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Starting from aD-dimensionalXXZ ferromagnetic Heisenberg model in an hypercubic lattice, it is demon-
strated that the anisotropy in the exchange coupling constant leads to aD-dependent effective on-site aniso-
tropy interaction often ignored forD.1. As a result the effective width of the wall depends on the dimen-
sionality of the system. It is shown that the effective one-dimensional Hamiltonian is not the one-dimensional
XXZ version as assumed in previous theoretical work. We derive a new expression for the wall profile that
generalizes the standard Landau-Lifshitz form. Our results are found to be in very good agreement with earlier
numerical work using the Monte Carlo method. Preceding theories concerning the domain wall contribution to
magnetoresistance have considered the role ofD only through the modification of the density of states in the
electronic band structure. This Brief Report reveals that the wall profile itself contains an additionalD depen-
dence for the case of anisotropic exchange interactions.
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The competition between exchange and anisotropy ener-
gies stabilizes the ground state of ferromagnetic systems as a
set of domains with different magnetizations.1 In the region
between the domains the magnetization smoothly changes in
a way to continuously connect the different sectors. This
configuration, known as a domain wall(DW), is relevant to
understanding the transport properties2–4 and the response of
such systems to external fields.5 However, despite the fact
that much is known about the magnetic structure of bulk
materials,6 a framework to deal with the most general situa-
tion is not available.7 In some specific situations the theoret-
ical limitations to solve the general problem can be handled,
assuming that the exchange interaction isisotropicwhile the
anisotropy in the system, in general, can be described by an
on-site, also called single-spin, interaction. With these as-
sumptions, and using a variational approach, Landau and
Lifshitz8 obtained the exact form of a Bloch wall. They
found the profile of the wall to be described by the expres-
sion cosusxd=−tanhsx/ld, whereusxd is the polar angle of a
classical spin vector at positionx andl is half the effective
DW width. This kind of one-dimensional distribution of the
magnetic moments is always appropriate if the surface ef-
fects can be neglected. Under this assumption, a system in
any dimension effectively behaves as one dimensional. This
simplified model is in very good agreement with the experi-
mental results in a wide variety of investigated materials9

where the anisotropy mainly comes from the so-called crys-
talline field. On the other hand, the formation of DWs in
uniaxial ferromagnets with two-spin exchange anisotropy
has been much less studied.10 Reference 7 has mentioned in
page 77 that there is no experimental evidence for the exis-
tence of this kind of anisotropy. Recently, UNiGe has shown
strong indication for the presence of this anisotropic
interaction.11 We can expect that new compounds will be
discovered as part of the fast advance that experimental mag-
netism is currently facing in the synthesis of new materials.

The simplest Hamiltonian describing anisotropic ex-
change interactions(exchange anisotropy) is the one-
dimensional(1D) XXZ Heisenberg model

HXXZ
1D = − Jo

i

sSi
xSi+1

x + Si
ySi+1

y + DSi
zSi+1

z d, s1d

whereJ.0 andD.1 (i.e., easy-axis anisotropy). For sim-
plicity we will write Eq. (1) as

HXXZ
1D = Hisot

1D − Jdo
i

Si
zSi+1

z , s2d

where Hisot
1D is the one-dimensional isotropic Heisenberg

Hamiltonian and d;D−1.0. Recently, Yamanaka and
Koma10 have used this model to describe the formation of a
DW in a system inanydimension. However, as will be dem-
onstrated, the treatment of the anisotropic exchange interac-
tions deserves a more careful attention and, the effective one-
dimensional Hamiltonian of the problem forD.1 is not the
Hamiltonian(1). In fact, the effective Hamiltonian must con-
tain an additional on-site anisotropy contribution whose role
has been ignored forD.1. This contribution has its origin in
the nonlocal character of the exchange anisotropy. On physi-
cal grounds, it contains the information about each neighbor
spin out of the chains that support the domain structure. It is
our main purpose to show the correct derivation of the
1D-effective Hamiltonian from the D-dimensionalXXZ
model and obtain a closed expression to the effective width
of the wall using both the variational8 and semiclassical9

approaches. Our results will be compared to those obtained
in Ref. 10 and to earlier reported numerical Monte Carlo
data.14 In closing, we will consider previous theories con-
cerning the DW contribution to magnetoresistance in con-
nection to the present work.

