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We investigate a model of two Kondo impurities coupled via an Ising interaction. Exploiting the mapping to
a generalized single-impurity Anderson model, we establish that the model has a singletpseddospin
doublet phase separated by a Kosterlitz-Thouless quantum phase transition. Based on a strong-coupling analy-
sis and renormalization-group arguments, we show that at this transition the cond@timoagh the system
either displays a zero-bias anomaBy~ V|22, or takes a universal valu&=(€?/ wh)co(m/2:2), de-
pending on the experimental setup. Close to the Toulouse point of the individual Kondo impurities, the
strong-coupling analysis allows us to obtain the location of the phase boundary analytically. For general model
parameters, we determine the phase diagram and investigate the thermodynamics using numerical
renormalization-group calculations. In the singlet phase close to the quantum phase transition, the entropy is
guenched in two steps: first the two Ising-coupled spins form a magnetic minidomain which is, in a second
step, screened by a Kondoesque collective resonance in an effealitemic Fermi sea. In addition, we present
a flow-equation analysis which provides a different mapping of the two-impurity model to a generalized
single-impurity Anderson model in terms of fully renormalized couplings, which is applicable for the whole
range of model parameters.
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|. INTRODUCTION HiC = 2], (S'sh; + b)) + 2,5, (2)

Kondo physics plays a fundamgntal role fo_r the |°W'wherej:1,2 labels the impurity, andsy; is the bath spin
temperature behavior of a large variety of physical systemgperator at the respective impurity site. Furthermore the two
such as magnetic impurities in metals, heavy fermion syspaths are disconnected.
tems, glasses, quantum dots, etc. lts key feature is the Tyo impurities coupled both to baths and among each
quenching of the impurity entropy through nonperturbativegther present the simplest realization of the so-called cluster
screening by many-particle excitations in the associatefondo effect, which has been discussed, e.g., in context of
quantum bath. For magnetic impurities in metals thisgisordered Kondo-lattice compounti&urthermore, the dy-
amounts to the formation of the Kondo singlet between thg,gmics of magnetic droplets or domains, formed in disor-
localized spin and electron-hole excitations in the Fermi'seagered itinerant systems near a magnetic quantum phase

Most of the aspects of single-impurity Kondo physics aretransition® also leads to models of coupled impurities such
naturei~* However, in many physical systems the interaction | the context of Kondo impurities, an Ising-like coupling
of different impurities, i.e., multi-impurity Kondo physics, is (1) can be thought of as an effective impurity interaction for
important. For example, in heavy fermion systems theheayy fermion systems with an easy axis. Also, Ising cou-
Ruderman-Kittel-Kasuya-YosidaRKKY) interaction be-  pling appears naturally in quantum dots that are coupled via
tween different impurity spins leads to competition betweenneir mutual capacitanéehere the two-level systems are
local Kondo physics and long-range magnetic order that depseudospins representing the number of electrons on the
termines their phase diagréhMore recently, related ques- dots, and therefore SB) symmetry is broken from the
tions a_bout coupled two-leve_l systems have gained much ing,tgets-10 Equivalently, one can think of two two-level sys-
terest in quantum computation, where decoherence due {@ms with transversal coupling, with the experimental real-
unwanted couplings among qubits and between qubits angation of coupled flux qubits! We will discuss different
tional coupling of qubits is the key step to perform quantumpe paper.
logic operations. _ _ ~ Coupled impurities or two-level systems have been inves-

In the present paper we investigate the case of two SPiftigated in a number of papet&;1°where most attention has
1/2 Kondo impuritiesS;, S, coupled via an Ising coupling, peen focussed on the case of (B4symmetric direct ex-

change coupling between the impurity spifs; -S,. Here,
Hllszing: KSS. 1) two di'fferent regimes are possiblg as a functiqn of th_e inter-
impurity exchangeK: for large antiferromagneti& the im-
purities combine to a singlet, and the interaction with the
The Kondo coupling of each impurity to its bath is given by conduction band is weak, whereas for ferromagnktithe
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impurity spins add up and are Kondo screened by conduction T i
electrons in the low-temperature limit. Notably, therens K Kondo
quantum phase transition &sis varied in the generic situa- @@ screened spins
tion without particle-hole symmetrgwhereas one finds an
unstable non-Fermi-liquid fixed point in the particle-hole O(1) mmmmm s
symmetric casg!31416

As has been pointed out by Andret al,?° the case of
Ising coupling is different and particularly interesting, be-
cause for largéK,| the two Ising-coupled spins form a mag-
netic minidomain which still contains an internal degree of
freedom as the ground statetdf}" is doubly degeneraign
contrast to the interimpurity singlet mentioned aboveor
the case of antiferromagneti€, (which we will assume in T l
the following), the two low-energy states of the impurities frozen
(forming a pseudospjrare|T|) and|]T). As we will show in minidomain
this paper, the fate of this pseudospin degree of freedom 0 ] -
depends on the strength and asymmetry of the Kondo cou- 0 Jor J,
pling J between the spins and the bath electrons.

fluctuating
minidomain

K

FIG. 1. Schematic phase diagram for two Ising-coupled Kondo
impurities (1) and (2). The vertical axis denotes the ratio between
single-impurity Kondo temperatur'ﬁ%) (determined by the Kondo
couplingsJ,, J,, and the bath bandwidt®) and Ising couplind<,.

Here, we will summarize our main results which are de-The horizontal axigJ,) measures the anisotropy of the Kondo cou-
tailed in the body of the paper, and schematically representegling; in the universal regimeT|(<1><D, isotropic Kondo coupling
in the phase diagram of Fig. 1. A brief summary of the meth-corresponds td,<J;". The model has two phases: At smajland
ods used to obtain these results is given below in Sec. | B.largeK,, the ground state is doubly degenerate and the two impurity

The model of two Ising-coupled impurities, connected tospins are locked into a “frozen minidomain.” In contrast, at latge
two separatefermionic reservoirgrealized, e.g., by attach- or small K, the ground state is a singlet with local Fermi-liquid
ing two separate leads to two quantum dots, Fjghas two ~ characteristics. The quantum phase transition is of Kosterlitz-
ground-state phases associated to either a screened or an Giouless type. In the universal reginig,’ <D implying J, <D,
screened pseudospin. For small Kondo coupliigs), and Ty is the only low-energy scale of the single-impurity problem,
large K, tunneling between the two pseudospin configura-and the phase transition occurs at a critialproportional ton<1)
tions,|T|) and||1), is suppressed at low energies, i.e., thewith the proportionality factor depending alj, as shown in the
minidomain is “frozen” asT— 0, and the ground_state en- figure (solid line). The critical K, d-iVergeS aS]Z—?Jgr. BelOW the
tropy is S=In2. In contrast, for smak, the two impurities dashed crossover I!ne the two spins form_an Ising m|n|doma|n: the
are individually Kondo screened, resulting in a Fermi-liquid 'ow-energy fluctuations are associated with the pseudospin degree
phase with vanishing residual entropy. This implies the exis®f freedom, i.e., for antiferromagneti€, the staggered impurity
tence of a quantum phase transition Ky~ Tt(l)' WhereTf(D susceptibility is much larger than the uniform one.

is the single-impurity Kondo temperature. For isotropic o o )
Kondo Coup"ng’ i_e_’ Sma'UZ' this has been previous'y d|ﬁerent from that Of the Fermi |IQUId Wh|Ch IS Obta|ned fOI‘

pointed out by Andreet al. 2° Tfj) > K,. For largeJ, and smalll |, the high-temperature In4

What is the nature of this phase transition? Does it occuimpurity entropy is quenched in two stages: first, at the scale
by breaking up the Ising-coupled minidomain or rather byT°=K,, the minidomain “forms,” quenching half of entropy;
strong fluctuations of the preformed pseudospin? What aréecond the strong fluctuations kill the remaining In 2 entropy
the universal properties of this transition? The key observaat @a much lower scal&, this scaleT can be identified with
tion, which helps to answer these questions, is that the sy collective Kondo temperature associated to pseudospin
tem can also be tuned towards the quantum phase transition

by increasing the Ising componedy of the coupling of the
spins to the environment in a regime Whé(§>Tf<l) (see
Fig. 1). For KZ>T§<1) the minidomain is stable. However, lead 1 lead 2
upon increasingl, a many-particle effectrelated to forma-
J K,

A. Summary of results

tion of a Mahan excitof) enhances the tunneling between Y A4 S A S A
the two configurations| |) and|| 1), of the minidomain. If
J, exceeds a critical valud}', this tunneling can quench the

pseudospin even for infinitesimz’i’ﬁ) (equivalent to infini- FIG. 2. Schematic plot of a system represented by the Hamil-
tesimal transverse Kondo couplidg ). tonian (3). Two spins are coupled via ag@nisotropi¢ exchange

The resulting phase of the “fluctuating minidomain” is interactionJ to two leads. The spins interact via an Ising coupling
actually a Fermi liquid with vanishing residual entropy. Note K,. For an explicit discussion of possible experimental setups see
that the finite-temperature properties in this regime are rathesec. VIl.

J
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screening(Note that this type of two-stage screening is com-determine the relevant phase shifts and scaling dimensions of
pletely different from the one occurring for two conventional leading relevant and irrelevant operat¢g&ec. V). This al-
Kondo screening channels with different strengthsn con-  lows us to analytically calculate the conductance and zero-
trast, forTf<1)>KZ the entropy of the two spins is quenched bias anomalies close to the quantum phase transitioarfor
simultaneously in a single step at the sc‘ﬁ{fé_ Nevertheless, bitrary values ofT f)/ K,, see Sec. VII. To analytically obtain
the two Fermi-liquid regimes are adiabatically connected bythe precise shape of the phase diagram for ldgeve de-
a smooth crossover, which we will show to be identical tovelop in Appendix A(v) a generalization of the Schrieffer-
the well-known crossover in the single-impurity AndersonWolff transformation to take into account the short-range
model from the mixed valence into the Kondo regime. density interaction of our generalized Anderson model, lead-
The quantum phase transitionBtJS" turns out to be in  ing to associated power-law singularities.
the Kosterlitz-Thouless universality class. Assuming conti- In Sec. V and Appendix B we re-derive some of the above
nuity along the phase boundagwhich we verified numeri- results independently by usingi) flow equations. The ad-
cally), this is true for the transition at arbitrady<JS". Fur- ~ vantage of this method is that it has a broad range of appli-
thermore, universality immediately implies that the cability and gives a more natural description in terms of
fluctuating minidomain regime with its characteristic two- renormalized quantities. The flow-equation mapping nicely
stage quenching of the entropy also exists for siatllose  establishes the equivalence of the different Fermi-liquid re-
to the quantum phase transitigsee Fig. 1 gimes of the model. It also allows us to derive the full phase
Physical observables, such as the conductance in a quadiagram analytically for general values of the couplifig
tum dot setup, showniversalbehavior in the vicinity of the that are not accessible with the strong-coupling expansion.
phase boundary. Therefore, we can calculate them close to Transport quantities and corresponding possible experi-
J¢" (see Fig. 1, where the phase transition takes place in amental realizations are discussed in Sec. VII. The most
regime of largeK, being accessible to a strong-coupling Promising way to implement Ising-couplegseudgspin
analysis combined with renormalization-group argumentsvariables is the use of charge degrees of freedom of two
Depending on the experimental setup, we find, e.g., a corquantum dots, following Matveev's proposaland employ
ductance anomaly characterized by the exponefit221)  a capacitive coupling which takes the role i, see Sec.
or a universal conductance? cog[w/2\2]/(hw) at the VIA. _
phase transition. We emphasize again that these results are Most of our methods are based on the mapping of the

valid close to the quantum phase transition even for sigall ©riginal two-impurity model to a generalized single-impurity
where a strong-coupling analysis is not possible. Anderson quel,_ except for the strqng—couphng analysis in
Sec. Il A which is applied to the original modéhnd thus

directly establishes the existence of a phase trangitids

we will show, the employed mapping provides a particularly

clear picture of the underlying physics, e.qg., it establishes the
To obtain the physical picture and the results describediniversality class of the transition, and allows us to make

above, we use a combination of six different and partlyfurther progress using flow equations. Thus, the mapping

complementary methods. turns out to be extremely helpful for obtaining the complete
In Sec. Il we(i) map our model of Ising-coupled spins to picture presented below.

