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Phase diagram of a frustrated mixed-spin ladder with diagonal exchange bonds
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Using exact numerical diagonalization and the conformal field theory approach, we study the effect of
magnetic frustrations due to diagonal exchange bonds in a system of two coupled mixéﬂ,—%bl‘ﬂeisenberg
chains. It is established that relatively moderate frustrations are able to destroy the ferrimagnetic state and to
stabilize the critical spin-liquid phase typical for half-integer-spin antiferromagnetic Heisenberg chains. Both
phases are separated by a narrow but finite region occupied by a critical partially polarized ferromagnetic
phase.
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[. INTRODUCTION transition points separating th@ phase from the ferrimag-
netic (F) (0,¢)=(0,0 and the mixed-spin collinead, ¢)
(w/2,712) phases, respectively. In the case of special in-

(1,3), the classical transition points are,

Many experiments on bimetallic quasi-one-dimensional

(1D) molecular magnets imply that the magnetic properties "
of these compounds are basically described by the Heiseﬁgresusl's?)_

berg spin model with antiferromagnetic
couplingst? In the past decade, there has been increasin
experimental and theoretical interest in these mixed-spin sy
tems exhibiting intriguing quantum spin phases and therm
dynamic properties. In particular, a number of recent studie

have been focused on ground-state properties of mixed-spftf

ladders®

In this paper, we study the ground-state phase diagram gfuantum fluctuations.

a ferrimagnetic two-leg ladder containing frustrating antifer-
romagnetic diagonal exchange boridse Fig. 1. The model
is defined by the Hamiltonian

L
H= 2 [Jl(sln “Spnert Son - S1n+1) + Jlen ) SZn]

n=1
L

+ JZE (Sln "Sine1t Son e S2n+1)a

n=1

ey

wherelL is the number of rungs, and the spin opera®fs
ands,, are defined on the rung with index (s;,)?=s,(s;
+1), ($0)°=S)(S,+1), 8>, and J;,J,,J, >0. We intro-
duce the frustration parameter=J,/J;, the spin ratioo
=s;/s,, and set the energy and length scalesJps=1 and
ap=1, wherea, is the spacing between neighboring rungs. In
the remainder of this paper, if not especially noted, we will
consider the caség, =J,.

As a function of the frustration parametey the classical
phase diagram of Eq1) exhibits three phases described by
the angleq 6, ¢) fixing the directions of the classical spins
S, and s, with respect to the classical ferrimagnetic con-
figuration with spinss,,, ands,, oriented along the axes
and z,, respectively(Fig. 1). The classical canted stat€)
shown in Fig. 1 is stable in the interval; < a< a.,, where
a=3[(0?+1) = \(0?+1)*~-320%/9]/80 and ag=[-(0?
+1)+(0?+1)°+320%] /80

are second-order phase-
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=0.3219 anda,=0.4606. Notice that the square-lattide
=J, mixed-spin Heisenberg modedxhibits similar classical
nagnetic phases which persist in the quantum phase dia-

odram. On the other hand, the following analysis of ED).

plies that in one space dimension the ferrimagnetic phase
ntinues to exist in the quantum phase diagram, whereas the
classical collinear magnetic state is completely destroyed by
Instead, far> a,. there appears a
singlet quantum paramagnetic phase which is critical
(gapped for half-integer(integep rung spinsS,=s;,,+S,,. AS
to the classical canted phase, it is argued that the longitudinal
ferromagnetic order survives quantum fluctuations. On the
other hand, on general grounds we may expect that the trans-
verse magnetic ordering does not survive quantum fluctua-
tions. A closely related phase diagram appears in a special
class of lattice models with quantum-rotor degrees of
freedonm?®

The following analysis of the quantum phase diagram is
performed by using exact numerical diagonalizatig®) of
small periodic systems, finite-size analysis of the ED data,
and analytical spin-wave calculations. The emphasis is on
the properties of the quantum paramagnetic phase.
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FIG. 1. Sketch of the classical canted state¥orJ; described
by the angleg+6, +¢) for every magnetic cell composed of two
neighboring rungsé and ¢ measure the deviations of the classical
spins from the ferrimagnetic configuratios;,llz; and sy, |l z,.
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0.6 T ' ' T T guantumC phase may be callegartially polarized ferro-
(81,82) = (1, 3) magneticphase, as the ferromagnetic mombhtis less than
] I L=12 A the maximal values, —s, in the ferrimagnetic phasesee Fig.