Our starting point will be the D-dimensionalXXZHeisen-
berg model
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HXXZ
D = Hisot

D − Jd o
ka,bl

Sa
zSb

z , s3d

where the sum goes over all bounds between nearest neigh-
bors. We will be interested in solutions with the boundary
conditions limax→7`Sa=Ss0,0, ±1d, a p DW in the x direc-
tion. Therefore, the magnetization on the sample will look
the same along any spin chain in they direction [two-
dimensionals2Dd case] or both y and z directions [three-
dimensionals3Dd case].

The effective one-dimensional Hamiltonian can be ob-
tained using the fact thatSb

a=Sa
asa=x,y,zd for every nearest

neighbor of the spin in theath site, except for the ones on the
x axis. After summing over the sites out of the chains in the
x direction, the Hamiltonian(3) reduces to the 1D version

Hef f
1D = Hisot

1D − Jdo
i

Si
zSi+1

z − JdsD − 1do
i

Si
z2

= HXXZ
1D − JdsD − 1do

i

Si
z2. s4d

As can be seen, the one-dimensional effective Hamiltonian
(4) coincides with the 1D version of theXXZ modelonly in
the obvious caseD=1. For D.1, the exchange anisotropy
leads to an additional effective on-site contribution depend-
ing on D. We notice thatHisot

D also leads to a similarbut
isotropic contribution depending onSi

2 which cannot affect
the form of the wall. In the usual case studied in Refs. 8 and
9, the effective one-dimensional Hamiltonian is simply the
1D version of the originalD-dimensional model because the
anisotropy is assumed to be of the on-site type. The addi-
tional on-site term in(4) makes the form and the width of the
wall dependent on the system dimension or on the coordina-
tion number of the crystal structure.

The modification of the DW profile induced by the new
terms can be obtained following a variational approach as in
Ref. 8. A crystalline on-site anisotropy given by −JdcoiSi

z2

can be added to(4) in order to consider a more general
situation. We assume small values ofd and dc so that the
continuum limit makes sense. Then, Eq.(4) with the crystal-
line on-site term added, defines the one-dimensional varia-
tional problem given by

E S J

2
s]xSd2 +

Jd

2
s]xS

zd2 − JdtSi
z2Ddx= min, s5d

wheredt;d D+dc is the total anisotropy parameter depend-
ing on D andx is in units of the lattice constant.

As it is shown in(5), the exchange is anisotropic and the
on-site interaction depends on the system dimension. There-
fore, the DW profile and its effective width are different from
those obtained in Ref. 8. As mentioned before, the on-site
term reflects the fact that each site effectively feels the cost
of energy to have its nearest neighbors pointing in directions
away from the anisotropy axis. As the number of nearest
neighbors increases with the dimension we can expect the
effective width of the wall to decrease for higherD.

Using the angle representation for the magnetic moments

Ssxd = S f0,sinusxd,cosusxdg, s6d

where we assumeS@1, Eq. (5) becomes

E F1

2
s1 + d sin2 udu82 − dt cos2 uGdx= min, s7d

which generates the equation of motion

Sdu82 − 2dt

2
Dsin 2u + s1 + d sin2 udu 9 = 0. s8d

Integration of(8) with the boundary conditions of ap-DW
leads to the solution for the magnetic structure of the form

− Î2sd D + dcd x = arctanhF cosusxd
Î1 + d sin2 usxd

G
+ Îd arctanF Îd cosusxd

Î1 + d sin2 usxd
G . s9d

As can be seen, the standard Landau and Lifshitz8 expression
cosusxd=−tanhsÎ2dc xd can be obtained from Eq.(9) for d
=0. Equation(9) is thus the generalization of that expression
for the case of anisotropic exchange interactions.

