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Using exact numerical diagonalization and the conformal field theory approach, we study the effect of
magnetic frustrations due to diagonal exchange bonds in a system of two coupled mixed-spins1, 1

2
d Heisenberg

chains. It is established that relatively moderate frustrations are able to destroy the ferrimagnetic state and to
stabilize the critical spin-liquid phase typical for half-integer-spin antiferromagnetic Heisenberg chains. Both
phases are separated by a narrow but finite region occupied by a critical partially polarized ferromagnetic
phase.
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I. INTRODUCTION

Many experiments on bimetallic quasi-one-dimensional
s1Dd molecular magnets imply that the magnetic properties
of these compounds are basically described by the Heisen-
berg spin model with antiferromagnetic exchange
couplings.1,2 In the past decade, there has been increasing
experimental and theoretical interest in these mixed-spin sys-
tems exhibiting intriguing quantum spin phases and thermo-
dynamic properties. In particular, a number of recent studies
have been focused on ground-state properties of mixed-spin
ladders.3

In this paper, we study the ground-state phase diagram of
a ferrimagnetic two-leg ladder containing frustrating antifer-
romagnetic diagonal exchange bonds(see Fig. 1). The model
is defined by the Hamiltonian

H = o
n=1

L

fJ1ss1n ·s2n+1 + s2n ·s1n+1d + J's1n ·s2ng

+ J2o
n=1

L

ss1n ·s1n+1 + s2n ·s2n+1d, s1d

whereL is the number of rungs, and the spin operatorss1n
and s2n are defined on the rung with indexn: ss1nd2=s1ss1

+1d, ss2nd2=s2ss2+1d, s1.s2, and J1,J2,J'.0. We intro-
duce the frustration parametera=J2/J1, the spin ratios
=s1/s2, and set the energy and length scales byJ1;1 and
a0=1, wherea0 is the spacing between neighboring rungs. In
the remainder of this paper, if not especially noted, we will
consider the caseJ'=J1.

As a function of the frustration parametera, the classical
phase diagram of Eq.(1) exhibits three phases described by
the anglessu ,fd fixing the directions of the classical spins
s1n and s2n with respect to the classical ferrimagnetic con-
figuration with spinss1n and s2n oriented along the axesz1
and z2, respectively(Fig. 1). The classical canted statesCd
shown in Fig. 1 is stable in the intervalac1,a,ac2, where
ac1=3fss2+1d−Îss2+1d2−32s2/9g /8s and ac2=f−ss2

+1d+Îss2+1d2+32s2g /8s are second-order phase-

transition points separating theC phase from the ferrimag-
netic sFd su ,fd=s0,0d and the mixed-spin collinearsu ,fd
=sp /2 ,p /2d phases, respectively. In the case of special in-
terest ss1,s2d= s1, 1

2
d, the classical transition points areac1

=0.3219 andac2=0.4606. Notice that the square-latticeJ1
−J2 mixed-spin Heisenberg model4 exhibits similar classical
magnetic phases which persist in the quantum phase dia-
gram. On the other hand, the following analysis of Eq.(1)
implies that in one space dimension the ferrimagnetic phase
continues to exist in the quantum phase diagram, whereas the
classical collinear magnetic state is completely destroyed by
quantum fluctuations. Instead, fora.a2c there appears a
singlet quantum paramagnetic phase which is critical
(gapped) for half-integer(integer) rung spinsSn=s1n+s2n. As
to the classical canted phase, it is argued that the longitudinal
ferromagnetic order survives quantum fluctuations. On the
other hand, on general grounds we may expect that the trans-
verse magnetic ordering does not survive quantum fluctua-
tions. A closely related phase diagram appears in a special
class of lattice models with quantum-rotor degrees of
freedom.5

The following analysis of the quantum phase diagram is
performed by using exact numerical diagonalizationsEDd of
small periodic systems, finite-size analysis of the ED data,
and analytical spin-wave calculations. The emphasis is on
the properties of the quantum paramagnetic phase.