a generalized Anderson model by bosonization and refermi-

onization techniques. This mapping is used to obtain the

qualitative structure of the phase diagram and analytic results

B. Methods and outline

for the phase boundary at larde Furthermore, for the gen- [l. MODEL: VARIATIONS AND TRANSFORMATIONS
eralized Anderson model it is much easier to implem@nt
numerical renormalization grofNRG), which is presented In this section we discuss the various formulations of the

in Sec. IV. With the help of NRG it is possible to determine model under consideration, together with the mapping be-
numerically the phase boundaries in regimes not accessibf@een them, which is based on the well-known relation be-
to analytic methods. Furthermore, NRG is essential to estadween the spin-boson model and the anisotropic Kondo
lish that the phase transition at smajlis continuously con- model3:22:23
nected to the one at largk. Throughout this paper, we will consider the so-called
Making use of this adiabatic continuity is the main idea ofscaling limit where bottK, and the single-impurity Kondo
this paper to obtain analytic results for the quantum phasl;emperatureT(Kl> are much smaller than the high-energy cut-
transition. By increasing, we can tune the transition from a off D of the theory,T(Kl),Kz< D. KeepingJ,=0 andD fixed,
regime with KZ~T£<1) to a regime WithKZ>Tf<l>, where we this impliesJ, —0. Only in this scaling limit the models
can employ(iii) a strong-coupling expansiai$ec. Ill). The discussed below can be mapped upon each other. In general,
strong-coupling result is analyzed usiriiy) perturbative the position of the phase boundary, i.e., the value of the
renormalization group, or more precisely power countingcritical couplingKS" depends on microscopic details. In the
taking into account the anomalous dimensions created frorscaling limit, howeverKS'/ T depends only orJ, which
an orthogonality catastrophe. Using these methods the phaparametrizes the renormalization flow in the single-impurity
diagram for IargeKZ>Tf<l) and the precise position of the model, see Sec. IV C. This universality is represented in the
critical point forK,— c can be obtained. In addition, we can phase diagram in Fig. 1.
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A. Ising-coupled Kondo impurities Here, the assumption of two different baths for the two qu-
We consider the model bits is justified, e.g., if thg bqths quel electromagnetic noise
_ coming from read-out circuits, which are separate for each
HK = HYX + HE + HISM, (3)  qubit.
where two spinsS; and S, interact by the Ising interaction
(1), HEM, Each of the spins couples to a separate fermionic C. Bosonization
bath, ¢.,;, via an anisotropic Kondo Hamiltoniam!(j . .
- ke : J y The equivalence oH* andHSB can be explicitly shown
=1,2), see Fig. 2, . o .
in the framework of bosonization. Furthermore, we will
HJK = Ho[W,,;]+ s Jnﬁ"PZj(O)Ugﬁ‘lfﬁj(O), (4) demonstrate that both Hamiltonians can be mapped to a gen-

nap eralized Anderson impurity model. We will use this mapping

o + extensively, both to solve the models numerically within
where o, are spin indices andHg[V,;]=2, €Ckaj Cka NRG and to identify the position and nature of the quantum
with W ;(x) =2, €¥"c,,,j. The exchange coupling is assumed phase transition in certain limits analytically.
to be the same for both impurities and has an anisotropic |t is well knowr?2 that both the Kondo model and the
form, J,=(J3,,3,,J). spin-boson model are equivalent to a generalized resonant-

The fermionic baths are assumed to be particle-hole symievel model to be defined below. Our modelk and HSB,

metric with a bandwidttD; for a rectangular band the den- however, consists of two coupled Kondo- and spin-boson
sity of states at the Fermi level is thep=1/D. Our conclu-  Hamiltonians. The crucial point is that the assumed coupling
sions are not modified by the presence of a particle-hole{!s"9 and HY3"S respectively, is transformed trivially by
asymmetry. A comprehensive discussion of possible modifiswitching between these three representations.

cations of our Hamiltonian(3), e.g., due to tunneling be- We start from the two Kondo Hamiltoniarid) and apply
tween the fermionic baths, and how they influence our rethe bosonization identity
sults, will be given in Sec. VI.

A model of form(3) may be approximately realized with W (x) = 1 F . eitg® 7)
real spins in the presence of a strong Ising anisotropy. In 7 V2ma ” ’
addition, it occurs naturally as a model for capacitively , . , ) )
coupled quantum dofs102where the local operato and Wh(_erea is a shgr)rt-dlstance cutoff,; is an antlcommutlng
< describe charge states, i.e., pseudospin degrees of frelein factor ({Fgj,Forj =20jj:8541), @and &, is the corre-
dom, on the two dots. Concrete application of our results t$Ponding bosonic field with ¢;(x), d drj(X')] =271 5(x
such a situation will be discussed in Sec. VII. —x’)ﬁj,égq: Transforming to bosonic charge and spin fields,
dycj=(11N2)(¢j % ¢)j), the bosonized version of the Kondo
Hamiltonians(4) reads

B. Coupled qubits in ohmic baths

An alternative starting point for our model of Ising- HK = H 1+H 1+ J; 9 bi(O
coupled impurities can be formulated in terms of two two- J ol ¢eil + Hol ] \x’zwgz xbsi(0)
level systems(spin-boson mode)s HSB=H3FB+H3B+Has ]
with ML o260 atpet
o L@ HHOSFF +He), ®)
SB_ A 1 t . . .
Hy = Holby] + Eo)fﬂ“ EE Meof(by + byy), (5 whereH[ ¢]=vef(dx/27)1/2(d,¢)? assuming a linear dis-
k=0 persion,e,.=vek. The bosonic charge field.; decouples and

whereH[by;]=Sy-o wdbyjby;, and a transversal coupling be- is omitted in the following.
tween them, Applying a general Emery-Kivelson transformatith,

g Ka © Uy =exi{ 172 81440, ©

Hereblj are the bosonic creation operators for heat ath paramKetrleed byy, the HamiltonianH transforms intoH*
is the bare tunneling matrix element between the two levelstU,HjU,,
The impurity properties are completely parametrized by the _ J
spectral function)(w) == \28(w- w,), which we assume to H = Hol 5] + <TZ - va> S'oxhsi(0)
be of ohmic form,J(w)=2awe /2%, 27

One realization of this model is the interaction of tunnel- i i s —
ing centers in glasses through higher-order phonon + ﬁ(e YEIPSE| R+ He). (10
exchangé’ In the context of quantum computation this
model arises in studies of decoherence of coupled supercoimportantly, the Ising couplingl) is not affected by this
ducting qubits: the transversal couplifg, is generated transformationH'fz'ng:UyH'fz'“gU ”
through a superconducting flux transporter, and the heat For two special values of the transformation parameter
baths describe the environment leading to decohergri€e. the Emery-Kivelson transformation results in particularly in-
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teresting forms of the Hamiltonian. First consider the casdargeK, the d level is mainly singly occupied; its “spin&
when y= V2. The exponents in the spin-flip term of E40)  corresponds precisely to the pseudospin degree of freedom of
then vanish andi¥ can be cast into the form of the spin- the original minidomain. Note that the particle-hole symme-
boson Hamiltoniar(5). We can now easily identify the cou- Uy of the effective Anderson model corresponds to the sym-
pling constantsA=J, /7, N=(J,/\27—\2vp)\27k/L, o, ~ Metry under a rotation byr around thex axis in spin space
=vgk and by; are the Fourier components éf¢i(X) with for the original model. _ _
bsi(X)="Z0 V/m_(_ibkje—ikx_i_ibljeikX)e—kalzl The linear The mapping of the original _two—|mpur|ty model onto the
dispersion and the form of the coupling result in a ohmic generalized Andersqn modél4) IS oné of the.central result_s
form of the spectral functiond(w)=2awe 2% with a of our paper, and W|I_I be extenswely_used in the numerical
strength stt:tdy of the phase diagram and the interpretation of the re-
sults.

a=Jp- 172, (11)

wherep is the density of stateg,=1/(27vg).

. . . . E. Parameter mapping via phase shifts
The single-impurity Kondo temperature has in general a

power-law dependence on the “tunneling raie’, It is important to note that the precise relation of the three
@ e modelsHSE HK, andH” depends on the cutoff structure, i.e.,
T e d7 T (for I, <3y, (12)  on properties at high energies and short distances. All formu-

las quoted above which relate the various coupling constants
are actually only valid within the cutoff scheme underlying
bosonization. However, it is generally believed that all three
D. Generalized Anderson impurity model models are equivalent independent of the cutoff structure, as
long as one considers only the universal low-energy proper-
ties in a regime wherg, andej) are much smaller than any
other scale.

We consider now thg€nonuniversgl mapping of model
parameters within different cutoff schemes. For small values
of J, (or A andV) it is possible to calculate the precise
Hl-RLZ Ho[ W] +V(djT‘I’,-(0) +H.c) mapping by in_vestigat_ing the perturbation theorydip, A,

andV, respectively, using the fact that all three models map
onto a Coulomb g&32322—we will not attempt this here
because it is difficult to do it analytically for an arbitrary
N — = = cutoff scheme. However, the mappinglf W, and« can be
where S=djd;-1/2, V=J,/y2ma, and W=v2J,-(\2  gpained directly by matching the conduction-electron phase
~1)/p. ¥ andd are fermionic operators, wherg represents  shifts in the limitJ, V=0, as phase shifts are measurable
solitonic spin excitations of the original conduction band andiow-energy properties.
d describes the spin degree of freedom of the impurity. The |n the Kondo mode(4), we denote the scattering phase
coupling W vanishes forJ,p=1-1/2 (or «=1/2 for the  shift for antiparallel conduction electron and impurity spins
spin-boson modg| the so-called Toulouse point of the py s, : for parallel spins the phase shift is thed,~ Analo-
Kondo modeP8 in this case Eq(13) reduces to the conven- gouslzy, the phase shift in the resonant-level mq{éie] is &y
tional resonant-level model. FurthermoYé<<0 for isotropic i the d level is unoccupied and &y if the d level is occu-
small Kondo couplings),=J, <D. _ pied. For a clear distinction, here and in the following we

InJr the new \éarlables the Ismg interaction take; the.formdenote bype a density of states of a fermionic band with
Ky(did;—1/2)(dyd,—~1/2). If we interpret the bath index  finjte cutoff, whereagp refers to a density of states within the
=1,2 as apseudospin indexr=T,|, we can identify the cytoff scheme underlying bosonization. In the latter scheme,
total Hamiltonian (3) with a generalized single-impurity the phase shifts defined above are directly proportional
Anderson model, to the coupling constantsg; =mJ,p/2 and &y=mWp/2,

A_ + — — where the density of statgs=1/(27vg). If one uses instead
H™= HO[\P‘T]JF\/% [dyW5(0) + H.c.]+ Kanging, a model where the high-energy cutoffs arise from a band
structure, one  obtains §; =arctari-J,/2)Imgoe(0)/[1
+ W2 g, 0¥ ,(0):, (14 —(-3,/2)Regy(0)], where goo(w) =2 1/(w—¢+i0%) is the
v local Green's function of the electrons. In case of particle-
with ng,=d’d,~1/2. Inthis representation, the Ising inter- hole symmetric bandgog(0) =~impe, this relation simplifies
action translates to a local Coulomb repulsion, &dorre-  t0
sponds to an interaction of the localized lewg! with the
surrounding electrons. In the limi,=0 the Hamiltonian 8, = arctafmd,pe/2]. (15
describes the extensively studied x-ray threshold proBfem.
On the other hand, at the Toulouse point whéve 0, the  Similarly, W in Eq. (14) induces forV=0 a phase shifty
standard impurity Anderson Hamiltonian is recovered. For=arctafimWpg/2]. Matching the various models by their

with « introduced above.