The same expression for the DW profile can be obtained
following a different approach, as in Ref. 9. In that case, the
static solution of the spin-quantum equations of motion,

dSa
a

dt
= 0 =

1

i"
fSa

a,Hg, s10d

is considered. HereH can be either theD-dimensional
Hamiltonian (3) or the effective one-dimensional Hamil-
tonian (4). The sum over the nearest neighbors of theath
spin resulting from(10) can be transformed in the continuum
limit as

o
b

Sb
a → ]x

2Sasxd + 2 D Sasxd. s11d

For the case of the effective one-dimensional Hamiltonian
(4), D must be taken equal to 1 in Eq.(11). Then the classical
vector representation(6) can be used and Eq.(8)—and thus
Eq. (9)—is recovered. We note that according to Eq.(6) one
finally takesSxsxd=0. Thus, only the evolution ofSa

x actually
needs to be considered in Eq.(10).

We can extract the effective width of the wallsWd from
the behavior of Eq.(9) near the origin. Forx→0 we get
Î1+d cosusxd=−Î2sd D+dcd x and, therefore,

W= 2Î1 + d

2dt
= 2Î 1 + d

2sd D + dcd
. s12d

As expected, an increase in the dimension results in a nar-
rower DW. This is in agreement with the fact that the local
field produced by the spins out of a given chain increases the
energy cost of the spin twist. As a consequence, the system
effectively gets less spins out of thez axis and thus the
effective width of the wall becomes smaller. The specific
behavior ~1/Îdt agrees with the limiting cased→0, in
which the anisotropic exchange termsJd /2ds]xS

zd2 in Eq. (5)
can be neglected. In that case, one gets an isotropic exchange
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parameterJ/2 and an on-site anisotropy with the effective
parameterJdt. The ratio of these two parameters determines8

the effective width of the wall. Slightly away from that limit,
Eq. (12) shows an additional exchange-type dependence ond
(i.e., d is in the numerator) coming from the total exchange
parameter 1+d=D of the z components in theXXZ model.

When d=0, Eq. (12) gives 2s1/Î2dcd, which has no de-
pendence onD and is the effective width of the wall in the
well-known case for which the anisotropy in the original
model is of the on-site type.8,9 As can be seen from(12), the
effective width has less sensitivity to variations in the param-
eterd than indc. This is a consequence of the combined role
of d as exchange and anisotropy parameter at the same time,
as can be seen from the original model(3).

Now we are going to compare our results forD=1 with
those obtained in Ref. 10, wheredc=0 was considered. Fol-
lowing a pure quantum method in treating theXXZ model
(1), Yamanaka and Koma10 rederived the Landau and Lif-
shitz expression cosusxd=−tanhsx/ld with an effective wall
width given by

2l = − 2
1

ln q
, s13d

where 0,q,1 andq+1/q=2D.
As discussed above, we can get such an expression for the

domain wall profile, which corresponds to the case of isotro-
pic exchange interactions and on-site anisotropy,only in the
limited cased→0. Indeed, it is not hard to see that forD
=1 andd→0, Eq.(9) —with dc=0—reduces to that expres-
sion with l given by 1/Î2d.

At first sight the DW width(13) looks quite different from
our result given by Eq.(12), with dc=0, in theD=1 case.
However, as can be seen they also coincide for small values
of d sD<1d. One first notices that sinceD.1, thenq=D
−ÎD2−1. We can expand Eqs.(12) and (13) in powers ofd
and obtain for both cases 2/Î2d+Osd1/2d.12 Thus up to lead-
ing order in 1/ d, both the expression(12), with dc=0, and
the one reported in Ref. 10 are equal to 2s1/Î2dd. It is in-
teresting to note that Eq.(9) for the form of the wall and(12)
for the effective DW width have been derived for large val-
ues of spinS. However, both of them reduce, forD=1 and
small values of the parameterd, to the results of Ref. 10 for
spin S=1/2.

