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We study the dynamics of an electron wave packet in a one-dimensional Anderson model with anonrandom
hopping falling off as some powera of the distance between sites. We have found that the larger the hopping
range, the more extended the wave packet as time evolves. When the disorder is increased, the wave packet
tends to be more and more localized in a finite region of the lattice. For a low degree of disorder, the exponent
a=1.5 indicates the onset for fast propagation of the wave packet. This value is in good agreement with
previous results obtained by diagonalizing the systems Hamiltonian. The inclusion of a dc electric field
introduces the effect ofdynamical localization, i.e., the acting field produces the localization of the wave
packet in a definite region of the lattice, irrespective of the degree of disorder and hopping range. By appro-
priately tuning the electric field we obtained the Bloch oscillations of the wave packet.
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I. INTRODUCTION

The single parameter scaling theory predicts the absence
of extended states in noninteracting disordered electronic
systems, in one-(1D) and two-(2D) dimensions.1 Thus the
theory precludes the existence of a metallic phase and a true
localization-delocalization transition (LDT) in low-
dimensional systems.2 Nevertheless there is experimental
evidence that this general belief may be incomplete. Metallic
behavior, i.e., resistivity that decreases with decreasing tem-
perature, has been observed to the lowest accessible tempera-
ture(for a state of the art in this subject, we refer to the work
by Abrahams, Kravehenko, and Sarachik3). Recently, experi-
ments performed on disordered 2D electron gas in Si hetero-
structures show the existence of a different kind of metallic
behavior.4 On the other hand, extensive numerical analysis
done on binary alloys also points towards the existence of a
metallic phase in a 2D disordered system.5,6

It is worth mentioning the situation encountered in 1D
tight-binding systems, i.e., where only hopping between
nearest neighbors was considered. When the system is ran-
dom the carriers cannot propagate through it. Nevertheless,
there are exceptions to this rule. In fact,deterministicnon-
periodic structures, such as Fibonacci, Thue-Morse, and
Harper models, can even present superdiffusive
propagation.7–9 In addition, there exist low-dimensional dis-
ordered systems that cannot be described by the standard
Anderson model. For instance, the unexpected high conduc-
tance of several doped quasi-1D polymers was explained by
Dunlap, Wu, and Phillips.10 Assuming pairwise correlations
in the disorder since they cause delocalization of
eigenstates.11 Similarly, the absence of Anderson localization
in the presence of spatial correlations was put forward to
account for transport properties of semiconductor superlat-
tices with intentional correlated disorder.12

In this paper we present a systematic analysis of the effect
of long-range hopping on the wave packet dynamics in a

random 1D system. We consider on-site(diagonal) energetic
disorder, but withnonrandom long-rangeintersite coupling.
It was argued recently13–15 that low-dimensional systems
with diagonal disorder andnonrandomintersite coupling,
which falls according to a powerlike law, can support ex-
tended states at one of the band edges. Furthermore, in recent
works14,15 it was claimed that a LDT may occur in 1D and
2D random systems with nonrandom powerlike hopping.
These results, besides their interest from a general point of
view, are relevant in context of Frenkel excitons and mag-
nons in the presence of diagonal disorder, where the long-
range dipole-dipole coupling plays a major role.

The paper is organized as follows. In Sec. II we describe
the model we will be dealing with and summarize previous
work, which is necessary for a better understanding of the
present paper. The dynamics tools used to characterize the
wave packet dynamics are introduced in Sec. III, namely the
mean square displacement(MSD) and the participation func-
tion, at the same time that we presented 3D graphs of the
wave packet evolution. In order to characterize the dynamic
processes, we consider different values of the relevant pa-
rameters of the model, i.e., the exponent of the power law of
the hopping term and the intensity of the disorder. The body
of the paper is Sec. IV, where we present our results of the
dynamics of initially localized wave packets, as well as relate
the dynamical results to what is known from previous static
study. Finally, in Sec. V, we discuss the inclusion of a dc
electric field that produces dynamical localization.