2). This quantum state may also be classified as a kind of

041 T ferromagnetic Luttinger liquid.We postpone detailed analy-
sis of this quantum phase for future studies.
M, 03f .
02 b I1l. QUANTUM PARAMAGNETIC PHASE
o1l | Now, let us turn to the regioa> a, of the phase dia-

gram characterized b$;=0. It is instructive to rewrite Eq.

0 . . . . s (1) in the following form:
03 032 034 036 038 04 042

Ja/h L L
H =2 (31Sy Spea* 1810 Son) + (2= ID) 2 (10~ St
FIG. 2. ED results for the ferromagnetic moment per rivhgvs n=1 n=1
J,/J; (dashed ling The steplike form oM(J,/J;) is connected to + . 3
finite-size effects. The midpoints of the steps closextpare well Son * S1n+)- 3
approximated by the ansaMo=my(ac— )P +my(a—a), where  The operator &,-S,,=(S,)2=5,(S;+1) =s,(s,+1) is a con-
m; =1.65m,=0.56, andg=3 (solid line). served quantity fod,=J; and at this special point the low-
energy physics of Eq.l) is described by the antiferromag-
Il. MAGNETIC PHASES netic spinS Heisenberg chain(S,)?=S(S+1),S=s,-5,,%;

-S+1,... 5+S,. ial i
As may be expected, the positions of the classical phase—sz 1. s*s In the case of special interest,s,)

transition pointsa; and ay, are changed by quantum spin
fluctuations. Using ED and a simple finite-size scaling, it is JEEEEE
possible to find precise estimates for the quantum transition g

points. The latter are connected with the following changes 3r a=1
in the total spin of the ground sta: S;=(s;-s,)L for O
<a<ag (F phasg, 0<S;<(s;—$))L for ag<a<ay (C E(®) 2k........ ;e O e o e O ... .

phasg, andS;=0 for o> a,, (Quantum paramagnetic phase
The extrapolated data ftu=8,10,12, and 14gjive the results
a1 =0.341 andy,=0.399, showing that the region occupied
by the quantumC phase is narrowed but definitely finite.

Figure 2 provides a summary of the reported results in terms i 0:2 014 016 ofs 1
of the net ferromagnetic moment per rult for L=12. k/x
The ferrimagnetic phase has already been studied for the

model (1) without frustratior? As My>0, both magnetic 0.8 T ' ' T

phaseqF and C) are characterized by quadratic spin-wave °

excitations 06| o° ° T, a=04 -
E(k) = 22K% + O(KY), ) B 04} .

Mg ° .

whereps is the ferromagnetic spin-stiffness constain. ap- 02} i

proachinga,, from the ferrimagnetic phase, the linear spin-

wave theory predicts that the lower spin-wave branch softens . . . .

in the vicinity of k=7 and the gap at this point vanishes for 0 0.2 04 0.6 038 1

a> ag. Thus the linear gapless mode, characteristic of the kfx

classicalC phase, seems to survive quantum fluctuations,
although on general grounds it may be expected that the spip
rotation symmetrnyU(1) in the xy plane is restored in one S1 G ; - ; )
space dimension i.e(sf >:<$ y=028 This scenario is sup- 0.4): L=12 (open C|rc|e_$ L=14 (filled qrcles). Curves represe_nt _
’ WARNC . T the two branches of spin-wave modes in the paramagnetic Brillouin
ported by the renormalization-group analysis of similar;one as obtained from the linear spin-wave theory. The spin-wave
phases in quantum rotor modélsnplylng that the true tran-  energies are multiplied by the normalization factafvs,=1.29,
verse long-range magnetic order in the classi@alhase is  \wherey=3.87 andv,=25=3 are the spin-wave velocities, as ob-
transformed to a quasi-long-rangg order in the quantum tained by the density matrix renormalization group metldBe.
system. On the other hand, the spin-stiffness congtaré-  12) and the linear spin-wave theory. Note that the classical transi-
mains finite in both magnetic phases as well as at the transiion point ata=0.4606 appears as an instability point for the lower
tion point a¢. Following the terminology of Ref. 5, the spin-wave branch.