The anisotropic Heisenberg model has been studied be-
fore using the Monte Carlo method.13 Recently, Serena and
Costa-Krämer14 have made use of this technique to describe
a p DW in the XXZ model. In order to compare our results
with theirs, we first make the equivalence between our pa-
rameters and those used in Ref. 14. Hereafter, to avoid con-
fusion withD in the present work, we identify the anisotropy
parameter of Ref. 14 byD8. One can see that they are related
by D=1/s1−D8d. Therefore,d=D−1=D8 / s1−D8dand, from
(12), with dc=0, we get

W= p
1

Î2 D8 D
. s14d

Here, the factor 2 of Eq.(12) has been changed top to
follow the definition used in Ref. 14 for the effective DW

width. Equation(14) gives W in a simpler manner than the
one given by Eq.(12) for dc=0. Additionally, it looks closer
to the resultps1/Î2dcd of the usual case of isotropic ex-
change interactions and on-site anisotropy. Equation(14)
confirms the power-lawW~D8−1/2 that has been suggested in
Ref. 14. It also elucidates the fact that the proportionality
factor of this behavior is determined by the dimensionalityD
of the system.

Figure 1 compares the effective DW width, as obtained
from Eq. (14), to the numerical data from Ref. 14 for the
caseD=3. Here some remarks are in order. Equation(14)
has been derived in the continuum limit, i.e., large values of
W and thus small anisotropy values have been assumed. We
needD8!1/s2 Dd in Eq. (14) to get W@1. Therefore, for
D=3, we can expect Eq.(14) to give good results forD8
!1/6<0.2. This agrees with the fact observed by Serena
and Costa-Krämer that for anisotropy values larger thanD8
=0.5, the magnetization suddenly changes in one lattice
constant.14 The valueW=p has been defined in Ref. 14 for
this high anisotropy limit. Open squares in Fig. 1 correspond
to this case and are not considered in Eq.(14). An unex-
pected departure from Eq.(14) is observed for Monte Carlo
(MC) data with very small anisotropy values. According to
Ref. 14, this may be associated with numerical uncertainties
for such very low values of anisotropysD8,0.001d. With
these comments in mind, we conclude that our results are in
very good agreement with the numerical data of Serena and
Costa-Krämer.

Previous theories have considered the role of a DW in the
transport properties of ferromagnetic metals. The effective
width W, when compared to the Fermi wavelengthlF, deter-
mines how strong the effect of the DW is in increasing2,4 or
decreasing3 the electrical resistance. Recently, Sil and Entel15

have considered the modification of the electronic band
structure by the DW and shown that there can be an increase
or decrease of the resistance depending on the dimensional-
ity, position of the Fermi energy, and strength of the coupling
between conduction electrons and DW. The role ofD has
been considered through the modification of the density of
states. One can see that these theories have considered no
dependence of the effective DW width on the dimensionality
D of the system. Here we have seen that this is valid only for

FIG. 1. The effective DW width, as obtained from Eq.(14) for
D=3 (open triangles), is compared to Monte Carlo data(filled
squares) from Ref. 14. Open squares correspond to the high aniso-
tropy limit for which Eq.(14) is not applicable. Please see text for
further details.
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the usual case of isotropic exchange interactions and on-site
anisotropy. This Brief Report reveals that the wall profile
itself contains an additionalD dependence for the case of
anisotropic exchange interactions. In this case Eq.(12) will
define such aD dependence ofW, which is the relevant DW
parameter in the electronic transport.

To summarize, we have followed both the variational and
semiclassical approaches to describe ap DW in the XXZ
model in a D-dimensional system. It was shown that the
effective one-dimensional Hamiltonian contains an on-site
anisotropy contribution which has been previously ignored
for D.1. The standard Landau-Lifshitz DW profile for iso-
tropic exchange interactions has been generalized. Increasing
the dimension of the system decreases the width of the wall.
This case is thus essentially different from the well known

one for which the anisotropy in the original model is only of
the on-site type. Very good agreement with earlier numerical
data was found. This work adds a new source ofD depen-
dence for measurable physical properties like the magnetore-
sistance.
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