PHYSICAL REVIEW B 69, 214104(2004)

Matching conditions in the quasicontinuum method: Removal of the error introduced
at the interface between the coarse-grained and fully atomistic region

T. Shimokawa;?2 J. J. MortenseR,J. SchigtZ and K. W. Jacobsén
1Department of Mechanical Systems Engineering, Kanazawa University, 2-40-20 Kodatsuno, Kanazawa, Ishikawa 920-8667, Japan
’Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,
Osaka 565-0871, Japan
SCAMP and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 4 September 2003; revised manuscript received 23 January 2004; published 15 June 2004

The quasicontinuum method is a way of reducing the number of degrees of freedom in an atomistic
simulation by removing the majority of the atoms in regions of slowly varying strain fields. Due to the different
ways the energy of the atoms is calculated in the coarse-grained regions and the regions where all the atoms are
present, unphysical forces called “ghost forces” arise at the interfaces. Corrections may be used to almost
remove the ghost forces, but the correction forces are nonconservative, ruining energy conservation in dynamic
simulations. We show that it is possible to formulate the quasicontinuum method without these problems by
introducing a buffer layer between the two regions of space. The method is applicable to short-ranged poten-
tials in the face-centered cubic, body-centered cubic, and hexagonal close-packed crystal structures.
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[. INTRODUCTION the potential is limited to the fourth-nearest neighbors, and in
body-centered-cubighcc) crystals to the third-nearest neigh-
A successful description of material properties sometime$ors.
involves a careful description of the material at both atomic  Finally, we will look at two illustrations of the new QC
and microscopic length scales. A couple of methods havenethod: Calculation of the vacancy formation energy in Al
been proposed for coupling these length scales, including thend « iron, and a calculation of the grain boundary energy of
coupled finite element/molecular-dynamics/tight-bindinga tilt boundary in Cu. The Al calculations use an embedded
method!-2 the coarse-grained molecular-dynamics methbd, atom mode(EAM) potentiall2 the a-iron calculations use a
and the quasicontinuui@C) method>~’ the latter being the  Finnis-SinclairN-body potentiak314and for the Cu calcula-
subject of this paper. tions we use an effective medium thegBMT) potential®
The QC method combines continuum and atomic descripThe cutoff distance is between fourth- and fifth-nearest
tions, thus allowing for an efficient description of three- neighbors for the EAM, between second- and third-nearest
dimensional3D) systems where several length scales are oheighbors for theN-body potential, and between third and
importance*A semiempirical interatomic potential is used fourth for the EMT potential.
for the atomistic region and the continuum region is de-
scribed by a special finite element method, where the ele-
ments are tetrahedra with atoms at the corners. Each element IIl. THE QUASICONTINUUM METHOD
has a crystal orientation matching the corner atoms. The el-

ement region is joined to the atomistic region giving rise t0  The basic idea of the QC method is very simple. In order
an interface between the two regions. to perform an atomic simulation efficiently and save compu-
It turns out to be very difficult to define the energy of the tational resources, a continuum approximation is adopted
interface region in such a way that the coupling of the twoyhere atomic deformation-gradient fields are small, assum-
descriptions is completely seamless. By seamless, we Megky that the continuum method provides almost the same
no discontinuities in the force, stress, and displacemenfegylt as a full atomistic simulation. Figureal shows a full
fields. We have found that by introducing a buffer layer of gtomistic configuration near a vacanayodel A). The en-

region and the atomistic region, we can achieve a seamless

coupling of the two descriptions.

In the following we will first describe the traditional QC A= S EN, (1)
method and how it fails at interfaces. After introducing the “
concept of local and nonlocal atoms from Ref. 6, we develop
the idea of a different kind of quasi-nonlocal atom, which
will enable us to seamlessly couple local and nonlocal rewhereE" is the energy of atonw and N” is the set of all
gions, and account for how to calculate the energy of quasiatoms in systenA. We call these atoms nonlo€dbecause
nonlocal atoms. The method is limited to potentials with athe energy depends on the positions of all atoms within a
relatively short range. In face-centered-culiicc) and  certain cutoff distanc&; from the atoms. The force acting
hexagonal-close-packe&tcp) crystal structures, the range of on atoma is then
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FIG. 1. Coupling of atomic and continuum
model with one vacancy. To the left is a fully