II. MODEL HAMILTONIAN

In a previous work we have analyzed the effect of long-
range hopping on the propagating properties of wave packets
in regular (nondisordered) 1D systems.16 The hopping was
nonrandom and falling off as somepowera of the distance
between sites. We were able to show that different regimes of
propagation arise for different values ofa. Thus, fora=0 we
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obtained the phenomenon ofself-trapping, that is, starting
with a well-localized packet, it remains localized around the
starting position. By increasinga the localization is lost.
When the power exponent equals unity, and for sufficient
short times, the packet diffuses with a diffusion coefficient
that increaseswith the number of sites. This effect is absent
in the model with only nearest-neighbor hopping. For larger
times, the packet propagates subdiffusively. The lattice sub-
jected to a uniform applied electric field was also analyzed in
our work, showing that the effect ofdynamical localization
takes place.

We now focus on the problem of long-range hopping in a
random 1D system with diagonal disorder. The model
Hamiltonian is the following:

H = o
n

«nan
†an + o

n
o
rÞ0

S V

raDsan
†an+r + an+r

† and, s1d

wherean
† creates an electron at siten, «n is the corresponding

on-site energy which, following Anderson,17 was taken from
a uniform random distribution within an interval
f−D /2 ,D /2g, and the parametera determines the range of
the nonrandom hopping. Therefore we consider a system
with diagonal disorder and nonrandom power-law decaying
hopping terms. We can characterize the strength of the dis-
order through the dimensionless parameterh;D /V, usually
referred to asdegree of disorder.

Recently, a very comprehensive study of the nature of the
eigenfunctions of this Hamiltonian(1) was presented.14,15 It
was suggested that there exist delocalized states at the top of
the band(for V.0) even for moderately large diagonal dis-
order, provided 1,a,3/2 in a 1D geometry. The system
undergoes the LDT on further increasing the degree of dis-
order. For instance, fora=4/3 it hasbeen established that
the critical degree of disorder for the LDT to occur ishc
=10.9±0.2.18 The marginal casesa=3/2d is analogous to the
standard 2D Anderson model15 where the states are weakly
localized, as predicted by Abrahamset al.1

In the present case it is expected that the influence of the
long-range hopping, i.e., thea exponent, should produce dif-
ferent dynamical behaviors as compared to the ordered case.
First of all, it is worth noticing that hopping is favored be-
tween sites degenerate in energy, while hopping between
sites with different energies is inhibited. Our results show
that, for a fixedV in (1), a decreasing MSD is obtained while
increasing the exponenta. This can be understood by notic-
ing that the greater the exponent, the lower the number of
sites to which the electron can hop. On the other hand,
smallera values makes the hopping more extended and in-
crease the possibility for the electron to jump to more distant
sites. As a consequence, the smaller the exponent, the greater
the MSD for a fixedV. This is in contrast to the behavior
observed in ordered structures. On the other hand, the analy-
sis of the participation function(to be defined below) is of
great utility since it provides precise information on the ex-
tension of the wave packet.

III. DYNAMICAL PROPERTIES

In order to study the dynamical properties of our model,
we expand the normalized wave function in the Wannier rep-
resentation

ucstdl = o
n

fnstdunl, s2ad

and the time-dependent Schrödinger equation for the Wan-
nier amplitudesfnstd reads

i
dfn
dt

= enfn + o
r.0

fn+r + fn−r

ra s2bd

in terms of the dimensionless variablest=Vt/" and en
=«n/V. In the present simulations, we have assumed the fol-
lowing values: V=25 meV and the lattice parameterd
=100 Å.

Our main aim is to explore thesa ,hd plane in order to
characterize the different regions of propagation and local-
ization. To accomplish the task, we analyze the following
magnitudes, namely the MSD, which in units of the lattice
parameter reads

kr2lstd = o
n

ufnstdu2n2, s3ad

and the participation function19

Pstd = Ho
n

ufnstdu4J−1
. s3bd

To complete the analysis we show plots of the wave packet
taken at different times.

