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Starting from aD-dimensionalXXZ ferromagnetic Heisenberg model in an hypercubic lattice, it is demon-
strated that the anisotropy in the exchange coupling constant leadB-{bependent effective on-site aniso-
tropy interaction often ignored fdD > 1. As a result the effective width of the wall depends on the dimen-
sionality of the system. It is shown that the effective one-dimensional Hamiltonian is not the one-dimensional
XXZ version as assumed in previous theoretical work. We derive a new expression for the wall profile that
generalizes the standard Landau-Lifshitz form. Our results are found to be in very good agreement with earlier
numerical work using the Monte Carlo method. Preceding theories concerning the domain wall contribution to
magnetoresistance have considered the role ohly through the modification of the density of states in the
electronic band structure. This Brief Report reveals that the wall profile itself contains an additidegken-
dence for the case of anisotropic exchange interactions.
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The competition between exchange and anisotropy ener- The simplest Hamiltonian describing anisotropic ex-
gies stabilizes the ground state of ferromagnetic systems aschange interactions(exchange anisotropyis the one-
set of domains with different magnetizatioh# the region  dimensionak1D) XXZ Heisenberg model
between the domains the magnetization smoothly changes in
a way to continuously connect the different sectors. This Hixz= =32 (S + 99, + ASS), (1)
configuration, known as a domain w@bDW), is relevant to i
understanding the transport propertiésand the response of
such systems to external fieltisdowever, despite the fact
that much is known about the magnetic structure of bul
materials? a framework to deal with the most general situa-
tion is not availabl€.In some specific situations the theoret- Hixz= Hisot™ 352 SS (2
ical limitations to solve the general problem can be handled, '

assuming that the exchange interactiorsatropicwhile the  \\here Hg?n is the one-dimensional isotropic Heisenberg

anisotropy in the system, in general, can be described by asmiltonian and s=A-1>0. Recently, Yamanaka and
on-sitg also called single-spin, interaction. With these as-komal® have used this model to describe the formation of a
sumptions, and using a variational approach, Landau angy in a system iranydimension. However, as will be dem-
Lifshitz® obtained the exact form of a Bloch wall. They onstrated, the treatment of the anisotropic exchange interac-
found the profile of the wall to be described by the exprestions deserves a more careful attention and, the effective one-
sion cos#(x) =-tanh(x/\), whereé(x) is the polar angle of a dimensional Hamiltonian of the problem f&r> 1 is not the
classical spin vector at positionand\ is half the effective  Hamiltonian(1). In fact, the effective Hamiltonian must con-
DW width. This kind of one-dimensional distribution of the tain an additional on-site anisotropy contribution whose role
magnetic moments is always appropriate if the surface efhas been ignored fd > 1. This contribution has its origin in
fects can be neglected. Under this assumption, a system the nonlocal character of the exchange anisotropy. On physi-
any dimension effectively behaves as one dimensional. Thisal grounds, it contains the information about each neighbor
simplified model is in very good agreement with the experi-spin out of the chains that support the domain structure. It is
mental results in a wide variety of investigated matetials our main purpose to show the correct derivation of the
where the anisotropy mainly comes from the so-called crysiD-effective Hamiltonian from the D-dimensionakXZ
talline field. On the other hand, the formation of DWs in model and obtain a closed expression to the effective width
uniaxial ferromagnets with two-spin exchange anisotropyof the wall using both the variatiorfabnd semiclassicil
has been much less studi€tReference 7 has mentioned in approaches. Our results will be compared to those obtained
page 77 that there is no experimental evidence for the exisn Ref. 10 and to earlier reported numerical Monte Carlo
tence of this kind of anisotropy. Recently, UNiGe has showndatal* In closing, we will consider previous theories con-
strong indication for the presence of this anisotropiccerning the DW contribution to magnetoresistance in con-
interactiont! We can expect that new compounds will be nection to the present work.

discovered as part of the fast advance that experimental mag- Our starting point will be the D-dimension&IXZ Heisen-
netism is currently facing in the synthesis of new materials.berg model

whereJ>0 andA>1 (i.e., easy-axis anisotropyFor sim-
kplicity we will write Eq. (1) as
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HYyz = H2 - J5<E S (3) S(x) =S[0,sin #(x),cos A(x)], (6)

ab) where we assumg>1, Eq.(5) becomes

where the sum goes over all bounds between nearest neigh- 1 _ _
bors. We will be interested in solutions with the boundary J S(L+8sim 0)0"%= 5 cos’ 6|dx=min,  (7)
conditions Iimax_,;wsa:S(0,0, +1), a7 DW in the x direc-
tion. Therefore, the magnetization on the sample will lookwhich generates the equation of motion
the same along any spin chain in tlyedirection [two- 56'2— 28
dimensional(2D) casg or bothy and z directions[three- (—‘)sin 20+ (1+65sir? 9)0"=0. (8)
dimensional(3D) casé§. 2

