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Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics
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The role of polar nanoregions in relaxor ferroelectrics of lead magnesium niobate type is investigated in the
framework of the spherical random bond-random-field model. Assuming that the interaction between polar
nanoregions is modified by a homogeneous lattice stress, an expression for the macroscopic electrostrictive
coefficients is obtained. A simple relation between the hydrostatic electrostrictive coefficient and the pressure
derivative of the effective transition temperature and the Curie constant is derived.
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Relaxor ferroelectrics are characterized by a large elecpendence forg, we can write down an additional stress
trostrictive response and a giant piezoelectric effect in thenodulated interaction term
applied electric field. So far, the microscopic origin of these 1
phenomena has not been fully understood. It has recently SH === > m(ij) X _ 2)
been suggested that the leading mechanism of electrostric- T2 s oSSy
tion in PdMg4/3Nb,,3)O5 (PMN) and related systems are the - L
charge-transfer fluctuations occurring in Mg-rich regions onHer,e the pa_lrameterg(lj)wp,, represent stress denvgﬂves of
localized pairs and/or triads of Nb and O ichsleanwhile, ~ the interactionJj, which are defined by the expansion

nanosized polar regions, which are known to exist in relax- ..
D 9 ‘Jij(x),u,V:‘Jij 5;w+ 2 m(IJ );wpo'xp0'+ . (3)
po

i#] pvpo

ors, are believed to be responsible for the relaxor freezing
phenomena observed in the linear and nonlinear dielectric
response and in NMR line shape. Thus, the question arises The phenomenological electrostrictive coefficie@sg,,,
whether the same polar nanoregions may also play a key roe defined by the relation between the equilibrium stxgjn
in electrostriction and piezoelectricity. To answer this quesand the dielectric polarizatioR,, namely,
tion we use a semimicroscopic approach, which is based on
the polar nanoregion picture in the framework of the so- X,U«VZE QurpaPpPo- (4)
called spherical random bond-random-ficBRBRA model i
of relaxors?® We derive an expression for the electrostric- Note that strains are related to the stress tensor by the elastic
tive coefficients in terms of a microsocopic stress couplingcompliance tensorsﬂmzc;lm, €., X, =S Sy X
term in the Hamiltonian. The field and temperature depenwhereC,,,, are the elastic constants. In relaxors with aver-
dence of piezoelectric coefficients is then calculated usingige cubic symmetry there are three independent coefficients
the SRBRF model. Qmn (in Voigt notation: Qq4, Q13 andQu.

The starting point of the present discussion is the SRBRF Rather than trying to calculate the equilibrium strains by
model of relaxor ferroelectrics? which is based on the in- minimizing the free-energy functional determined by the
teracting polar nanoregions picture. The model Hamiltoniarabove Hamiltoniari{ + 8 ;, we focus on the thermodynamic

is written as Maxwell relation87”
1/ dx 1)
1 =——| =& 5
He- 13 538,8,-Sh,S, aSES, O Qe z(axpa ©
i#] u in i

whereX'ly are elements of the inverse of the general suscep-
whereS,, (v=1,2,3 are components of the dimensionless tibility tensor x,,, defined by the relatio®,, =2, x,,,E,.

dipol t fieldS subiect to th herical diti The linear susceptibility,,, can then be calculated from
ipole moment fieldS subject to the spherical condition the SRBRF mode(1) using the replica approachin zero

Ei(é)Z:aN (here we setv=1). The first term represents ran- external field we obtain the restlt
dom bondsJ;;, which have a Gaussian distribution with mean 5
value [J;],,=Jo/N and varianceJ?/N, while the Gaussian Yur= & (&)M
random fieldsh; in the second term have zero mean and e 1-BJ(1-9)
varianceA. Finally, g is the average dipole moment of & \yhere3=1/kT andq is the spherical glass order parameter.
polar nanoregion, ang the applied electric field. The above expression corresponds to the static field-cooled
Under the action of a homogeneous stress figJdboth  dielectric susceptibilitf, to be distinguished from the real
the dipole momeng and the intercluster coupling; will, in part of the low-frequency complex dielectric permittivity,
general, be modified. Ignoring for the moment the stress dewhich shows a different behavior below the freezing tem-

(6)
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TABLE |. Comparison between calculated valutiﬁ,a'C from Eq. (8), and experimental ones listed in
Refs. 6 and 7Qp®, of hydrostatic electrostrictive coefficients in some perovskite-type crystals.