Applying the Emery-Kivelson transformation withy
=\2-1 results in exponentials in EGLO) having the same
form as in the bosonization identity) and can therefore be
expressed as fermiornd;. The refermionized Hamiltonian
can be identified with a generalized resonant-level nf§dél

- w<dJde - %):qf}(om(ox, (13)
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phase shifts, the relatioNp=12J,p—(y2-1) derived within  response of the electrons. In the presence of a sharp Fermi

bosonization, translates into edge this results in a so-called x-ray edge singularity which
is reflected in an anomalous scaling dimensiorh-lﬂi; (18).
Sy = arctafimWpe/2] = 6, V2 - Z(v‘E -1). (16) In the fo!lowing we will determine_this §caling di_mension
z 2 using Hopfield's rule of thumB! and identify the criticall,

where theH"? becomes relevant, resulting in “quantum
melting” of the frozen minidomain.
To adjust the Fermi sea to a new ground state after the
I1l. STRONG-COUPLING ANALYSIS domain has flipped once, a certain amount of chargeas
) ) ) to flow to infinity. Hopfield noticed that collective response
In thg section we analyze the behavior of the system f0fyt 5 Fermi sea depends in the long-time limit only on this
. . . 2
S”?a” T 1K, After presen_u_ng a ge'."era' argument for theAn: the corresponding correlation function decays4%"".
existence of a phase transition, we discuss the resulting phygy problem, we have to consider four different Fermi
ics in terms of the generalized Anderson moded). Inter- surfaceqj=1,2,0=1,]) each contributing independently.
estingly, twodifferent strong-coupling limits emerge which A domain flip is induced by the operatorA
will be described in Secs. Il C and 11l D. As detailed below, ZSIS‘I’L‘I’M‘I’HPLZ- According to Hopfield's rule of

both strong-coupling limits display a phase transition of thethumb the correlation function in thabsenceof domain
Kosterlitz-Thouless type. Furthermore, the limits will be flips is,then given by

shown to commute, and the physical regimes are smoothly

Note that this equation is only valid for smadll andV.

connected. (AT DA, ~ 17 (19
where
. . A. Effective Ha.mlltonlan o o= 2 Anjzg- (20)
To investigate the phase diagram sketched in Fig. 1 we j=1,20=1,0

g%lsrftie;nﬂsrst&hihing OJEZI!G—S}LTH.SV\]{E ngai r_e;tg;:é tzi?nﬁgrn' The transferred chargesn;, are easily obtained from the
z ' z phase shifts using Friedel's sum rule. For example, a spin flip

because the c“orpponezna of the total spin is conserved S€PAinduced byA changes the phase of the down electrons in
rately for the “1” and “2” subsystems.

In the limit K,— +o the two-impurity spins form an an- bath 2 from 9y, t0 =8y, which corresponds according to
z H )
tiferromagnetic minidomain, with configuratior|$|) and Friedel's sum ru!e FO a charge transfer oy 2. Further-
|11). No fluctuations can occur fd€,== (or J, =0), there- more, the annihilation operatoI{lz eI.|m|nates one charge
fore the ground state of the full system is a doublet. and the total charge.transfer in this channel is given by
We now set up a perturbation theory in the small param2ni2=29,/m=1. Similar arguments giveAn;;=-An;,
eter J, /K, by deriving an effective Hamiltonian in the =An1=-An, Therefore, the exponent is given by a
connecting the two staté$|), || 1) is O(J2/K,). Thus the ~bosonization following Schotte and Schotte.

effective Hamiltonian in the strong Ising-coupling limit reads ~ From Eq.(19), we can directly read off the anomalous
scaling dimension of the domain-flip Hamiltoni&b8) with

HS = Hiq o+ HI®, (17)  respect to the “frozen-domain” fixed point:
where Hf; o is given by H{+H} with the perpendicular . . 26, \?
Kondo coupling set to zeral, =0. Note that the size af, dim[Heff]1=1 —5=1-23—=-1]. (21

can be arbitrary. The minidomain is flipped by the term
2 Here, the first term arises from the engineering dimension of
Hfl = ﬂ(SISE‘I’Il‘I’m‘I’}Lz‘Plz*' H.c), (18) Hg'f‘f’ For smalll scgttering phgse .sh.ifts dmlP] is negative,
K, i.e., the domain-flip Hamiltonian is irrelevant and the doubly
degenerate frozen-domain fixed point described—l{g}(’0 is

ith ¥_,=X . Th -t t tability of the fro- e .
With Wi =2 Gyi- The zero-temperature stability of the fro- V) “ro i flips become relevant > oy with

zen minidomain now depends on whether the operafif

is relevant in the renormalization-group sense. - 1
SinceH™ is comprised of four electron operators, its bare or=5\1- ) (22
. \!

(tree-leve) scaling dimension is negative, diffl? J;ee=—1.
This might suggest that the doublet ground state with reBeyond &; the fluctuations of the minidomain grow towards
sidual entropy In 2 is stable. However, in the present problenfow energies giving rise to a new phase—in this regime the
HM acquires an anomalous scaling dimension which modipseudospin describing the minidomain is still well defined,
fies this conclusion. This can be understood as follows: Fobut is ultimately screened at low energies. The special value
largeJ, a flip of the minidomain suddenly changes the phasef &; is well known as the Toulouse point of the single-
shifts of all electrons in the leads, thus exciting an infiniteimpurity Kondo Hamiltoniar?3

number of particle-hole pairs. This is the well-known or-  We have thus established the existence of a phase transi-
thogonality catastroph®,leading to an anomalous long-time tion in the limit of J, /K,<1, which is accessed by varying
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Jz. In the bosonization cutoff scheme, the critical value is | ijfpk )
pJy'=1-1/\2 corresponding to the Toulouse point of the FefIPl
individual Kondo impurities in the original modéB). liquid

B. Relation to the generalized single-impurity model

What are the properties of this fluctuating minidomain
and what is the nature of the quantum phase transition sepa-
rating the two phases? This question can be tackled within
the generalized Anderson mod@éH).

According to Eq(16) the couplingW in Eq.(14) vanishes
for 8, =6y, i.e., at the Toulouse point. This does, however, / ) 0

z S Frozen mini-domain
not necessarily imply thatV can be treated as a small pa-
rameter in the vicinity of the Toulouse point. Rather, it is  F|G. 3. Schematic renormalization-group flow of the effective
important to realize that two different strong-coupling limits Kondo model(23) (Refs. 1 and 2Bdescribing the screening of the
emerge, depending on the order of limits taken in parametefinidomain pseudospin in the limit of larde,. Here,J2"=0 corre-
space. sponds to the Toulouse point of the original Kondo model. The

(i) If we consider the limitW— 0 at fixed small , then  Fermi-liquid fixed point is characterized by pseudospin screening;
the critical K, will diverge according to the analysis above. the frozen-minidomain phase corresponds tine of fixed points
In this caseK, is the largest scale, whereds andV can be  with unscreened pseudospin. The thick line denotes the phase
treated as perturbations. boundary, given byie"=—|3%". Variation ofJ, around the Toulouse

(i) Alternatively, we can takel, —0 at fixed small pointin the original mode(at fixedJ, andK,) corresponds to a
W=<0. Apparently, the criticalk, will vanish (although Parameter variation in the effective model as shown by the dashed

KZ/T§)>1), and a strong-coupling treatment has to conside}ine; the dot is the f[ransiti.on point. The transition is in the
thatW is a large scale. Kosterlitz-Thouless universality class.

Both limits correspond to physical situations. However,
the scaling limit, discussed at the beginning of Sec. Il andowards zergkeepingJ$"# 0 fixed) one observes a quantum
employed in plotting the phase diagram of Fig. 1, is reache®hase transition from a ferromagnetic regime with In2 re-
by takingJ , — O at fixedJ, and T\’ /K, corresponding to the ~Sidual entropy to a Fermi-liquid phase where the spin is
case(ii) above. More generally, in a three-dimensional phaséluenched, see Fig. 3. Ti®=In2 phase can obviously be
diagram which involves a third axis labeldd in addition to  identified with our frozen minidomain. It is stable fd§" <

the ones shown in Fig. 1, cagg applies for any finited, in ~ —15 or W<W, with
a certain vicinity of the Toulouse point, before the behavior V2
crosses over to cage)—this crossover scale vanishes in the W,=-—. (25)
universal limitJ, —0. Kz
We Wi_II now a_malyze both cases separately—interestingly=q, K,— or V—0, the phase transition is located \At
the two limits will turn out to commute. =0 or equivalentlys; =4&; as anticipated above. Equation
(25) is the exactresult for the phase boundary fét,— oo,
C. W—0 at fixed V provided thatV and W are mapped ontd, andJ, as de-

scribed in Sec. Il. We note again that the limit considered
I*1ere does not correspond to the universal lidit— 0, be-
(fause this would giv&S'— 0 at any fixedw.

Assuming thatK, is the largest scale in the problem,
which corresponds to a strong local Coulomb repulsion o
the impurity site of the generalized Anderson model, we ca
directly map it onto an anisotropic Kondo model. Witl,,
=:v!(0)V,(0): and S=1/2dlc,.ds we can rewrite
WE; NggNyg = WS (N Ny ) + (W/2) (Mg +Ng ) (N + Ny ). L o ,
As charge fluctuations are frozen out for largg the last Anticipating thatk;'— 0 in this limit, we need to consider

term can be omittedy +1g, =1, and we obtain a problem wheréV is a large local energy scale. Interest-
ingly, at K,=0 andV=0 the four impurity states are degen-

Héﬁ: Ho W, ]+ E JﬁﬁSn\IfL(O)o'ZB\Pﬁ(O), (23 erate even in the presence \&f because of overall particle-

D.V—0 at fixed W

nap hole symmetry. This degeneracy is lifted By which (as
with Jﬁﬁ:(‘]iﬁ,‘]iﬁ,\]gﬁ), where zbo>vg) favors the impurity state$l|) and|]T) (assuming
2 .
off AVA off AV We proceed with an analysis similar to the usual
Jr= K. J; = ?*'W- (24)  schrieffer-Wolff transformation, now in the presence of a
z z

large W. As usual, hopping processes of second ordev in

Spin up and spin down in this Hamiltonian correspond to theproduce an effective pseudospin interaction between the im-
two states of the minidomain. The phase diagram of(2g.  purity and the conduction band. However, as the impurity
is well known: whenJ" is increased from negative values occupation in the intermediate states is different from that of
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initial and final states, the intermediate state physics involves 8 TY T
an x-ray edge singularity due to the sign change of the strong pEW =~ WK 1-964@- (33
potential scatterew. z z
Analyzing the matrix elements, we find x-ray edge behav+or particle-hole symmetric bands, this can be rewritten us-

ior which is cutoff byK,, i.e., the effective generated Kondo ing Egs.(15) and(16) into
couplings are of the fornv?/K2 ™, where

- . a

PEWT\2 S|r?(7)

2 2.V TY 2\2
B=—27—75\N-<7—T&N) : (26) %: 5 (3T -3,) =~ 05780 - ),
z
where 8,=7Wp/2 is the phase shift frorV. (34)
The detailed derivation of the generalized Schrieffer-
Wolff transformation is given in Appendix A. Finally, one
arrives at an effective Kondo model of the fori23), but

now with couplings

valid for J,— J'.

Concluding this analysis, we have shown that also in the
limit V— 0 (keepingW fixed) the effective Anderson model
(14) can be mapped onto an effective Kondo model, which
describes the screening of the minidomain pseudospin. The
phase transition is in the Kosterlitz-Thouless universality
class. The two strong-coupling limits are adiabatically con-
nected, as the involved impurity states and transitions are
similar in both cases; in addition the equations for the phase
boundarieg25) and(31) match.

From the mapping to the anisotropic Kondo model we can

imf, (8,)=f,(00=1, limf (8, =f,0=1. (28) also identify the fluctuating minidomain regime with a
W—0 W0 Fermi-liquid phase. Here, the pseudospin is screened below
) the Kondo temperaturg of the effective Kondo modeR3).
As above, the model shows a Kosterlitz-Thouless phase trarl‘r‘nportantly, the Fermi sea of the effective model is formed

APE (W) e V(B0

Jeﬁ = =
+ K%—BAB T2 K%_'BAB

+W, (27)

whereA is of the order of the band cutoff, and both and
f, are smooth, dimensionless functions&yf with

sition in this effective Kondo model occurs at the 8= by solitonic spin excitations of the original mod@)—this
|35, i.e., will strongly influence the conductance through the system
2 as discussed in Sec. VII. At the Toulouse point, we can esti-
__ AV Lf. (0w + f(dw)] mateT" ~min(K,,D)exd —|K,|/(8V?pg)]. Close to the quan-
w Y (29 L
K PA tum phase transition, reached #y/\V2— 0 at the Toulouse

. . . _ . point, T" is exponentially small. Similarly, for finit&S" and
wherej is ? function ofW according to 1 £=2(1-a) with K,=KZ', one expects for a Kosterlitz-Thouless transition the
a=(J,p-1)* as introduced above. To obtain an explicit rela- behavfo?“

tion betweenW, V, andK, in the vicinity of the Toulouse

point, we expand inV. Dropping additive logarithmic cor- T :ae—b/\fKi'—Kzl (35)
rections, we have

wherea is a function of‘l’fg) andJ,; this form will actually be

WA ~ W, AP=1. (300  used to fit the numerical data of Sec. IV.
) ) . At the Toulouse line, one can investigate the crossover
With this and Eq(28) we can rewrite Eq(29) as from the fluctuating minidomain regime to the regime with
V(1-0) p (1-20)/(1-c) Kondo-screened spins K;:_O (dashed crossover Iine_ in Fig.
W=-8 ; (31 1). As our model is equivalent to an Anderson impurity
Kz model (14), this crossover is equivalent to the well-known
which is smoothlyconnected to the resui25) obtained in And_erson model crossover from mlxed-val2encq to Kondo be-
the limit W— 0 of Sec. Ill C. havior. This crossover takes place Kt~ V<pg, i.e., when

As announced, the critic&, for fixed W depends only on T /K, is O(1). Similarly, one finds forJ,— that this
T(Kl)oc\/ll(l—a) A120/1=9) Tq fix the prefactor, we first have crossover is located an<1)~J L ~K,, and furthermore for
to define '(;1) for an asymmetric Kondo model. This is best J;—0 one also expects this crossover Kt~ T:<1) (as no
done using a physical observable such as the impuritpther low-energy scale exists in this regimeve therefore
specific-heat coefficieny= limr_4Cin,/ T of the anisotropic conclude that the dashed crossover line in Fig. 1 is always
single-impurity Kondo model. We employ located atTff)/KZ~O(1).
The schematic RG flow of the effective Kondo model,
T = Wﬂ_z -1 (32) shown in Fig. 3, illustrates the behavior of the Ising-coupled
K 3 Yo two-impurity model in the strong-coupling regime. Three ob-
servations are important.
where w=0.4128 is the Wilson numbérAt the Toulouse (i) Both theS;=In2 frozen-domain phase and tigg=0
point, @=0, one easily findgy=1/(3pV?). Thus, forW—0  Fermi-liquid phase are stable to small perturbations—this
we obtain conclusion is in agreement with the analysis of Ref. 20.
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(i) The S5=In2 phase corresponds tdiae of RG fixed above, we find for the employed parameters the correspon-
points. dencepJ, =0.38V, valid for smallV.