FIG. 1. Sketch of the classical canted state forJ'=J1 described
by the angless±u , ±fd for every magnetic cell composed of two
neighboring rungs.u andf measure the deviations of the classical
spins from the ferrimagnetic configuration:s1niz1 ands2niz2.
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II. MAGNETIC PHASES

As may be expected, the positions of the classical phase-
transition pointsac1 and ac2 are changed by quantum spin
fluctuations. Using ED and a simple finite-size scaling, it is
possible to find precise estimates for the quantum transition
points. The latter are connected with the following changes
in the total spin of the ground stateST: ST=ss1−s2dL for 0
øa,ac1 (F phase), 0,ST, ss1−s2dL for ac1,a,ac2 (C
phase), andST=0 for a.ac2 (quantum paramagnetic phase).
The extrapolated data forL=8,10,12, and 14give the results
ac1=0.341 andac2=0.399, showing that the region occupied
by the quantumC phase is narrowed but definitely finite.
Figure 2 provides a summary of the reported results in terms
of the net ferromagnetic moment per rungM0 for L=12.

The ferrimagnetic phase has already been studied for the
model (1) without frustration.6 As M0.0, both magnetic
phases(F and C) are characterized by quadratic spin-wave
excitations

Eskd =
rs

M0
k2 + Osk4d, s2d

wherers is the ferromagnetic spin-stiffness constant.7 In ap-
proachingac1 from the ferrimagnetic phase, the linear spin-
wave theory predicts that the lower spin-wave branch softens
in the vicinity of k=p and the gap at this point vanishes for
a.ac1. Thus the linear gapless mode, characteristic of the
classicalC phase, seems to survive quantum fluctuations,
although on general grounds it may be expected that the spin
rotation symmetryUs1d in the xy plane is restored in one
space dimension, i.e.,ks1n

x l=ks2n
x l=0.8 This scenario is sup-

ported by the renormalization-group analysis of similar
phases in quantum rotor models,5 implying that the true tran-
verse long-range magnetic order in the classicalC phase is
transformed to a quasi-long-rangexy order in the quantum
system. On the other hand, the spin-stiffness constantrs re-
mains finite in both magnetic phases as well as at the transi-
tion point ac1. Following the terminology of Ref. 5, the

quantumC phase may be calledpartially polarized ferro-
magneticphase, as the ferromagnetic momentM0 is less than
the maximal values1−s2 in the ferrimagnetic phase(see Fig.
2). This quantum state may also be classified as a kind of
ferromagnetic Luttinger liquid.9 We postpone detailed analy-
sis of this quantum phase for future studies.

III. QUANTUM PARAMAGNETIC PHASE

Now, let us turn to the regiona.ac2 of the phase dia-
gram characterized byST=0. It is instructive to rewrite Eq.
(1) in the following form:

H = o
n=1

L

sJ1Sn ·Sn+1 + J's1n ·s2nd + sJ2 − J1do
n=1

L

ss1n ·s1n+1

+ s2n ·s1n+1d. s3d

The operator 2s1n·s2n=sSnd2−s1ss1+1d−s2ss2+1d is a con-
served quantity forJ2=J1 and at this special point the low-
energy physics of Eq.(1) is described by the antiferromag-
netic spin-S Heisenberg chain:sSnd2=SsS+1d ,S=s1−s2,s1

−s2+1, . . . ,s1+s2. In the case of special interestss1,s2d

FIG. 3. ED results for the lowest excited states of the system
ss1,s2d= s1, 1

2
d for two different frustration parameters(a=1 and

0.4): L=12 (open circles), L=14 (filled circles). Curves represent
the two branches of spin-wave modes in the paramagnetic Brillouin
zone, as obtained from the linear spin-wave theory. The spin-wave
energies are multiplied by the normalization factorvs/vsw=1.29,
wherevs=3.87 andvsw=2S=3 are the spin-wave velocities, as ob-
tained by the density matrix renormalization group method(Ref.
12) and the linear spin-wave theory. Note that the classical transi-
tion point ata=0.4606 appears as an instability point for the lower
spin-wave branch.