FIG. 3. ED results for the lowest excited states of the system
,52):(1,%) for two different frustration parametergx=1 and
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0.05 ' T ' antiferromagnetic Heisenberg chains with half-integer site
10 spinsl® In the following, we restrict our analysis to the
004 T (sl,sz)=(1,%) system. According to the conformal field
003k i theory, the ground-state ener@y(L) of a periodic system
B@x/D) with lengthL is given by the following expressiof:
" oml 05 of E 3 a
N £ sazfeleaeli
......... s Heregg is the ground-state energy per rung in the thermody-
Ui 0.00 0.008 0.012 0016 namic limit, v is the spin-wave velocity, ang=g(L) is the

1/1? effective coupling constant of the marginally irrelevant op-
erator —2rgJ, -Jg at the length scalé. J, and Jg are the
FIG. 4. Reduced energy gap between the lowest excited state @hnserved current operators for the left and right movers in
m=2w/L and the ground state. The interpolation of ED data isthe \WZW theory. Thé.™* contribution comes from irrelevant

—v3 -
performed by the ansat£(2m/L)/27L=3., ¢,L"*". For @  gperators. The coupling is defined by the renormalization-
=0.45,0.5, and 1 this yields, respectively, the spin-wave velocmefgroup(RG) equatioﬁ3’14

vs=1.19,1,78, and 3.81. Note that the interpolation function for
«a=0.4 has a positive curvature. 1 1 L
—+§In g=InL—, (5)

:(1,%), and for relatively small interchain couplings g ¢

J, £1.59;, we have numerically found that all the rung whereL. is a nonuniversal effective length scale depending

spins are characterized =3, so that in the low-energy 0n the microscopic model. An iterative solution of &)

sector the ladder modél) is equivalent to the&s=3 antifer- ~ Yields the following expansion fag:

romagnetic Heisenberg chain. 1 In In(L/L,) 1
The above statements concern the special pdjrtl; g= - > <+ ( 3 )

whereSis a good quantum number. As an example, in Fig. 3 In(L/Le) 2 In“(L/Lo) In"(L/Lo)

we show the energies of the lowest excited stdtesl2 and g that the marginally irrelevant operator introduces logarith-

14) for «=0.4 and 1. Apart from th&=0 state, which is mic corrections in Eq(4)

characterized by the total spin 2, the lowest excited states are The energy of the lowest triplet excitati@(L) with mo-

triplets above the singlet ground state. This structure of th@nentumk= = can be expressed in the form

low-energy spectrum is valid in the whole regian> «, up

to the limit a=, where the system is composed of two Ei-Eo Z_M{E_Q

(6)

independents;=1 and 52:% antiferromagnetic Heisenberg L L2
chains. As with the generalized Lieb-Schultz-MattissM)

theoremt! it is natural to suppose that the gapless IineatAt_ moderate Iength_scale($:8, 10, 12, and 14 th? cou-
structure of the spectrum aroutd 7 survives away from PliNg constantgy(L) in Egs.(4) and(7) may have different
the pointJ,=J,. values, so that instead bf we introduce the effective length

To study the properties of the quantum paramagnetiécaleg-o andL for the ground-state energy and the energy of

phase in the whole region> e, we may compare the UlPlet excitations. - ,
finite-size scaling properties of the ground state and the low- | N€ parametes in Eqs.(4) and(7) can be independently

est excited states with those based on 8ig2) Wess- determined from the scaling of the reduced gap
Zumino-Witten(WZW) nonlinears- model. This model with ~E(27/L)/27L, where E(2m/L) is the energy gap between
the topological coupling,=1 is believed to describe the

by
- > 4+b192+0<g3>] +h @

T T T 1'0
T T T
-1.58} -
16k a=045 |
Ay
L
B 1621 .
—1.64F -
a=05
-1.66 | . L
\ \ . 0 0.004 0.002 0.012 0.016
0 0.004 0.008 0.012 0.016 1/L

1/L?
/ FIG. 6. Scaling of the triplet gap/L=[E(L)—Eq(L)]/L for the
FIG. 5. Scaling of the ground-state enefgy(L)/L at «=0.45  frustration parameterg=0.42, 0.45, 0.5, and 1. The fit of ED data
and 0.5. The interpolation of ED data is performed by E4sand is performed with the scaling formul&@) and by using the logarith-
5). mic expansion6) up to second order in 1/(b/L;).
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TABLE |. Values of the coefficients in Eq$4) and(7) giving the best fit to the ED data. The values of
v correspond to the ansag8) with y:§ giving the best fit to the estimates from Fig.14,=0.94 for all
values ofa presented in the table.

