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A theory of the proximity effect in normal metal–multiband superconductor hybrid structures is formulated
within the quasiclassical Green’s function formalism. The quasiclassical boundary conditions for multiband
hybrid structures are derived in the dirty limit. It is shown that the existence of multiple superconducting bands
manifests itself as the occurrence of additional peaks in the density of states in the structure. The interplay
between the proximity effect and the interband coupling influences the magnitudes of the gaps in a supercon-
ductor in a nontrivial way and can even give rise to an enhancement of multiband superconductivity by the
proximity to a superconductor with a lower transition temperature. The developed theory is applied to the
calculation of supercurrent in multiband superconductor–normal metal–superconductor Josephson junctions
with low-transparent interfaces, and the results are compared with the predictions for multiband tunnel
junctions.
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The proximity effect is the phenomenon that a supercon-
ducting order parameter can penetrate from a superconductor
sSd into a normal metalsNd, or another superconductorsS8d
with a critical temperatureTcS8,TcS, over a distance of the
order of the coherence length, inducing a minigap inN or S.
This phenomenon is well understood, both in terms of An-
dreev reflections as well as in terms of microscopic Green’s
functions.1–9

It is not known, however, how the proximity effect will
manifest itself when multiple pairing potentials are present in
the superconductor. This question has become relevant now
that multiband superconductors are coming into practical
use. The most clear example of a multiband superconductor
is MgB2, for which the experimental and theoretical evi-
dence for the coexistence of two gaps is overwhelming.10

The multiband nature of the superconductivity in MgB2 is
theoretically well explained11 by the qualitative difference
between different sheets of the Fermi surface, together with
the large disparity of the electron-phonon interaction. There-
fore, in this paper, the question is addressed how the multi-
band nature influences the proximity effect. For example,
what will be the density of states in aSNbilayer, whereS is
a two-band superconductor?

Josephson and quasiparticle tunneling in hybrid structures
containing multiband superconductors have been investi-
gated theoretically in Ref. 12 and applied to the calculation
of the total Josephson current in aSIS two-band Josephson
tunnel junction. For all-MgB2 devices, high-quality tunnel
barriers are not available yet, and realizingSNSstructures is
an attractive alternative, of which first systems have been
realized already.13 In this paper, the theory of the multiband
proximity effect is applied to the calculation of Josephson
current inSNSstructures having two-bandS electrodes. The
practically interestingSINIScase is considered, where a non-
ideal interface transparency is taken into account. Predictions
are made for Josephson devices based on MgB2 and com-

pared with those for MgB2-based tunnel junctions.
In this paper, we will use the quasiclassical Green’s func-

tion formalism in order to describe electrical transport inSS8
hybrid structures, whereS8 is a single-band superconductor
while S is a multiband superconductor. We will restrict our-
selves to the limit of diffusive transport, which is justified if
lS,S8!jS,S8, where lS,S8 and jS,S8 are the electric mean free
path and coherence length of theS andS8 materials respec-
tively. In the dirty limit, the Green’s functions in theS8 metal
are given by the standard Usadel equations.14 In the S metal
in the regime of vanishing interband scattering, as is the case
for MgB2,

15 the Usadel equations take the form16
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Here, a and b are the band indices, e.g.,a ,b=1,2 in the
two-band case(later we will use the band indicess andp for
MgB2 specifically), Da is the pair potential,GS

a and FS
a are

Green’s functions,5 v=pTs2n+1d are Matsubara frequen-

cies,DS
a is the diffusion coefficient, andL̂ab is the matrix of

effective coupling constants. The prime denotes a derivative
with respect to the coordinatex in the direction perpendicular
to theS-S8 interface.

Equations(1) and(2) must in general be supplemented by
boundary conditions. Zaitsev17 derived boundary conditions
to the quasiclassical Eilenberger equations at theS-S8 bound-
aries in the clean limit, which were further simplified in Ref.
5 in the dirty limit. These boundary conditions have to be
modified whenS is a multiband superconductor.
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In the limit of small interband scattering a multiband su-
perconductor may be represented by separate groups of su-
perconducting electrons which interact with each other only
indirectly, via self-consistent pair potentials in the bulk.
Therefore, for the derivation of the boundary conditions for
the Usadel equations, one can apply a similar procedure to
that used in Ref. 5 in the single-band case. In the multiband
case, the set of interface parametersga and gB

a, describing
the proximity effect, should be introduced for each of the
bands.