VavavavavaV,

o O,—Q“O\\O © "Av‘v‘v a atomistic model, to the right a quasicontinuum
© o076 0 0~0 O V2 OaWAW, model. In the quasicontinuum model open circles
0;/0 O O 0.0 O7 U0l show nonlocal atoms and solid circles show local
O bRcO O O O @] :ORCO O O O atoms. In the small gradient fields far from the
O“\ O 0% O,/' o oo o0o%o o ,,"o vacancy, each local atom in the quasicontinuum
o O o 0O O,/'O o o) OO 0O O,x"O 0O model represents several nonlocal atoms in the
o o OO o O o o oo o o fully atomistic model.
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N JEN In order to calculateES in the 3D case, each elemest
A JE, o S ; 2 3
FAz=——2- , (2)  must have a local set of lattice basis vectatsaZ, anda’,
I a o Ny I describing the strain state of the infinite crystal. The lattice

basis vectors of an element are linearly related to the posi-
whereNQ is the set ofnonloca) neighbors of aton within  tions of the four corner aton(see, e.g., Ref. J1Everything
the cutoff. outside an element is irrelevant for its energy—that is where

Figure 1b) shows the QC moddimodel B) correspond- the termlocal comes from.

ing to modelA. Here, open circles are nonlocal atoms treated We have to divide an elememt into representative re-
exactly as in modeA and solid circles are so-called local gions for the corner atoms to decide the values @b%. The
atoms making up the corners of a triangulation of the regiomepresentative region of each local atom can be defined by
with a slowly varying deformation gradient. In this study the using the Voronoi diagram. This is the dual structure of the
Delaunay triangulatio is used to divide a system region Delaunay triangulation, so one corner of the Voronoi polyhe-
into finite elements: in the two-dimension@D) example in  dron is certain to correspond to one element. He an
Fig. 2a), the elements of the triangulation are triangles ancbe obtained as the size of the region of the eleneamhich
in the 3D case, the elements will be tetrahedra. Each locag part of the Voronoi polyhedron of the atg Notice that
atom B (corner atom represents a certain number of atomsin a case of an element with a narrow shape as shown in Fig.
wj in each of the neighboring elements We define the  2(b), a corner of the Voronoi polyhedron is outside of the

energy of a local atonB as corresponding element, so the element region cannot be di-
vided by the Voronoi diagram. In this case, the element re-

Ezz > szE, (3) gion is divided by the position of its center of gravity. As an
e alternative to using the Voronoi diagram, one could use the

solid angle of the corner of the element to determifjeThe

E . . . . .
where E; is the energy of a nonlocal atom in an infinite |5 eg ofwf; are determined at the beginning of the simula-
crystal in a state of strain determined by the corners of thgyn and remain fixed during the simulation.

To compare with system, we now write down the force
acting on atomy in the modelB

elemente. Let NB and LB be the nonlocal and local atoms, respec-
tively, of systemB. For the QC systerB, the total energy is
(@ ] ]
the Delaunay trlarjguatlon. o EB= E E': + 2 EI[;- 4)
b b‘ aeNB BELB
@ @)

R

?' N §EN L
A e Q (9E a' aE
FB:__a_ _ _.Q, 5
? @V @ ar ,EB ar, Ea&ra ®)
Y ; . ! a a'eN, Bel

the Voronoi diagram

where N2 is the nonlocal neighbors of atoma within the
cutoff R; for model B.

FIG. 2. Representative regiasf; of local atomg in elemente is Looking at the specific nonlocal atomdepicted in Figs.
obtained by using the relation between the Delaunay triangulatiori(a) and b), we now compareée, and F, which ideally
(solid lineg and the Voronoi diagrartbroken lineg. When a corner  should be equal. The atom in the modeB is not a corner of
of the Voronoi polyhedron of the elemeet is outside the element, any element, so the last terms in E§) vanishes. Subtract-
the center of gravitysolid squargis used to defineuzl,. ing, we get forFE—Fﬁ
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2 J ED; (a) model C| (b)
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whereNA\NB is the set of nonlocal neighbors of theatom

® ©® © ®©® ®

present in the model and not in the modeB—in other 0/0 0 oY0% 0
words: The neighbor atoms of atom that have been o oRg o do
changed from nonlocal atoms in mod&lto local atoms in 0%0 090 0o/0
modelB 0 0~0 0 00 O
" . . O O o0 O O
The difference in Eq(6) is nonzero for a nonlocal atom & 5 & & 6 8
close to a nonlocal/local interface, which proves the exis- 0000 OO

tence of unphysical force@host forcegin the simple QC
model. Similarly, one can show that there are ghost forces FIG. 3. Concept of a quasi-nonlocal atofa) Quasi-nonlocal
acting on local atoms close to a nonlocal/local interfaceatoms (double circley are located between nonlocal and local
These ghost forces will be present even if the atoms have theomic regions(b) The quasi-nonlocal atony images neighbor
positions of a perfect crystal. Relaxing the structure of modeatoms(gray circles by using first neighbor atomic positioribig

B to remove the forces in the perfect crystal structure, willopen and double circlgsxcept for nonlocal atomgsmall open

lead to an unphysical ground-state enelgyer than that of ~ circles within the interactive field.

the correct modeA.