The dynamical behavior of the wave packet for a given
random configuration deserves further comment. In fact, it
could happen that for a particular configuration, sites very
close together can be degenerated. In such a situation we
should observe oscillations between these two sites, where
the Wannier amplitudes will be much greater than in any
other site of the lattice. The shorter the range of the hopping,
the more pronounced this oscillatory movement will be. On
the other hand, if the degenerate sites are far from each other,
as it was said above, the amplitude of the wave at the distant
site will grow in time. In other words, the kind of propaga-
tion one obtains in a random lattice could depend on the
particular configuration assumed. Consequently, it is manda-
tory to perform an average over several configurations in
order to mimic the behavior of real systems. In the next
section we present the statistics obtained over a significative
number of configurations.

IV. NUMERICAL RESULTS

Since the hopping considered is long range, we expect
that initial wave packets of different extensions will evolve
in time in a different way. Thus, we shall present the result of
calculations where an initial Gaussian wave packet is cen-
tered at the middle of the lattice withN sites, and the stan-
dard deviation takes on three possible values, namelys
=0,1, and 3. Thes=0 case corresponds to a particle local-
ized in a single site. By taking the more extended initial
packetss=3d, we shall see that the corresponding MSD and
participation function are greater than those in a more con-
fined situation,s=1. In Fig. 1 we show the MSD and par-
ticipation function as functions of time forh=1, s=3 and
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several values ofa. Starting witha=1.1 (extended hopping)
and ending witha=4.0, one notes that the wave packet
clearly propagates until fora slightly larger than 1.7 starts to
show a tendency to localization. This conclusion can be un-
derstood as follows. Saturation together with strong fluctua-
tions around maximum values for the MSD and participation
are indications that the tail of the wave packet has reached
the boundary. Forh=1 anda greater than 1.7 we note that
saturation withabsenceof fluctuation occurs at the same
time that the MSD values are smaller than that corresponding
for smallera, as shown in Fig. 1. The same trend is observed
in Fig. 2 for h=2 but, in this case, the tendency to localiza-
tion occurs fora greater than 1.5 instead. Finally, fora=4
we note strong localization of the wave packet, as expected,
since we are close to the nearest neighbors Anderson regime.

To shed more light into the interplay between the degree
of disorder and the hopping range we show in Fig. 3 the
MSD for a=1.3, 1.5, and 1.7, while varying the degree of
disorderh from 1 to 4 in the three cases, i.e., we illustrate
situations for low to moderate disorder. One notes in Fig. 3
the MSD values for any givenh increase rapidly when the
hopping range is enlarged, that is fora going from 1.7 to 1.3.
It is worth noticing that for alla considered, the MSD values
corresponding toh=1 andh=2 are very different. It is evi-
dent from the obtained curves that for low enough disorder
sh=1.0d, the case ofa=1.5 is a kind of threshold since for
lower values ofa propagation is very fast, while for values
larger than 1.5 the packet starts to slow down. The interplay
we are discussing is evident in the plots we show in Figs. 4
and 5. In fact, in Fig. 4 we display the evolution in time of
the wave packet for the two degrees of disorder, namelyh

=1 and 2 and fora=1.3. We note that the spread of the
packet is larger in the caseh=1, while for h=2 one notes a
much more localized wave. In Fig. 5 we show the time evo-
lution for the same two degrees of disorder, but fora=1.6. In
both cases the spreading becomes evident, but forh=2 one
notes a tendency to localization, which is absent forh=1.

Another feature that emerges from our model of long-
range hopping is that the dynamical quantities evaluated de-
pend much on the number of sites considered in the calcula-
tions, especially at lowa, as well as on the structure of the
initial wave packet. To illustrate this phenomenon we show
in Fig. 6 the participation function for two degrees of disor-
der h=1 and 2, when the initial wave packet was taken for
s=1 (more localized) and the number of sites considered
varies from 2000 up to 4000. We can clearly see that both
functions increase with the number of sites and, at the same
time, it is evident the different situations appearing forh
=1 andh=2. Localization is evident in the latter case. Next
we treat the initial wave packet corresponding tos=3 (more
extended) and the same other parameters than before. Now
the dispersion of values when considering different site num-
bers is greater than in the previous case, and the participation
function takes larger values than for the cases=1 (see Fig.
7).

