
Quantum phase transition of Ising-coupled Kondo impurities

M. Garst,1 S. Kehrein,2 T. Pruschke,2 A. Rosch,1 and M. Vojta1
1Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany

2Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany
(Received 15 October 2003; revised manuscript received 11 February 2004; published 18 June 2004)

We investigate a model of two Kondo impurities coupled via an Ising interaction. Exploiting the mapping to
a generalized single-impurity Anderson model, we establish that the model has a singlet and a(pseudospin)
doublet phase separated by a Kosterlitz-Thouless quantum phase transition. Based on a strong-coupling analy-
sis and renormalization-group arguments, we show that at this transition the conductanceG through the system
either displays a zero-bias anomaly,G,uVu−2sÎ2−1d, or takes a universal value,G=se2/p"dcos2sp /2Î2d, de-
pending on the experimental setup. Close to the Toulouse point of the individual Kondo impurities, the
strong-coupling analysis allows us to obtain the location of the phase boundary analytically. For general model
parameters, we determine the phase diagram and investigate the thermodynamics using numerical
renormalization-group calculations. In the singlet phase close to the quantum phase transition, the entropy is
quenched in two steps: first the two Ising-coupled spins form a magnetic minidomain which is, in a second
step, screened by a Kondoesque collective resonance in an effectivesolitonicFermi sea. In addition, we present
a flow-equation analysis which provides a different mapping of the two-impurity model to a generalized
single-impurity Anderson model in terms of fully renormalized couplings, which is applicable for the whole
range of model parameters.
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I. INTRODUCTION

Kondo physics plays a fundamental role for the low-
temperature behavior of a large variety of physical systems
such as magnetic impurities in metals, heavy fermion sys-
tems, glasses, quantum dots, etc. Its key feature is the
quenching of the impurity entropy through nonperturbative
screening by many-particle excitations in the associated
quantum bath. For magnetic impurities in metals this
amounts to the formation of the Kondo singlet between the
localized spin and electron-hole excitations in the Fermi sea.1

Most of the aspects of single-impurity Kondo physics are
now well understood after theoretical tools have been devel-
oped that can deal with its intrinsic strong-coupling
nature.1–3 However, in many physical systems the interaction
of different impurities, i.e., multi-impurity Kondo physics, is
important. For example, in heavy fermion systems the
Ruderman-Kittel-Kasuya-Yosida(RKKY ) interaction be-
tween different impurity spins leads to competition between
local Kondo physics and long-range magnetic order that de-
termines their phase diagram.4 More recently, related ques-
tions about coupled two-level systems have gained much in-
terest in quantum computation, where decoherence due to
unwanted couplings among qubits and between qubits and
environment should be avoided; on the other hand the inten-
tional coupling of qubits is the key step to perform quantum
logic operations.

In the present paper we investigate the case of two spin-
1/2 Kondo impuritiesS1,S2 coupled via an Ising coupling,

H12
Ising = KzS1

zS2
z. s1d

The Kondo coupling of each impurity to its bath is given by

Hj
K = 2J'sSj

xs0,j
x + Sj

ys0,j
y d + 2JzSj

zs0,j
z , s2d

where j =1,2 labels the impurity, ands0,j is the bath spin
operator at the respective impurity site. Furthermore the two
baths are disconnected.

Two impurities coupled both to baths and among each
other present the simplest realization of the so-called cluster
Kondo effect, which has been discussed, e.g., in context of
disordered Kondo-lattice compounds.5 Furthermore, the dy-
namics of magnetic droplets or domains, formed in disor-
dered itinerant systems near a magnetic quantum phase
transition,6 also leads to models of coupled impurities such
as the one considered here. Therefore, we will also refer to
the two coupled impurities as magnetic “minidomain.”

In the context of Kondo impurities, an Ising-like coupling
(1) can be thought of as an effective impurity interaction for
heavy fermion systems with an easy axis. Also, Ising cou-
pling appears naturally in quantum dots that are coupled via
their mutual capacitance7 here the two-level systems are
pseudospins representing the number of electrons on the
dots, and therefore SU(2) symmetry is broken from the
outset.8–10 Equivalently, one can think of two two-level sys-
tems with transversal coupling, with the experimental real-
ization of coupled flux qubits.11 We will discuss different
formulations and applications of our model in the body of
the paper.

Coupled impurities or two-level systems have been inves-
tigated in a number of papers,12–19 where most attention has
been focussed on the case of SU(2)-symmetric direct ex-
change coupling between the impurity spins,KS1·S2. Here,
two different regimes are possible as a function of the inter-
impurity exchangeK: for large antiferromagneticK the im-
purities combine to a singlet, and the interaction with the
conduction band is weak, whereas for ferromagneticK the
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impurity spins add up and are Kondo screened by conduction
electrons in the low-temperature limit. Notably, there isno
quantum phase transition asK is varied in the generic situa-
tion without particle-hole symmetry(whereas one finds an
unstable non-Fermi-liquid fixed point in the particle-hole
symmetric case).13,14,16

As has been pointed out by Andreiet al.,20 the case of
Ising coupling is different and particularly interesting, be-
cause for largeuKzu the two Ising-coupled spins form a mag-
netic minidomain which still contains an internal degree of
freedom as the ground state ofH12

Ising is doubly degenerate(in
contrast to the interimpurity singlet mentioned above). For
the case of antiferromagneticKz (which we will assume in
the following), the two low-energy states of the impurities
(forming a pseudospin) areu↑↓l andu↓↑l. As we will show in
this paper, the fate of this pseudospin degree of freedom
depends on the strength and asymmetry of the Kondo cou-
pling J between the spins and the bath electrons.

A. Summary of results

Here, we will summarize our main results which are de-
tailed in the body of the paper, and schematically represented
in the phase diagram of Fig. 1. A brief summary of the meth-
ods used to obtain these results is given below in Sec. I B.

The model of two Ising-coupled impurities, connected to
two separatefermionic reservoirs(realized, e.g., by attach-
ing two separate leads to two quantum dots, Fig. 2), has two
ground-state phases associated to either a screened or an un-
screened pseudospin. For small Kondo couplingsJ', Jz and
large Kz, tunneling between the two pseudospin configura-
tions, u↑↓l and u↓↑l, is suppressed at low energies, i.e., the
minidomain is “frozen” asT→0, and the ground-state en-
tropy is S0= ln2. In contrast, for smallKz the two impurities
are individually Kondo screened, resulting in a Fermi-liquid
phase with vanishing residual entropy. This implies the exis-
tence of a quantum phase transition forKz,TK

s1d, whereTK
s1d

is the single-impurity Kondo temperature. For isotropic
Kondo coupling, i.e., smallJz, this has been previously
pointed out by Andreiet al. 20

What is the nature of this phase transition? Does it occur
by breaking up the Ising-coupled minidomain or rather by
strong fluctuations of the preformed pseudospin? What are
the universal properties of this transition? The key observa-
tion, which helps to answer these questions, is that the sys-
tem can also be tuned towards the quantum phase transition
by increasing the Ising componentJz of the coupling of the
spins to the environment in a regime whereKz@TK

s1d (see
Fig. 1). For Kz@TK

s1d the minidomain is stable. However,
upon increasingJz a many-particle effect(related to forma-
tion of a Mahan exciton21) enhances the tunneling between
the two configurations,u↑↓l and u↓↑l, of the minidomain. If
Jz exceeds a critical value,Jz

cr, this tunneling can quench the
pseudospin even for infinitesimalTK

s1d (equivalent to infini-
tesimal transverse Kondo couplingJ').

The resulting phase of the “fluctuating minidomain” is
actually a Fermi liquid with vanishing residual entropy. Note
that the finite-temperature properties in this regime are rather

different from that of the Fermi liquid which is obtained for
TK

s1d@Kz. For largeJz and smallJ', the high-temperature ln4
impurity entropy is quenched in two stages: first, at the scale
T0<Kz, the minidomain “forms,” quenching half of entropy;
second the strong fluctuations kill the remaining ln 2 entropy
at a much lower scaleT* , this scaleT* can be identified with
a collective Kondo temperature associated to pseudospin

FIG. 1. Schematic phase diagram for two Ising-coupled Kondo
impurities (1) and (2). The vertical axis denotes the ratio between
single-impurity Kondo temperatureTK

s1d (determined by the Kondo
couplingsJz, J', and the bath bandwidthD) and Ising couplingKz.
The horizontal axis(Jz) measures the anisotropy of the Kondo cou-
pling; in the universal regime,TK

s1d
!D, isotropic Kondo coupling

corresponds toJz!Jz
cr. The model has two phases: At smallJz and

largeKz, the ground state is doubly degenerate and the two impurity
spins are locked into a “frozen minidomain.” In contrast, at largeJz

or small Kz the ground state is a singlet with local Fermi-liquid
characteristics. The quantum phase transition is of Kosterlitz-
Thouless type. In the universal regime,TK

s1d
!D implying J'!D,

TK
s1d is the only low-energy scale of the single-impurity problem,

and the phase transition occurs at a criticalKz proportional toTK
s1d

with the proportionality factor depending onJz, as shown in the
figure (solid line). The critical Kz diverges asJz→Jz

cr. Below the
dashed crossover line the two spins form an Ising minidomain: the
low-energy fluctuations are associated with the pseudospin degree
of freedom, i.e., for antiferromagneticKz the staggered impurity
susceptibility is much larger than the uniform one.

FIG. 2. Schematic plot of a system represented by the Hamil-
tonian (3). Two spins are coupled via an(anisotropic) exchange
interactionJ to two leads. The spins interact via an Ising coupling
Kz. For an explicit discussion of possible experimental setups see
Sec. VII.
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screening.(Note that this type of two-stage screening is com-
pletely different from the one occurring for two conventional
Kondo screening channels with different strengths.12) In con-
trast, forTK

s1d@Kz the entropy of the two spins is quenched
simultaneously in a single step at the scaleTK

s1d. Nevertheless,
the two Fermi-liquid regimes are adiabatically connected by
a smooth crossover, which we will show to be identical to
the well-known crossover in the single-impurity Anderson
model from the mixed valence into the Kondo regime.

The quantum phase transition atJz=Jz
cr turns out to be in

the Kosterlitz-Thouless universality class. Assuming conti-
nuity along the phase boundary(which we verified numeri-
cally), this is true for the transition at arbitraryJzøJz

cr. Fur-
thermore, universality immediately implies that the
fluctuating minidomain regime with its characteristic two-
stage quenching of the entropy also exists for smallJz close
to the quantum phase transition(see Fig. 1).

Physical observables, such as the conductance in a quan-
tum dot setup, showuniversalbehavior in the vicinity of the
phase boundary. Therefore, we can calculate them close to
Jz

cr (see Fig. 1), where the phase transition takes place in a
regime of largeKz being accessible to a strong-coupling
analysis combined with renormalization-group arguments.
Depending on the experimental setup, we find, e.g., a con-
ductance anomaly characterized by the exponent −2sÎ2−1d
or a universal conductancee2 cos2fp /2Î2g / s"pd at the
phase transition. We emphasize again that these results are
valid close to the quantum phase transition even for smallJz
where a strong-coupling analysis is not possible.

B. Methods and outline

To obtain the physical picture and the results described
above, we use a combination of six different and partly
complementary methods.

In Sec. II we(i) map our model of Ising-coupled spins to
a generalized Anderson model by bosonization and refermi-
onization techniques. This mapping is used to obtain the
qualitative structure of the phase diagram and analytic results
for the phase boundary at largeJz. Furthermore, for the gen-
eralized Anderson model it is much easier to implement(ii )
numerical renormalization group(NRG), which is presented
in Sec. IV. With the help of NRG it is possible to determine
numerically the phase boundaries in regimes not accessible
to analytic methods. Furthermore, NRG is essential to estab-
lish that the phase transition at smallJz is continuously con-
nected to the one at largeJz.

Making use of this adiabatic continuity is the main idea of
this paper to obtain analytic results for the quantum phase
transition. By increasingJz we can tune the transition from a
regime withKz,TK

s1d to a regime withKz@TK
s1d, where we

can employ(iii ) a strong-coupling expansion(Sec. III). The
strong-coupling result is analyzed using(iv) perturbative
renormalization group, or more precisely power counting,
taking into account the anomalous dimensions created from
an orthogonality catastrophe. Using these methods the phase
diagram for largeKz@TK

s1d and the precise position of the
critical point forKz→` can be obtained. In addition, we can

determine the relevant phase shifts and scaling dimensions of
leading relevant and irrelevant operators(Sec. VI). This al-
lows us to analytically calculate the conductance and zero-
bias anomalies close to the quantum phase transition forar-
bitrary values ofTK

s1d /Kz, see Sec. VII. To analytically obtain
the precise shape of the phase diagram for largeJz, we de-
velop in Appendix A(v) a generalization of the Schrieffer-
Wolff transformation to take into account the short-range
density interaction of our generalized Anderson model, lead-
ing to associated power-law singularities.