One way to remove the ghost forces is to introduce The potential energy of a quasi-nonlocal atom is calcu-
“static” correction forces as it is done in Ref. 6. Relaxing thelated as if it was a nonlocal atom with one important differ-
structure using these forces will require a recalculation of thence: When calculating the energy of a quasi-nonlocal atom,
correction forces, since they depend on the atomic positiongnly the positions of nearest-neighbor atoms as well as the
The updating of the correction forces can be done more gpositions of nonlocal atoms within the cutoff distance are
less frequentl§.A very serious problem with the use of cor- used. On the local side of the interface, the distance vectors
rection forces is that they are not derivable from a “correc-+o the nearest-neighbor atoms are used to extrapolate the po-
tion potential energy,” i.e., they are nonconservative. Wesitions of second nearest neighbors, third nearest neighbors,
have found that this leads to serious problems with energgnd so on. This is illustrated in Fig(l8. Big open circles
conservation during a molecular-dynamics simulation. Otheand double circles around the quasi-nonlocal atpare the
ways of handling the ghost force problem also result in nonnearest-neighbor atoms, gray circles are extrapolated neigh-
conservative forces. A more elegant solution to the ghost bor atoms, and broken circles are nonlocal atoms not needed
force problem would clearly be desirable. In this study, weto calculate the potential energy of the quasi-nonlocal atom
improve the QC method so that atomic forces derived fromy. If the position of an extrapolated neighbor atom and the
the total energy are well behaved: No ghost forces and @ositions of a nonlocal atom are almost the same, the nonlo-
seamless interface between local and nonlocal regions.  cal atom is used instead of the extrapolated posttioBy

Knap and Orti¢ approach the problem in an alternative using these extrapolated neighbor atoms, we have enough
way, by changing the description of the coarse-grained reinformation to calculate the potential energy of a quasi-
gion. Instead of calculating the energy of each homogenonlocal atom in the same way as for a nonlocal atom. Note
neously strained element, they use small clusters of atom@at local atoms near the interface must be located at all
around each corner atom. This avoids the ghost forces, buttice sites, because quasi-nonlocal atoms need first neigh-
introduces an approximation to the energy and forces in theor atoms for extrapolation of atoms further away than
local region. This approximation can be improved by in-nearest-neighbor atoms. As a result, each quasi-nonlocal
creasing the cluster sizat the expense of an increase in the atom represents only one atom—just as a nonlocal atom.

computational burden. Consequently, a quasi-nonlocal atom acts like a nonlocal
atom on the nonlocal side of the interface, and it acts like a
ll. A SEAMLESS COUPLING OF ATOMISTIC AND local atom on the local side of the interface.
CONTINUUM REGIONS The total energy of the improved QC model is given by
The problem with ghost forces is due to the fact that the E=> N+ D E(yg+ D E;, @)

interaction range of a nonlocal atom is different from that of
a local atom. To solve this problem, we introduce a type of
atom, namedjuasi-nonlocalatom, to be positioned between whereN, Q, andL are the sets of nonlocal, quasi-nonlocal,
the nonlocal and local regions. The concept of a quasiand local atoms respectively.

nonlocal atom is very simple: A quasi-nonlocal atom can feel As an example, let us look at the two-dimensional hex-
first nearest-neighbor atoms and all nonlocal atoms withiragonal lattice shown in Fig.(d). The quasi-nonlocal atorp*

the cutoff distanc&.. The idea of the improved QC model is extrapolates the second-nearest-neighbor atom at position 14
shown in Fig. 8a) (model C). Double circles correspond to by usingy® and+¥, andy'* extrapolates the neighbor atom at
quasi-nonlocal atoms. Quasi-nonlocal atoms are located aslaby using the sameg® and»?, so these quasi-nonlocal atoms
buffer in between local and nonlocal atoms, so that no nonextrapolate the neighbor atom corresponding to each quasi-
local atom interacts with any local atom. nonlocal atomic position by using common first neighbor

aeN yeQ Bel
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(@) (b)