We have performed simulations with 100 different con-
figurations and took the average values between them, at
each time, for the MSD and participation functions. At the
same time, we evaluated the standard deviation that could
attain, at most, 10% of the average value, and this for large
times. We show in Fig. 8 the results corresponding to the
case:s=3, h=1, anda=1.8.

FIG. 1. Mean square displacement MSD(left panel) and participation function(right panel) for h=1 and several values ofa from 1.1 to
4.0; note that in the left panel thea=4.0 case is out of scale. Froma=1.7 on, we note a tendency to localization of the wave.
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V. EFFECT OF AN APPLIED dc ELECTRIC FIELD

We shall now consider the effect of an applied dc electric
field on the propagating properties of wave packets. To in-
clude the field in the calculations we add to the Hamiltonian

of Eq. (1) the following term:on e E n d an
+an, whereE is

the field intensity andd is the lattice parameter. In terms of
dimensionless unitsE=Eed/V, we have to add to Eq.(2b)
the termEnfn. We have considered various degrees of disor-

FIG. 2. Mean square displacement MSD(left panel) and participation function(right panel) for h=2 and the same values ofa as in Fig.
1. The difference with the previous case is that already fora=1.5 the localization is apparent.

FIG. 3. MSD forh varying between 1 and 4(small to moderate disorder), and three values ofa=1.3, 1.5, and 1.7. The figure shows the
interplay between the degree of disorder and the hopping range while determining the propagation/localization of the wave packet.
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der as well as different hopping ranges together with several
field intensities. Accordingly, we have to explore a 3D space
parameterssh ,a ,Ed at the same time that we analyze the
time evolution of wave packets with two initial conditions
associated withs=0 and 3. To analyze the effect of the field
on the displacement of the wave packet, we have included
the time evolution of its centroidkxstdl. We shall present the
results corresponding to the case in which the starting wave
packet is more extended, namely whens=3, since in the
other cases of more localized initial conditions the effect of
the field is more pronounced. First, we present the case for
h=2.0, a=1.3 and a weak fieldE=0.04 sE=1.0 kV/cmd.
Note that for these parameters in the field-free case, the wave
propagates rapidly, while in the presence of this field remains
localized in a definite region of the lattice, is shown in Fig. 9.

Following this, we treated the case whereh=1 (weak
disorder) a=1.5 andE=0.2 sE=5.0 kV/cmd, a field intensity
that can be considered as moderate. The wave remains local-
ized, but now in a smaller region since we have increased the
field intensity, as it is shown in Fig. 10.

Now we present the wave packet evolution for the case of
a strong electric field:E=0.4 sE=10.0 kV/cmd, h=0.5 (very
weak disorder), anda=1.0. It is a case of a strongly local-
ized wave due to the electric field strength, as is evident in
Fig. 11.

Note that the wave remains localized inall cases. The
region of localization is reduced as the field intensity is in-
creased. We would like to call attention to an interesting
situation that arises when, by tuning the electric field, we can
reach a situation in which the on-site energies of two neigh-

FIG. 4. Plots of the wave
packet fors=3, a=1.3 andh=1
(left panel) andh=2 (right panel).
Note the stronger localization of
the wave packet around the start-
ing sites for the latter case.

FIG. 5. Same as in Fig. 4, but
for a shorter hopping rangesa
=1.6d.
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boring atoms coincide. In this case the wave performs oscil-
lations with precisely the Bloch frequency associated with
this particular field value, as is shown in Fig. 12, where the
field intensityE=4.0 sE=100 kV/cmd was chosen such that

the on-site energies at sites 0 and −1 are degenerate. Note
that the centroid oscillates precisely between these sites. Af-
ter we submitted the manuscript, we became aware of a work
in which the existence of Bloch oscillations in 1D random

FIG. 6. Participation function forh=1 (left panel) andh=2 (right panel) with a=1.5 ands=1 in both cases. The calculations correspond
to lattices from 2000 to 4000 sites(from bottom to top). Note that the dispersion of points obtained for different sizes in the caseh=1 is
greater than for the more localized wave corresponding toh=2.