(i) The two phases are separated by a Kosterlitz- Within NRG, the bath density of states is discretized on a
Thouless transition, characterized by logarithmic rather thatogarithmic grid, with a discretization parametéy i.e., the
power-law behavior of thermodynamic observables. energy axis is divided into intervals at points

So far, the conclusions above mainly apply to the vicinityD,DA™,DA™?,.... The discretized model is transformed
of the Toulouse point of the single-impurity model, i.e., for N0 a ng"'”f'n'te chain form, and then diagonalized
strongly anisotropic Kondo coupling. In the following sec- iteratively= After each diagonalization step the lowels{
tion we will present numerical results which strongly Supportelgenstates. of the Hamiltonian are kept. Clearly, the results

that the above picture is valid over the whole phase diagrarﬁ".‘re “Ii,\xact” in thetl'm'éNSt_)f?oéﬁ_’lﬁ In practice, numerical
In particular, we shall show that the phase transition is of €SUllS aré monitored at Tixed, where convergence upon

. . . ' increasing the value o can be readily achieved. Then,
Koste_rlltz—ThouIess type even in the case of Isotropic Kondothese cor?verged numberss are extrapola)t/ed as a functian of
couplings. Furthermore, no other phase transitithan the

indicated in Fi - this implies that the Fermi to A=1 to obtain an estimate for the exact result.
one indicated in Fig. Jloccurs; this implies that the Fermi ).t of the NRG calculations here have employed a dis-

liquid formed by the fluctuating minidomain is adiabatically . atization parameter oh=2, keepingN.=650 states per
- . . .. [l S
connected to the Fermi liquid of two |(rbd|V|duaIIy Kondo- NRG step. For selected parameter values we have performed
screened spins, realized in the linig<T, " calculations with differentA and N, For eachA conver-
gence with respect thg can be easily achieved, however, for
some quantities thé\ dependence turns out to be rather

strong. Therefore, the\ — 1 extrapolation has to be per-
IV. NUMERICAL RENORMALIZATION-GROUP ANALYSIS formed carefully, as will be detailed at the end of this sec-

In this section, we turn to a numerical investigation of thet'or_'l_'h its shown bel maril dto the uni
model of Ising-coupled impurities using the NRG € results shown below primartly corréspond to the uni-

techniqué? In principle, an investigation of the original two- versal regime ol/<W,D andK,<W,D; we have also per-

impurity model(3) is possible—however, the required two formed some calculations in the regirkig=W (not shown

. . . .~ with results consistent with the analysis of Sec. Il C.
bands of spinful fermions are computationally demanding

within NRG, and results are significantly less accurate com- B. Results for RG flow and entropy
pared to the NRG treatment of single-band impurity models. |, Fig. 4 we show NRG flow diagrams displaying the
Therefore, we have decided to study the generalize@nergies of a few low-lying many-body eigenstates as a func-
Anderson model of Eq.14), obtained after bosonization and tjon of the number of NRG steps. The data in Figa)4
refermionization of the original model. Featuring only one clearly show that for small values &f, the same fixed point
band of spinful conduction electrons, it allows high-accuracyis reached for any and W—this fixed point can be identi-
numerical simulations down to lowest-energy scales andied with the Fermi-liquid phase, which is, in particular, also
temperatures. reached folK,=0. Therefore, the Fermi-liquid regime of two
separately Kondo-screened impurities is adiabatically con-
nected to the fluctuating minidomain regime which can be
A. Parameters characterized by pseudospin screening below the collective
) ) , Kondo temperaturd@”. In Fig. 4b) flow diagrams for larger
In the following, we will show numerical results for the \5jyes ofi, are shown—here the fixed points reached at low
generalized Anderson model4), for a rectangular particle-  energies are very similar for different parameter sets, but not
hole symmetric fermionic band of widih =22, and differ-  jdentical—this is consistent with the notion of a line of fixed
ent values of the hybridizatiow, density interactiotW, and  points with In2 residual entropy.
on-site repulsiork,—note that; is identical to the original It is important to emphasize that no additional fixed point
Ising interaction between the two impurities, wher®¥aand  is observed foK,~K¢', which could possibly correspond to
W are related td, andJ, as detailed in Sec. Il. In particular, a critical fixed point. This clearly shows that the quantum
W measures the deviation from the Toulouse point. Accordphase transition in our problem is not associated with stan-
ing to Eq. (16), valid for small V, J,=0 corresponds to dard critical behavior, but indicates that it is of the
Wpe=-(2/mtar{m(y2-1)/2]~-0.48. Similarly, large Kosterlitz-Thouless universality class.

negative values of, i.e., W——o, correspond topJ,=1 ~To _characterize the _fixed points, we have evaluated the
~V2==2(pJ)ouiouseWith pJ, here defined in the bosoniza- IMpurity entropyS(T) using NRG. In Fig. 5 we show results
tion cutoff scheme. for different values oW and severakK,. The discussed two-

The mapping betweel andJ, (which are simply pro- Stage quenching of the entropy, occurring QP <K, <K,
portiona) can be achieved via the Kosterlitz-Thouless tran-C&n be nicely seen in all panels—note that paogishows
sition line for a single impurity: This line, wherEI((I) van- daf[a forw>0, i.e., on the right-hand side of the Toulouse
ishes, is given byJ,=—|J,|. Using NRG, we have point.
numerically determined a few points on this line, character-
ized by parameter¥ andW in the model formulatior(14) C. Phase boundary and phase diagram
with K,=0—note that this involves an extrapolationTgf(V) From the NRG results for fixed values @, V and dif-
to Tx=0. With the mapping betweew and pJ, established ferentK,<KS' it is possible to extract a characteristic cross-
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¥S%=0 a) Wp=-0.44
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FIG. 4. NRG flow diagram for the generalized single-impurity “ [ F-—-—,E*—
Anderson model14), for parameter values belonging te) the osr /7
Fermi-liquid phase with5,=0, (b) the frozen-domain phase with L/ f /
S=In2. Solid—Wpr=-0.44, V=0.078KS'=7.6x 10720, dash- A
dot—Wpg=-0.10, V=1.5x103K'=3.4x10°5), dashed-Wpg 0%—4’1'—; /"14 "p ST R
=-0.034, V=1.5x 10%(KS'=4.8x 109). In (@) and (b), K, has 1077 10077 107" 1077 107 107 107 107 107
been chosen slightly below and above the critical value, respec- T
tively. For all parameters, the system is irBaln4 regime at high
temperaturegsmall N), in (a) it flows to theS=0 state by passing FIG. 5. Temperature evolution of the impurity entropy calcu-

through a regime witts=In2. In (a), the additional dotted curves lated by NRG for the generalized single-impurity Anderson model
show the flow forWpe=-0.44,V=0.075, and,=0. TheWp val- (14) for different anisotropies of the Kondo coupling. In the frozen
ues span a |arge range Of anisotropies; neverthe'es§:tﬁe‘ixed minidomain phase the residual entropy is In2 while it vanishes for
point is unique, and the finite-temperature crossover is universal foK;<Kj'. For Ti¢'>K, (solid curves, the high-temperature In4 en-
the curves close t&S'. Panel(b) nicely shows thaB=In2 actually ~ tropy is quenched in a single step, whereas two-stage screening
corresponds to a line of fixed points. NRG parameters\a@ and ~ occurs for T <K,<KZ. (@) Wpe=-0.44, V=0.19KS'=1.5
Ns=650. X 1079), close to isotropic Kondo coupling, is solid 0, long-dash
1075, long-dash-dot 1.8 1075, short-dash 1.% 1075, short-dash-
dot 104 (b) Wpp=-0.034, V=15x10%(KS'=4.8x 109, i.e.,
over tempera_turé'* below which the pseudospin is screened,close to the Toulouse point of the individual Kondo impurities. The
see above. For numerical simplicity we definEdthrough K values are solid 0, long-dash £0 long-dash-dot 1.510°°,
S(T")=0.4. The dependence 3f on K, allows us to deter- short-dash %10°°, short-dash-dot I0. (c) Wpg=0.44, V=1.5
mine K$" whereT" vanishes. We fitted the data witfi(K,) Xhl(ﬂ* |.e.,hon ”:e ”Q?t-ha”d side of tfhe r;hz:(seﬂgla}grar?a Igg. 1,
_ o o or where no phase transition occurs as a functiokofK, is solid 0,
._aexdb/VKZ ~K,] (35) with fit parametera, b, K7, which long-dash 10, long-dash-dot 10, short-dash 1, short-dash-dot
is the form expected near a Kosterlitz-Thouless transitfon. 10°5
The fit works excellently for all anisotropies, as shown in~
Fig. 6—this is again strong support for the Kosterlitz-
Thouless nature of the transition. cated in Fig. 1, i.e., employing the limi’ <D. The result
The single-impurity Kondo temperatur“éf(l) for givenW  is shown in the main panel of Fig. 7.
andV is determined from Eq(32), where the specific-heat It is possible to make the meaning of universality more
coefficienty is extracted from the NRG data f&T). precise: so far we have distinguished the parameter sets by
Having determined botﬁﬁ) andK$', we are in the posi- their value ofJ, (or W), leading to different values of
tion to plot the phase diagram in the universal fashion indi-Tf)/Kgr. Within the RG treatment of Yuval and Anderg8n
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R e 107"

1075 1 107°F

10—16 L _ 10—17

10—17 L . 10—18

1078k 1 1o FIG. 6. Numerically determined values of
¥ 00k 1 o T'(K,) for Wpg=-0.034, V=1.5xX10"° where
=0 o KS'=4.8x 1079 (left), andWpg=-0.44,V=0.075

107 F 1 10 whereKS'=7.6x 10710 (right); together with the

107 - 1 10% exponential fit described in the text.