In Sec. V and Appendix B we re-derive some of the above
results independently by using(vi) flow equations. The ad-
vantage of this method is that it has a broad range of appli-
cability and gives a more natural description in terms of
renormalized quantities. The flow-equation mapping nicely
establishes the equivalence of the different Fermi-liquid re-
gimes of the model. It also allows us to derive the full phase
diagram analytically for general values of the couplingJz
that are not accessible with the strong-coupling expansion.

Transport quantities and corresponding possible experi-
mental realizations are discussed in Sec. VII. The most
promising way to implement Ising-coupled(pseudo)spin
variables is the use of charge degrees of freedom of two
quantum dots, following Matveev’s proposal,8,9 and employ
a capacitive coupling which takes the role ofKz, see Sec.
VII A.

Most of our methods are based on the mapping of the
original two-impurity model to a generalized single-impurity
Anderson model, except for the strong-coupling analysis in
Sec. III A which is applied to the original model(and thus
directly establishes the existence of a phase transition). As
we will show, the employed mapping provides a particularly
clear picture of the underlying physics, e.g., it establishes the
universality class of the transition, and allows us to make
further progress using flow equations. Thus, the mapping
turns out to be extremely helpful for obtaining the complete
picture presented below.

II. MODEL: VARIATIONS AND TRANSFORMATIONS

In this section we discuss the various formulations of the
model under consideration, together with the mapping be-
tween them, which is based on the well-known relation be-
tween the spin-boson model and the anisotropic Kondo
model.3,22,23

Throughout this paper, we will consider the so-called
scaling limit where bothKz and the single-impurity Kondo
temperatureTK

s1d are much smaller than the high-energy cut-
off D of the theory,TK

s1d ,Kz!D. KeepingJzù0 andD fixed,
this implies J'→0. Only in this scaling limit the models
discussed below can be mapped upon each other. In general,
the position of the phase boundary, i.e., the value of the
critical couplingKz

cr depends on microscopic details. In the
scaling limit, however,Kz

cr /TK
s1d depends only onJz which

parametrizes the renormalization flow in the single-impurity
model, see Sec. IV C. This universality is represented in the
phase diagram in Fig. 1.
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A. Ising-coupled Kondo impurities

We consider the model

HK = H1
K + H2

K + H12
Ising, s3d

where two spinsS1 and S2 interact by the Ising interaction
(1), H12

Ising. Each of the spins couples to a separate fermionic
bath, cka j, via an anisotropic Kondo HamiltonianHj

Ks j
=1,2d, see Fig. 2,

Hj
K = H0fCa,jg + o

nab

JnSj
nCa j

† s0dsab
n Cb js0d, s4d

where a ,b are spin indices andH0fCa,jg=ok,a ekcka j
† cka j

with Cs jsxd=ok e−ikxcks j. The exchange coupling is assumed
to be the same for both impurities and has an anisotropic
form, Jn=sJ' ,J' ,Jzd.

The fermionic baths are assumed to be particle-hole sym-
metric with a bandwidthD; for a rectangular band the den-
sity of states at the Fermi level is thenrF=1/D. Our conclu-
sions are not modified by the presence of a particle-hole
asymmetry. A comprehensive discussion of possible modifi-
cations of our Hamiltonian(3), e.g., due to tunneling be-
tween the fermionic baths, and how they influence our re-
sults, will be given in Sec. VI.

A model of form(3) may be approximately realized with
real spins in the presence of a strong Ising anisotropy. In
addition, it occurs naturally as a model for capacitively
coupled quantum dots,8–10,20where the local operatorsS1

z and
S2

z describe charge states, i.e., pseudospin degrees of free-
dom, on the two dots. Concrete application of our results to
such a situation will be discussed in Sec. VII.

B. Coupled qubits in ohmic baths

An alternative starting point for our model of Ising-
coupled impurities can be formulated in terms of two two-
level systems(spin-boson models), HSB=H1

SB+H2
SB+H12

trans

with

Hj
SB = H0fbkjg +

D

2
s j

x +
1

2 o
k.0

lks j
zsbkj + bkj

† d, s5d

whereH0fbkjg=ok.0 vkbkj
† bkj, and a transversal coupling be-

tween them,

H12
trans=

Kz

4
s1

zs2
z. s6d

Herebkj
† are the bosonic creation operators for heat bathj . D

is the bare tunneling matrix element between the two levels.
The impurity properties are completely parametrized by the
spectral functionJsvd;ok lk

2dsv−vkd, which we assume to
be of ohmic form,Jsvd=2ave−v/2vc.

One realization of this model is the interaction of tunnel-
ing centers in glasses through higher-order phonon
exchange.24 In the context of quantum computation this
model arises in studies of decoherence of coupled supercon-
ducting qubits: the transversal couplingKz is generated
through a superconducting flux transporter, and the heat
baths describe the environment leading to decoherence.11,25

Here, the assumption of two different baths for the two qu-
bits is justified, e.g., if the baths model electromagnetic noise
coming from read-out circuits, which are separate for each
qubit.

C. Bosonization

The equivalence ofHK andHSB can be explicitly shown
in the framework of bosonization. Furthermore, we will
demonstrate that both Hamiltonians can be mapped to a gen-
eralized Anderson impurity model. We will use this mapping
extensively, both to solve the models numerically within
NRG and to identify the position and nature of the quantum
phase transition in certain limits analytically.

It is well known22 that both the Kondo model and the
spin-boson model are equivalent to a generalized resonant-
level model to be defined below. Our model,HK and HSB,
however, consists of two coupled Kondo- and spin-boson
Hamiltonians. The crucial point is that the assumed coupling
H12

Ising and H12
trans, respectively, is transformed trivially by

switching between these three representations.
We start from the two Kondo Hamiltonians(4) and apply

the bosonization identity

Cs jsxd =
1

Î2pa
Fs j e−ifs jsxd, s7d

wherea is a short-distance cutoff,Fs j is an anticommuting
Klein factor shFs j

† ,Fs8 j8j=2d j j 8dss8d, and fs j is the corre-
sponding bosonic field withffs jsxd ,]x8fs8 j8sx8dg=2pidsx
−x8dd j j 8dss8. Transforming to bosonic charge and spin fields,
fs/c,j =s1/Î2dsf↑ j ±f↓ jd, the bosonized version of the Kondo
Hamiltonians(4) reads

Hj
K = H0ffcjg + H0ffsjg +

Jz

Î2p
Sj

z]xfsjs0d

+
J'

2pa
se−iÎ2fsjs0dSj

+F↓ j
† F↑ j + H.c.d, s8d

whereH0ffg=vFesdx/2pd1/2s]xfd2 assuming a linear dis-
persion,ek=vFk. The bosonic charge fieldfcj decouples and
is omitted in the following.

Applying a general Emery-Kivelson transformation,23

Ug = expSigo
j

Szjfsjs0dD , s9d

parametrized byg, the HamiltonianHj
K transforms intoH̃j

K

=UgHj
KUg

†,

H̃j
K = H0ffsjg + S Jz

Î2p
− gvFDSj

z]xfsjs0d

+
J'

2pa
se−isÎ2−gdfsjs0dSj

+F↓ j
† F↑ j + H.c.d. s10d

Importantly, the Ising coupling(1) is not affected by this
transformation,H12

Ising=UgH12
IsingUg

†.
For two special values of the transformation parameterg

the Emery-Kivelson transformation results in particularly in-
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teresting forms of the Hamiltonian. First consider the case
wheng=Î2. The exponents in the spin-flip term of Eq.(10)
then vanish andH̃j

K can be cast into the form of the spin-
boson Hamiltonian(5). We can now easily identify the cou-
pling constants,D=J' /pa, lk=sJz/Î2p−Î2vFdÎ2pk/L, vk

=vFk and bqj are the Fourier components of]xfsjsxd with
fsjsxd=−ok.0

Î2p /kLs−ibkje
−ikx+ ibkj

† eikxde−ka/2. The linear
dispersion and the form of the couplinglq result in a ohmic
form of the spectral functionJsvd=2ave−v/2vc with a
strength

a = sJzr − 1d2, s11d

wherer is the density of states,r=1/s2pvFd.
The single-impurity Kondo temperature has in general a

power-law dependence on the “tunneling rate”J',

TK
s1d ~ J'

1/s1−ad sfor J' ! Jzd, s12d

with a introduced above.

D. Generalized Anderson impurity model

Applying the Emery-Kivelson transformation withg
=Î2−1 results in exponentials in Eq.(10) having the same
form as in the bosonization identity(7) and can therefore be
expressed as fermionsC j. The refermionized Hamiltonian
can be identified with a generalized resonant-level model26,27

Hj
RL = H0fC jg + V„dj

†C js0d + H.c.…

+ WSdj
†dj −

1

2
D:C j

†s0dC js0d:, s13d

where Sj
z=dj

†dj −1/2, V=J' /Î2pa, and W=Î2Jz−sÎ2
−1d /r. C andd are fermionic operators, whereC represents
solitonic spin excitations of the original conduction band and
d describes the spin degree of freedom of the impurity. The
coupling W vanishes forJzr=1−1/Î2 (or a=1/2 for the
spin-boson model), the so-called Toulouse point of the
Kondo model;28 in this case Eq.(13) reduces to the conven-
tional resonant-level model. Furthermore,W,0 for isotropic
small Kondo couplings,Jz=J'!D.

In the new variables the Ising interaction takes the form
Kzsd1

†d1−1/2dsd2
†d2−1/2d. If we interpret the bath indexj

=1,2 as apseudospin indexs= ↑ ,↓, we can identify the
total Hamiltonian (3) with a generalized single-impurity
Anderson model,

HA = H0fCsg + Vo
s

fds
†Css0d + H.c.g + Kzn̄d↑n̄d↓

+ Wo
s

n̄ds:Cs
†s0dCss0d:, s14d

with n̄ds=ds
†ds−1/2. In this representation, the Ising inter-

action translates to a local Coulomb repulsion, andW corre-
sponds to an interaction of the localized levelds with the
surrounding electrons. In the limitKz=0 the Hamiltonian
describes the extensively studied x-ray threshold problem.21

On the other hand, at the Toulouse point whereW=0, the
standard impurity Anderson Hamiltonian is recovered. For

large Kz the d level is mainly singly occupied; its “spin”s
corresponds precisely to the pseudospin degree of freedom of
the original minidomain. Note that the particle-hole symme-
try of the effective Anderson model corresponds to the sym-
metry under a rotation byp around thex axis in spin space
for the original model.

The mapping of the original two-impurity model onto the
generalized Anderson model(14) is one of the central results
of our paper, and will be extensively used in the numerical
study of the phase diagram and the interpretation of the re-
sults.

E. Parameter mapping via phase shifts

It is important to note that the precise relation of the three
modelsHSB, HK, andHA depends on the cutoff structure, i.e.,
on properties at high energies and short distances. All formu-
las quoted above which relate the various coupling constants
are actually only valid within the cutoff scheme underlying
bosonization. However, it is generally believed that all three
models are equivalent independent of the cutoff structure, as
long as one considers only the universal low-energy proper-
ties in a regime whereKz andTK

s1d are much smaller than any
other scale.

We consider now the(nonuniversal) mapping of model
parameters within different cutoff schemes. For small values
of J' (or D and V) it is possible to calculate the precise
mapping by investigating the perturbation theory inJ', D,
andV, respectively, using the fact that all three models map
onto a Coulomb gas22,23,29—we will not attempt this here
because it is difficult to do it analytically for an arbitrary
cutoff scheme. However, the mapping ofJz, W, anda can be
obtained directly by matching the conduction-electron phase
shifts in the limit J' ,V=0, as phase shifts are measurable
low-energy properties.

