present in
bosonic problems. For example, a similar problem also ap-
pears in the work of Gurarie and Chalker in the relation
between their stiffness and frequency eigenvalues.26

The problem of determining the density of states ofG for
a random dilution problem is one of the interesting open
questions related to the important difference between random
fermionic and bosonic systems. In a fermionic problem this
question would be already answered by matching the sym-
metries ofG to the Cartan classification table.25 However,
one cannot substitute the matrixA by an arbitrary random
matrix with similar symmetries, that would violate the semi-
positive definite constraint. In this work we do not attempt to
analytically resolve this problem; however, we find numeri-
cal evidence that the density of states ofG2 follows that ofA
at low energies.

Our simulations show that the site-averaged fluctuations
dmi

z are bounded, both below and at the percolation thresh-
old. This means that order should exist up to and including
the critical dilutionxc, as long asdmi is small compared to
the value of the spinS. Recalling Eq.(62), we conclude that
there could be a minimum valueSmin for the spin, below
which there is a quantum phase transition for dilutionsx,xc.
An effective local spin smaller than 1/2 can be realized in a
bilayer system with antiferromagnetic interlayer coupling.28

C. XXZ model

In this case,Jx=JyÞJz. We then haveAij =Kij −Di j and
Bij =Kij −gDi j , where g measures the anisotropy. Alterna-
tively, we can writeB=s1+g /2dA+s1−g /2dLAL, and so
V2=s1+g /2dA2+s1−g /2dLALA (notice that forg→−1 we
have the same problem as the AFM). The analysis is similar
to the previous two cases. The amount of fluctuations is con-
trolled by the anisotropy, and it can be shown to be bounded
if the density of states follows that of the AFM case.

VI. DISCUSSION AND CONCLUSIONS

In this work we have studied the role played by site dilu-
tion in enhancing quantum fluctuations in the ground state of
the Heisenberg antiferromagnet in a square lattice. Using the
linear spin-wave approximation for this model, we have per-
formed exact numerical diagonalizations for lattices up to
36336, with dilution fractions going from the clean limit to
the classical percolation threshold. Our results indicate a pro-

gressive, nonuniform shift of spectral weight in the spin-
wave excitation spectrum from high and to low frequency as
the dilution increases, with the high-frequency part becom-
ing more localized. The higher density of low-frequency,
long wavelength excitations leads to strong quantum fluctua-
tions and a decrease in the magnitude of the staggered mag-
netization. For dilutions very close to the classical percola-
tion threshold, we have found that quantum fluctuations are
sufficiently strong to nearly match the clean-limit magnitude
of the magnetization whenS=1/2, but not forhigher spins.
This is consistent with recent neutron-scattering experiments
with the S=1/2 dilute Heisenberg antiferromagnet
La2Cu1−xsZn,MgdxO4, which show that long-range order dis-
appears at around the classical percolation threshold. How-
ever, quantum Monte Carlo simulations suggest that quan-
tum fluctuations should remain small and that the destruction
of long-range order is controlled only by the disappearance
of the infinite connected cluster. We understand this discrep-
ancy between the quantum Monte Carlo results and the linear
spin-wave theory near the classical percolation threshold as
an indication that the latter has its validity limited, as the
magnitude of the order parameter is too small.

While perhaps not quantitatively accurate, our simulations
do allow us to probe into nature of the low-lying excited
states of the dilute antiferromagnet. We observe two clear
humps in the density of states at frequenciesv /JS=2 and 3.
By calculating the ensemble-averaged dynamical structure
factor, we were able to associate the appearance of these
humps with the breaking of the clean-limit magnon branch
into three distinct but broad branches. The new branches tend
to be strongly localized(nondispersive) at high frequencies
and have a diffusive, rather than ballistic, nature at low fre-
quencies. In the literature, the multipeak structure had been
associated with the appearance of fractons in the excitation
spectrum as the dilution increases. From our simulations, it
seems that the picture is somewhat more complex. Besides
the overall broadening, the position of the high-frequency
branch remains close to the corresponding portion of original
clean-limit magnon branch, while the magnon velocity(the
dv /dq slope) in the low-frequency branch is continuously
reduced with increasing dilution. Therefore, it appears that
the fracton character also contaminates the low-frequency
branch. However, the lack of resolution due to the finite size
of our lattices does not allow for a conclusive picture. We did
not attempt, however, to study fracton states which can pos-
sibly occur above the percolation threshold.20,29