FIG. 4. (a) In a 2D hexagonal lattice, the quasi-nonlocal atom 1
can extrapolate the positions of its next-nearest neightsaish as
atom 14 and its third-nearest neighbotsuch as atom )9from
common nearest neighbofatoms 5+6 and atom 3, respectively
But it cannot extrapolate the position of fourth-nearest neighbors
(such as atom 23rom common nearest neighbo(b) If a neigh-
bor such as atom 9 is a nonlocal atom, its position is not © (o001
extrapolated. ; (000D

atoms. Similarly, the quasi-nonlocal atoyhextrapolates the
third-nearest-neighbor atom at position 9 by usidgandy®
will extrapolate the position of its third-nearest-neighbor
atom at position 1 by using the samé. We see that the 0] @
symmetry of interactions is restored. If we want to extrapo-

late the position of fourth-nearest neighbors, then we lose FiG. 5. First-nearest neighbors to the black atprand super-
this symmetry: The atom at position 23 is a fourth-nearesposed atomic configurations @t11), (110), and(0001) planes for
neighbor ofy! and it can be extrapolated by usingandy’,  (a) fcc, (b) bee, and(c) hep structures.

but 422 will use y*® and !9 for extrapolation of atormy.
This gives an imbalance in the calculation of forces, result-
ing in ghost forces: for example, a displacement of atgm
would result in atomy! seeing a displacement of atopd®,

[1120]

We can extrapolate neighbors by using the 12 difference
vectorsd,, as follows:

but atom ?% would not see atomy! moving, as atomy?3 Fong=1y+ 3(da+di +d; +dy), (8)

does not use atony’ to calculate the position of atomp’.

The conclusion is that we can extrapolate only the positions Fag=r,+da+d (9)
‘)/ L

of atoms that are first-nearest neighbors to a first-nearest
neighbor. This means that the range of the interatomic poten- fo=r +2d (10)
tial used for calculation of a two-dimensional hexagonal 4T Ty a
structure must be limited to include up to third-nearest neigh- These three equations are chosen to be as symmetric as
bors only. If one of the neighboring atoms, for example, thepossible. In similar ways the other neighbors are found, for a
atom at position 9 as shown in Fig(4, is a nonlocal atom total of 6 second-nearest, 24 third-nearest, and 12 fourth-
then the two atomsy! and «®, interact directly. Thus no nearest neighbors.
asymmetry is introduced, and no ghost forces appear. This is A fifth-nearest neighbor is not a first-nearest neighbor of a
shown in more detail in the Appendix. first-nearest neighbor in the fcc structure, and the cutoff for
We will now look at some particular crystal structures, the interatomic potential can therefore not include the fifth-
and show how the extrapolation can be done. Using the exaearest neighbor shell.
ample in Fig. 5, we want to write down expressions for a
second-, third-, and fourth-nearest neighbor, using only the
position of the central quasi-nonlocal atgnand the vectors
pointing from the central atom to the nearest neighlidrs Figure §b) shows first neighbors to the quasi-nonlocal
=r,=r,). atom y and the superposed atomic configurations on the
(110) atomic planes in the bcce structure. Using eight vectors
A. Face-centered cubic d,, the positions of the neighbor atoms can be extrapolated

Figure Fa) shows first neighbors of the quasi-nonlocal as follows:

atom y and the superposed atomic configurations on the Fong=T .+ 2(d,+dp+dg+dp) (11)
. . . y ' 2\Ma b g h/»

(111 atomic planes. Full circles express nearest neighbors to

the black atomy and middle, large, and small circles mean —r +d.+

atoms in the same plane, one plane above or below as the f3a =1y * dat o, (12

black atomy. Dashed circles correspond to first neighbors to  There are 6 and 12 equations for second and third neigh-

the first neighbora) of the atomy. bors, respectively. A fifth neighbor is a first neighbor of a

B. Body-centered cubic
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first neighbor to the atomy, but a fourth neighbor does not atom, making it impossible to extrapolate the position of a
satisfy the extrapolation rule, so the cutoff for the interatomicsecond-nearest neighbor from the positions of common near-
potential cannot include the fourth-nearest-neighbor shell. est neighbors. This limits the applicability of the method to
nearest-neighbor potentials only. However, with a nearest-
neighbor potential there are no ghost forces even in the origi-
nal formulation of the quasicontinuum method, provided that
The extrapolation rule will work with the hexagonal- g single fully resolved layer of local atoms is provided at the
close-packed lattice, if the potential is limited to fourth- jnterface layer.
nearest neighbors. Figurécy shows first-nearest neighbors  |n many crystal structures, there are internal degrees of
to the atomy and the superposed atomic configurations onfreedom in the unit cell, as it contains more than one atom.
the (0001 atomic planes. A third neighbor is two layers di- |n some cases, such as the diamond structure, symmetry ar-
rectly above or below the black atom The positions of the  guments fix these internal degrees of freedom. In other cases
neighbors can be obtained by using 12 difference vectgrs  relaxations within the unit cell must explicitly be done in the
local region. This is an extension of the normal quasicon-