In the Kondo model(4), we denote the scattering phase
shift for antiparallel conduction electron and impurity spins
by dJz

; for parallel spins the phase shift is then −dJz
. Analo-

gously, the phase shift in the resonant-level model(13) is dW
if the d level is unoccupied and −dW if the d level is occu-
pied. For a clear distinction, here and in the following we
denote byrF a density of states of a fermionic band with
finite cutoff, whereasr refers to a density of states within the
cutoff scheme underlying bosonization. In the latter scheme,
the phase shifts defined above are directly proportional
to the coupling constants,dJz

=pJzr /2 and dW=pWr /2,
where the density of statesr=1/s2pvFd. If one uses instead
a model where the high-energy cutoffs arise from a band
structure, one obtains dJz

=arctans−Jz/2dImg00s0d / f1
−s−Jz/2dReg00s0dg, whereg00svd=ok 1/sv−ek+ i0+d is the
local Green’s function of the electrons. In case of particle-
hole symmetric bands,g00s0d=−iprF, this relation simplifies
to

dJz
= arctanfpJzrF/2g. s15d

Similarly, W in Eq. (14) induces forV=0 a phase shiftdW
=arctanfpWrF /2g. Matching the various models by their
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phase shifts, the relationWr=Î2Jzr−sÎ2−1d derived within
bosonization, translates into

dW = arctanfpWrF/2g = dJz
Î2 −

p

2
sÎ2 − 1d. s16d

Note that this equation is only valid for smallJ' andV.

III. STRONG-COUPLING ANALYSIS

In this section we analyze the behavior of the system for
small TK

s1d /Kz. After presenting a general argument for the
existence of a phase transition, we discuss the resulting phys-
ics in terms of the generalized Anderson model(14). Inter-
estingly, twodifferent strong-coupling limits emerge which
will be described in Secs. III C and III D. As detailed below,
both strong-coupling limits display a phase transition of the
Kosterlitz-Thouless type. Furthermore, the limits will be
shown to commute, and the physical regimes are smoothly
connected.

A. Effective Hamiltonian

To investigate the phase diagram sketched in Fig. 1 we
consider first the limit ofuKzu→`. We can restrict the con-
siderations toKz→ +`, as results forKz→−` are similar
because thez component of the total spin is conserved sepa-
rately for the “1” and “2” subsystems.

In the limit Kz→ +` the two-impurity spins form an an-
tiferromagnetic minidomain, with configurationsu↑↓l and
u↓↑l. No fluctuations can occur forKz=` (or J'=0), there-
fore the ground state of the full system is a doublet.

We now set up a perturbation theory in the small param-
eter J' /Kz by deriving an effective Hamiltonian in the
hu↑↓l , u↓↑lj subspace of the impurities. The lowest process
connecting the two statesu↑↓l, u↓↑l is OsJ'

2 /Kzd. Thus the
effective Hamiltonian in the strong Ising-coupling limit reads

Heff
K = Heff,0

K + Heff
flip , s17d

where Heff,0
K is given by H1

K+H2
K with the perpendicular

Kondo coupling set to zero,J'=0. Note that the size ofJz
can be arbitrary. The minidomain is flipped by the term

Heff
flip =

4J'
2

Kz
sS1

+S2
−C↓1

† C↑1C↑2
† C↓2 + H.c.d, s18d

with Cai =ok ckai. The zero-temperature stability of the fro-
zen minidomain now depends on whether the operatorHeff

flip

is relevant in the renormalization-group sense.
SinceHeff

flip is comprised of four electron operators, its bare
(tree-level) scaling dimension is negative, dimfHeff

flipgtree=−1.
This might suggest that the doublet ground state with re-
sidual entropy ln 2 is stable. However, in the present problem
Heff

flip acquires an anomalous scaling dimension which modi-
fies this conclusion. This can be understood as follows: For
largeJz a flip of the minidomain suddenly changes the phase
shifts of all electrons in the leads, thus exciting an infinite
number of particle-hole pairs. This is the well-known or-
thogonality catastrophe,30 leading to an anomalous long-time

response of the electrons. In the presence of a sharp Fermi
edge this results in a so-called x-ray edge singularity which
is reflected in an anomalous scaling dimension ofHeff

flip (18).
In the following we will determine this scaling dimension

using Hopfield’s rule of thumb,31 and identify the criticalJz
where theHeff

flip becomes relevant, resulting in “quantum
melting” of the frozen minidomain.

To adjust the Fermi sea to a new ground state after the
domain has flipped once, a certain amount of chargeDn has
to flow to infinity. Hopfield noticed that collective response
of a Fermi sea depends in the long-time limit only on this
Dn: the corresponding correlation function decays ast−sDnd2.
In our problem, we have to consider four different Fermi
surfaces(j =1,2, s= ↑ ,↓) each contributing independently.

A domain flip is induced by the operatorA
=S1

+S2
−C↓1

† C↑1C↑2
† C↓2. According to Hopfield’s rule of

thumb, the correlation function in theabsenceof domain
flips is then given by

kA†stdAs0dlHeff,0
K , t−a, s19d

where

a = o
j=1,2;s=↑,↓

Dnjs
2 . s20d

The transferred chargesDnjs are easily obtained from the
phase shifts using Friedel’s sum rule. For example, a spin flip
induced byA changes the phase of the down electrons in
bath 2 from dJz

to −dJz
which corresponds according to

Friedel’s sum rule to a charge transfer of 2dJz
/p. Further-

more, the annihilation operatorC↓2 eliminates one charge
and the total charge transfer in this channel is given by
Dn↓2=2dJz

/p−1. Similar arguments giveDn↑2=−Dn↑1

=Dn↓1=−Dn↓2. Therefore, the exponenta is given by a
=4s2dJz

/p−1d2. This result can also be verified explicitly by
bosonization following Schotte and Schotte.32

From Eq. (19), we can directly read off the anomalous
scaling dimension of the domain-flip Hamiltonian(18) with
respect to the “frozen-domain” fixed point:

dimfHeff
flipg = 1 −

a

2
= 1 − 2S2dJz

p
− 1D2

. s21d

Here, the first term arises from the engineering dimension of
Heff

flip. For small scattering phase shifts dimfHeff
flipg is negative,

i.e., the domain-flip Hamiltonian is irrelevant and the doubly
degenerate frozen-domain fixed point described byHeff,0

K is
stable. Domain flips become relevant fordJz

.dT with

dT =
p

2S1 −
1
Î2

D . s22d

BeyonddT the fluctuations of the minidomain grow towards
low energies giving rise to a new phase—in this regime the
pseudospin describing the minidomain is still well defined,
but is ultimately screened at low energies. The special value
of dT is well known as the Toulouse point of the single-
impurity Kondo Hamiltonian.33

We have thus established the existence of a phase transi-
tion in the limit of J' /Kz!1, which is accessed by varying
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Jz. In the bosonization cutoff scheme, the critical value is
rJz

cr=1−1/Î2 corresponding to the Toulouse point of the
individual Kondo impurities in the original model(3).

B. Relation to the generalized single-impurity model

What are the properties of this fluctuating minidomain
and what is the nature of the quantum phase transition sepa-
rating the two phases? This question can be tackled within
the generalized Anderson model(14).

According to Eq.(16) the couplingW in Eq. (14) vanishes
for dJz

=dT, i.e., at the Toulouse point. This does, however,
not necessarily imply thatW can be treated as a small pa-
rameter in the vicinity of the Toulouse point. Rather, it is
important to realize that two different strong-coupling limits
emerge, depending on the order of limits taken in parameter
space.

(i) If we consider the limitW→0 at fixed smallJ', then
the critical Kz will diverge according to the analysis above.
In this case,Kz is the largest scale, whereasJ' andV can be
treated as perturbations.

(ii ) Alternatively, we can takeJ'→0 at fixed small
W,0. Apparently, the criticalKz will vanish (although
Kz/TK

s1d@1), and a strong-coupling treatment has to consider
that W is a large scale.

Both limits correspond to physical situations. However,
the scaling limit, discussed at the beginning of Sec. II and
employed in plotting the phase diagram of Fig. 1, is reached
by takingJ'→0 at fixedJz andTK

s1d /Kz, corresponding to the
case(ii ) above. More generally, in a three-dimensional phase
diagram which involves a third axis labeledJ' in addition to
the ones shown in Fig. 1, case(i) applies for any finiteJ' in
a certain vicinity of the Toulouse point, before the behavior
crosses over to case(ii )—this crossover scale vanishes in the
universal limitJ'→0.

We will now analyze both cases separately—interestingly
the two limits will turn out to commute.

C. W\0 at fixed V

Assuming thatKz is the largest scale in the problem,
which corresponds to a strong local Coulomb repulsion on
the impurity site of the generalized Anderson model, we can
directly map it onto an anisotropic Kondo model. Withn̄Cs

= :Cs
†s0dCss0d: and S=1/2da

†sabdb, we can rewrite
Wos n̄dsn̄Cs = WSzsn̄C↑− n̄C↓d + sW/2dsn̄d↑+ n̄d↓dsn̄C↑+ n̄C↓d.
As charge fluctuations are frozen out for largeKz, the last
term can be omitted,n̄d↑+ n̄d↓=1, and we obtain

Heff
A = H0fCsg + o

nab

Jn
effSnCa

†s0dsab
n Cbs0d, s23d

with Jn
eff=sJ'

eff ,J'
eff ,Jz

effd, where

J'
eff =

4V2

Kz
, Jz

eff =
4V2

Kz
+ W. s24d

Spin up and spin down in this Hamiltonian correspond to the
two states of the minidomain. The phase diagram of Eq.(23)
is well known: whenJz

eff is increased from negative values

towards zero(keepingJ'
effÞ0 fixed) one observes a quantum

phase transition from a ferromagnetic regime with ln2 re-
sidual entropy to a Fermi-liquid phase where the spin is
quenched, see Fig. 3. TheS0= ln2 phase can obviously be
identified with our frozen minidomain. It is stable forJz

eff,
−uJ'

effu or W,Wc with

Wc = −
8V2

Kz
. s25d

For Kz→` or V→0, the phase transition is located atWc
=0 or equivalentlydJz

=dT as anticipated above. Equation
(25) is the exact result for the phase boundary forKz→`,
provided thatV and W are mapped ontoJ' and Jz as de-
scribed in Sec. II. We note again that the limit considered
here does not correspond to the universal limitJ'→0, be-
cause this would giveKz

cr→0 at any fixedW.

D. V\0 at fixed W

Anticipating thatKz
cr→0 in this limit, we need to consider

a problem whereW is a large local energy scale. Interest-
ingly, at Kz=0 andV=0 the four impurity states are degen-
erate even in the presence ofW because of overall particle-
hole symmetry. This degeneracy is lifted byKz which (as
above) favors the impurity statesu↑↓l and u↓↑l (assuming
Kz.0).

We proceed with an analysis similar to the usual
Schrieffer-Wolff transformation, now in the presence of a
large W. As usual, hopping processes of second order inV
produce an effective pseudospin interaction between the im-
purity and the conduction band. However, as the impurity
occupation in the intermediate states is different from that of

FIG. 3. Schematic renormalization-group flow of the effective
Kondo model(23) (Refs. 1 and 23) describing the screening of the
minidomain pseudospin in the limit of largeKz. Here,Jz

eff=0 corre-
sponds to the Toulouse point of the original Kondo model. The
Fermi-liquid fixed point is characterized by pseudospin screening;
the frozen-minidomain phase corresponds to aline of fixed points
with unscreened pseudospin. The thick line denotes the phase
boundary, given byJz

eff=−uJ'
effu. Variation ofJz around the Toulouse

point in the original model(at fixed J' and Kz) corresponds to a
parameter variation in the effective model as shown by the dashed
line; the dot is the transition point. The transition is in the
Kosterlitz-Thouless universality class.
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initial and final states, the intermediate state physics involves
an x-ray edge singularity due to the sign change of the strong
potential scattererW.

Analyzing the matrix elements, we find x-ray edge behav-
ior which is cutoff byKz, i.e., the effective generated Kondo
couplings are of the formV2/Kz

1−b, where

b = − 2
2

p
dW − S 2

p
dWD2

, s26d

wheredW=pWr /2 is the phase shift fromW.
The detailed derivation of the generalized Schrieffer-

Wolff transformation is given in Appendix A. Finally, one
arrives at an effective Kondo model of the form(23), but
now with couplings

J'
eff =

4V2f'sdWd
Kz

1−bLb
, Jz

eff =
4V2fzsdWd
Kz

1−bLb
+ W, s27d

whereL is of the order of the band cutoff, and bothf' and
fz are smooth, dimensionless functions ofdW with

lim
W→0

f'sdWd = f's0d = 1, lim
W→0

fzsdWd = fzs0d = 1. s28d

As above, the model shows a Kosterlitz-Thouless phase tran-
sition in this effective Kondo model occurs at the lineJ'

eff=
−uJz

effu, i.e.,

W= −
4V2ff'sdWd + fzsdWdg

Kz
1−bLb

, s29d

whereb is a function ofW according to 1−b=2s1−ad with
a=sJzr−1d2 as introduced above. To obtain an explicit rela-
tion betweenW, V, and Kz in the vicinity of the Toulouse
point, we expand inW. Dropping additive logarithmic cor-
rections, we have

W1/s1−bd < W, Lb < 1. s30d

With this and Eq.(28) we can rewrite Eq.(29) as

W= − 8
V1/s1−adLs1−2ad/s1−ad

Kz
, s31d

which is smoothlyconnected to the result(25) obtained in
the limit W→0 of Sec. III C.