The first boundary condition relates the current from the
S8 metal side at theS-S8 interface,sG2F8, to that from theS
side,oasS

asGS
ad2sFS

ad8. Therefore we have

jG2F8 = o
a

jS
a

ga sGS
ad2sFS

ad8, s3d

with

ga =
rS

ajS
a

rj
, sjS

ad2 =
DS

a

2pTcS
, j2 =

D

2pTcS
, s4d

in which from here on we drop all theS8-indices for quanti-
ties in theS8 layer. Here,s=1/r andsS

a=1/rS
a are the con-

ductivities of theS8 layer and the respective bands of theS
metal,D is the diffusion constant inS8 andTcS is the critical
temperature ofS. The ratio between the parametersga for the
different bands is mainly determined by the relation between
the diffusion constantsDS

a. In the case of MgB2, thep band
is generally considered to be more dirty than thes band,15

i.e., DS
p!DS

s.
The second boundary condition relates the gradient of the

Green’s functionF near theS-S8 interface to its jump at the
interface due to the finite interface resistance.5 In the multi-
band case, this boundary condition yields, in accordance
with current conservation, the equality of the current flowing
in a single band superconductorsG2F8 and the sum of the
currents injected into all bands of the multiband supercon-
ductor, thus giving

jGF8 = o
a

GS
a

gB
a sFS

a − Fd, s5d

wheregB
a=RB

a /rj. RB
a are the components of the specific in-

terface resistance, describing the tunneling of an electron
across the interface into the corresponding conduction band.
This boundary condition is general and does not depend on
the specific band structure of both materials.

In order to obtain the resistancesRB
a, we have to evaluate

the effective junction transparency components. It was first
pointed out by Mazin,18 that the normal state conductance
Ra

−1, in the limit of a specular barrier with small transparency,
is proportional to the Fermi-surface averagekNv2la, whereN
is the density of states andv the Fermi velocity. In Ref. 12 it
was further shown that the normal state resistance compo-
nent of tunneling into banda of S is given by the contribu-
tion of the electrons in banda to the squared plasma fre-
quency svp

ad2, which can be obtained from first principle

calculations. For MgB2, the ratioRB
s /RB

p=svp
p /vp

sd2 is 2 and
100 for tunneling in the direction of thea-b plane andc axis,
respectively.12

In the case of aSS8 bilayer, the Usadel equation(1) needs
to be solved in theS as well as in theS8 layer, together with
the self-consistent determination of the pair potentials inS
andS8, Eq.(2). A general numerical method, usingQ param-
etrization, F=v tanQ, and G=cosQ, is described for the
single-band case in Ref. 6. Here, we extended this method by
applying the new boundary conditions, Eqs.(3) and(5). The
density of states at energyE can be obtained by applying an
analytical continuationv=−iE to the Usadel equations and
the boundary conditions and solving the numerical scheme in
the complex energy plane.

The numerically obtained dependence of the pair-
potential on position is presented in Fig. 1 for the example in
which the coupling constants are taken as calculated for
MgB2 in Ref. 19. The parameter values are indicated in the
caption. For temperatures aboveTcS8 (solid lines in Fig. 1), it
can be seen that the pair-potential inS8 increases towards the
interface, whileDs decreases, as expected in analogy with
the proximity effect in the single-band case. The decrease in
Dp towards the interface can be explained by the relatively
strong coupling between thes and p bands. By decreasing
the interband coupling constants and by increasing the cou-
pling to S8 (lower interface suppression parameters), one can
obtain the opposite regime, in whichDp increases towards
the interface. For relatively large values ofTcS8, and for
T,TcS8, we even predict an increase inDs towards the in-
terface, as illustrated by the dashed line in Fig. 1.

The latter result is quite remarkable since it predicts a
phenomenon in which the superconductivity in a two-band
superconductor is enhanced by the proximity to a supercon-
ductor with a lower transition temperature. The physics of
this effect can be explained by considering the presence ofS8
as an additional superconducting band. The coupling be-
tweenS8 and thep band enhances the superconductivity in
the p band, while the interband coupling ensures an en-
hancement of the superconductivity in thes band towards

FIG. 1. Pair potential as a function of position for aSS8 bilayer
at T=0.5TcS. The parameters of the bilayer aregs,p=1, gB

s=2, gB
p

=1, dS/jS=d/j=10, and the coupling constants in theS layer are
chosen as expected(Ref. 19) for MgB2: L11=0.81, L22=0.278,
L12=0.115, andL21=0.091.
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theS-S8 interface. From this, it can be seen that the enhance-
ment effect is strongest when thes band is decoupled from
theS8 layer, which is the case for example when the interface
normal is parallel to the crystallographicc axis of MgB2, due
to the vanishingly small ratioRB

p /RB
s in that case. Note that

such an enhancement is a surface effect, while the critical
temperature of aSS8 bilayer is always reduced as compared
to TcS.