C. Hexagonal closed packed

_ 1
F2na=1y+ 3(dat dp+dg+dy), 13 finuum method, but no particular difficulties are expected.
5 The method presented here for eliminating the ghost forces
lag=r,+35(dg+d,+d, (14)  can probably be extended to these cases if the extrapolation
is done on the lattice vectors instead of on the interatomic
Fan="T,+dy+dp. (15)  distances. This would make it possible to simulate materials

in the diamond structure. This has, however, not been tested
There are 6, 2, and 18 equations for second, third, and four%t_

neighbors, respectively.

D. Other structures IV. APPLICATIONS

In a simple-cubic lattice, the extrapolation is only possible Before starting a simulation, the regions where atomic
to second-nearest neighbors. This thus limits the range of théeformation gradients are expected to be small are divided
potentials for this crystal structure. Crystal structures whichinto elements by a Delaunay triangulation. At the same time,
can be seen as linear distortions of fcc and bcc should clearlgoz, is calculated. Neighbor lists for nonlocal atoms are pre-
also work. This includes body-centered tetragonal unit cellspared, and it is checked that there are no nonlocal atoms
if the c/a ratio is such that the crystal is not too far from a interacting with local atoms. For each subsequent calculation
fcc or bece lattice. of the energy and forces, each quasi-nonlocal atom must ex-

The formulation given here does not work for the dia- trapolate the neighbors it needs by using its nearest-neighbor
mond structure. An atom has 4 nearest neighbors, and 1&oms. If a quasi-nonlocal atom interacts with nonlocal at-
second-nearest neighbors, but a second-nearest neightmms, then we do not need to extrapolate neighbor atoms
only shares a single-nearest-neighbor atom with the centraorresponding to those atoms. After the above processes
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TABLE I. Properties of each model. In all cases, the total num-listed in Table I. The number of representative atoms is the
ber of atoms is 4608, and the size of the unit cell is 3k38.66  total number of atoms in each model represented by local,
X 56.11 &, and the crystal orientations along tkey, andz axes  nonlocal, and quasi-nonlocal atoms.

are[110], [112], and[111], respectively. First, we calculate the potential energy and forces for the
perfect fcc structure using our four models. Figure 7 shows
Model A B C D components of the force of each model in its initial configu-

_ rations. Ideally, no atomic forces should appear in the perfect
No. of representative atoms 4608 2736 3408 3036 fcc structure. As expected, a full nonlocal simulatiomodel

No. of nonlocal atoms 4608 1728 1728 365 A) gives no forces. On the other hand, nonzero forge®st

No. of local atoms 0 1008 912 1599 forceg appear near the interface between nonlocal and local
No. of quasi-nonlocal atoms 0 0 768 1072 atomic regions in modeB. In the modelsC and D with

No. of elements 0 7104 6528 11681 Quasi-nonlocal atoms no ghost forces are found.

Figure 8 shows atomic displacement in thdirection of
the equilibrium positions from the initial perfect fcc configu-

have finished, we can calculate the potential energy and fordétions. Nonzero displacements can be observed at the inter-
of each atom. In this study, to get an equilibrium state of aface between local and nonlocal regions in mdgiélecause
System, the Conjugate gradient met%s used to define a of the ghOSt forces. The relaxation of mod®lreduces the

search direction and the golden section methdsiused to total energy by 1.2 eV, which corresponds to a negative in-
find the minimum energy in that direction. terface energy of 7.1 mJ/nfor a nonlocal/local interface in

the(111) plane. The absolute value of the ghost plane energy
corresponds to 9.3% of 23 boundary(twin boundary en-
ergy for Al with the same interatomic potential.