As announced, the criticalKz for fixed W depends only on
TK

s1d~V1/s1−adLs1−2ad/s1−ad. To fix the prefactor, we first have
to define TK

s1d for an asymmetric Kondo model. This is best
done using a physical observable such as the impurity
specific-heat coefficientg= limT→0Cimp/T of the anisotropic
single-impurity Kondo model. We employ

TK
s1d ; w

p2

3
g−1, s32d

where w=0.4128 is the Wilson number.1 At the Toulouse
point, a=0, one easily findsg=1/s3rFV2d. Thus, forW→0
we obtain

rFW= −
8

wp2

TK
s1d

Kz
cr < − 1.964

TK
s1d

Kz
cr . s33d

For particle-hole symmetric bands, this can be rewritten us-
ing Eqs.(15) and (16) into

TK
s1d

Kz
cr =

rFwp2Î2 sin2S p

2Î2
D

8
sJz

cr − Jzd < 0.578rFsJz
cr − Jzd,

s34d

valid for Jz→Jz
cr.

Concluding this analysis, we have shown that also in the
limit V→0 (keepingW fixed) the effective Anderson model
(14) can be mapped onto an effective Kondo model, which
describes the screening of the minidomain pseudospin. The
phase transition is in the Kosterlitz-Thouless universality
class. The two strong-coupling limits are adiabatically con-
nected, as the involved impurity states and transitions are
similar in both cases; in addition the equations for the phase
boundaries(25) and (31) match.

From the mapping to the anisotropic Kondo model we can
also identify the fluctuating minidomain regime with a
Fermi-liquid phase. Here, the pseudospin is screened below
the Kondo temperatureT* of the effective Kondo model(23).
Importantly, the Fermi sea of the effective model is formed
by solitonic spin excitations of the original model(3)—this
will strongly influence the conductance through the system
as discussed in Sec. VII. At the Toulouse point, we can esti-
mateT* ,minsKz,Ddexpf−uKzu / s8V2rFdg. Close to the quan-
tum phase transition, reached forKz/V

2→0 at the Toulouse
point, T* is exponentially small. Similarly, for finiteKz

cr and
Kz&Kz

cr, one expects for a Kosterlitz-Thouless transition the
behavior34

T* = ae−b/ÎKz
cr−Kz, s35d

wherea is a function ofTK
s1d andJz; this form will actually be

used to fit the numerical data of Sec. IV.
At the Toulouse line, one can investigate the crossover

from the fluctuating minidomain regime to the regime with
Kondo-screened spins atKz=0 (dashed crossover line in Fig.
1). As our model is equivalent to an Anderson impurity
model (14), this crossover is equivalent to the well-known
Anderson model crossover from mixed-valence to Kondo be-
havior. This crossover takes place atKz,V2rF, i.e., when
TK

s1d /Kz is Os1d. Similarly, one finds forJz→` that this
crossover is located atTK

s1d,J',Kz, and furthermore for
Jz→0 one also expects this crossover atKz,TK

s1d (as no
other low-energy scale exists in this regime). We therefore
conclude that the dashed crossover line in Fig. 1 is always
located atTK

s1d /Kz,Os1d.
The schematic RG flow of the effective Kondo model,

shown in Fig. 3, illustrates the behavior of the Ising-coupled
two-impurity model in the strong-coupling regime. Three ob-
servations are important.

(i) Both theS0= ln2 frozen-domain phase and theS0=0
Fermi-liquid phase are stable to small perturbations—this
conclusion is in agreement with the analysis of Ref. 20.
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(ii ) The S0= ln2 phase corresponds to aline of RG fixed
points.

(iii ) The two phases are separated by a Kosterlitz-
Thouless transition, characterized by logarithmic rather than
power-law behavior of thermodynamic observables.

So far, the conclusions above mainly apply to the vicinity
of the Toulouse point of the single-impurity model, i.e., for
strongly anisotropic Kondo coupling. In the following sec-
tion we will present numerical results which strongly support
that the above picture is valid over the whole phase diagram.
In particular, we shall show that the phase transition is of
Kosterlitz-Thouless type even in the case of isotropic Kondo
couplings. Furthermore, no other phase transition(than the
one indicated in Fig. 1) occurs; this implies that the Fermi
liquid formed by the fluctuating minidomain is adiabatically
connected to the Fermi liquid of two individually Kondo-
screened spins, realized in the limitKz!TK

s1d.

IV. NUMERICAL RENORMALIZATION-GROUP ANALYSIS

In this section, we turn to a numerical investigation of the
model of Ising-coupled impurities using the NRG
technique.2 In principle, an investigation of the original two-
impurity model (3) is possible—however, the required two
bands of spinful fermions are computationally demanding
within NRG, and results are significantly less accurate com-
pared to the NRG treatment of single-band impurity models.

Therefore, we have decided to study the generalized
Anderson model of Eq.(14), obtained after bosonization and
refermionization of the original model. Featuring only one
band of spinful conduction electrons, it allows high-accuracy
numerical simulations down to lowest-energy scales and
temperatures.

A. Parameters

In the following, we will show numerical results for the
generalized Anderson model(14), for a rectangular particle-
hole symmetric fermionic band of widthD=2Î2, and differ-
ent values of the hybridizationV, density interactionW, and
on-site repulsionKz—note thatKz is identical to the original
Ising interaction between the two impurities, whereasV and
W are related toJ' andJz as detailed in Sec. II. In particular,
W measures the deviation from the Toulouse point. Accord-
ing to Eq. (16), valid for small V, Jz=0 corresponds to
WrF=−s2/pdtanfpsÎ2−1d /2g<−0.48. Similarly, large
negative values ofW, i.e., W→−`, correspond torJz=1
−Î2=−Î2srJzdToulousewith rJz here defined in the bosoniza-
tion cutoff scheme.

The mapping betweenV and J' (which are simply pro-
portional) can be achieved via the Kosterlitz-Thouless tran-
sition line for a single impurity: This line, whereTK

s1d van-
ishes, is given by Jz=−uJ'u. Using NRG, we have
numerically determined a few points on this line, character-
ized by parametersV and W in the model formulation(14)
with Kz=0—note that this involves an extrapolation ofTKsVd
to TK=0. With the mapping betweenW and rJz established

above, we find for the employed parameters the correspon-
dencerJ'<0.38V, valid for smallV.

Within NRG, the bath density of states is discretized on a
logarithmic grid, with a discretization parameterL, i.e., the
energy axis is divided into intervals at points
D ,DL−1,DL−2, . . .. The discretized model is transformed
into a semi-infinite chain form, and then diagonalized
iteratively.2 After each diagonalization step the lowestNs
eigenstates of the Hamiltonian are kept. Clearly, the results
are “exact” in the limitNs→`, L→1. In practice, numerical
results are monitored at fixedL, where convergence upon
increasing the value ofNs can be readily achieved. Then,
these converged numbers are extrapolated as a function ofL
to L=1 to obtain an estimate for the exact result.

Most of the NRG calculations here have employed a dis-
cretization parameter ofL=2, keepingNs=650 states per
NRG step. For selected parameter values we have performed
calculations with differentL and Ns. For eachL conver-
gence with respect toNs can be easily achieved, however, for
some quantities theL dependence turns out to be rather
strong. Therefore, theL→1 extrapolation has to be per-
formed carefully, as will be detailed at the end of this sec-
tion.

The results shown below primarily correspond to the uni-
versal regime ofV!W,D andKz!W,D; we have also per-
formed some calculations in the regimeKz@W (not shown)
with results consistent with the analysis of Sec. III C.

B. Results for RG flow and entropy

In Fig. 4 we show NRG flow diagrams displaying the
energies of a few low-lying many-body eigenstates as a func-
tion of the number of NRG steps. The data in Fig. 4(a)
clearly show that for small values ofKz the same fixed point
is reached for anyV andW—this fixed point can be identi-
fied with the Fermi-liquid phase, which is, in particular, also
reached forKz=0. Therefore, the Fermi-liquid regime of two
separately Kondo-screened impurities is adiabatically con-
nected to the fluctuating minidomain regime which can be
characterized by pseudospin screening below the collective
Kondo temperatureT* . In Fig. 4(b) flow diagrams for larger
values ofKz are shown—here the fixed points reached at low
energies are very similar for different parameter sets, but not
identical—this is consistent with the notion of a line of fixed
points with ln2 residual entropy.

It is important to emphasize that no additional fixed point
is observed forKz<Kz

cr, which could possibly correspond to
a critical fixed point. This clearly shows that the quantum
phase transition in our problem is not associated with stan-
dard critical behavior, but indicates that it is of the
Kosterlitz-Thouless universality class.

To characterize the fixed points, we have evaluated the
impurity entropySsTd using NRG. In Fig. 5 we show results
for different values ofW and severalKz. The discussed two-
stage quenching of the entropy, occurring forTK

s1d,Kz,Kz
cr,

can be nicely seen in all panels—note that panel(c) shows
data forW.0, i.e., on the right-hand side of the Toulouse
point.

C. Phase boundary and phase diagram

From the NRG results for fixed values ofW, V and dif-
ferentKz,Kz

cr it is possible to extract a characteristic cross-
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over temperatureT* below which the pseudospin is screened,
see above. For numerical simplicity we definedT* through
SsT*d=0.4. The dependence ofT* on Kz allows us to deter-
mine Kz

cr whereT* vanishes. We fitted the data withT*sKzd
=aexpfb/ÎKz

cr−Kzg (35) with fit parametersa, b, Kz
cr, which

is the form expected near a Kosterlitz-Thouless transition.34

The fit works excellently for all anisotropies, as shown in
Fig. 6—this is again strong support for the Kosterlitz-
Thouless nature of the transition.

The single-impurity Kondo temperature,TK
s1d for given W

and V is determined from Eq.(32), where the specific-heat
coefficientg is extracted from the NRG data forSsTd.

Having determined bothTK
s1d andKz

cr, we are in the posi-
tion to plot the phase diagram in the universal fashion indi-

cated in Fig. 1, i.e., employing the limitTK
s1d!D. The result

is shown in the main panel of Fig. 7.
It is possible to make the meaning of universality more

precise: so far we have distinguished the parameter sets by
their value of Jz (or W), leading to different values of
TK

s1d /Kz
cr. Within the RG treatment of Yuval and Anderson29

FIG. 4. NRG flow diagram for the generalized single-impurity
Anderson model(14), for parameter values belonging to(a) the
Fermi-liquid phase withS0=0, (b) the frozen-domain phase with
S0= ln2. Solid—WrF=−0.44, V=0.075sKz

cr=7.6310−10d, dash-
dot—WrF=−0.10, V=1.5310−3sKz

cr=3.4310−6d, dashed—WrF

=−0.034, V=1.5310−5sKz
cr=4.8310−9d. In (a) and (b), Kz has

been chosen slightly below and above the critical value, respec-
tively. For all parameters, the system is in aS=ln4 regime at high
temperatures(small N), in (a) it flows to theS=0 state by passing
through a regime withS=ln2. In (a), the additional dotted curves
show the flow forWrF=−0.44,V=0.075, andKz=0. TheWrF val-
ues span a large range of anisotropies; nevertheless, theS=0 fixed
point is unique, and the finite-temperature crossover is universal for
the curves close toKz

cr. Panel(b) nicely shows thatS=ln2 actually
corresponds to a line of fixed points. NRG parameters areL=2 and
Ns=650.