1072 1 1077

1072 1 10

10—24 1 . 1 . 1 —25

107 2%107° 6x1
K,

for the single-impurity Kondo model, it is easily seen that wevariant. Note that fold,>0 andJ, —0, J, can be used as
can expect identical low-energy behavior for two single-such a label—this is what we have done so far. A proper RG
impurity models if the initial parameters place the two mod-invariant isc defined by®

els on the same RG trajecto(irhe RG trajectories are iden-
tical to the ones shown in Fig. J3Therefore, the correct
parameter for the horizontal axis of our phase diagram is a
parameter labeling the RG trajectories, i.e., a proper RG in-

c:4(le)2+e+2In(1—§>,

) 8\
e=8—2-8|—|, (36)

a a

J
0 01 2P 0.2

T T
0.04

where 6; =mJ,p/2 is the phase shift resulting frod), and

we have employed the bosonization cutoff scheme here. For
small values of bothl, andJ,, the above equations can be
expanded to yield

c=4(J,p)* - 4(J,p)°. (37)

ForJ, — 0 the value oft thus depends only od, as antici-
pated; in this regime<0. The advantage of using a param-
etrization of the single-impurity RG flow via is that it al-
lows us to cover the trajectories with, | >|J,| as well, i.e.,
the trajectories above the isotropic line in Fig. 3; hereO.
With the parameter mapping described at the beginning of
this section we have all parameters at hand and can deter-
mine the value ot from V andW. This allows to replot the
phase diagram in a plane spanned'lﬁé)// KS" andc—this is
shown in the inset of Fig. 7. In particular, we can now add
data points fold,<0 to the phase boundary plot, as those are
. ) . ) . characterized by &nite J, in the limit TS)<D.
FIG. 7. Phase diagram of the generallzeq smgle-lmpurlty Andgr- As mentioned above, some NRG results show a relatively
igtrinor:odel(l@ (iztiuzcerhfrom tl_\lRlGdcalhcucljalt.lonsgor NRhG _?'Sclret" strong dependence on the NRG discretization parameter
tion parameteA =2. The vertical dashed line shows the Tou OuseFigure 7 shows the phase diagram for 2; results for other
point of the individual Kondo impurities. Small values ¥fhave L Q) jer .
been used to reach the universal regl‘ﬁﬁé< D. Precise values of A values are similar, but th§K /Kz' values can differ by
50% or more. Therefore, we have performed an extrapola-

T(Kl) have been determined via the specific-heat coefficiergee tion to A —s1 f f . tant titi A |
text. The upper horizontal axis shows the corresponding valugs of lon 1o L ora e"Y Im.por ant quantities. A sample ex-
rapolation is shown in Fig. 8 for the slope of the phase

in the bosonization cutoff scheme. The error bar shows the typica{i) q h | - hich q ined
uncertainty in the numerical determination'Eij)/Kgr arising from oun 'ary ne(?\r the Toulouse point, which was determine
analytically in Sec. lll—the extrapolated value of

the fits of bothy and KS'. The inset shows the same data for 1) g - )
T(Kl)/Kgr, now plotted as a function of the RG invariantof the KWV is consistent with the exact result in EG1).

single-impurity mode{36)—this plot covers the range of positive e have also looked at the maximum Va|UeTﬁf/Kz of the
as well as negativé, (herec>0). The lines are guide to the eye phas? boundary occurring ne3~ 0, this value extrapolates
only. t0 (TS /K )max=0.11%0.03.

0.03

TK(I) / Kz

0.02

0.01
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10k ] H(l},(zdiag) = Ul,zﬁ?zulz’ (38)

L -7 ~ ] up to higher-order terms in our expansion around the Tou-
= gE-——"~ - ] louse line. For studying the Ising-coupled Kondo impurities
- I 1 we therefore apply the combined unitary transformatibn
>> oL 1 =U,U, on Eq.(3), HX=UHKU", leading to
N i HK = HK diag 4 (K diag K;S{%, (39)

N4 1 ~
MI [ with S} ,=U, ;S U] ,. At the Toulouse point Eq39) is of
i ] course exactly equivalent to the Anderson impurity model
27 (13) with W=0 and the same mapping as used in Secs. Il C
[ ] and Il D: the unitary transformatiob, , just eliminates the
0 e EE— RS b Lo hybridization coupling in the Anderson impurity model.
1 L5 2 2.5 3 It was shown in Ref. 37 that the flow-equation approach

A yields a resonant-level modgl3) as an effective model for

the Kondo impurity model also away from the Toulouse
FIG. 8. A dependence of the slope of the phase boundary neag,int

the Toulouse point(A is the NRG parameter defining the logarith-

mic dis_cretization of the _conduction band.he Qashed line is a H(RL eff) — Ho[ W] +Evk(d,h1’j(k) +H.c), (40)
linear fit. Each data point involves an extrapolation of the numerical K

results at finite negativé/ to W— 0. A rather strong\ dependence + ) o

can be observed, however, the extrapolated value appears consistétere¥; (k) and¥;(k) are the creation and annihilation op-

with the analytical resul(31). erators for solitonic spin excitations in momentum space.
However, this resonant-level model now has a nontrivial
def -
V. FLOW EQUATIONS renormalized hybridization functionA(e) = 3, VZ(e—¢€),

In this section, we consider a different appro¥do our ~ With (i) A(0)=Ty/wr? and nearly constant in an energy
original model of Ising-coupled Kondo impurities, which is interval of orderTfj) around the Fermi energghere ez=0)
based on the method of flow equaticfig.he general idea is and(ii) a nontrivial power-law behavior for larger energies.
an approximate diagonalization of each of the two KondoFurthermore, it was shown in Ref. 37 thatéadingorder in
impurities—the result is a resonant-level-type effectivean expansion around the Toulouse line one can ide@’n‘y
model which captures the Kondo physics in terms of a non-—-ddej—llz. The efiective model for our system of Ising-
trivial renormalized hybridization. Taking the two Ising- coupled Kondo impurities is therefore an Anderson impurity
coupled impurities together, we will again arrive at an effec-model with a hybridization function of the order of the
tive Anderson model. Away from the Toulouse line one findssingle-impurity Kondo scale:
an additional weak density-density interaction. However, in - o
contrast to Sec. Il D where we were forced to treat a similar  H® ™ = H[¥, ]+ X Vi(d!¥ (k) + H.c) + K,ngng,
interaction nonperturbatively to take into account x-ray edge ko
singularities(Appendix A), this is not necessary here be- (41)
cause this nontrivial physics is already contained in the fully. _ . .
renormalized couplings which naturally appear within theThe_mam feaiure of the f!OW equation method is there_fore to
flow-equation approach. This approach allows for a system(?“m'nat? t_he !arge couplin@/ in Eq. (14) by renormalizing
atic expansion around the Toulouse line, and the effectivé€ Nybridization of the Anderson model.

Hamiltonian derived in this framework in fact describes the _1OWeVer, since the flow-equation transforma’uon IS an ex-
entire phase diagram of Fig. 1 consistently pansion in the distandg,—1) to the Toulouse line, we need

to be careful in the transformation &F: The transformed

is multiplied by a possibly large parametir, so that an

error of order(A\o—1) in the expansion becomes multiplied
The flow-equation method was first applied to the Kondoby K, leading to additional interaction terms in E¢1) that

model in Ref. 36, where it was shown that it leads to alNcan be |arger than the hybridization energy 3(1"%3&39 Itis

expansion around the Toulouse point. Its basic idea is t@recisely these additional interactions that drive the

perform a sequence of infinitesimal unitary transformationXosterlitz-Thouless transition between the Fermi-liquid

ona given many-parpicle Hamiltonian and thereby dia}gonal-phase and the frozen minidomain phaselfq()\o—l)|Ti<l).
izing it.3° The expansion parameter turns out to\ge 1 with

Mo=12(1-J,p)=1-Wp (using the bosonization cutoff -
schemg the Toulouse point corresponds Xg=1. B. Corrections to the transformation of S*

Following Ref. 36, we construct unitary transformations |n Appendix B the flow-equation solution for the single-
U, > (see Appendix Bsuch that the single-impurity Hamil-  jmpurity Kondo modeHY,, in a magnetic fieldh is discussed
tonianst2 from Eq. (10) become diagonal with a careful analysis of terms of ordéx,—1). Hereh is

A. Flow-equation transformation

214413-12



QUANTUM PHASE TRANSITION OF ISING-COUPLED. PHYSICAL REVIEW B 69, 214413(2004)

the eﬁectlve exchange field due to the~second spin, to be HA = Ho[ W, ]+ > 'S (0)6” W 4(0), (45)
described below. The transformed operﬁntakes the fol- naB
lowing form:

where now the Kondo couplings for scattering processes in
the vicinity of the Fermi surface contain the renormalized

P 1 (v t ’ ~
§=3 J dxdxd0d (X' )[P; (), W;(x")] parameterpeV2=T8 /w2,

1 — 2 2
+2 0o~ Df()3,,(0) (42) ApeVT - gen APV

- ped™, 46
K, K, PF (46)

PFJiﬁ:
plus irrelevant termgcontaining, e.g., higher derivatives of

the bosonic fielland plus higher-order terms of ordex, with peJ Mo~ 1. We stress that here it was not necessary

. . . to use the generalized Schrieffer-Wolff transformation de-
- 1)% The first term on the r!ght-haqd side of £42) ca'n.be _rived in Appendix A as the parameters in E44) are already
interpreted as a result of integrating out the hybridization,eormajized due to the flow-equation procedure and the in-
term in Eq.(40), while the second term is & COITection term o 4 ctignsxr,— 1 are only effective at low energies. The ad-
not contained in the original solution in Ref. 36;(0) de-  ditional spin-spin interactiod™ is ferromagnetic for cou-
notes the bosonic spin-density figfg(x) without the Fourier  plings to the right-hand side of the Toulouse ligg> 1. This
components for energies larger th@(]Tff)) (with respect to leads to a critical coupling for the Kosterlitz-Thouless tran-
low-energy properties one does not need to distinguish thessition to the frozen minidomain phase
fields). Properties of the dimensionless functifiih) are de- _ _
rived in Appendix B, in particularf(h)=vg/|h|+O(h™?) for Ker = 8peV? _ 8V?
=T 2T ho-1 -W
In the coupled systerfd1) we can approximate the effect
of one spin on the other as a static magnetic field of strengtRr using Eq.(32),
h=+K,/2 close to the transition. This approximation be- @ i
comes asymptotically exact as one approaches the transition KEr = 8 Tk _ 1.96 4TL
: : : PERz = - (48)
since the spin dynamics becomes slower and slower. wa? - W -W
We arrive at the following Hamiltonian describing the ) .
coupled Kondo impurities in the vicinity of the transition N €xact agreement with the NRG resultsg. 8) and the
line: strong-coupling analysis, E¢33), in Sec. Il D.
Since the flow-equation approach leads to a renormalized
HA e <y [, ]+ T/k(djr\ljo(k) +H.c) +K;ng g, effective Hamiltonian, one can also use it to derive the entire
ko phase diagram like in Fig. 7. If one neglects the same higher-
order termg\,—1)? as before, one finds the following result

K - = - -
+(N\g- 1)Ezf(Kz/2)[ax¢T(o)ndi + N b, (0)], for the critical coupling:

(47)

(43) cr 8 TE<1) A
K'=———[1-A'(0)], 49
Pk =~ [1-A"(0)] (49)
which simply results from a Schrieffer-Wolff transformation
of an Anderson model with an on-site repulsign and a
hybridizationA(e) which enters aé'l((l). Here

up to corrections of ordef\g—1)°.

C. The Kosterlitz-Thouless transition

Let us now focus on the casg> TS) that is relevant for

studying the phase transition in the vicinity of the Toulouse Ale)
line. Usingf(h) =uvg/|h| we rewrite the Hamiltoniai43) as Aw) = P de— (50)
H(A eff) = Ho[ WV, ]+ > \~/k(d:§\P(,(k) +H.c)+ KzﬁdTﬁd I follows from the effective hybridization function of the flow-
ko equation approacH.The factor{1-A’(0)] enters in Eq(49)

because it generalizes the relation between the Kondo tem-

— o s 1 Iy
* (Ao 1)UF{[¢9X¢T(0) + 35, (0)]2(ey + ) perature defined in Eq32) and the renormalized hybridiza-

- [5)(@(0) - c7xgi(0)]%(n_m _ﬁcu)}. (44)  tion function within the effective resonant-level motiel
Similar to the analysis in Sec. Il C the term proportional to _Tkea oy
ng;+Ng, is frozen out and can be ignored, while the term mA(0) = W[1 AO] (53)

proportional tong —ng leads to a spin-spin interaction.

SincekK, is the largest energy scale in Hg4) with its renor- ~ The results are depicted in Fig. 9. The maximum value of the
malized parameters, we can map the Hamiltonian onto aphase boundary occurring nead,=0 is given by
anisotropic Kondo model using a Schrieffer-Wolff transfor- (Tff)/ K)max=0.126, which agrees with the extrapolated
mation(such as in Sec. lll £and again arrive at Eq23), NRG value 0.11+0.03 from Sec. IV C.
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I,p SSVLouls =12, (55

0 0.1 0.2

W

and their Hermitian conjugates. It turns out that all these
operators are forbidden if we impose the following two sym-
metry conditions: The model should be invariant under the

o1 I two separate spin rotations of each impurity and its elec-

i tronic bath about an angle af, i.e., under the transformation
< U =€, (56)
im . with j=1,2. 17 is the z component of spin of syster I}
0.05 1 =S+ cla11/201a Ckgj- In the presence of these rotation

symmetriesU;, the terms(52)—(55) are absent and the fro-
zen minidomain phase survives. The quantum phase transi-
tion from the frozen minidomain with residual entropy In2 to
the phase of Kondo screened impurities therefore just relies
(in the absence of a staggered magnetic fieluthe symme-
triesU; and U,.