In this section, the atomic forces in a perfect fcc crystal as  Now we remove one atom from the center of each model
well as the vacancy formation energy are calculated for aluin order to calculate the vacancy formation energy. In the
minum using an EAM potenti&dd and using four different initial configurations of model€ and D, almost the same
models. The cutoff distance of the potential is 6.29 A whichatomic forces as those in modal are obtained. Figure 9
includes fourth-nearest-neighbor atoms. Figure 6 showshows atomic configurations of {411} plane with the va-
schematically the atomic configurations at the center plangancy in an equilibrium state for modefs B, andC. The
which is perpendicular to the direction. White, dark gray, colors correspond to the absolute value of atomic displace-
and light gray regions in the figures, correspond to locament (a) from the initial configuration for modeh, |r”
atomic region(L), nonlocal atomic regioN), and quasi- —r#| and(b) from the relaxed atomic configuration of model
nonlocal atomic regiortQ), respectively, and open circles, A for modelB, |[rB-r”| and for modelC, [r®~r*|. As shown
solid circles, and double circles indicate nonlocal atoms, loin Fig. 9(a), atomic displacements are distributed around the
cal atoms, and quasi-nonlocal atoms, respectively. Periodigacancy in the full atomistic simulation.
boundary conditions are adopted in all directions. A full ato- In the QC simulation with ghost forces, atomic configu-
mistic simulation is performed in mod#|, an old style QC rations near the interface between nonlocal and local regions
simulation with ghost forces is used in modg] and the are different from the same region of modethough atomic
improved QC method with quasi-nonlocal atoms is used irconfigurations near the vacancy are not so different from that
modelsC andD. The important numbers for each setup areof modelA. The value ofixB-x”| near the vacancy is about

A. Vacancy formation energy (point defect)

020 T T T T T
model A O
0.15 modelg X
15 o . NN model [miy
“ ~ s modelD 4
0.10 -
=z
£ 005 .
]
S . .
S N BEOBOPAEECPINERREAO®O®OEO M _ FIG._ 7 Atomlg forcg in perfect fcc structure
S in the initial configuration. No ghost force ap-
3 pears in modelsC and D with quasi-nonlocal
5 005 atoms.
N
-0.10 g
-0.15 | o < - 1
_020 1 1 1 1 1
-20 -10 0 10 20
z[A]
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0.0005 A. In the QC simulation with quasi-nonlocal atoms,near the interface between quasi-nonlocal and local regions.
almost exactly the same atomic displacements are obtaingdonsequently, the same vacancy formation energy as found
and it can be confirmed that the distribution of atomic dis-by full atomic simulation can be calculated by using the
placements near the interfaces between nonlocal and quasinproved quasicontinuum method. The vacancy formation
nonlocal atoms and between quasi-nonlocal and local atonenergy is 0.67 eV.

show a truly seamless matchifigee Fig. #b)]. The maxi- We also calculate the vacancy formation energydamon
mum value ofix®-x*| is about 0.04 A, which appears at the in body-centered cubic using a simple empiritabody po-
interface between nonlocal and local regions, and the maxiential by Finnis and Sincldi#'4 and the same procedure as
mum value of[x®-xA| is about 0.0001 A, which appears for aluminum. The cutoff distance of the potential is between

[;&] FIG. 9. Atomic configurations
0.0120 around the vacancy in an equilib-
0.0096 rium state.(a) Absolute value of
0.0072 atomic displacement in an equilib-

rium state from initial configura-
tion of modelA, [rA-rf|. (b) The
error in the atomic displacement
in the equilibrium states of models
B and C compared to the fully
atomistic modelA: [rB-r4|, and
[r€=rA|. Orientation of the atomic
plane is{111}. Darker colors cor-
respond to larger atomic displace-
ments. MakB-rA|=0.04 A and
maxr©-rA|=0.0001 A.

. 0.0048
0.0024

0.01
" 0.001
0.0001
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FIG. 10. A one-third part of the atomic configuration cE& grain boundary of a full atomic mod@lpper pan, a QC model with ghost
force (middle par}, and a QC model with quasi-nonlocal atogi®wer par). Open circles, solid circles, and double circles show nonlocal
atoms, local atoms, and quasi-nonlocal atoms, respectively. Periodic boundary conditions are adoptedi theirections.

second- and third-neighbor shells, so it satisfies the extrapderce and the QC model with quasi-nonlocal atoms, respec-
lation condition for the bcc structure. We have confirmed thatively. Atomic displacements near the grain boundary for
in the quasicontinuum method, a seamless coupling betweesach model are nearly identical. In this region, the differ-
the coarse-grained and fully atomistic region is also obtaine@nces between the relaxed atomic configurations for midel
in the bce structure by introducing quasi-nonlocal atoms. Thend modelB or modelC are about 0.0005 A. However, in
vacancy formation energy is 1.83 eV. the interface region between local and nonlocal atoms, larger
discrepancies appear in mod&l where the error in the dis-
placement is up to 0.02 A. In mod€lthe interface is seam-
B. Grain boundary energy (plane defect) less, and no error is segthe maximal deviation is 0.001 A