FIG. 5. Temperature evolution of the impurity entropy calcu-
lated by NRG for the generalized single-impurity Anderson model
(14) for different anisotropies of the Kondo coupling. In the frozen
minidomain phase the residual entropy is ln2 while it vanishes for
Kz,Kz

cr. For TK
s1d

@Kz (solid curves), the high-temperature ln4 en-
tropy is quenched in a single step, whereas two-stage screening
occurs for TK

s1d
,Kz,Kz

cr. (a) WrF=−0.44, V=0.15sKz
cr=1.5

310−5d, close to isotropic Kondo coupling.Kz is solid 0, long-dash
10−5, long-dash-dot 1.3310−5, short-dash 1.5310−5, short-dash-
dot 10−4. (b) WrF=−0.034, V=1.5310−5sKz

cr=4.8310−9d, i.e.,
close to the Toulouse point of the individual Kondo impurities. The
Kz values are solid 0, long-dash 10−9, long-dash-dot 1.5310−9,
short-dash 3310−9, short-dash-dot 10−7. (c) WrF=0.44, V=1.5
310−7, i.e., on the right-hand side of the phase diagram, Fig. 1,
where no phase transition occurs as a function ofKz. Kz is solid 0,
long-dash 10−8, long-dash-dot 10−7, short-dash 10−6, short-dash-dot
10−5.
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for the single-impurity Kondo model, it is easily seen that we
can expect identical low-energy behavior for two single-
impurity models if the initial parameters place the two mod-
els on the same RG trajectory.(The RG trajectories are iden-
tical to the ones shown in Fig. 3.) Therefore, the correct
parameter for the horizontal axis of our phase diagram is a
parameter labeling the RG trajectories, i.e., a proper RG in-

variant. Note that forJz.0 andJ'→0, Jz can be used as
such a label—this is what we have done so far. A proper RG
invariant isc defined by29

c = 4sJ'rd2 + e + 2 lnS1 −
e

2
D ,

e = 8
dJz

p
− 8SdJz

p
D2

, s36d

wheredJz
=pJzr /2 is the phase shift resulting fromJz, and

we have employed the bosonization cutoff scheme here. For
small values of bothJz andJ', the above equations can be
expanded to yield

c = 4sJ'rd2 − 4sJzrd2. s37d

For J'→0 the value ofc thus depends only onJz as antici-
pated; in this regimec,0. The advantage of using a param-
etrization of the single-impurity RG flow viac is that it al-
lows us to cover the trajectories withuJ' u . uJzu as well, i.e.,
the trajectories above the isotropic line in Fig. 3; herec.0.

With the parameter mapping described at the beginning of
this section we have all parameters at hand and can deter-
mine the value ofc from V andW. This allows to replot the
phase diagram in a plane spanned byTK

s1d /Kz
cr andc—this is

shown in the inset of Fig. 7. In particular, we can now add
data points forJz,0 to the phase boundary plot, as those are
characterized by afinite J' in the limit TK

s1d!D.
As mentioned above, some NRG results show a relatively

strong dependence on the NRG discretization parameterL.
Figure 7 shows the phase diagram forL=2; results for other
L values are similar, but theTK

s1d /Kz
cr values can differ by

50% or more. Therefore, we have performed an extrapola-
tion to L→1 for a few important quantities. A sample ex-
trapolation is shown in Fig. 8 for the slope of the phase
boundary near the Toulouse point, which was determined
analytically in Sec. III—the extrapolated value of
KzW/V1/s1−ad is consistent with the exact result in Eq.(31).
We have also looked at the maximum value ofTK

s1d /Kz of the
phase boundary occurring nearJz=0, this value extrapolates
to sTK

s1d /Kzdmax=0.11±0.03.

FIG. 6. Numerically determined values of
T*sKzd for WrF=−0.034, V=1.5310−5 where
Kz

cr=4.8310−9 (left), andWrF=−0.44,V=0.075
whereKz

cr=7.6310−10 (right); together with the
exponential fit described in the text.

FIG. 7. Phase diagram of the generalized single-impurity Ander-
son model(14) deduced from NRG calculations for NRG discreti-
zation parameterL=2. The vertical dashed line shows the Toulouse
point of the individual Kondo impurities. Small values ofV have
been used to reach the universal regimeTK

s1d
!D. Precise values of

TK
s1d have been determined via the specific-heat coefficientg, see

text. The upper horizontal axis shows the corresponding values ofJz

in the bosonization cutoff scheme. The error bar shows the typical
uncertainty in the numerical determination ofTK

s1d /Kz
cr arising from

the fits of bothg and Kz
cr. The inset shows the same data for

TK
s1d /Kz

cr, now plotted as a function of the RG invariantc of the
single-impurity model(36)—this plot covers the range of positive
as well as negativeJz (herec.0). The lines are guide to the eye
only.
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V. FLOW EQUATIONS

In this section, we consider a different approach39 to our
original model of Ising-coupled Kondo impurities, which is
based on the method of flow equations.35 The general idea is
an approximate diagonalization of each of the two Kondo
impurities—the result is a resonant-level-type effective
model which captures the Kondo physics in terms of a non-
trivial renormalized hybridization. Taking the two Ising-
coupled impurities together, we will again arrive at an effec-
tive Anderson model. Away from the Toulouse line one finds
an additional weak density-density interaction. However, in
contrast to Sec. III D where we were forced to treat a similar
interaction nonperturbatively to take into account x-ray edge
singularities(Appendix A), this is not necessary here be-
cause this nontrivial physics is already contained in the fully
renormalized couplings which naturally appear within the
flow-equation approach. This approach allows for a system-
atic expansion around the Toulouse line, and the effective
Hamiltonian derived in this framework in fact describes the
entire phase diagram of Fig. 1 consistently.

A. Flow-equation transformation

The flow-equation method was first applied to the Kondo
model in Ref. 36, where it was shown that it leads to an
expansion around the Toulouse point. Its basic idea is to
perform a sequence of infinitesimal unitary transformations
on a given many-particle Hamiltonian and thereby diagonal-
izing it.35 The expansion parameter turns out to bel0−1 with
l0=Î2s1−Jzrd=1−Wr (using the bosonization cutoff
scheme); the Toulouse point corresponds tol0=1.

Following Ref. 36, we construct unitary transformations
U1,2 (see Appendix B) such that the single-impurity Hamil-

toniansH̃1,2
K from Eq. (10) become diagonal

H1,2
sK diagd = U1,2H̃1,2

K U1,2
† , s38d

up to higher-order terms in our expansion around the Tou-
louse line. For studying the Ising-coupled Kondo impurities
we therefore apply the combined unitary transformationU

=U1U2 on Eq.(3), H̃K=UHKU†, leading to

H̃K = H1
sK diagd + H2

sK diagd + KzS̃1
zS̃2

z, s39d

with S̃1,2
z =U1,2S1,2

z U1,2
† . At the Toulouse point Eq.(39) is of

course exactly equivalent to the Anderson impurity model
(13) with W=0 and the same mapping as used in Secs. II C
and II D: the unitary transformationU1,2 just eliminates the
hybridization coupling in the Anderson impurity model.

It was shown in Ref. 37 that the flow-equation approach
yields a resonant-level model(13) as an effective model for
the Kondo impurity model also away from the Toulouse
point

HsRL effd = H0fC jg + o
k

Ṽk„dj
†C jskd + H.c.…, s40d

whereC j
†skd andC jskd are the creation and annihilation op-

erators for solitonic spin excitations in momentum space.
However, this resonant-level model now has a nontrivial

renormalized hybridization function,Dsed =
def

ok Ṽk
2dse−ekd,

with (i) Ds0d=TK
s1d /wp2 and nearly constant in an energy

interval of orderTK
s1d around the Fermi energy(hereeF=0)

and (ii ) a nontrivial power-law behavior for larger energies.
Furthermore, it was shown in Ref. 37 that toleadingorder in
an expansion around the Toulouse line one can identifySj

z

=dj
†dj −1/2. The effective model for our system of Ising-

coupled Kondo impurities is therefore an Anderson impurity
model with a hybridization function of the order of the
single-impurity Kondo scale:

HsA effd = H0fCsg + o
k,s

Ṽk„ds
†Csskd + H.c.… + Kzn̄d↑n̄d↓.

s41d

The main feature of the flow equation method is therefore to
eliminate the large couplingW in Eq. (14) by renormalizing
the hybridization of the Anderson model.

However, since the flow-equation transformation is an ex-
pansion in the distancesl0−1d to the Toulouse line, we need

to be careful in the transformation ofSz: The transformedS̃z

is multiplied by a possibly large parameterKz, so that an
error of ordersl0−1d in the expansion becomes multiplied
by Kz, leading to additional interaction terms in Eq.(41) that
can be larger than the hybridization energy scaleTK

s1d.39 It is
precisely these additional interactions that drive the
Kosterlitz-Thouless transition between the Fermi-liquid
phase and the frozen minidomain phase foruKzsl0−1duTK

s1d.

B. Corrections to the transformation of S̃z

In Appendix B the flow-equation solution for the single-
impurity Kondo modelH1/2

K in a magnetic fieldh is discussed
with a careful analysis of terms of ordersl0−1d. Hereh is

FIG. 8. L dependence of the slope of the phase boundary near
the Toulouse point.(L is the NRG parameter defining the logarith-
mic discretization of the conduction band.) The dashed line is a
linear fit. Each data point involves an extrapolation of the numerical
results at finite negativeW to W→0. A rather strongL dependence
can be observed, however, the extrapolated value appears consistent
with the analytical result(31).
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the effective exchange field due to the second spin, to be

described below. The transformed operatorS̃j
z takes the fol-

lowing form:

S̃j
z =

1

2
E dxdx8dsxdd*sx8dfC j

†sxd,C jsx8dg

+
1

2
sl0 − 1dfshd]xf̄ js0d s42d

plus irrelevant terms(containing, e.g., higher derivatives of
the bosonic field) and plus higher-order terms of ordersl0

−1d2. The first term on the right-hand side of Eq.(42) can be
interpreted as a result of integrating out the hybridization
term in Eq.(40), while the second term is a correction term
not contained in the original solution in Ref. 36.f̄ js0d de-
notes the bosonic spin-density fieldf jsxd without the Fourier
components for energies larger thanOsTK

s1dd (with respect to
low-energy properties one does not need to distinguish these
fields). Properties of the dimensionless functionfshd are de-
rived in Appendix B, in particular,fshd=vF / uhu+Osh−2d for
uhu@TK

s1d.
In the coupled system(41) we can approximate the effect

of one spin on the other as a static magnetic field of strength
h= ±Kz/2 close to the transition. This approximation be-
comes asymptotically exact as one approaches the transition
since the spin dynamics becomes slower and slower.

We arrive at the following Hamiltonian describing the
coupled Kondo impurities in the vicinity of the transition
line:

HsA effd < H0fCsg + o
k,s

Ṽk„ds
†Csskd + H.c.… + Kzn̄d↑n̄d↓

+ sl0 − 1d
Kz

2
fsKz/2df]xf̄↑s0dn̄d↓ + n̄d↑]xf̄↓s0dg,

s43d

up to corrections of ordersl0−1d2.

C. The Kosterlitz-Thouless transition

Let us now focus on the caseKz@TK
s1d that is relevant for

studying the phase transition in the vicinity of the Toulouse
line. Using fshd<vF / uhu we rewrite the Hamiltonian(43) as

HsA effd = H0fCsg + o
k,s

Ṽk„ds
†Csskd + H.c.… + Kzn̄d↑n̄d↓

+ sl0 − 1dvFhf]xf̄↑s0d + ]xf̄↓s0dg 1
2sn̄d↑ + n̄d↓d

− f]xf̄↑s0d − ]xf̄↓s0dg 1
2sn̄d↑ − n̄d↓dj . s44d

Similar to the analysis in Sec. III C the term proportional to
n̄d↑+ n̄d↓ is frozen out and can be ignored, while the term
proportional to n̄d↑− n̄d↓ leads to a spin-spin interaction.
SinceKz is the largest energy scale in Eq.(44) with its renor-
malized parameters, we can map the Hamiltonian onto an
anisotropic Kondo model using a Schrieffer-Wolff transfor-
mation (such as in Sec. III C) and again arrive at Eq.(23),

Heff
A = H0fCsg + o

nab

Jn
effSnCa

†s0dsab
n Cbs0d, s45d

where now the Kondo couplings for scattering processes in
the vicinity of the Fermi surface contain the renormalized

parametersrFṼ2=TK
s1d /wp2,

rFJ'
eff =

4rFṼ2

Kz
, rFJz

eff =
4rFṼ2

Kz
− rFJsnld, s46d

with rFJsnld=l0−1. We stress that here it was not necessary
to use the generalized Schrieffer-Wolff transformation de-
rived in Appendix A as the parameters in Eq.(44) are already
renormalized due to the flow-equation procedure and the in-
teractions~l0−1 are only effective at low energies. The ad-
ditional spin-spin interactionJsnld is ferromagnetic for cou-
plings to the right-hand side of the Toulouse linel0.1. This
leads to a critical coupling for the Kosterlitz-Thouless tran-
sition to the frozen minidomain phase

Kz
cr =

8rFṼ2

l0 − 1
=

8Ṽ2

− W
s47d

or using Eq.(32),

rFKz
cr =

8

wp2

TK
s1d

− W
= 1.964

TK
s1d

− W
s48d

in exact agreement with the NRG results(Fig. 8) and the
strong-coupling analysis, Eq.(33), in Sec. III D.