FIG. 2. ED results for the ferromagnetic moment per rungM0 vs
J2/J1 (dashed line). The steplike form ofM0sJ2/J1d is connected to
finite-size effects. The midpoints of the steps close toac2 are well
approximated by the ansatzM0=m1sac2−adb+m2sac2−ad, where
m1=1.65,m2=0.56, andb= 1

2 (solid line).
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= s1, 1
2

d, and for relatively small interchain couplings
J'/1.59J1, we have numerically found that all the rung
spins are characterized byS= 3

2, so that in the low-energy
sector the ladder model(1) is equivalent to theS= 3

2 antifer-
romagnetic Heisenberg chain.

The above statements concern the special pointJ2=J1
whereS is a good quantum number. As an example, in Fig. 3
we show the energies of the lowest excited states(L=12 and
14) for a=0.4 and 1. Apart from thek=0 state, which is
characterized by the total spin 2, the lowest excited states are
triplets above the singlet ground state. This structure of the
low-energy spectrum is valid in the whole regiona.ac2 up
to the limit a=`, where the system is composed of two
independents1=1 and s2= 1

2 antiferromagnetic Heisenberg
chains. As with the generalized Lieb-Schultz-Mattis(LSM)
theorem,11 it is natural to suppose that the gapless linear
structure of the spectrum aroundk=p survives away from
the pointJ2=J1.

To study the properties of the quantum paramagnetic
phase in the whole regiona.ac2, we may compare the
finite-size scaling properties of the ground state and the low-
est excited states with those based on theSUs2d Wess-
Zumino-Witten(WZW) nonlinears model. This model with
the topological couplingk0=1 is believed to describe the

antiferromagnetic Heisenberg chains with half-integer site
spins.10 In the following, we restrict our analysis to the
ss1,s2d= s1, 1

2
d system. According to the conformal field

theory, the ground-state energyE0sLd of a periodic system
with lengthL is given by the following expression:10

E0

L
= «0 −

pvs

6L2F1 +
3

8
g3 + Osg4dG +

a1

L4 . s4d

Here«0 is the ground-state energy per rung in the thermody-
namic limit, vs is the spin-wave velocity, andg=gsLd is the
effective coupling constant of the marginally irrelevant op-
erator −2pgJL ·JR at the length scaleL. JL and JR are the
conserved current operators for the left and right movers in
the WZW theory. TheL−4 contribution comes from irrelevant
operators. The couplingg is defined by the renormalization-
group (RG) equation13,14

1

g
+

1

2
ln g = ln

L

Lc
, s5d

whereLc is a nonuniversal effective length scale depending
on the microscopic model. An iterative solution of Eq.(5)
yields the following expansion forg:

g =
1

lnsL/Lcd
−

ln lnsL/Lcd
2 ln2sL/Lcd

+ OS 1

ln3sL/Lcd
D s6d

so that the marginally irrelevant operator introduces logarith-
mic corrections in Eq.(4).

The energy of the lowest triplet excitationEtsLd with mo-
mentumk=p can be expressed in the form

Et − E0

L
=

2pvs

L2 F1

2
−

g

4
+ b1g

2 + Osg3dG +
b2

L4 . s7d

At moderate length scales(L=8, 10, 12, and 14), the cou-
pling constantsgsLd in Eqs. (4) and (7) may have different
values, so that instead ofLc we introduce the effective length
scalesL0 andLt for the ground-state energy and the energy of
triplet excitations.

The parametervs in Eqs.(4) and(7) can be independently
determined from the scaling of the reduced gap
Es2p /Ld /2pL, whereEs2p /Ld is the energy gap between

FIG. 4. Reduced energy gap between the lowest excited state at
p−2p /L and the ground state. The interpolation of ED data is
performed by the ansatzEs2p /Ld /2pL=on=1

3 cnL
−2n. For a

=0.45,0.5, and 1 this yields, respectively, the spin-wave velocities
vs=1.19,1,78, and 3.81. Note that the interpolation function for
a=0.4 has a positive curvature.

FIG. 5. Scaling of the ground-state energyE0sLd /L at a=0.45
and 0.5. The interpolation of ED data is performed by Eqs.(4) and
(5).