In this section, the energy of a CE5(100) tilt grain in both the local and quasi-nonlocal regions, this is probably

boundary is calculated. We use an EMT potential with adue to the discretization of the local region as no extra de-

cutoff distance between third- and fourth—nearestviation is Seen near the interfa)qe
neighborst® Figure 10 shows one-third of the initial atomic The grain boundary energy is found to be 977.5 m/m

configurations of three models: The upper part shows a fulfoéthe (SUIII atomistic model and 977.4 mJfrfor the new
atomistic model(model A), the middle part shows a QC QC model.

model with ghost forcémodelB), and the lower part shows V. CONCLUSIONS
our improved QC modelmodelC). Periodic boundary con- ) ) ) )
ditions are adopted in the and z directions. Two initial A version of the quasicontinuum method for simple crys-

lattice basis vectors are prepared for grains | and I, respeéﬁl structures has been formulated which avoids the problem
tively. The numbers for the three models are given in Table

[I. The number of degrees of freedom in the QC models is a : model pe
quarter of that in the full atomistic model. 0.60 L : N \Q\Y model CIJ
Figure 11 shows atomic displacements in thdirection . ®
in each equilibrium state from the initial configuration of 5 08| A
each model. Open circles represent atomic displacement of & "*” Q’ A
the full atomistic model. Solid triangles and open squares £ ' [urmmem oo ]
o : ] g ]
represent atomic displacements in the QC model with ghost 5 4| b ]
.s @
TABLE II. Properties of each analysis model f&5 grain E 0.00. [--o-s- ®
boundary for Cu. The dimensions of the simulation cell are 68.18 £ ®
X 181.82x 57.40 A3, g 0or S ]
] | Wmmmmn
Model A B C 3 &
No. of representative atoms 60864 13512 15024 a0 -20 -10 o 10 20 30
No. of non-local atoms 60864 8448 8448 VA
No. of local atoms 0 5064 3504 FIG. 11. Displacement from the initial configuration in an equi-
No. of quasi-nonlocal atoms 0 0 3072  librium state in they direction of the full atomic model and the QC
No. of elements 0 35482 26108 Mmodels.N, Q, andL are the nonlocal, quasi-nonlocal, and local

atomic regions.
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of ghost forces, i.e., unphysical forces arising in the interfaceeplaced with a nonlocal atom, the expression for the energy
region between the fully atomisti®r nonloca) region and of the quasi-nonlocal atom under consideration changes. If
the coarse-graine@r local) region. This is done by inserting the derivative of the energy of the quasi-nonlocal atatom
atoms, called quasi-nonlocal atoms, between the two regiong) with respect to its position is nonzero, this will contribute
Quasi-nonlocal atoms behave like local atoms when they into a ghost force. However, the replacement also modifies the
teract with atoms in the local region, and as nonlocal atomgxpression for the energy of some of the other neighboring
when they interact with atoms in the nonlocal region. Thisatoms, and this also gives a contribution to the ghost force.
ensures a consistent description, free of ghost forces. As thé/e will show that these contributions cancel. We thus prove
forces obtained are conservative, there are no problems witiat there is no ghost force on quasi-nonlocal atoms near the
energy conservation in dynamic simulations. In previouslyinterface to the nonlocal atoms by showing that replacing a
published methods for treating the ghost forces, the lack ofjuasi-nonlocal neighbor of an atom with a nonlocal atom
energy conservation has prevented dynamic simulations. Thdoes not modify the force.
price of eliminating the ghost forces is a slight increase in the In the following we calculate the changd-; of the force
number of degrees of freedom in the simulations, as a fewon atom 1 in Fig. 48) when one of the neighboring atoms
extra layers of fully resolved atoms must be added to the&called atomi) is replaced with a nonlocal atom. Although
simulation. the calculation is done for the two-dimensional case of Fig.
The quasi-nonlocal atoms use the distances to theid(a), the result is easily extrapolated to three dimensions.
nearest-neighbor atoms to extrapolate the positions of atomEhe following notation is usedg’ is the energy of the sys-
further away, except if these positions are occupied by nontem when all neighbors are quasi-nonlocal atofss the
local atoms, in which case the actual position of the nonlocaénergy when the neighbois a nonlocal atom. Similarlyg;
atoms are used. It is required that the extrapolated position Gnd E; are the energies of atomin the two configurations.
a neighboring atom is obtained from displacement vectors to If the replaced atoni is not a nearest-neighbor atom to
nearest-neighbor atoms which are also nearest-neighbor atom 1(e.g.,i=14 or 15, only the atoms 1 andcontribute
oms of the extrapolated atom. This limits the method to in-to the change irF;:
teratomic potentials with sufficiently short range. The limit is , , ,
fourth-, fourth-, and third-nearest neighbors for hcp, fcc, and ~ AF, = JE" _JE - B B + g _ ‘7_E' (A1)
bcc lattices, respectively. ary drq dry drqy dry dry