It is important to remark that, in principle, due to Ander-
son localization in two dimensions, we expect that in the
infinite system all excitations should in fact be localized for
any finite dilution. In order to probe more carefully strong
localization and the consequent exponential decay in real
space, we need not only much larger lattices, but also to
calculate two-point correlators, which goes beyond the appli-
cability of linear spin-wave approximation. For that same
reason, we were not able to evaluate quantities such as the
spin stiffness, which involves matrix elements of higher than
bilinear operators.

We also studied the question of local quantum fluctuations
as a way to destroy long-range order. For finite-size lattices,
we found that the weak links do not show strong quantum
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renormalizations. That provides some indication that local
quantum fluctuations may not be sufficient to change the
dominance of the classical percolation picture.

Using a more general analytical formulation, we have ar-
gued that there exists an upper bound for the quantum fluc-
tuations in any model with a classically ordered ground state
whose Hamiltonians can be mapped onto that of a system of
coupled harmonic oscillators. The amount of quantum fluc-
tuations depends directly on the low-energy behavior of the
density of states of the associated bosonic problems. Our
exact diagonalization of the linear spin wave Hamiltonian on
a percolating lattice led us to identify the value of the upper
bound for one particular type of model and can readily be
used to find similar values for any other bosonic model. This
could be used to study a large class of spin Hamiltonians that
can be bosonized in the ordered phase.
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APPENDIX A: FORMULATION IN TERMS OF COUPLED
HARMONIC OSCILLATOR

The spin-wave Hamiltonian of Eq.(13) can be repre-
sented in terms of position and momentum operators. In this
language, it becomes more transparent that the problem of
finding the eigenvalues and eigenvectors of the Hamiltonian
can be solved by the diagonalization of two real symmetric
matrices, an alternative to the non-Hermitian eigenvalue for-
mulation of Sec. II B.

Let us perform the following operator transformation:

qi =
ai + ai

†

Î2
and pi =

ai − ai
†

iÎ2
, sA1d

for all i =1, . . . ,N. Notice that the operatorsqi and pi obey
the canonical position-momentum commutation relations. It
is convenient to adopt a matrix formulation for the problem,
namely,

H =
JS

2
sqTA q + pTB pd, sA2d

wherex=hxiji=1. . .N and p=hpiji=1. . .N denote vectors of posi-
tion and momentum operators, whilefAgi j =Kij +Di j , and
fBgi j =Kij −Di j . The quantum fluctuation correction to the
sublattice magnetization can be written as

dm=
1

2N
trfkq qTl + kp pTlg −

1

2
. sA3d

We can diagonalizeB through an orthogonal transformation
U,

UTBU = b sdiagonald sA4d

and define new coordinates such that

q = Uq8 and p = U p8. sA5d

Defining A8=UTA U, we then have that

H =
JS

2
sq8TA8 q8 + p8Tb p8d sA6d

and

dm=
1

2N
ftrskq8 q8Tld + trskp8 p8Tldg −

1

2
. sA7d

It is not difficult to prove that all elements in the diagonal
of b are positive except one,b1, which is zero. In order to
eliminate this zero mode, we subtract the corresponding row
or line in all vectors and matrices, which amounts to a re-
duction in the Hilbert space(or, alternatively, to setq08=0):
hq8jN→ hq8jN−1 and hp8jN→ hp8jN−1. Also, fA8gN3N