The model(3) considered in this paper possesses by con-
struction symmetries beyorld;. They are not necessary for
the stability of theS,=In2 phase. For example, the two baths
are assumed to have the same Kondo couglin@his parity
symmetry can be relaxed without destroying the frozen mini-
domain phase. Furthermore, theomponent of spin of each
system,ljz, is conserved in our model since we chdgeJ,

To what extent do the results presented in the previousJ,. This symmetry can also be perturbed without lifting the
sections depend on the details of the models under considdwofold degeneracy. Moreover, the frozen minidomain phase
ation? To answer this question we will investigate whetheiis stable against breaking of particle-hole symmetry which
and how(small) perturbations of Eq(3) will qualitatively ~ we implicitly assumed in the bosonization treatment by lin-
change the physics. Fermi-liquid phases with vanishing re€arizing the dispersion relation of the conduction electrons.
sidual entropy§, are stable against small perturbations. ThisIn all these situations, we therefore expect that all of the
is not necessarily the case for our frozen minidomain chargualitative results, i.e., the structure of the phase diagram
acterized by, =In2. The existence of thi§,=In2 phase isa and the nature of the quantum phase transition, are not af-
fundamental feature of our mode). The necessary condi- fected.
tions for its stability will be discussed in what follows. However, any perturbation which breaks eithéror U,

First, let us consider the effect of a magnetic fieldzin (or both will generically generate one of the relevant cou-
direction acting on the impurity spins. A staggered magneti®lings (52«55) which all destroy the In2 phase. In the fol-
field, hy(S{-Sj), will directly destroy the degeneracy of the lowing we briefly discuss two such cases which are likely to
two configurationg? |), || 7). However, in the limitK,—oca  0ccur in experimental realizatiorja third case, correspond-
homogeneous magnetic fied S +S%) will not destroy the N to Eq.(54) is studied in Sec. VII A o _
S=In2 phase. It is interesting how these terms modify the _First, consider a situation where a small spin-flip coupling
generalized Anderson modéld). The magnetic fielch re-  (53) is added on top of the large Ising interaction of the
sults in a termh=,, d'd,, which breaks particle-hole symme- SPINS,

e e

0.4 0.3 0.2 0.1 0
Wpr

FIG. 9. Phase diagram of the generalized single-impurity Ander

son model14) deduced using the flow equation method. Notation
is as in Fig. 7.

VI. SYMMETRIES AND PERTURBATIONS

try in the gepgrahzed Anderson model. It therefore modifies 5Hf2: K, (S'SS+99). (57)
only the position of the phase boundary. The staggered mag-
netic field h, however, will lead to a termhyS, O'dz_do_, In realizations of our model based on spins and strongly

which corresponds to @seudg magnetic field acting on the anisotropic spin-orbit interactions, such a term will always
pseudospin of the Anderson model. Only the staggered madpe present. A smak,; will immediately lead to a tunneling
netic field is a relevant perturbation which destroys the In2oetween the two states of our minidomain: their degeneracy
phase. is lifted, the two spins form a singlet and the In2 residual
Apart from these magnetic fields indirection there are entropy is quenched completely. Two-impurity Kondo mod-
other relevant terms which lift the twofold degeneracy,els withK =K, have been widely studied-'°As argued in

which are of the forms Refs. 16 and 17 the resulting phase diagram depends on the
presence or absence of particle-hole symmetryich does,
S, =12, (52)  however, not modify the phase diagram for =0 as pointed
out abové. In the absence of particle-hole symmetry, the
SEY (53) phase transition is replaced by a smooth crossover. However,

in the presence of particle-hole symmetry, the scattering
- o phase shifts of the electrons can only take the values 0 or
SISV, 1i=1.2, (54 7/2. As the Kondo-screened phase and the interimpurity sin-
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glet phase have different phase shifts, there has to be a phase

transition in between. This transition is not of Kosterlitz-

Thouless type, but characterizéd® by a residual entropy

Iny2. Nevertheless, this transition will merge with ours in the

limit K, —0, as an infinitesimaK, does not affect the JL

Kondo-screened phase but leads immediately to the forma- > t <—
tion of an interimpurity singlet in the frozen minidomain J

phase. 1

A second interesting case is a situation where the two
Fermi seas are coupled, e.g., by a tunneling between the two
leads

(SI‘iguznne“ng: E (tkk’:clalck’aZ: + HC) . (58)
k', a

While this term is not relevant by power counting, it will

induce a RKKY interaction between the spins and therefore
generate the relevant coupligg3) and(57). As such a term

also breaks particle-hole symmetry, the quantum phase tran- | [} 777 3-3~-06
sition will be replaced by a smooth crossover. T 2—2;-0.3
— 5=3,
i——38-3 =03
<

VII. TRANSPORT

In this section we illustrate how the phase diagram and,
more importantly, the corresponding quantum phase transi-
tion can be revealed in transport experiments. We shall dis-
cuss two experimental setups.

(a) Capacitively coupled quantum dots, where the
charge degrees of freedom play the rolg(mseudgspins®®
are a promising realization of our model. By adding a small R
inter dot tunneling term, we obtain a characteristic zero-bias " e

G (arb. units)

-
-
S

anomaly.
(b) If the Ising coupling is realized between real spin P S T
degrees of freedom, then we shall show that a transport ex- ) Vv

periment can reveal a universal fractional critical conduc-

tance at the phase transition Wh|Ch iS related to the Universal FIG. 10. (a) Experimenta| Setup to measure the tunne"ng con-
jump of the superfluid density at the Kosterlitz-Thoulessductance between two capacitively coupled quantum dotSche-
transition of superfluid thin films. Using quantum dots this matic plot of the zero-bias anomaly of the conductanc&=ad. In
situation is difficult to achieve, as a transverse spin couplinghe frozen minidomain phasé< &, the conductance diverges al-
will always be present in the experiment. Nevertheless, th@ebraically according to Eq61). At the quantum phase transition,
following proposals highlight the nontrivial effects of a &=, the exponent takes the universal valugv22-1) according
Kosterlitz-ThoulesgKT) transition with a bath of solitonic to Eq.(62). In the Kondo-screened phas®; &, the conductance is
particles onto the original electrons. finite for V—0.

pacitive coupling of the two dots directly corresponds to an

o . Ising coupling(1). The physical spin in such a system would
In realization of our mode{3) usingchargestates of ca-  ranglate to an extra channel index in our model. For simplic-

pacitively coupled quantum détthe conductance discussed ity we will, however, consider a situation where either strong

above cannot be easily measured. We therefore propose aghin-orbit scattering mixes those channels or where the spin

other experiment sketched in Flg._ 10. We consider two larggg quenched by a strong magnetic field—in both cases we

quantum dots, each coupled tasingle-channgllead. The  gffectively deal with spinless fermions and thus with a

Coulomb interaction and an appropriately chosen gate V°|t§ingle-channe| model.

age ensure that two charge states on each dot are degeneratey\ now consider a situation where the two dots are

and that all other charge states have higher energies. Theggypled by weak tunnelingin addition to the large inter dot

two charge states in each dot take over the role of the tW%apacity. This tunneling takes the form

spins as explained in more detail by Matvéélhe spin-up

and- down states of the conduction electrons in our model Htun:tsiszl(o)wLZ(o) +H.c. (59)

correspond to electrons sitting either in the leads or on the

dot, where we assume that the level spacing on this dot ig/e assume that the tunneling is sufficiently weak such that it

small compared to temperature. Using this mapping, a cacan be treated perturbatively in the experimentally relevant

A. Zero-bias anomaly of capacitively coupled quantum dots
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temperature range. This is precisely the situation which was G(V) = G(T) = const. (64)

also considered by Andreit al. ?° Note that the approxima-

tion to consider only tunneling intd ;(x=0) in Eq. (59) is

only valid if the tunnel contact between the dots is suffi-In Fig. 10 we show schematically the nonlinear conductance

ciently close to the lead contafgee Fig. 1] as a function ol in the vicinity of the quantum phase tran-
We calculate the conductance in perturbation theory in thaition.
interdot tunneling starting from the Kubo formula. The cur- In contrast to Eqs(60) and(64), Andrei et al. 2° obtained

rent through the link between the dots is then givenjby an exponentially small conductance in the frozen minido-
:tSIS[i\IfL(O)\IfLZ(O)HH.c. and theT dependence of the main phase an@G~ T* in the singlet phase, with which we
current-current correlator can be obtained from simple powedisagree.
counting.

We first consider the frozen minidomain phase. Following
the arguments given in Sec. I, the dimension of the tunnel- B. Universal conductance of Ising-coupled quantum dots
ing term (or equivalently of the current operajowith re-
spect to this fixed point is given by dfid,,]=dim[j]=1 What is the most characteristic signature of the Kosterlitz-
—(258/m)?=(1-28/m)2 Therefore the current-current cor- Thouless quantum phase transition which we found in the
relator decays in time as2@mil-D, and we obtain for the Previous sections? The most famous example of a Kosterlitz-

conductance Thouless transition is probably the vortex binding-unbinding
transition in superfluid*He films. From the Kosterlitz-
G(T) ~ t27-2dimi] = 242 m(1-25/m) (60)  Thouless theory follows the prediction of a universal jump in

the superfluid density upon passing through the transtfion.

This divergence of the conductance arises because the tun- Interestingly, the analog of the superfluid density in our
neling is arelevantperturbation which will finally destroy Model is the scattering phase shifof the conduction elec-
the frozen minidomain phase and quench its residual entrop}Fo,nsv and the arguments for a universal jump in the super-
In2 below some small energy scale. Equati60) is there-  fluid density carry over to a universal jump & This can be
fore only valid for sufficiently smaltt when this scale is Seen by considering the RG flow diagram in Fig. 3: In the
smaller thariT. Furthermore, a finite domain-flip rate induced frozen minidomain phase the system flows towards a line of
by Eq.(18) is required to obtain a finite current. Above we fixed points which is naturally characterized by the dimen-
implicitly assumed that is so small that the size of the Sion of the leading irrelevant operator, i.e., the domain flip
current is solely determined by the smallest bottleneck foﬁls), or, equivalently, .accordmg to Eq21) by the phase
charge transport given by shift 6 of the conduction electrons. Upon approaching the
At finite voltageV>T, T in Eq. (60) can be replaced by ~ guantum phase transition, the_|rre_levant domain flips become
and we expect a zero-bias anomaly characterized by a prédarginal and the phase shift increases and reaches

nounced peak in the Conductance: :77/2(1_1/\5) at the phase bounda[yee Eq(22)] On the
other side of the phase diagram, the system flows to the
G(V) ~ || 42am(1-2dm) (61)  strong-coupling fixedpoint where the Kondo spins are

screened and the electrons acquire a phase shift/@f

Upon approaching the quantum phase transition, the diverlherefore the phase shift jumps across the transition #pm

gence increases and at the KT transition takes the universt 7/2! This picture is expected to hold everywhere close to
form the phase boundary as long as no other phase transition

intervenes—that the latter does not happen is shown by our
_ T-2(/2-1) _ 7-0.83 NRG calculations.
Cer(M) ~T T (62 This universal jump of the phase shift has direct experi-
~ mental consequences. Consider the experimental setup
Ge(V) ~ [V[2027D = || 083 (63)  sketched in Fig. 11 where the conductance through the left
dot is measured. If Kondo screening prevails, the conduc-
up to logarithmic corrections. tance forT— 0 will be given by the conductance quantum
In the Kondo-screened phase, we can calculate the qualfSo=2€?/(27#). In the frozen minidomain phase on the other
tative behavior of the current-current correlator at the poinside of the phase diagram, spin flips are completely sup-
in the phase diagram whekg=0 and the dots decouple. The pressed folf — 0 and therefore we can assumstatic spin
current-current correlator then can be decomposed into tweonfiguration to calculat&(T=0). For such a potential scat-
correlators of the forn(S*(t)\IfL(t)S{(O)\IfU(O», which de- tering problem, the conductance is given by
cay asymptotically as 1/ This can be seen if one identifies
this correlator with the conduction electran matrix (see
Ref. 40, and references therginhich is characterized by a G(T=0) =G, sirfs. (65)
constantspectral density for low energies. The conductance
therefore approaches a constant for temperatures and volt-
ages well below the characteristic crossover temperature Directly at the quantum phase transition, the conductance
to the Kondo-screened phase: therefore takes the universal value
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dom in these Kondo model&gs. (23) and (45)] are, how-
ever, complexsolitonic excitations in terms of the original
lead 1b fermions. While the phase shifts of those solitons vanishes at

the quantum phase transition, the phase shift ofptigsical
electrons takes the fractional valde leading to a fractional
conductance. Also in other systems which are described by a
Kosterlitz-Thouless quantum transition in terms of solitons, a
@@ lead 2 universal fractional conductance of similar origin can be ex-
pected at the transition.
In Fig. 11 the zero-temperature conductance close to the
<V> phase transition is shown. At any finite temperatures, the
jump in the conductance is strongly smeared as sketched
(a) schematically in the figure. THE dependence at lowest tem-

perature is determined by the dimension of the leading irrel-
_L_

evant operators. In the Kondo-screened phase, the leading
corrections forT—0 to the Kondo conductandg, are of
order (T/T")? for T<T', where T" is exponentially small
G A ) close to the quantum phase transiti@ee Fig. §. In the
log® T frozen minidomain phase, corrections to E65) vanish as
T=0 - | T-20inHef ] where diniH"] is defined in Eq(21). Directly
e at the quantum phase transition the exponent vanishes and
) leading corrections to Eq66) are of the order 1/l and
= therefore rather large.