As an example, in Fig. 2 the results of a calculation of the
density of states in aSNbilayer are presented. In the consid-
ered case, the bulk energy gaps in a two-band supercon-
ductor are not too different. As is seen from the figure, the
density of states in theN layer has three peaks: the lowest
energy peak corresponds to the proximity induced minigap
and the two other peaks correspond to the bulk energy gaps
in the two-band superconductorS. The existence of a mini-
gap is a characteristic feature of the proximity effect in a
SN-bilayer in the dirty limit, as was studied in detail in the
single-band case in Ref. 6. As we can see, the minigap per-
sists in the two-band case as well and its magnitude depends
on the parameters of the interface, thicknesses of theN andS
and the values of the bulk gaps in the superconductor.

The next step in investigating the influence of multiband
superconductivity on the proximity effect is to study super-
currents in multiband proximized structures. We will con-
sider double-barrier structures consisting of twoS electrodes
coupled by a normal metalN. As a model system we use a
SINISdouble-barrier hybrid structure, since in practical de-
vices interface potential barriers are always present at the
S-N interfaces, either originating from a Fermi-velocity mis-
match, degradation of surface layers, or artificially deposited
oxide barriers.

If the conditions of the dirty limit(electron mean free path
l !d,j) are fulfilled in theN interlayer, than the stationary
Josephson effect in the structure can be analyzed in the
framework of the Usadel equations by the method developed
in Refs. 5 and 17 for the single-band case. We assume that
the interface transparencies are small enough such that the

condition 1+gB1,2
a @g1,2

a holds at bothNS interfaces(here
and below we drop the subscriptS). In this case, the suppres-
sion of superconductivity in theS layers is weak and the
Green’s functions in the electrodes near the interfacesG1,2

a

andF1,2
a are equal to their bulk values. To calculate the su-

percurrent, it is sufficient to consider Eq.(5) at the two in-
terfaces, giving

jGF8 = o
a

G1,2
a

gB1,2
a s±F1,2

a 7 Fd, x = ±
d

2
. s6d

For simplicity, we will consider symmetric junctions
whereG1,2

a ;GS
a andgB1,2

a ;gB
a, and where the functionsF1,2

a

are related to the phase shiftw across the junction byF1,2
a

=Da exps±iw /2d. Further, we consider purely normalN layer
with vanishing pair potentialD=0 and restrict ourselves to
considering the limit of a small interlayer thicknessd!j.

In the limit d!j, there are two characteristic frequencies
V1,2 in the Usadel equations(1) and (2). At v&V1=pTcS

j
d

@V2=pTcS we can neglect all nongradient terms in the Us-
adel equation. Hence,fG2F8g8=0, and in the zero approxi-
mation ond/j one obtaines that allF functions are spatially
independent constantsF=A. In the next approximation we
have

F = A + B
x

j
+ A

x2b2

2j2 , b2 =
v

pTcSG
. s7d

From the boundary conditions and by taking into account
that in our modelF1,2

a =Da exps±iw /2d, we finally will have

A =
D̃h

G̃
, B =

iD̃

G

d

j
sinsw/2d, s8d

G =
v

Îv2 + A2
=

vG̃

Îv2G̃2 + D̃2h2
, s9d

wheregBM
a =gB

ad/j, h2=cos2sw /2d and

G̃ = o
a

GS
a

gBM
a +

v

2pTcS
, D̃ = o

a

GS
aDa

gBM
a . s10d

The density of statesNsEd=ResGd in the interlayer of the
double-barrier junction can now be found from an analytical
continuation of Eq.(9) to real energiesv=−iE. The results
for the two-band case are plotted in Fig. 3. The known den-
sity of states for a single-bandSINIS junction21 is shown in
the inset. ForgBM!1, the single-band results show a peak in
the density of states atD cossf /2d, while the density of
states in the two-band junction in this regime is predicted to
have a peak at a value that is even lower thanDp cossf /2d.
For larger values ofgBM, the density of states shows three
peaks: at the minigap and atDp andDs, in analogy with the
two peaks in the density of states of a single-bandSINIS
junction.