The effective one-dimensional Hamiltonian can be ob-|ntegration of(8) with the boundary conditions of a-DW
tained using the fact th&=S](a=x,y,2) for every nearest |eads to the solution for the magnetic structure of the form
neighbor of the spin in thath site, except for the ones on the

x axis. After summing over the sites out of the chains inthe  _\5(5D + 5 x= arctan cos 6(x)
x direction, the Hamiltoniar3) reduces to the 1D version V1 + 8 sir? 6(x)
—~ [ cos (x
H2=HP - 36> §5,,-J8D-1)>, 2 +s arcta{%], (9)
i i V1 + 68 sir? 6(x)
=HY,-J8D -1, 2. (4)  As can be seen, the standard Landau and Lifékitpression
i

cos t9(x)=—tanr(\s"2—5C X) can be obtained from Eq@9) for &

=0. Equation(9) is thus the generalization of that expression
As can be seen, the one-dimensional effective Hamiltoniatfor the case of anisotropic exchange interactions.
(4) coincides with the 1D version of theXZ modelonly in The same expression for the DW profile can be obtained
the obvious cas®=1. ForD>1, the exchange anisotropy following a different approach, as in Ref. 9. In that case, the
leads to an additional effective on-site contribution dependstatic solution of the spin-quantum equations of motion,
ing on D. We notice thatH2,, also leads to a similabut

isotropic contribution depending off which cannot affect as -0 :i[$ H] (10)

the form of the wall. In the usual case studied in Refs. 8 and dt in-

9, the effective one-dimensional Hamiltonian is simply the. . . : :

1D version of the originaD-dimensional model because the ﬁ co_lns@ere% Herdr;l cafr; b? eltherdt_hdi)-d_lmer;s:_c:nal_l

anisotropy is assumed to be of the on-site type. The addit-oi?;'nt(()g)'ar_]”(]e) S?ert oeveer t(:](c;atl\rlw?aa?ggt- rlgeﬂzg)rr;aof E;Lm )

tional on-site term irt4) makes the form and the width of the spin resuI.tin from(10) can be transformed ?n the continuum

wall dependent on the system dimension or on the coordina"-rF:lit as 9

tion number of the crystal structure.
The modification of the DW profile induced by the new > St #SH(x) +2 D SH(X). (11)

terms can be obtained following a variational approach as in b X

Ref. 8. A crystalline on-site anisotropy given by&=;S?

can be added t@4) in order to consider a more general For the case of the effective one-dimensional Hamiltonian

situation. We assume small values fand 8, so that the (4), D mustbe taken equal to 1 in E@.1). Then the classical
continuum limit makes sense. Then, Ed) with the crystal-  VECIOr representatiof6) can be used and E¢8)—and thus

line on-site term added, defines the one-dimensional varig=d- (9)—is recovered. We note that according to E&).one
tional problem given by finally takesS{(x)=0. Thus, only the evolution d8; actually

needs to be considered in E40).
J 18 We can extract the effective width of the w&llV) from
f(é(&XS)H ?(aXSZ)Z—JﬁtSZZ)dF min, (5)  the behavior of Eq(9) near the origin. Fox—0 we get
V1+6 cosf(x)=-42(6 D+6&,) x and, therefore,

where ;= 6§ D+ 4. is the total anisotro arameter depend- 1+6 1+6
5 o py p p We2 \/ _ \/ 2

ing onD andx is in units of the lattice constant. 26, =2 25D +d)

As it is shown in(5), the exchange is anisotropic and the ¢
on-site interaction depends on the system dimension. Therés expected, an increase in the dimension results in a nar-
fore, the DW profile and its effective width are different from rower DW. This is in agreement with the fact that the local
those obtained in Ref. 8. As mentioned before, the on-sitéield produced by the spins out of a given chain increases the
term reflects the fact that each site effectively feels the costnergy cost of the spin twist. As a consequence, the system
of energy to have its nearest neighbors pointing in directioneffectively gets less spins out of tleaxis and thus the
away from the anisotropy axis. As the number of neareseffective width of the wall becomes smaller. The specific
neighbors increases with the dimension we can expect thieehavior «1/y8, agrees with the limiting casé—0, in
effective width of the wall to decrease for higher which the anisotropic exchange tefd¥/2)(4,S)? in Eq. (5)

Using the angle representation for the magnetic momentsan be neglected. In that case, one gets an isotropic exchange
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parameterd/2 and an on-site anisotropy with the effective 100

parameteds,. The ratio of these two parameters deternfines

the effective width of the wall. Slightly away from that limit,

Eqg.(12) shows an additional exchange-type dependencg on

(i.e., 6 is in the numeratgrcoming from the total exchange

parameter 16=A of the z components in th&XXZ model.
When =0, Eq.(12) gives Zl/V’T&), which has no de-

pendence o and is the effective width of the wall in the

well-known case for which the anisotropy in the original 7L EE S S

model is of the on-site typ&? As can be seen frorl2), the L ooy A 1

. . o L . Py

effective width has less sensitivity to variations in the param-

eterdthan ind.. This is a consequence of the combined role |G, 1. The effective DW width, as obtained from Ed4) for

of 6 as exchange and anisotropy parameter at the same timg=3 (open triangles is compared to Monte Carlo datdilled

as can be seen from the original moge). squaresfrom Ref. 14. Open squares correspond to the high aniso-
Now we are going to compare our results F1 with  tropy limit for which Eq.(14) is not applicable. Please see text for

those obtained in Ref. 10, whe#&=0 was considered. Fol- further details.