Gy —

VIll. SUMMARY

We have investigated a model of two Ising-coupled
Kondo impurities using strong-coupling expansion, numeri-
cal renormalization-group calculations, and a transformation
based on the method of flow equations. Those methods yield
(b) consistent results and allowed us to show the existence of a
Kosterlitz-Thouless phase transition between a Fermi-liquid
- phase and a pseudospin doublet phase which corresponds to
) a frozen minidomain. This transition can be tuned both by
varying the Ising coupling between the impurities and by
FIG. 11. (8 Experimental setup to measure the conductance,arying the anisotropy of the individual Kondo couplings. In
through a single quantum dot, which is Ising coupled to a secongharticylar, at the Toulouse point of the individual Kondo im-

dot. The couplings to the leads and between the dots can be tun rities we could map the modexactlyto an Anderson
using appropriate gate voltageb) At T=0, the conductancesolid ity model with a Fermi sea consisting of fermionic

line) takes at the guantum phase transition the universal \@je soliton excitations—in this situation no phase transition oc-

;GO cos'm/212, Eq.(66). Dashed line: schematic plot of the con- < "o the system is in the Fermi-liquid phase, where the
uctance at finitd. Corrections to th@=0 result are logarithmic at . . o .
the transition. The exponentiz: —2din[H] is given by the di- |mpurlty pseudospin is screened below a c_ollectlve Kondo
mension of the domain-flip terii8). scaIe_T . ForJ, smalle_r than the Toulous_e point value, large
K, drives the system into the pseudospin doublet phase.
The most promising way to realize our model is the situ-
o) — ; _ Tl ation of capacitively coupled quantum dots where the impu-
Ger(T=0) = Gy iy = Go co§{ \r} 0.2, rity spins represent charge degrees of freedom on the dots.
(66) We have shown that a small additional tunneling between the
dots gives rise to a zero-bias conductance anomaly with a
and it jumps to the Kondo valu&, upon entering the universal fractional power-law occurring at the transition
Kondo-screened phase. This universal fractional conductangmint. In addition, we have discussed a setup which is inter-
at our quantum phase transition is one of the remarkablesting on theoretical grounds, namely transport through one
results of this paper. guantum dot of a pair of dots with a magnetic Ising coupling,
It is interesting to compare this to the well-known resultwhere we have found a universal fractional conductance
for the usual Kondo effect, where the conductance jumpshrough the device at the phase transition point.
from 0 to Gy when the exchange couplinfjis tuned from With an eye towards comparison with experiments we
ferromagnetic to antiferromagnetic. Both in Secs. Ill D anddiscuss the finite-temperature crossover behavior across the
V C we mapped our model close to the quantum phase trarphase diagranisee also Fig. b If we fix the parameters of
sition to such a Kondo model. The fermionic degrees of freethe individual Kondo impurities, then varyiné, corre-

Geor —
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7 A difference that of course no true ordering can occur in the

- impurity model.

S~ nd T JPie In summary, the present two—impurity_mo.del shows re-
0,-7 markably rich behavior, which awaits realizations in mesos-

PO copic devices. An interesting extension would be the two-

A S IR - channel case which is naturally met in capacitively coupled
K T7°~ dots with spin-degenerate conduction electrons.
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fixed TS). For T=0 there is a quantum phase transitiorKat K’

from a Fermi liquid with residual entrop$,=0 to the frozen mini- APPENDIX A: GENERALIZED SCHRIEFFER-WOLFF
domain phase witls,=In2. At T>0, only smooth crossovers occur TRANSFORMATION

indicated by the dashed and dotted lines. At the dashed lines, the . . . .
entropyS changes by In2see also Fig. 5 while at the dotted line In this appendix, we perform explicitly the mapping of the

one obtains a crossover from a logarithmic to a power-law behavioge€neralized Anderson model4) to the Kondo Hamiltonian

in the leading corrections t&. Similar crossovers also occur in (23) for largeK,. Due to the presence of the interactidhin
transport quantities. Below, a magnetic minidomain is formed, EQ.(14) the usual Schrieffer-Wolff transformation has to be
while a Fermi liquid is recovered belol which is exponentially —generalized to take into account power-law renormalizations
small close toKS'". (of “x-ray edge” type induced byW. We derive the mapping

by investigating directly the properties of a perturbative ex-

sponds to a vertical cut through the phase diagram in Fig. 15ansion in the hybridizatiol for finite W within the Ander-
the resulting finite-temperature behavior is sketched in Figgon model. Consider the generalized Anderson model in its

12. bosonized version. We first eliminate tiiéterm in Eq.(14)

For small K, there is a single crossover at the single-b the Emery-Kivelson transformatia®) with " =Wp and
. . (1) : L y y Y P
impurity Kondo temperaturd, . This crossover splits into i, i0

two whenK, approaches values of ord@ﬁ)—then the de-
scribed two-stage quenching of the entropy is observed. The UY*HAUJR = 2 Hol &,] + Kzﬁdﬁu +Hint, (A1)
upper crossover temperaturgis associated with the forma- [

tion of the magnetic minidomain, where relative fluctuations hereW ent v the hvbridization t
of the two impurity spins are frozen out. The lower crossoverV€reVW enters only the hybridization term

temperature is the collective Kondo scalebelow which the \Y; b (W) A0)

pseudospin of the minidomain is screen@d.becomes ex- Hint = 2=2 (dleT W% OF +He).  (A2)
ponentially small neak®" and vanishes foK,=KS'. For Ve o

K,=KZ" another crossover line appears which, however, hagor largeK, the d level is only singly occupiedV induces
much weaker signatures, namely, the character of the leadingrtual fluctuations to the doubly occupied and empty state
corrections to the entropy and other quantities changes, asghich are separated from the singly occupied statés| | )
easily understood from the RG flow in Fig. 3. For lal§e by an energyK,/2. To derive the effective Kondo model

the entropy change from In4 to In2 occurs arouhetK,,  consider theS matrix with respect to this low-energy sub-
thereforeT, approaches, in this limit. space:

Interestingly, the different impurity degrees of freedom .
can be reinterpreted: the flipping of the pseudospin while s _
keeping the minidomain intact apparently corresponds to Texd If_m ()]
pseudospin “phase” fluctuations, whereas breaking up the "
minidomain is related to “amplitude” fluctuations of the -
pseudospin. Thus, in Fig. 12 we encounter the situation that _n-O
amplitude fluctuations are frozen out at a higher temperature
T, whereas phase fluctuations are quenched at the [dwer H;, describes processes from the low-energy sector to high
in other words, the two impurity spins fluctuate indepen-energies or back. Such virtual excitations are rare and exist
dently for T>T, whereas they fluctuate in a correlated fash-only for a short time ifK, is large. Therefore we can group
ion betweenT” <T<T,. This physics is surprisingly similar them to pairs to obtain an effective interaction living in the
to the behavior of lattice systems in low dimensions, with thelow-energy Hilbert space,

©

dt2n e dtliH int(t2n) ++iH int(tl)y (A3)

o gyt
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tome1 tom 2 2 (1-Wp)2-1
; . 4V 4V a P
f dtsz Atom-1iHint(tom)iHint(tom-1) Koma K2 aK(a_> (A7)
- —® 24T 2T K
Tt . )
~ - if Ho (T, (A4)  inthe second term of EqAS).

In a last step, we undo the Emery-Kivelson transforma-

with tion to obtain the Kondo Hamiltonian in its usual fori@3)

with
HﬁH(Tm) =- |f dtHim(Tm + t/2)Hint(Tm - t/2), 4V2 aK (1 —Wp)z—l
0 M =w+ ?cw(f> , (A8)
where we introduced the center of time and relative coordi- ’
nates. Interactions between adjacent virtual excitations can 5
be neglected to leading order for larfg. Introducing the Jeff = 4_\/2(g><1“"’") - (A9)
spin notation,S,=1/2%,, od!d, and S'=dld,, to represent LTk, \ag :
the two states of the low-energy Hilbert space, the above
expression becomes wherecy,=(1-Wp)[[2-(1-Wp)?]. X-ray edge singularities
V2 [~ induced byW have led to a power-law dependence of the
HﬁH(Tm) - J dte KA2ZY 250 (1-Wp) dylT#t12) effective couplings orK,. Note that the previous arguments
i . fixed ax ~1/K, in Eq. (A9) only up to a prefactor of order 1

depending onW. However, this unknown prefactor ap-
W @2S0(1-Wp) b (Trt12) 4 (SFFTFIe—io-(l—Wp)tﬁlT(TmH/Z) proaches 1 close to the quantum phase transition wWhgre
—0.

X @AW d-y(T 2 4 1 ¢ )],
APPENDIX B: FLOW EQUATION TRANSFORMATION

The oscillating factoe #'2 guarantees that the virtual exci- FOR THE SINGLE KONDO IMPURITY

tations are only short lived, and we can therefore expand the

term in the bracket in the small tinte Introducing the spin In this appendix we provide some details on the flow-
field ¢p=(1/V2)=, o¢,, applying the operator product ex- equation treatment of the single-impurity Kondo model,
pansion g dogrineo(t) =1 +i(t—t’)/a]"‘2+)\a[1 +i(t ~ Wwhich was first presented in Ref. 36. Here we will show how

to extend the analysis of Ref. 36 to take into account the
terms of ordei\?-1) that become important in our coupled
system since they are multiplied by a possibly large energy
scaleK, in Eq. (41). We refer the reader to Ref. 36 for the

—t’)/a]l‘hzat,<;'_>g(t’)+--- for the first term, integrating over
using [g dte®&2(1+it/a) *=-i(aK,/2)*2I'(1-a)/K, we
obtain in leading order for largk,,

; 4\2 basic ideas of the approach and only present the main steps
Hi = 12 (1-Wp)I'T2 - (1 - Wp)?] to keep our presentation here self-contained.
N
akK, - Wp*-1 1. Transformation of the Hamiltonian
X > S,:dx(0):

The starting point for the flow-equation approach is Eq.

- (10) with y chosen such that the longitudinal coupling is

(S'e 2 WISORTE + He). (A5)  eliminated. This way we arrive at the initial Hamiltonian
H(B=0) for the flow-equation approach,

4\V?
K2ma

+

Before identifying the coupling constants of the effective

low-energy Hamiltonian two more steps are required. First, _ ) )

we have to readjust our UV cutoff fromto ax ~ 1/K, in the H(B) =Ho ¢]+ | dxgB:X)[V(A(B):x)S +H.c],
definition of our fields, as we effectively have integrated out

short-time differf(fances of order Kj. To this end we have to (B1)
normal-orderH;; as only normal-ordered expressions are . M= —5_11.P
cutoff independent, with A(B=0)=\y=V2-J,/\27v and
A2 A2 A2 2ma\NB=072 5
o= (2m) Vo B 23 ). o, g(B=0;x) = 5(X)(i) —. (B2)
L ax L L 2ma
2
_ <g>" /Zeix?» (A6) HereV(\;x) are normal-ordered vertex operators
ax ’ .
B V(\;x) = @MW (B3)
where ¢ denotes the fields defined with respect to the new
cutoff ax. This effectively leads to the substitution During the course of the infinitesimal unitary transformations
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dH(B) (i) We expand the exponential in a way that avoids IR
4B =[7(B),H(B)], (B4)  divergences and neglect higher-order terms in the bosonic
operators that lead to irrelevant couplings:

with the generatom(B) from Ref. 36,
277 iky
77=fdxn(l)(x)[V()\;x)S—H.c.] \r {D\e +5(0)]b,—H.c}|:
k>0 /

—iky

k>O \’

+fdxd>( 720X )[VIN:X), V(- \;x")],  (B5) = exp( 277

the interactiong(B;x) in Eq. (B1) becomes more and more ~iky _
nonlocal. With each infinitesimal step of the transformation +(1-e)s0)]bc-H.e) ):
one also generates a new interaction term in (B4, with

the structure O+ s(O);y)(l .\ E ~kal2
k>0 vk
veS f dxs(x)dyeh(X) (B6) ,
X[(1-e)s(0)b,— H.c]+ - ) (B10)

and a nonlocal functios(x) that depends on the couplings.
The key step in Ref. 36. is that EB6) can again be elimi-
nated by a unitary transformation of the Emery-KivelsonRetaining only the first term on the right-hand side is the
type, approximation used in Ref. 36: one obtains vertex operators
with flowing scaling dimensiong\ +s(0)] that eventually
. become fermionic. The second term can be understood as a
— Z .
U= 'eX[<'S fdxs(x)¢(x)).. (B7) correction term to this leading behavior due to the nonlocal-
: , , , ity of the interaction during the flow-equation procedure. It
We now analyze how the interaction term in B81) iS g this term that eventually leads to the correction term in Eq.
transformed due tdJ, e.g., (42).