→ fA8gN−13N−1 andfbgN3N→ fbgN−13N−1. Notice that now all
bk.0, k=2, . . .N. Thus, in this new space, we can perform
the following rescaling:

q9 = b−1/2q8 and p9 = b1/2p8, sA8d

which allows us to write

H =
JS

2
sq9TA9 q9 + p9Tp9d, sA9d

with A9=b1/2A8b1/2 as well as

dm=
1

2N
ftrsbkq9q9Tld + trsb−1kp9 p9Tld+ kp81

2lg −
1

2
,

sA10d

where the last term within the square brackets reflects the
existence of a zero mode. It is useful now to return to the site
basis by carrying out the inverse rotation,

q- = Uq9 and p- = U p9, sA11d

such that

H =
JS

2
sq-TC q- + p-T p-d, sA12d

where C=U A9 UT is the new connectivity matrix. If we
define

B1/2 = U b1/2 UT and B−1/2 = U b−1/2 UT sA13d

within the subspaceN−13N−1 where no zero mode is
present, we can write the connectivity matrix as

C = B1/2AB1/2. sA14d

Also, notice that the inverse rotation does not change the
expression of the sublattice magnetization,

dm=
1

2N
ftrsb−1kq-q-Tld + trsbkp-p-Tld + kp80

2lg −
1

2
.

sA15d
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We can now perform the last operation, namely, the di-
agonalization of the connectivity matrix,

qiv = Vq- and piv = V p-, sA16d

yielding

H =
JS

2
sqiv Tc qiv + piv Tpivd, sA17d

where

VTC V = c sdiagonald, sA18d

with all cn.0, n=1, . . .N−1. We finally arrive to a system of
decoupled harmonic oscillators. The quantum fluctuation
part of the magnetization becomes

dm=
1

2N
ftrsb−1VTkqivqiv TlVd + trsb VTkpivpiv TlVd

+ kp80
2lg −

1

2
. sA19d

However, we know that

fkqivqiv Tlgnm= dnm kqn
iv 2l =

1

2
fcgnm

−1/2 sA20d

and

fkpiv piv Tlgnm= dnmkpn
iv 2l =

1

2
fcgnm

1/2. sA21d

Therefore,

dm=
1

4N
ftrsb−1 VT c−1/2 Vd + trsb VT c1/2 Vd + kp80

2lg −
1

2
.

sA22d

It is interesting to notice that, sinceA =O B O, we have
that

C = V2, sA23d

where

V = B1/2 O B1/2. sA24d

Thus, it is easy to see that ifC were a positive matrix, then
we would be able to writeVTc1/2V ;C1/2=V. That would
allow us to simplify the expression for the sublattice magne-
tization a step further. However, the connectivity matrix is
not necessarily positive.

APPENDIX B: NUMERICAL DIAGONALIZATION OF THE
NON-HERMITIAN MATRIX

The diagonalization of the non-Hermitian matrices con-
sists of five steps. First, the real(but asymmetric) matrix
Ms+d is reduced to an upper Hessenberg form through an
orthogonal transformation, namely,A=QMs+dQT. This is
done by using theLAPACK subroutinesDGEHRD andDORGHR.
Second, we use theLAPACK subroutineDHSEQR to perform
the Schur factorization of the Hessenberg matrix:A=ZTZT.
That allows us to obtain the eigenvalues and the Schur vec-
tors, which are contained in the orthogonal matrixZ. Third,
using anotherLAPACK subroutine,DTREVC, we extract from
Z both right and left eigenvectors ofMs+d. In the fourth step
we renormalize all eigenvectorshfs±dj such that they satisfy
Eq. (52) [the condition in Eq.(53) is automatically satisfied],
sort the eigenvalueshlnj in ascending order, and extract the
zero mode from the spectrum. For some realizations, the
lowest eigenvalues next to the zero mode cannot be distin-
guished from the zero mode itself and are therefore ne-
glected. Finally, the correct linear combination offn

s±d that
provides the correctun and vn for each positive eigenfre-
quencyvn=Îln is obtained according to the algorithm pre-
sented in Sec. II D.
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