Substituting Eq.(8) into the supercurrent expression

FIG. 2. Normalized density of states in a proximizedSNbilayer
at several positions in the bilayer(1–4, as indicated in the inset),
whereS is a two-band superconductor. The parameters of the bi-
layer areg1,2=0.1,gB

1,2=5, dS/jS=10,d/j=1 and the coupling con-
stants in theS layer are chosen asL11=0.5, L22=0.4, L12=L21

=0.1.
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I = s2pT Im o
vù0

1

v2G2F*F8, s11d

and takingF*F8 in lowest order equal toA*B, we obtain

I =
pT

jr
o
vù0

dD̃2 sinsfd

vjÎv2G̃2 + D̃2h2
. s12d

A generalization to take boundary asymmetry and a finiteD
in the interlayer into account can be made straightforwardly.

In the two-band case in the limitgBM
s →`, which is for

example the case for tunneling in the MgB2 c-axis direction,
the normal metal is only proximized by thep gap of elec-
trodeS and Eq.(12) gives

I =
pT

jrgB
p o

vù0

GS
pDp

2 sinsfd

vÎFv +
v2gBM

p

2pTcSGS
pG2

+ Dp
2 cos2Sf

2
D ,

s13d

which has been previously obtained5,20 for SINIS junctions
with single-band superconductivity inS.

If there is no superconductivity in one of the bands, Eq.
(12) describes the presence of an effective normal shunt con-
nected parallel to the supercurrent. This leads to a reduction
of the IcRN product as compared to the case of aSINISjunc-
tion with single-band superconductivity in the electrodes.

The temperature dependence of the critical current can
now be calculated forSINISJosephson structures for differ-
ent orientations of the crystallographical axis with respect to
the interface normal. The gap functionsDp,ssTd and the ratio
gB

s /gB
p follow from band structure calculations.12 The results

are shown in Fig. 4 for vanishingly smallgBM, and compared
to the calculation results forSISjunctions.12 The full specific
interface resistance of aSINIS junction RN=RB

sRB
p / fRB

s

+RB
pg. It is clearly seen that the critical current ofSINIS

junctions is larger than inSIS structures, practically in the
whole temperature region, as is the case for single band
superconductors.5,20 At low temperatures theIcRN product
can be as large as 5.2 mV when only thep band contributes
to the current and close to 7.3 mV when the sum over dif-
ferent band contributions can be taken into account, as is the
case for tunneling in the direction of thea-b plane. The
negative curvature ofIcRNsTd is a direct consequence of the
two-band nature of superconductivity and is absent in
IcRNsTd of single-bandSINIS junctions in the regime of
small gBM.20

In summary, we have formulated a microscopic theory of
the proximity effect in hybrid structures based on multiband
superconductors in the diffusive limit. We have shown that
the existence of multiple superconducting bands manifests
itself in the proximity effect between a normal metal and a
superconductor as the occurence of additional peaks in the
density of states at the normal metal side. The interplay be-
tween the proximity effect and interband coupling deter-
mines the gap magnitudes at the interfaces. We predict an
enhancement of superconductivity at the surface of a multi-
band superconductor by the proximity to a superconductor
with a lower transition temperature. The supercurrent in
multiband SINIS Josephson junctions was calculated and
compared to known single-band results and predictions for
multiband tunnel junctions.
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and A.E. Koshelev and support from INTAS Projects
Nos. 2001-0617 and 2001–0809. M.Yu.K. acknowledges
support from the Russian Ministry of Industry, Science and
Technology.

FIG. 3. Normalized density of states in the interlayer of aSINIS
double-barrier structure, whereS is the two-band superconductor
MgB2, and the phase difference over the junction isp /2. The den-
sity of states is shown for smallgBM (dashed line:gBM

s =0.2, gBM
p

=0.1) and largegBM (solid line: gBM
s =20, gBM

p =10). For compari-
son, the inset shows the density of states in the interlayer of aSINIS
junction with single-band superconductors(solid line: gBM=2,
dashed line:gBM=2310−3).

FIG. 4. IcRN for double-barrier MgB2 SINIS junctions in the
regime of gBM

s,p!1 (solid lines), compared toIcRN for MgB2 SIS
tunnel junctions(Ref. 12) (dashed lines). The total IcRN of a-b
plane MgB2 junctions is an average over all bands, whilec-axis
junctions only contain ap-band contribution.
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