Since the flow-equation approach leads to a renormalized
effective Hamiltonian, one can also use it to derive the entire
phase diagram like in Fig. 7. If one neglects the same higher-
order termssl0−1d2 as before, one finds the following result
for the critical coupling:

rFKz
cr =

8

wp2

TK
s1d

− W
f1 − L8s0dg, s49d

which simply results from a Schrieffer-Wolff transformation
of an Anderson model with an on-site repulsionKz and a
hybridizationDsed which enters asTK

s1d. Here

Lsvd =
1

p
PE de

Dsed
v − e

s50d

follows from the effective hybridization function of the flow-
equation approach.37 The factorf1−L8s0dg enters in Eq.(49)
because it generalizes the relation between the Kondo tem-
perature defined in Eq.(32) and the renormalized hybridiza-
tion function within the effective resonant-level model37

pDs0d =
TK

w
f1 − L8s0dg. s51d

The results are depicted in Fig. 9. The maximum value of the
phase boundary occurring nearJz=0 is given by
sTK

s1d /Kzdmax=0.126, which agrees with the extrapolated
NRG value 0.11±0.03 from Sec. IV C.
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VI. SYMMETRIES AND PERTURBATIONS

To what extent do the results presented in the previous
sections depend on the details of the models under consider-
ation? To answer this question we will investigate whether
and how(small) perturbations of Eq.(3) will qualitatively
change the physics. Fermi-liquid phases with vanishing re-
sidual entropyS0 are stable against small perturbations. This
is not necessarily the case for our frozen minidomain char-
acterized byS0= ln2. The existence of thisS0= ln2 phase is a
fundamental feature of our model(3). The necessary condi-
tions for its stability will be discussed in what follows.

First, let us consider the effect of a magnetic field inz
direction acting on the impurity spins. A staggered magnetic
field, hssS1

z−S2
zd, will directly destroy the degeneracy of the

two configurationsu↑↓l, u↓↑l. However, in the limitKz→` a
homogeneous magnetic fieldhsS1

z+S2
zd will not destroy the

S0= ln2 phase. It is interesting how these terms modify the
generalized Anderson model(14). The magnetic fieldh re-
sults in a termhos ds

†ds, which breaks particle-hole symme-
try in the generalized Anderson model. It therefore modifies
only the position of the phase boundary. The staggered mag-
netic field hs, however, will lead to a termhsos sds

†ds,
which corresponds to a(pseudo) magnetic field acting on the
pseudospin of the Anderson model. Only the staggered mag-
netic field is a relevant perturbation which destroys the ln2
phase.

Apart from these magnetic fields inz direction there are
other relevant terms which lift the twofold degeneracy,
which are of the forms

Sj
+, j = 1,2, s52d

S1
+S2

−, s53d

S1
+S2

−Cis
† C js, i, j = 1,2, s54d

S1
+S2

−Cia
† sabC jb, i, j = 1,2, s55d

and their Hermitian conjugates. It turns out that all these
operators are forbidden if we impose the following two sym-
metry conditions: The model should be invariant under the
two separate spin rotations of each impurity and its elec-
tronic bath about an angle ofp, i.e., under the transformation

Uj = eipI j
z
, s56d

with j =1,2. I j
z is the z component of spin of systemj , I j

z

=Sj
z+ok cka j

† 1/2sab
z ckb j. In the presence of thesep rotation

symmetries,Uj, the terms(52)–(55) are absent and the fro-
zen minidomain phase survives. The quantum phase transi-
tion from the frozen minidomain with residual entropy ln2 to
the phase of Kondo screened impurities therefore just relies
(in the absence of a staggered magnetic field) on the symme-
tries U1 andU2.

The model(3) considered in this paper possesses by con-
struction symmetries beyondUj. They are not necessary for
the stability of theS0= ln2 phase. For example, the two baths
are assumed to have the same Kondo couplingJn. This parity
symmetry can be relaxed without destroying the frozen mini-
domain phase. Furthermore, thez component of spin of each
system,I j

z, is conserved in our model since we choseJx=Jy
=J'. This symmetry can also be perturbed without lifting the
twofold degeneracy. Moreover, the frozen minidomain phase
is stable against breaking of particle-hole symmetry which
we implicitly assumed in the bosonization treatment by lin-
earizing the dispersion relation of the conduction electrons.
In all these situations, we therefore expect that all of the
qualitative results, i.e., the structure of the phase diagram
and the nature of the quantum phase transition, are not af-
fected.

However, any perturbation which breaks eitherU1 or U2
(or both) will generically generate one of the relevant cou-
plings (52)–(55) which all destroy the ln2 phase. In the fol-
lowing we briefly discuss two such cases which are likely to
occur in experimental realizations[a third case, correspond-
ing to Eq.(54) is studied in Sec. VII A].

First, consider a situation where a small spin-flip coupling
(53) is added on top of the large Ising interaction of the
spins,

dH12
' = K'sS1

xS2
x + S1

yS2
yd. s57d

In realizations of our model based on spins and strongly
anisotropic spin-orbit interactions, such a term will always
be present. A smallK' will immediately lead to a tunneling
between the two states of our minidomain: their degeneracy
is lifted, the two spins form a singlet and the ln2 residual
entropy is quenched completely. Two-impurity Kondo mod-
els with K'=Kz have been widely studied.12–19As argued in
Refs. 16 and 17 the resulting phase diagram depends on the
presence or absence of particle-hole symmetry(which does,
however, not modify the phase diagram forK'=0 as pointed
out above). In the absence of particle-hole symmetry, the
phase transition is replaced by a smooth crossover. However,
in the presence of particle-hole symmetry, the scattering
phase shifts of the electrons can only take the values 0 or
p /2. As the Kondo-screened phase and the interimpurity sin-

FIG. 9. Phase diagram of the generalized single-impurity Ander-
son model(14) deduced using the flow equation method. Notation
is as in Fig. 7.
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glet phase have different phase shifts, there has to be a phase
transition in between. This transition is not of Kosterlitz-
Thouless type, but characterized16,18 by a residual entropy
lnÎ2. Nevertheless, this transition will merge with ours in the
limit K'→0, as an infinitesimalK' does not affect the
Kondo-screened phase but leads immediately to the forma-
tion of an interimpurity singlet in the frozen minidomain
phase.

A second interesting case is a situation where the two
Fermi seas are coupled, e.g., by a tunneling between the two
leads

dH12
tunneling= o

k,k8,a

stkk8:cka1
† ck8a2: + H.c.d. s58d

While this term is not relevant by power counting, it will
induce a RKKY interaction between the spins and therefore
generate the relevant coupling(53) and(57). As such a term
also breaks particle-hole symmetry, the quantum phase tran-
sition will be replaced by a smooth crossover.

VII. TRANSPORT

In this section we illustrate how the phase diagram and,
more importantly, the corresponding quantum phase transi-
tion can be revealed in transport experiments. We shall dis-
cuss two experimental setups.

(a) Capacitively coupled quantum dots, where the
charge degrees of freedom play the role of(pseudo)spins,8,9

are a promising realization of our model. By adding a small
inter dot tunneling term, we obtain a characteristic zero-bias
anomaly.

(b) If the Ising coupling is realized between real spin
degrees of freedom, then we shall show that a transport ex-
periment can reveal a universal fractional critical conduc-
tance at the phase transition which is related to the universal
jump of the superfluid density at the Kosterlitz-Thouless
transition of superfluid thin films. Using quantum dots this
situation is difficult to achieve, as a transverse spin coupling
will always be present in the experiment. Nevertheless, the
following proposals highlight the nontrivial effects of a
Kosterlitz-Thouless(KT) transition with a bath of solitonic
particles onto the original electrons.

A. Zero-bias anomaly of capacitively coupled quantum dots

In realization of our model(3) usingchargestates of ca-
pacitively coupled quantum dots8 the conductance discussed
above cannot be easily measured. We therefore propose an-
other experiment sketched in Fig. 10. We consider two large
quantum dots, each coupled to a(single-channel) lead. The
Coulomb interaction and an appropriately chosen gate volt-
age ensure that two charge states on each dot are degenerate,
and that all other charge states have higher energies. These
two charge states in each dot take over the role of the two
spins as explained in more detail by Matveev.8 The spin-up
and- down states of the conduction electrons in our model
correspond to electrons sitting either in the leads or on the
dot, where we assume that the level spacing on this dot is
small compared to temperature. Using this mapping, a ca-

pacitive coupling of the two dots directly corresponds to an
Ising coupling(1). The physical spin in such a system would
translate to an extra channel index in our model. For simplic-
ity we will, however, consider a situation where either strong
spin-orbit scattering mixes those channels or where the spin
is quenched by a strong magnetic field—in both cases we
effectively deal with spinless fermions and thus with a
single-channel model.

We now consider a situation where the two dots are
coupled by weak tunnelingt in addition to the large inter dot
capacity. This tunneling takes the form

Htun = tS1
+S2

−C↓1
† s0dC↓2s0d + H.c. s59d

We assume that the tunneling is sufficiently weak such that it
can be treated perturbatively in the experimentally relevant

FIG. 10. (a) Experimental setup to measure the tunneling con-
ductance between two capacitively coupled quantum dots.(b) Sche-
matic plot of the zero-bias anomaly of the conductance atT=0. In
the frozen minidomain phase,d,dc, the conductance diverges al-
gebraically according to Eq.(61). At the quantum phase transition,
d=dc, the exponent takes the universal value −2sÎ2−1d according
to Eq.(62). In the Kondo-screened phase,d.dc, the conductance is
finite for V→0.
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temperature range. This is precisely the situation which was
also considered by Andreiet al. 20 Note that the approxima-
tion to consider only tunneling intoCsisx=0d in Eq. (59) is
only valid if the tunnel contact between the dots is suffi-
ciently close to the lead contact[see Fig. 10].

We calculate the conductance in perturbation theory in the
interdot tunnelingt starting from the Kubo formula. The cur-
rent through the link between the dots is then given byj
= tS1

+S2
−fiC↓1

† s0dC↓2s0dg+H.c. and theT dependence of the
current-current correlator can be obtained from simple power
counting.

We first consider the frozen minidomain phase. Following
the arguments given in Sec. III, the dimension of the tunnel-
ing term (or equivalently of the current operator) with re-
spect to this fixed point is given by dimfHtung=dimf jg=1
−s2d /pd2−s1−2d /pd2. Therefore the current-current cor-
relator decays in time ast−2sdimf jg−1d, and we obtain for the
conductance

GsTd , t2T−2dimf jg = t2T−4s2d/pds1−2d/pd. s60d

This divergence of the conductance arises because the tun-
neling is arelevant perturbation which will finally destroy
the frozen minidomain phase and quench its residual entropy
ln2 below some small energy scale. Equation(60) is there-
fore only valid for sufficiently smallt when this scale is
smaller thanT. Furthermore, a finite domain-flip rate induced
by Eq. (18) is required to obtain a finite current. Above we
implicitly assumed thatt is so small that the size of the
current is solely determined by the smallest bottleneck for
charge transport given byt.

At finite voltageV@T, T in Eq. (60) can be replaced byV
and we expect a zero-bias anomaly characterized by a pro-
nounced peak in the conductance:

GsVd , uVu−4s2d/pds1−2d/pd. s61d

Upon approaching the quantum phase transition, the diver-
gence increases and at the KT transition takes the universal
form

GcrsTd , T−2sÎ2−1d < T−0.83, s62d

GcrsVd , uVu−2sÎ2−1d < uVu−0.83, s63d

up to logarithmic corrections.
In the Kondo-screened phase, we can calculate the quali-

tative behavior of the current-current correlator at the point
in the phase diagram whereKz=0 and the dots decouple. The
current-current correlator then can be decomposed into two
correlators of the formkSi

+stdC↓i
† stdSi

−s0dC↓is0dl, which de-
cay asymptotically as 1/t. This can be seen if one identifies
this correlator with the conduction electronT matrix (see
Ref. 40, and references therein) which is characterized by a
constantspectral density for low energies. The conductance
therefore approaches a constant for temperatures and volt-
ages well below the characteristic crossover temperatureT*

to the Kondo-screened phase:

GsVd < GsTd < const. s64d

In Fig. 10 we show schematically the nonlinear conductance
as a function ofV in the vicinity of the quantum phase tran-
sition.