FIG. 6. Scaling of the triplet gapDt /L=fEtsLd−E0sLdg /L for the
frustration parametersa=0.42, 0.45, 0.5, and 1. The fit of ED data
is performed with the scaling formula(7) and by using the logarith-
mic expansion(6) up to second order in 1/ lnsL /Ltd.
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the lowest excited state with momentump−2p /L and the
ground state. Using the interpolation ansatzEs2p /Ld /2pL
=on=1

3 cnL
−2n, we find, in particular, the estimatevs;c1

=3.81 ata=1. This is close to the density matrix RG result
3.87±0.02 for the antiferromagneticS= 3

2 Heisenberg
chain.12 In Fig. 4, we present the interpolation curves for
different values of the frustration parametera. Excluding the
point a=0.4, our estimates forvs can be well interpolated by
the ansatz

vs = v1sa − a2cdg + v2sa − a2cd + Ofsa − a2cd2g s8d

up to a=1, provided thatg< 2
3. The linear spin-wave theory

gives the exponentg= 1
2. Note that the spin-wave ansatz(8)

assumes that the velocityvs vanishes at the critical pointac2.
Of course, the above interpolation of ED data cannot defi-
nitely confirm such an assumption, although the apparent
change in the curvature ofEs2p /Ld /2pL versus 1/L2 close
to a=0.4 gives some indication in favor ofvssac2d=0.15

Having the parametervs for different a, now we can in-
terpolate the ED data forE0sLd andEtsLd by using the scal-
ing expressions(4) and(7). The fitting parameters in Eq.(4)
are«0, a1, andL0. Alternatively, in Eq.(7) the fitting param-
eters areb1, b2, andLt. As an example, in Fig. 5 we present
the interpolation curvesE0sLd /L versus 1/L2 for frustration
parametersa=0.45 and 0.5. Using the RG equation(5) for
gsLd, the best fit ata=1 is obtained for«0=−2.3290,L0

=0.94, anda1=−20.5. This is in accord with the density
matrix RG result«0=−2.328 33.12 The parameterL0=0.94
corresponds to an effective coupling constantgs10d=0.35.
Performing the fits down toa=0.4, we observe that the char-
acteristic lengthL0 remains almost unchanged(excluding the
point a=0.4). An interpolation procedure using only the
leading term in the logarithmic expansion(6) produces simi-
lar results, although with a slightly larger effective length
L0s=1.08d.

The Osgd correction to the scaling dimension in Eq.(7)
makes the fit of our ED data more intricate. Moreover, we

have found that forLø14, the lowest singlet excited states
EssLd may belong to different conformal towers. That is why,
instead of utilizing the combination ofEtsLd andEssLd which
eliminates theOsgd correction,16 we have performed the in-
terpolation directly with Eq.(7) by using the logarithmic
expansion(6) up to second order in 1/ lnsL /Ltd. The results
presented in Fig. 6 and Table I imply that the effective cou-
pling at a given length scalegsLd exhibits only a small
increase17 when approaching the critical pointac2, in agree-
ment with the interpolation result forE0sLd. On the other
hand, asa→ac2, one indicates a monotonous growth of the
Osg2d contribution to the scaling dimension. The scaling be-
havior of E0sLd andEtsLd for a.1 qualitatively reveals the
same properties.

IV. CONCLUSIONS

In conclusion, we have examined the impact of magnetic
frustration on the ground-state phase diagram of two coupled
mixed-spin ss1,s2d= s1, 1

2
d ferrimagnetic Heisenberg chains.

The analysis of ED data implies an interesting phase diagram
containing the ferrimagnetic phase and a singlet paramag-
netic phase exhibiting the characteristics of the critical spin-
liquid phase in half-integer-spin antiferromagnetic Heisen-
berg chains. Both phases are separated by a tiny but finite
region occupied by a critical partially polarized ferromag-
netic phase. It is natural to expect similar phase diagrams for
the whole class of frustratedss1,s2d two-leg ladders with
half-integer rung spins.
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