FIG. 7. Same as Fig. 6 but for a less localized initial wave packetss=3d. The dispersion of points is greater than those shown in Fig.
6.
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systems is reported.20 By using an experimental technique,
Lyssenkoet al.21 were able to perform a direct measurement
of the spatial displacement of Bloch oscillating electrons in
ordered semiconductor superlattices.

We conclude in this section that the presence of an elec-
tric field introduces the effect of dynamical localizationeven
when extended hopping range is considered, a similar situa-
tion as encountered in the perfect crystal case.16

VI. CONCLUSIONS

We have studied the effect of long-range hopping on the
dynamics of wave packets in a random 1D Anderson system.
We assumed nonrandom power-law decaying hopping with
an exponenta, while the on-site energies were distributed
randomly in the intervalf−D /2 ,D /2g. We analyzed the in-
fluence of the spatial extent of the initial wave packet on the

FIG. 8. Mean square displacement MSD(left panel) and participation function(right panel) for s=3, h=1, anda=1.8. The middle curve
is the average, over 100 configurations. We also show the standard deviation.

FIG. 9. Time evolution of the
wave packet corresponding to the
case:s=3, h=2.0, a=1.3, andE
=0.04. Also shown, the centroid
and the MSD as functions of time.
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dynamical properties, with and without the action of a dc
electric field.

Fixing the degree of disorderh, and considering several
values ofa, we found that both the MSD and participation
functions decrease when increasinga, i.e., the larger the
hopping range, the more extended the wave packet as time
evolves. When the disorder is increased, the wave packet
tends to be more and more localized in a finite region of the
lattice. The interplay between the degree of disorder and the
hopping range determines the propagating properties. As an
example of this, moderate degree of disorder while consid-
ering different extents of hopping range gives rise to differ-
ent behaviors related to propagation or localization. This ef-
fect was evident in the plots of the time evolution of the
wave packet.

Some words concerning the comparison to static calcula-
tions are in order. As mentioned previously, the uppermost
eigenstate of the Hamiltonian(1) is extended for a moder-
ately high degree of disorder and undergoes a LDT on in-
creasing the magnitude of the disorder, provided 1,a,1.5.
The critical value of disorder in the thermodynamics limit
sN→`d depends ona and, for instance, it has been found
that hc=10.9±0.2. But this value diminishes on decreasing
the system size due to the lowering of the uppermost band
edge.18 In addition, the static calculations(i.e., diagonaliza-
tion of the Hamiltonian)14,15,18 only refer to the uppermost
state. It is also known that lower states are less extended14

and, consequently, they are already localized when the up-
permost state undergoes the LDT. Since the wave packet can
be described as a superposition of all eigenstates, it is clear

FIG. 10. The same as in Fig. 9,
but for the cases=3, h=1.0, a
=1.5, andE=0.2.

FIG. 11. The same as in Fig. 9,
but for the case:s=3, h=0.5, a
=1.0, andE=0.4.
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that we cannot expect a perfect quantitative agreement be-
tween static and dynamics calculations. In particular, it is
now rather clear the reason why the critical values for the
wave packet obtained in this work, which involve all eigen-
states, is lower than that corresponding to the uppermost
state purported in Ref. 18.

Finally, we presented the results concerning the applica-
tion of a dc electric field. It was clearly shown that the pres-
ence of the field causes the wave packet to remain in a defi-
nite region of the lattice; it is the phenomenon of dynamical
localization, always noticeable irrespective of the degree of
disorder and the extended range of the hopping. Clearly the
stronger the field is, the more localized the wave, so as far as
localization is concerned, the behavior of the wave packet is

controlled mainly by the electric field. Furthermore, when
the disorder is sufficiently smallsh,1d and for short-range
hoppingsaù4d, we recovered the Bloch oscillations by tun-
ing the electric field intensity. Also we obtained the spatial
displacement of the center of the wave packet as driven by
the electric field.
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