lowing a pure quantum method in treating ti&Z model

(1), Yamanaka and Koni& rederived the Landau and Lif- width. Equation(14) givesW in a simpler manner than the

shitz expression cog(x)=-tank{x/\) with an effective wall  one given by Eq(12) for &.=0. Additionally, it looks closer

= 3D Monte Carlo
A Eq.(14)forD=3 [
A o High anisotropy limit |1

t> N

A
10

Effective Width W

width given by to the resultm(1/y25,) of the usual case of isotropic ex-
1 change interactions and on-site anisotropy. Equatibf)
IN=-2—, (13)  confirms the power-lawvec A’~"Y2 that has been suggested in
Inq Ref. 14. It also elucidates the fact that the proportionality
where 0<q<1 andg+1/q=2A. factor of this behavior is determined by the dimensiondlity

As discussed above, we can get such an expression for tif the system. _ _ .
domain wall profile, which corresponds to the case of isotro- F19ure 1 compares the effective DW width, as obtained
pic exchange interactions and on-site anisotrapyy in the oM EQ. (14), to the numerical data from Ref. 14 for the
limited cases— 0. Indeed, it is not hard to see that for ~ caseD=3. Here some remarks are in order. Equaltit)
=1 ands— 0, Eq.(9) —with 8,=0—reduces to that expres- has been derived in the continuum limit, i.e., large values of
sion with \ given by 1A25. W and thus small anisotropy values have been assumed. We

At first sight the DW width(13) looks quite different from N€€dA’<1/(2 D) in Eq. (14) to getW=>1. Therefore, f?r
our result given by Eq(12), with 8,=0, in theD=1 case. D=3, we can expect Eql4) to give good results fo
However, as can be seen they also coincide for small values 1/6~0.2. This agrees with the fact observed by Serena
of 5(A~1). One first notices that sinca>1, theng=A and Costa-Kramer that for anisotropy values larger than

—JA2Z1. We can expand Eq&l?) and(13) in powers ofs  =0-2 the magnetization suddenly changes in one lattice
ar:d obtain for both cgses 2%81 (;(51/2)(_122mug up to lead- constant? The valueW= has been defined in Ref. 14 for
ing order in 1/ 5, both the expressiofl2), with 5,=0, and this h|gh anisotropy limit. Open_square_s in Fig. 1 correspond
e on repored n Rl 10 ae equal 1120, 15 1% 11 555 20 e 0 consocred 1 € e
teresting to note that E¢Q) for the form of the wall and12) P P

: . . _(MC) data with very small anisotropy values. According to
for the eff_ectlve DW width have been derived for_Iarge val Ref. 14, this may be associated with numerical uncertainties
ues of spinS. However, both of them reduce, f@r=1 and

i P’ <O. . Wi
small values of the parametéy to the results of Ref. 10 for for such very IOV\.’ vallues of anisotro 0.00D. With .
e these comments in mind, we conclude that our results are in
spinS=1/2. . .
very good agreement with the numerical data of Serena and
et:osta-Krémer.
Previous theories have considered the role of a DW in the

The anisotropic Heisenberg model has been studied b
fore using the Monte Carlo methdé Recently, Serena and

Costa-Kraméf* have made use of this technique to describe, . . :
transport properties of ferromagnetic metals. The effective

a 7 DW in the XXZ model. In order to compare our results = .
with theirs, we first make the equivalence between our pa\—N'.dth W, when compared to the Fermi vyayelgngm dgter-
ines how strong the effect of the DW is in increasifigr

rameters and those used in Ref. 14. Hereatter, to avoid Corgjecreasinﬁthe electrical resistance. Recently, Sil and Eftel
fusion with A in the present work, we identify the anisotropy . o Y .
have considered the modification of the electronic band

E;‘rzr:it/?; SfAl?)ef;riirg%O}eO;:e Acfg :26,3 /t(hla_tgjizgn?jrefrrglﬁted structure by the DW and shown that there can be an increase

(12), with 5,20, we get or decrease of the resistance depending on the dimensional-
' ¢ ity, position of the Fermi energy, and strength of the coupling
between conduction electrons and DW. The roleDohas
Wﬁ (14) been considered through the modification of the density of
states. One can see that these theories have considered no
Here, the factor 2 of Eq(12) has been changed to to  dependence of the effective DW width on the dimensionality
follow the definition used in Ref. 14 for the effective DW D of the system. Here we have seen that this is valid only for

W=
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the usual case of isotropic exchange interactions and on-sitene for which the anisotropy in the original model is only of
anisotropy. This Brief Report reveals that the wall profile the on-site type. Very good agreement with earlier numerical
itself contains an additiondD dependence for the case of data was found. This work adds a new sourceDoflepen-
anisotropic exchange interactions. In this case &g) will dence for measurable physical properties like the magnetore-
define such & dependence d#V, which is the relevant DW sistance.
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