As atom 1 is not a nearest neighbor of atgrthe third term
ACKNOWLEDGMENTS is identically zero. The termE;/dr, contains two terms, one

from the virtual displacement of atom 1, another from the
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from Japan Society for the Promotion of SciendSPS due to the displacement of atom 1:
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ish Research Agency through Grant No. 5020-00-0012 JE; 0E; arlY 9E,  9E, JE

(JJM., J.S., and K.W)J. Supercomputer time has been (9_r1 - a_n ' ﬁ_rl * c7_r1 - a_n + a_rl
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The Center for Atomic-scale Materials Physics is sponsoretvherer " signifies the position of atoras seen from atom

by the Danish National Research Foundation. 1, i.e., extrapolated from the neighbors of atom 1. The quo-

tient ¢~7ri(l)/(9rl gives how far the extrapolated atom moves

when atom 1 is moved. When atoims a second- or third-

nearest neighbor to atom 1, it is clearly equal to —1. In three
In the following we show that no ghost forces are presenglimensions, it is equal to -1 if atomis a second- to fourth-

in the interface region, i.e., that the forces on all atoms aréearest neighbor, as can be seen from(Bpto Eq.(10). If

zero if the atoms are in a homogeneously strained fcc latticdnteractions go beyond fourth-nearest neighbor the quotient
The interface between the local and quasi-nonlocal atomghanges from -1, and ghost forces appear.

is trivial. The energy of a quasi-nonlocal atom near the in- It has also been used that the functional fornEpandE,

terface(see e.g., Fig. 8is not affected by the presence of the are identical whetf; is written as a function of the position

local atoms, since the energy of the quasi-nonlocal atom igf all the neighbor positions and not just of the independent

only a function of the position of its nearest neighbors. Simi-positions of the nearest neighbors. Inserting this in equation

larly, the energy of a local atom near the interface is nofAl) gives

influenced by the interface, as it is just given by suitable

(A2)

APPENDIX

fractions of the energies of the elements having the local -AF =—-—— -
atom as a corner atom. ary  dry dry dn
The interface between the quasi-nonlocal atoms and the IE, JE
nonlocal atoms is less obvious. If all the neighbors within the =- (ﬂ_h p fl) =0, (A3)

cutoff distance of a quasi-nonlocal atqfior example, atom
1 in Fig. 4 are themselves quasi-nonlocal atoms, and if theywhere the last parenthesis is zero for reasons of symmetry.
are arranged in a regular lattice, there is clearly no force on Proving thatAF,; is zero when anearest-neighboguasi-

the atom. If one of the neighbors, as is shown in Fign)4s  nonlocal atom is replaced with a nonlocal atom follows the
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same path, but is a little more complicated as the replacethe extrapolated positions of all atoms A&. The terms
ment changesgE;/dr, for all atomsj which extrapolate the JE//dr, are also extrapolated in the same way as in(&g).
position of the replaced atom using the position of atom 1: IfThis gives
atom 6 is replaced with a nonlocal atom, then atoms 2, 3, 4,
and 6 contribute to the change in the force on atoiithe
expression for the energy of atoms 1, 5, and 7 do not change, .
but atoms 2, 3, and 4 use the real position of atom 6 instead _AF. = IEi | S 4= (?_VE'_) _dE
S 1= .
of the extrapolated oneln the following,i refers to the atom Iry joa dTy dry dry
being replaced6 in the example andA; is the set of atoms i)
extrapolating the position of atom using atom 1(Ag S <ﬁ+ﬁ_ﬂ_ﬁ>
={2,3,4); this isidentical to the set of neighbors of atom ary adr;y adrq  dry

) . " 4 " ieA
which have their positions extrapolated using the position of '

: oE ar) 9E arV
atom 1: :2<_| + 25,20 2o (A5)
_aF,<0F 9B _JE 0B (5@)
gry dry dry dry oA \drp drg
(A4)

In the last sum each term vanishes &u.A)/arlzari(j)/arl,
The first term is expanded similar to EGA2), except that i.e., when atom 1 moves atom 4 sees atom 6 being displaced
more terms appear as the eneffydepends om; through ~ as much as atom 6 sees atom 4 being displaced.
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