) The above procedure following from E¢B8) has to be
UV(\;y)SUT= :exr(— IE J dxs(x)¢(x)> repeated iteratively throughout the flow, leading to

ka-|— 2

x::e‘i*"’(y)::exp(—iajdxs(x)qb(x)):S
(B8)

V(ly)(1+(1 RV =

L k>0 \’k

In order to proceed we normal order all the exponentials, x[(1 -e )b, ~ H.C_]):g
which can be done exactly since the commutator of the
bosonic field is a& number. This leads to

= WYL+ (L -N[-i4(0) +id(y)]}:S
Y+ 5(Kk) Ty

T _
UVixy)sU ex"( = = WH(y)[1 +(1-Ng)iya,H0)]:S, (B11)

— ey + s(k)]bl}) 'S, (B9)

plus irrelevant terms with higher-order derivatives of the

bosonic field. Hereg(y) denotes the bosonic spin-density
with s(k) being the Fourier transform afx) from Eq.(B6).  field ¢(y) without the Fourier components for energies larger
The proportionality factor ifB9) leads to the nonperturba- than O(Tyk) since the term proportional tl —\y) is gener-
tive renormalization of the coupling constayiB;x) already  ated successively during the flow-equation procedure. Put-
obtained in Ref. 36. Except for the local coupling at theting everything together, the Hamiltonidd(B) from Eq.
beginning of the flow the exponential in E@9) cannot be  (B1) acquires a new term of ordél—\y) during the flow
exactly rewritten as a vertex operator. We use two approxithat has been neglected in Ref. 36. It can be viewed as an
mations that give us the correct result up to quadratic termassisted hopping term that is marginal as opposed to the

in the deviation from the Toulouse line leading-order hopping term that is a relevant operator. The
(i) We use the infrared limis(0) instead ofs(k) in Eq. new term can be eliminated by including an additional term
(B9). with the structure
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NI

fdxn<3)(x)[:v()\;x)(9,($(0):s*—H.c.] (B12) =—fdxdxd(x)d*(x’)[\IfT(x),\If(x’)]

and a suitable coefficient functiof®(x) into the generator

(B6). One can verify that this does not modify the previous
flow-equations for the Hamiltonian in linear order in
73(x) (essentially since the assisted hopping term is mar-
ginal as opposed to the relevant hopping term that generategth
the flow equations in leading ordefTherefore we can ne- def

glect these extra terms in the flow of the Hamiltonian when f(h) = f dkdK (s + dd A ) [P, W ).
we want to retain terms up to linear order in

No—1D). (B16)

Hered, denotes the Fourier transform dfx). The expecta-
tion vaIue<[\Ifl,\Pk,]> has to be evaluated in the ground state
However, for the transformation d¥ one needs to be of the HamiltonianH®® that is obtained from the resonant-
more careful sinc&” can be multiplied by a large exchange |evel model Hamiltonian plus magnetic fielts after the
field h=+K,/2 due to the coupling to the second spin. Thisaghove unitary transformation. Sin€&“decays” into fermion

can be mUCh Iarger than the Kondo scale close to the tranSb'perators under this transformation accord|ng to m4)
tion. In order to study the transformation &fwe follow the  this Hamiltonian is given as

same route as in Ref. 36 hy usmg the identig

=[S",S]/2 and evaluating the transform& (S then fol- HPY =3 ¥ W + > hdde WiV,  (B17)
lows as its Hermitian conjugateOne needs to study the k kk’

additional effect of Eq(B12) on S" and finds the following j.e., this is just a potential scattering model with a separable

+ %()\0 — 1)f(h)dy(0) + O[ (Ao — 1)2] + irrelevant,

(B15)

2. Transformation of the impurity spin operator

expression in the low-energy limit: potential Vi, =hdd,,. The retarded Green’s function can be
calculated in closed form
= . ’ hd d ’
S’=ozfdyd(y):‘I'T(y)[1+(1—Ao)lﬁy¢(0)]:, (B13) Guele) =2, 19
€-¢ (€-¢g)e-¢) 2 ﬁ
with [to linear order in(A;—1)] the same coefficientd(y) as - “
in Ref. 36. This leads to (B18)
leading to
1
§=[S'Sl2=> J dxdx d(x)d" (X )[¥T(x), ¥(x')] f(h) = f dkdK (ddidys + ded A (WL, Wi 1)
l * 12 1
+ 5(1 —No) | dxdXd(x)d (x') =—=Im | dkdK (ddy + ddidr)
a
X (= ix' [WH(x), W(X)dy (0): 0 ”
(=W [0, ¥()3 40) ] X( f GeG () - f deekkr(g))
+ix[:WT(x) 3, p(0):, ¥ (x)]) + O[(\g— D?].  (B14) - °
0 ” oz
=——Im de- de| | dk——
Since we are interested in an analysis in the vicinity of the ™ — 0 €~ &
Toulouse line we only keep terms up to linear ordei)ig 1 0 o d2
—-1). The term of orden\y—1) consists of two fermionic —h—|m<f de—f de) fdk k
operators and a spatial derivative of the bosonic field. If we 77 o 0 €~ &
subtract the contractions with respect to the ground state the 2 1
remaining normal ordered operator will therefore lead to an Xf dk' —= _ (B19)
irrelevant coupling in the coupled Hamiltonia(9). How- € ~ € Y hé
ever, we need to retain the contractions: T € e
~ 1 ) . . . . , .
(S f dxdx d(x)d" (x")[¥T(x), ¥ (x)] O(l:ezot)aa?ly shows that the impurity orbital Green’s function
Gyi~ (€' in the resonant-level model
1 - *
+2(1-0i5,(0) f dxdXd(x)d’ (x')(x - X') HEM = > g, + E V(d"Wy+Wld)  (B20)
k

X (W), ¥ (x')])+ O[(Ag— 1)?] + irrelevant is given by
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d2

Gl (et = —4—. (B21)
G €&
Using
d2
> = oy _ ved G0 () (B22)
q € -

one can reexpreg819) as

[,

(B23)

1 0
f(h) = 2vgplfe 0(0)—th—|m<J de-
T —%

X[(? G fd 0) +)]G(ed O)( +)

Wherep <=0 (¢) is the impurity orbital density of states. One

notices that the impurity orbital Green’s function in the reso-

PHYSICAL REVIEW 89, 214413(2004
nant level model with nonvanishing impurity orbital energy
eqd'd can be written as
(ed—O)(€+)

(éd) +—_ ~—dd "/
( ) —Engec? 0)( +)1

(B24)

which leads to

1 0 ”
f(h) = 2vafd00)—th—|m<f de—f de>
o —oo 0

X[0.G50(eM]G ™ (€"). (B25)

This expression can be easily worked out in various limits

f(h) :{

and a smooth crossover in betwe@grerew=0.4128 is the
Wilson numbey.

h=0
e

2w/ T for

, B26
U|:l|h| ( )

for

1A. C. Hewson,The Kondo Problem to Heavy FermiopGam-
bridge University Press, Cambridge, 1997

2K. G. Wilson, Rev. Mod. Phys47, 773(1975.

3N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Ph§s,
331(1983; A. M. Tsvelick and P. B. Wiegmann, Adv. Phy32,
453 (1983.

4S. Doniach, Physica B & ®1, 231 (1977.

5A. H. Castro-Neto and B. A. Jones, Phys. Rev.6, 14975
(2000.

6A. J. Millis, D. K. Morr, and J. Schmalian, Phys. Rev. Le&7,
167202(2001); Phys. Rev. B66, 174433(2002.

’F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L.
Campman, and A. C. Gossard, Phys. Rev. L&§. 705(1995.
8K. A. Matveev, Zh. Eksp. Teor. Fiz99, 1598(1991) [Sov. Phys.

JETP 72, 892(1991)].

9K. A. Matveev, L. I. Glazman, and H. U. Baranger, Phys. Rev. B
53, 1034(1996.

103, M. Golden and B. I. Halperin, Phys. Rev. B, 3893(1996.

113, E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal,
and S. Lloyd, Science&85 1036(1999.

12C. Jayaprakash, H. R. Krish-namurthy, and J. W. Wilkins, Phys
Rev. Lett. 47, 737(198).

138, A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lét,
125(1988; B. A. Jones and C. M. Varma, Phys. Rev4B, 324
(1989.

140. Sakali, Y. Shimizu, and T. Kasuya, Solid State Comm,.
81(1990; O. Sakai and Y. Shimizu, J. Phys. Soc. Jpd, 2333
(1992; 61, 2348(1992.

15R. M. Fye, Phys. Rev. Lett72, 916(1994.

18], Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. &,
9528(1995.

17, J. Millis, B. G. Kotliar, and B. A. Jones, ifrield Theories in
Condensed Matter Physicedited by Z. Tesanovi¢Addison-
Wesley, Redwood City, CA, 1990pp. 159-166.

183, Gan, Phys. Rev. Letf74, 2583(1995; 74, 5287(1995; Phys.
Rev. B 51, 8287(1995.

193, B. Silva, W. L. C. Lima, W. C. Oliveira, J. L. N. Mello, L. N.
Oliveira, and J. W. Wilkins, Phys. Rev. Let?6, 275(1996.

20N, Andrei, G. T. Zimanyi, and G. Schén, Phys. Rev6B, R5125
(1999.

21G. D. MahanMany-Particle PhysicgKluwer Academic, Amster-
dam, 2000.

22|, Weiss, Quantum Dissipative Systenié/orld Scientific, Sin-
gapore, 1999

237, J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys9, 1 (1987.

24K. Kassner, J. Phys. B1, 245(1990.

25M. J. Storcz and F. K. Wilhelm, Phys. Rev. 87, 042319(2003.

26p, Schlottmann, J. PhygParig 6, 1486(1978.

2TFor an overview of refermionization see J. von Delft and H.
Schoeller, AnalysiCambridge, U.K). 7, 225(1998. Notice that
different fermion species do not anticommute, which, however,
does not affect the equations of motion.

28G. Toulouse, C. R. Seances Acad. Sci., Se2@8 1200(1969.

29G. Yuval and P. W. Anderson, Phys. Rev.181522(1970; P. W.
Anderson, G. Yuval, and D. R. Hamarnibjd. 1, 4464(1970.

30p. W. Anderson, Phys. Rev. Letll8, 1049 (1967; Phys. Rev.
164, 352(1967).

813, J. Hopfield, Comments Solid State Ph@s40 (1969.

32K, D. Schotte and U. Schotte, Phys. Re\82, 479(1969.

33A. 0. Gogolin, A. A. Nersesyan, and A. M. TsveliBpsonization
and Strongly Correlated Systert@ambridge University Press,
Cambridge, 1998

343. M. Kosterlitz, J. Phys. (7, 1046(1974.

35F. Wegner, Ann. PhygLeipzig) 3, 77 (1994.

36W. Hofstetter and S. Kehrein, Phys. Rev. 83, 140402R)
(2001).

37C. Slezak, S. Kehrein, Th. Pruschke, and M. Jarrell, Phys. Rev. B
67, 184408(2003.

38D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Le&9, 1201
(1979.

39A preliminary account on the flow-equation analysis of the

214413-22



QUANTUM PHASE TRANSITION OF ISING-COUPLED. PHYSICAL REVIEW B 69, 214413(2004)

present model appeared in S. Kehrein and M. Vojta, cond-mat/ cluded that no phase transition occurs even away from the Tou-

0208390(unpublishegl The initial version of this preprint did louse point.
not consider the corrections described in Sec. V B arising fronf'°A. Rosch, T. A. Costi, J. Paaske, and P. Wélfle, Phys. Re68B

the deviations from the Toulouse point, and incorrectly con- 014430(2003.

214413-23