In contrast to Eqs.(60) and(64), Andrei et al. 20 obtained
an exponentially small conductance in the frozen minido-
main phase andG,T4 in the singlet phase, with which we
disagree.

B. Universal conductance of Ising-coupled quantum dots

What is the most characteristic signature of the Kosterlitz-
Thouless quantum phase transition which we found in the
previous sections? The most famous example of a Kosterlitz-
Thouless transition is probably the vortex binding-unbinding
transition in superfluid4He films. From the Kosterlitz-
Thouless theory follows the prediction of a universal jump in
the superfluid density upon passing through the transition.38

Interestingly, the analog of the superfluid density in our
model is the scattering phase shiftd of the conduction elec-
trons, and the arguments for a universal jump in the super-
fluid density carry over to a universal jump ind. This can be
seen by considering the RG flow diagram in Fig. 3: In the
frozen minidomain phase the system flows towards a line of
fixed points which is naturally characterized by the dimen-
sion of the leading irrelevant operator, i.e., the domain flip
(18), or, equivalently, according to Eq.(21) by the phase
shift d of the conduction electrons. Upon approaching the
quantum phase transition, the irrelevant domain flips become
marginal and the phase shift increases and reachesdT
=p /2s1−1/Î2d at the phase boundary[see Eq.(22)]. On the
other side of the phase diagram, the system flows to the
strong-coupling fixedpoint, where the Kondo spins are
screened and the electrons acquire a phase shift ofp /2.
Therefore the phase shift jumps across the transition fromdT
to p /2! This picture is expected to hold everywhere close to
the phase boundary as long as no other phase transition
intervenes—that the latter does not happen is shown by our
NRG calculations.

This universal jump of the phase shift has direct experi-
mental consequences. Consider the experimental setup
sketched in Fig. 11 where the conductance through the left
dot is measured. If Kondo screening prevails, the conduc-
tance forT→0 will be given by the conductance quantum
G0=2e2/ s2p"d. In the frozen minidomain phase on the other
side of the phase diagram, spin flips are completely sup-
pressed forT→0 and therefore we can assume astatic spin
configuration to calculateGsT=0d. For such a potential scat-
tering problem, the conductance is given by

GsT = 0d = G0 sin2d. s65d

Directly at the quantum phase transition, the conductance
therefore takes the universal value
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GcrsT = 0d = G0 sin2dT = G0 cos2F p

2Î2
G < 0.2G0,

s66d

and it jumps to the Kondo valueG0 upon entering the
Kondo-screened phase. This universal fractional conductance
at our quantum phase transition is one of the remarkable
results of this paper.

It is interesting to compare this to the well-known result
for the usual Kondo effect, where the conductance jumps
from 0 to G0 when the exchange couplingJ is tuned from
ferromagnetic to antiferromagnetic. Both in Secs. III D and
V C we mapped our model close to the quantum phase tran-
sition to such a Kondo model. The fermionic degrees of free-

dom in these Kondo models[Eqs. (23) and (45)] are, how-
ever, complexsolitonic excitations in terms of the original
fermions. While the phase shifts of those solitons vanishes at
the quantum phase transition, the phase shift of thephysical
electrons takes the fractional valuedT leading to a fractional
conductance. Also in other systems which are described by a
Kosterlitz-Thouless quantum transition in terms of solitons, a
universal fractional conductance of similar origin can be ex-
pected at the transition.

In Fig. 11 the zero-temperature conductance close to the
phase transition is shown. At any finite temperatures, the
jump in the conductance is strongly smeared as sketched
schematically in the figure. TheT dependence at lowest tem-
perature is determined by the dimension of the leading irrel-
evant operators. In the Kondo-screened phase, the leading
corrections forT→0 to the Kondo conductanceG0 are of
order sT/T*d2 for T!T* , where T* is exponentially small
close to the quantum phase transition(see Fig. 6). In the
frozen minidomain phase, corrections to Eq.(65) vanish as

T−2dimfHeff
flipg, where dimfHeff

flipg is defined in Eq.(21). Directly
at the quantum phase transition the exponent vanishes and
leading corrections to Eq.(66) are of the order 1/ lnT and
therefore rather large.

VIII. SUMMARY

We have investigated a model of two Ising-coupled
Kondo impurities using strong-coupling expansion, numeri-
cal renormalization-group calculations, and a transformation
based on the method of flow equations. Those methods yield
consistent results and allowed us to show the existence of a
Kosterlitz-Thouless phase transition between a Fermi-liquid
phase and a pseudospin doublet phase which corresponds to
a frozen minidomain. This transition can be tuned both by
varying the Ising coupling between the impurities and by
varying the anisotropy of the individual Kondo couplings. In
particular, at the Toulouse point of the individual Kondo im-
purities we could map the modelexactly to an Anderson
impurity model with a Fermi sea consisting of fermionic
soliton excitations—in this situation no phase transition oc-
curs, and the system is in the Fermi-liquid phase, where the
impurity pseudospin is screened below a collective Kondo
scaleT* . For Jz smaller than the Toulouse point value, large
Kz drives the system into the pseudospin doublet phase.

The most promising way to realize our model is the situ-
ation of capacitively coupled quantum dots where the impu-
rity spins represent charge degrees of freedom on the dots.
We have shown that a small additional tunneling between the
dots gives rise to a zero-bias conductance anomaly with a
universal fractional power-law occurring at the transition
point. In addition, we have discussed a setup which is inter-
esting on theoretical grounds, namely transport through one
quantum dot of a pair of dots with a magnetic Ising coupling,
where we have found a universal fractional conductance
through the device at the phase transition point.

With an eye towards comparison with experiments we
discuss the finite-temperature crossover behavior across the
phase diagram(see also Fig. 5). If we fix the parameters of
the individual Kondo impurities, then varyingKz corre-

FIG. 11. (a) Experimental setup to measure the conductance
through a single quantum dot, which is Ising coupled to a second
dot. The couplings to the leads and between the dots can be tuned
using appropriate gate voltages.(b) At T=0, the conductance(solid
line) takes at the quantum phase transition the universal valueGcr

=G0 cos2p /2Î2, Eq. (66). Dashed line: schematic plot of the con-
ductance at finiteT. Corrections to theT=0 result are logarithmic at
the transition. The exponent 2d;−2dimfHeff

flipg is given by the di-
mension of the domain-flip term(18).
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sponds to a vertical cut through the phase diagram in Fig. 1;
the resulting finite-temperature behavior is sketched in Fig.
12.

For small Kz there is a single crossover at the single-
impurity Kondo temperatureTK

s1d. This crossover splits into
two whenKz approaches values of orderTK

s1d—then the de-
scribed two-stage quenching of the entropy is observed. The
upper crossover temperatureT0 is associated with the forma-
tion of the magnetic minidomain, where relative fluctuations
of the two impurity spins are frozen out. The lower crossover
temperature is the collective Kondo scaleT* below which the
pseudospin of the minidomain is screened.T* becomes ex-
ponentially small nearKz

cr and vanishes forKzùKz
cr. For

KzùKz
cr another crossover line appears which, however, has

much weaker signatures, namely, the character of the leading
corrections to the entropy and other quantities changes, as is
easily understood from the RG flow in Fig. 3. For largeKz
the entropy change from ln4 to ln2 occurs aroundT,Kz,
thereforeT0 approachesKz in this limit.

Interestingly, the different impurity degrees of freedom
can be reinterpreted: the flipping of the pseudospin while
keeping the minidomain intact apparently corresponds to
pseudospin “phase” fluctuations, whereas breaking up the
minidomain is related to “amplitude” fluctuations of the
pseudospin. Thus, in Fig. 12 we encounter the situation that
amplitude fluctuations are frozen out at a higher temperature
T0 whereas phase fluctuations are quenched at the lowerT* ,
in other words, the two impurity spins fluctuate indepen-
dently forT.T0 whereas they fluctuate in a correlated fash-
ion betweenT* ,T,T0. This physics is surprisingly similar
to the behavior of lattice systems in low dimensions, with the

difference that of course no true ordering can occur in the
impurity model.

In summary, the present two-impurity model shows re-
markably rich behavior, which awaits realizations in mesos-
copic devices. An interesting extension would be the two-
channel case which is naturally met in capacitively coupled
dots with spin-degenerate conduction electrons.
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APPENDIX A: GENERALIZED SCHRIEFFER-WOLFF
TRANSFORMATION

In this appendix, we perform explicitly the mapping of the
generalized Anderson model(14) to the Kondo Hamiltonian
(23) for largeKz. Due to the presence of the interactionW in
Eq. (14) the usual Schrieffer-Wolff transformation has to be
generalized to take into account power-law renormalizations
(of “x-ray edge” type) induced byW. We derive the mapping
by investigating directly the properties of a perturbative ex-
pansion in the hybridizationV for finite W within the Ander-
son model. Consider the generalized Anderson model in its
bosonized version. We first eliminate theW term in Eq.(14)
by the Emery-Kivelson transformation(9) with g* =Wr and
obtain

Ug*HAUg*
† = o

s

H0ffsg + Kzn̄d↑n̄d↓ + Hint, sA1d

whereW enters only the hybridization term

Hint =
V

Î2pa
o
s

sds
†e−is1−Wrdfss0dFs + H.c.d. sA2d

For largeKz the d level is only singly occupied.V induces
virtual fluctuations to the doubly occupied and empty state
which are separated from the singly occupied statesu↑ l, u↓ l
by an energyKz/2. To derive the effective Kondo model
consider theS matrix with respect to this low-energy sub-
space:

T expf− iE
−`

`

dtHintstdg

=o
n=0

` E
−`

`

dt2n ¯ dt1
t2n.¯.t1

iH intst2nd ¯ iH intst1d, sA3d

Hint describes processes from the low-energy sector to high
energies or back. Such virtual excitations are rare and exist
only for a short time ifKz is large. Therefore we can group
them to pairs to obtain an effective interaction living in the
low-energy Hilbert space,

FIG. 12. Schematic phase diagram as a function ofKz andT for
fixed TK

s1d. For T=0 there is a quantum phase transition atKz=Kz
cr

from a Fermi liquid with residual entropyS0=0 to the frozen mini-
domain phase withS0= ln2. At T.0, only smooth crossovers occur
indicated by the dashed and dotted lines. At the dashed lines, the
entropyS changes by ln2(see also Fig. 5), while at the dotted line
one obtains a crossover from a logarithmic to a power-law behavior
in the leading corrections toS. Similar crossovers also occur in
transport quantities. BelowT0 a magnetic minidomain is formed,
while a Fermi liquid is recovered belowT* which is exponentially
small close toKz

cr.
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E
−`

t2m+1

dt2mE
−`

t2m

dt2m−1iH intst2mdiH intst2m−1d

< − iE
−`

Tm+1

Hint
effsTmd, sA4d

with

Hint
effsTmd = − iE

0

`

dtHintsTm + t/2dHintsTm − t/2d,

where we introduced the center of time and relative coordi-
nates. Interactions between adjacent virtual excitations can
be neglected to leading order for largeKz. Introducing the
spin notation,Sz=1/2os sds

†ds and S+=d↑
†d↓, to represent

the two states of the low-energy Hilbert space, the above
expression becomes

Hint
effsTmd = − i

V2

2pa
E

0

`

dte−iKzt/2o
s

fe−i2Szss1−WrdfssTm+t/2d

3ei2Szss1−WrdfssTm−t/2d + sS+F↑F↓
†e−iss1−WrdfssTm+t/2d

3eiss1−Wrdf−ssTm−t/2d + H.c.dg.