a Ug €p al Ll bl b2
0.42 0.71 -1.5608 —-26.8 2.20 -2.2 318
0.45 1.21 —-1.5873 -26.0 2.20 -1.8 449
0.50 1.77 -1.6373 -25.5 2.12 -1.5 495
1.00 3.87 —2.3290 -20.5 2.06 -1.4 942

the lowest excited state with momentum-27/L and the have found that foL. <14, the lowest singlet excited states
ground state. Using the interpolation ans&{2w/L)/27L E.(L) may belong to different conformal towers. That is why,
=33 ¢,L™, we find, in particular, the estimates=c, instead of utilizing the combination &(L) andE(L) which
=3.81 ate=1. This is close to the density matrix RG result eliminates theD(g) correction'® we have performed the in-
3.87£0.02 for the antiferromagnetics=§ Heisenberg terpolation directly with Eq.(7) by using the logarithmic
chain!? In Fig. 4, we present the interpolation curves for expansion6) up to second order in 1/(b/L,). The results
different values of the frustration parameterExcluding the  presented in Fig. 6 and Table | imply that the effective cou-
point =0.4, our estimates far; can be well interpolated by pling at a given length scalg(L) exhibits only a small
the ansatz increas&’ when approaching the critical point.,, in agree-
ment with the interpolation result foEy(L). On the other
hand, asoe— a.,, one indicates a monotonous growth of the
up toa=1, provided thaty= 5. The linear spin-wave theory O(g®) contribution to the scaling dimension. The scaling be-
gives the exponeny:%_ Note that the spin-Wave ans&ﬁ) havior of EO(L) and Et(L) for a>1 qualitatively reveals the
assumes that the velocity vanishes at the critical poirt.,. same properties.
Of course, the above interpolation of ED data cannot defi-
nitely confirm such an assumption, although the apparent
change in the curvature @&(27/L)/27L versus 1L? close IV. CONCLUSIONS
to «=0.4 gives some indication in favor of(a,)=0.1°
Having the parameter, for different «, now we can in-
terpolate the ED data fdgy(L) andE;(L) by using the scal-
ing expressiong4) and (7). The fitting parameters in E¢4)
areeg, a4, andL,. Alternatively, in Eq.(7) the fitting param-
eters arebq, b,, andL;. As an example, in Fig. 5 we present
the interpolation curve&y(L)/L versus 1L? for frustration
parametersy=0.45 and 0.5. Using the RG equati¢®) for
g(L), the best fit ata=1 is obtained fore;=-2.3290,L,
=0.94, anda;=-20.5. This is in accord with the density
matrix RG resulte,=-2.328 3312 The parametet ,=0.94
corresponds to an effective coupling constafit0)=0.35.
Performing the fits down ta=0.4, we observe that the char-
acteristic lengthLy remains almost unchangéexcluding the
point «=0.4). An interpolation procedure using only the
leading term in the logarithmic expansi¢®) produces simi-
lar results, although with a slightly larger effective length A part of the numerical calculations was performed with
Lo(=1.08. the SPINPACK program package created by J. Schulenburg.
The O(g) correction to the scaling dimension in EJ)  This work was supported by the Deutsche Forschungsge-
makes the fit of our ED data more intricate. Moreover, wemeinschaft(Project No. 436BUL/17/5/03

vs= V(@ — ape)” + vl — age) + O (a - a2c)2] (8

In conclusion, we have examined the impact of magnetic
frustration on the ground-state phase diagram of two coupled
mixed-spin(sl,sz):(l,g) ferrimagnetic Heisenberg chains.
The analysis of ED data implies an interesting phase diagram
containing the ferrimagnetic phase and a singlet paramag-
netic phase exhibiting the characteristics of the critical spin-
liquid phase in half-integer-spin antiferromagnetic Heisen-
berg chains. Both phases are separated by a tiny but finite
region occupied by a critical partially polarized ferromag-
netic phase. It is natural to expect similar phase diagrams for
the whole class of frustratets;,s,) two-leg ladders with
half-integer rung spins.
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