The oscillating factore−iKzt/2 guarantees that the virtual exci-
tations are only short lived, and we can therefore expand the
term in the bracket in the small timet. Introducing the spin
field f=s1/Î2dos sfs, applying the operator product ex-

pansion eilfsstde−ilfsst8d=f1+ist− t8d /ag−l2
+laf1+ist

− t8d /ag1−l2
]t8fsst8d+¯ for the first term, integrating overt

using e0
` dte−iKzt/2s1+it /ad−a=−isaKz/2da2Gs1−ad /Kz we

obtain in leading order for largeKz,

Hint
eff =

4V2

Kz
Î2p

s1 − WrdGf2 − s1 − Wrd2g

3SaKz

2
Ds1 − Wrd2−1

Sz:]xfs0d:

+
4V2

Kz2pa
sS+e−iÎ2s1−Wrdfs0dF↓

†F↑ + H.c.d. sA5d

Before identifying the coupling constants of the effective
low-energy Hamiltonian two more steps are required. First,
we have to readjust our UV cutoff froma to aK,1/Kz in the
definition of our fields, as we effectively have integrated out
short-time differences of order 1/Kz. To this end we have to
normal-orderHint

eff as only normal-ordered expressions are
cutoff independent,

eilf = S2pa

L
Dl2/2

:eilf:=S a

aK
Dl2/2S2paK

L
Dl2/2

:eilf:

= S a

aK
Dl2/2

eilf̃, sA6d

wheref̃ denotes the fields defined with respect to the new
cutoff aK. This effectively leads to the substitution

4V2

Kz2pa
→ 4V2

Kz2paK
S a

aK
Ds1 − Wrd2−1

sA7d

in the second term of Eq.(A5).
In a last step, we undo the Emery-Kivelson transforma-

tion to obtain the Kondo Hamiltonian in its usual form(23)
with

Jz
eff = W+

4V2

Kz
cWSaKz

2
Ds1 − Wrd2−1

, sA8d

J'
eff =

4V2

Kz
S a

aK
Ds1 − Wrd2−1

, sA9d

wherecW=s1−WrdGf2−s1−Wrd2g. X-ray edge singularities
induced byW have led to a power-law dependence of the
effective couplings onKz. Note that the previous arguments
fixed aK,1/Kz in Eq. (A9) only up to a prefactor of order 1
depending onW. However, this unknown prefactor ap-
proaches 1 close to the quantum phase transition whereWr
→0.

APPENDIX B: FLOW EQUATION TRANSFORMATION
FOR THE SINGLE KONDO IMPURITY

In this appendix we provide some details on the flow-
equation treatment of the single-impurity Kondo model,
which was first presented in Ref. 36. Here we will show how
to extend the analysis of Ref. 36 to take into account the
terms of ordersl2−1d that become important in our coupled
system since they are multiplied by a possibly large energy
scaleKz in Eq. (41). We refer the reader to Ref. 36 for the
basic ideas of the approach and only present the main steps
to keep our presentation here self-contained.

1. Transformation of the Hamiltonian

The starting point for the flow-equation approach is Eq.
(10) with g chosen such that the longitudinal coupling is
eliminated. This way we arrive at the initial Hamiltonian
HsB=0d for the flow-equation approach,

HsBd = H0ffg +E dxgsB;xdfV„lsBd;x…S− + H.c.g,

sB1d

with lsB=0d=l0=Î2−Jz/Î2pvF and

gsB = 0;xd = dsxdS2pa

L
DlsB = 0d2/2 J'

2pa
. sB2d

HereVsl ;xd are normal-ordered vertex operators

Vsl;xd = :e−ilfsxd:. sB3d

During the course of the infinitesimal unitary transformations
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dHsBd
dB

= fhsBd,HsBdg, sB4d

with the generatorhsBd from Ref. 36,

h =E dxhs1dsxdfVsl;xdS− − H.c.g

+E dxdx8hs2dsx,x8dfVsl;xd,Vs− l;x8dg, sB5d

the interactiongsB;xd in Eq. (B1) becomes more and more
nonlocal. With each infinitesimal step of the transformation
one also generates a new interaction term in Eq.(B1) with
the structure

vFSzE dxssxd]xfsxd sB6d

and a nonlocal functionssxd that depends on the couplings.
The key step in Ref. 36. is that Eq.(B6) can again be elimi-
nated by a unitary transformation of the Emery-Kivelson
type,

U = :expSiSzE dxssxdfsxdD:. sB7d

We now analyze how the interaction term in Eq.(B1) is
transformed due toU, e.g.,

UVsl;ydS−U† = :expS−
i

2
E dxssxdfsxdD

3::e−ilfsyd::expS−
i

2
E dxssxdfsxdD:S−.

sB8d

In order to proceed we normal order all the exponentials,
which can be done exactly since the commutator of the
bosonic field is ac number. This leads to

UVsl;ydS−U† ~ :expSÎ2p

L
o
k.0

e−ka/2

Îk
hfle−iky + sskdgbk

− fleiky + sskdgbk
†jD:S−, sB9d

with sskd being the Fourier transform ofssxd from Eq. (B6).
The proportionality factor in(B9) leads to the nonperturba-
tive renormalization of the coupling constantgsB;xd already
obtained in Ref. 36. Except for the local coupling at the
beginning of the flow the exponential in Eq.(B9) cannot be
exactly rewritten as a vertex operator. We use two approxi-
mations that give us the correct result up to quadratic terms
in the deviation from the Toulouse line

(i) We use the infrared limitss0d instead ofsskd in Eq.
(B9).

(ii ) We expand the exponential in a way that avoids IR
divergences and neglect higher-order terms in the bosonic
operators that lead to irrelevant couplings:

:expSÎ2p

L
o
k.0

e−ka/2

Îk
hfle−iky + ss0dgbk − H.c.jD :

=:expSÎ2p

L
o
k.0

e−ka/2

Îk
„fhl + ss0dje−iky

+ s1 − e−ikydss0dgbk − H.c.…D :

=:V„l + ss0d;y…S1 +Î2p

L
o
k.0

e−ka/2

Îk

3fs1 − e−ikydss0dbk − H.c.g + ¯D:. sB10d

Retaining only the first term on the right-hand side is the
approximation used in Ref. 36: one obtains vertex operators
with flowing scaling dimensionsfl+ss0dg that eventually
become fermionic. The second term can be understood as a
correction term to this leading behavior due to the nonlocal-
ity of the interaction during the flow-equation procedure. It
is this term that eventually leads to the correction term in Eq.
s42d.

The above procedure following from Eq.(B8) has to be
repeated iteratively throughout the flow, leading to

:Vs1;ydS1 + s1 − l0dÎ2p

L
o
k.0

e−kaTK
/2

Îk

3fs1 − e−ikydbk − H.c.gD:S−

=:C†sydh1 + s1 − l0df− if̄s0d + if̄sydgj:S−

=:C†sydf1 + s1 − l0diy]yf̄s0dg:S−, sB11d

plus irrelevant terms with higher-order derivatives of the
bosonic field. Heref̄syd denotes the bosonic spin-density
field fsyd without the Fourier components for energies larger
than OsTKd since the term proportional tos1−l0d is gener-
ated successively during the flow-equation procedure. Put-
ting everything together, the HamiltonianHsBd from Eq.
(B1) acquires a new term of orders1−l0d during the flow
that has been neglected in Ref. 36. It can be viewed as an
assisted hopping term that is marginal as opposed to the
leading-order hopping term that is a relevant operator. The
new term can be eliminated by including an additional term
with the structure

GARST, KEHREIN, PRUSCHKE, ROSCH, AND VOJTA PHYSICAL REVIEW B69, 214413(2004)

214413-20



E dxhs3dsxdf:Vsl;xd]xf̄s0d:S− − H.c.g sB12d

and a suitable coefficient functionhs3dsxd into the generator
(B6). One can verify that this does not modify the previous
flow-equations for the Hamiltonian in linear order in
hs3dsxd (essentially since the assisted hopping term is mar-
ginal as opposed to the relevant hopping term that generates
the flow equations in leading order). Therefore we can ne-
glect these extra terms in the flow of the Hamiltonian when
we want to retain terms up to linear order in
sl0−1d.

2. Transformation of the impurity spin operator

However, for the transformation ofSz one needs to be
more careful sinceSz can be multiplied by a large exchange
field h= ±Kz/2 due to the coupling to the second spin. This
can be much larger than the Kondo scale close to the transi-
tion. In order to study the transformation ofSz we follow the
same route as in Ref. 36 by using the identitySz

=fS+,S−g /2 and evaluating the transformedS̃+ (S̃− then fol-
lows as its Hermitian conjugate). One needs to study the
additional effect of Eq.(B12) on S+ and finds the following
expression in the low-energy limit:

S̃+ = szE dydsyd:C†sydf1 + s1 − l0di]yf̄s0dg:, sB13d

with [to linear order insl0−1d] the same coefficientsdsyd as
in Ref. 36. This leads to

S̃z = fS̃+,S̃−g/2 =
1

2
E dxdx8dsxdd*sx8dfC†sxd,Csx8dg

+
1

2
s1 − l0d E dxdx8dsxdd*sx8d

3s− ix8fC†sxd,:Csx8d]x8f̄s0d:g

+ ixf:C†sxd]xf̄s0d:,Csx8dgd + Ofsl0 − 1d2g. sB14d

Since we are interested in an analysis in the vicinity of the
Toulouse line we only keep terms up to linear order insl0

−1d. The term of ordersl0−1d consists of two fermionic
operators and a spatial derivative of the bosonic field. If we
subtract the contractions with respect to the ground state the
remaining normal ordered operator will therefore lead to an
irrelevant coupling in the coupled Hamiltonians(39). How-
ever, we need to retain the contractions:

S̃z =
1

2
E dxdx8dsxdd*sx8dfC†sxd,Csx8dg

+
1

2
s1 − l0di]xf̄s0d E dxdx8dsxdd*sx8dsx − x8d

3kfC†sxd,Csx8dgl+ Ofsl0 − 1d2g + irrelevant

=
1

2
E dxdx8dsxdd*sx8dfC†sxd,Csx8dg

+
1

2
sl0 − 1dfshd]xf̄s0d + Ofsl0 − 1d2g + irrelevant,

sB15d

with

fshd =
def E dkdk8s]kdkdk8 + dk]k8dk8dkfCk

†,Ck8gl.

sB16d

Heredk denotes the Fourier transform ofdsxd. The expecta-
tion valuekfCk

†,Ck8gl has to be evaluated in the ground state
of the HamiltonianHspotd that is obtained from the resonant-
level model Hamiltonian plus magnetic fieldhSz after the
above unitary transformation. SinceSz “decays” into fermion
operators under this transformation according to Eq.(B14),
this Hamiltonian is given as

Hspotd = o
k

ekCk
†Ck + o

k,k8

hdkdk8Ck
†Ck8, sB17d

i.e., this is just a potential scattering model with a separable
potentialVkk8=hdkdk8. The retarded Green’s function can be
calculated in closed form

Gkk8se
+d =

dkk8

e+ − ek
+

hdkdk8

se+ − ekdse+ − ek8d
1

1 − oq

hdq
2

e+ − eq

,

sB18d

leading to

fshd =E dkdk8s]kdkdk8 + dk]k8dk8dkfCk
†,Ck8gl

=−
1

p
ImE dkdk8s]kdkdk8 + dk]k8dk8d

3SE
−`

0

deGkk8se
+d −E

0

`

deGkk8se
+dD

=−
1

p
ImSE

−`

0

de −E
0

`

deD E dk
]kdk

2

e+ − ek

− h
1

p
ImSE

−`

0

de −E
0

`

deD E dk
]kdk

2

e+ − ek

3E dk8
dk8

2

e+ − ek8

1

1 − o
q

hdq
2

e+ − eq

. sB19d

One easily shows that the impurity orbital Green’s function
Gdd

sed=0dse+d in the resonant-level model

HsRLMd = o
k

ekCk
†Ck + o

k

Ṽsd†Ck + Ck
†dd sB20d

is given by
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Gdd
sed=0dse+d = o

q

dq
2

e+ − eq
. sB21d

Using

o
q

]qdq
2

e+ − eq
= vF]eGdd

sed=0dse+d sB22d

one can reexpress(B19) as

fshd = 2vFrd
sed=0ds0d− vFh

1

p
ImSE

−`

0

de −E
0

`

deD
3f]eGdd

sed=0dse+dgGdd
sed=0dse+d

1

1 − hGdd
sed=0dse+d

,

sB23d

whererd
sed=0dsed is the impurity orbital density of states. One

notices that the impurity orbital Green’s function in the reso-

nant level model with nonvanishing impurity orbital energy
edd

†d can be written as

Gdd
seddse+d =

Gdd
sed=0dse+d

1 − edGdd
sed=0dse+d

, sB24d

which leads to

fshd = 2vFrd
sed=0ds0d− vFh

1

p
ImSE

−`

0

de −E
0

`

deD
3f]eGdd

sed=0dse+dgGdd
sed=hdse+d. sB25d

This expression can be easily worked out in various limits

fshd = H2wvF/TK
s1d for h = 0

vF/uhu for uhu @ TK
s1d , sB26d

and a smooth crossover in between(herew=0.4128 is the
Wilson number).
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