dT./dp C. Qgale exp
Substance (108 K m?/N) (1P K) (102m*C™?) (102m*C™?
BaTiOs -4.8, Ref. 12 1.5, Ref. 6 1.8 2.0, Ref. 7
PbTiO; -7.1, Ref. 12 1.0, Ref. 6 4.0 3.7, Ref. 6
2.2, Ref. 7
Pb(Zn;5Nby3)O5 -5.5, Ref. 7 4.7, Ref. 6 0.66 0.66, Ref. 7
PH(Mgy/sNb,/2)Os -4.8, Ref. 7 4.5, Ref. 7 0.60 0.58, Ref. 7

perature. At constant polarization, the stress dependenge of In fact, the above derivations are not limited to the SR-
will mainly arise from the stress modulation of the coupling BRF model, but are as well applicable to the classical ran-
parameterJ, resulting from the expansio3), where it dom n vector model, which is formally described by the
should be kept in mind that the order paramejdas inde-  same type of Hamiltonian, but with a different constraint on
pendent of], for T> Jy/k.?2 An estimate of the stress depen- the order parameter field. Our analysis is based on mean-field
dence of the dipole momentindicates that this effect is of type arguments, which are valid in random systems with in-
minor importancé. Moreover, it would lead to temperature finite range such as spin and dipolar glasses. As shown in
dependent electrostrictive coefficien@=1/y, contrary to  Ref. 7, Eq.(8) is also applicable to ferroelectric perovskites,
experiments in PMN. It should be noted, however, thatin which the high temperature dielectric constant obeys the
T-dependent coefficient€,,; have been observed in the Curie-Weiss lawe,~C./(T-T;), where T, is the Curie-
mixed system 0.9 PMN-0.1P¥. Weiss temperature, for example, in Bagiand PbTiQ.*? It

To obtain a general form of the susceptibility tenggr,  should be stressed, however, that the ferroelectric transition
we derive a stress dependent coupling parameter matrix these systems is of first order and may not be described by
Jo(X) .., by performing a random average on E8) and in-  a simple mean-field theory. First-principles calculatidns
troducingm,,,,,/ N=[M(ij) ..o ]a,- This will lead to an ex- show that both fluctuations and strain coupling are required
pression fory,, analogous to Eq6) with X-dependent cou- for producing the first-order transition in PbTjCn case of
pling Jo. To lowest order,X‘lv is linear inX,, and we can a first-order phase transition, the actual transition tempera-
easily evaluate the derivative in E@), leading to the result ture TZ is generally higher thaf,, and its pressure depen-

dencedT,/dp also differs fromdT./dp.1?
Quuos= e o (7) In Table | we have summarized the valuesQyf calcu-

RO g P lated from the published experimental datadih/dp andC,

This simple expression relates the macroscopic electrostrid?" Irelaxorsk.ItDI\/LN anclzl I [lzt .n1’3l’3\| b_zr’.3)of’a SE_IYV e”_?ﬁ for nor-

tive coefficientsQ,,,,,, to the mesoscopic stress coupling pa—ma PETOVSKILE TEITOEIEClrics ba i@n . Q. The agree-

rametersm ment with the experimental values @f, is in all cases rather
vpo

72
Let us first consider the case of hydrostatic pressqy; good. .
y b £ In analogy to Eq(8) we can write down the result for the

=-pé,, in Egs.(5)—7). The corresponding stress derivative f the el -~ .
is m,=—-dJy/dp, and the appropriate electrostrictive coeffi- componentsy of the electrostrictive tensor, i.e.,

cient is given byQy,. The value ofm, can be estimated from m

the measured pressure derivative of the static dielectric con- Qu= =, 9
stant at high temperatures. Since at high temperatyres, 2keoCe

it follows from Eq. (6) that the field-cooled static dielectric

constant behaves a% e,~C_/(T-Jy/k), where the Curie , .
constantC, is given by C,=g?/ (kego). Thus, we conclude 7) we can now estimate the values of the corresponding
€ ¢ 0%c/ ' stress coupling coefficientsy,. The result is:my;/k=20

that Jp/k asymptotically plays the role of an effective Curie- %1078 2 —_76x10°8 2
Weiss temperatur&.=Jy/k, and thereforam, is given by 107K m/N andmys/k=-7.6 10°K m*/N.
the experimental value of the pressure derivativeTgf
namely, m,=-k(dT./dp). This leads to the following rela-

From the experimental values Qf;; andQ;, in PMN (Ref.

We can now also estimate the magnitude of the interaction
term (2) in the Hamiltonian. A typical value of the electros-
trictive strain isx;~1048 corresponding to a stress;

tion: ~1.6x10’ N/m2 This gives an interaction energy
1dT/dp m,X,/k~3.2 K, which is small compared to the value of
Qh=-5 (8)  Jy/k~200 K.

2 &l It should be added that in the present approach we have
The experimental values @, and dT./dp in PMN are''!  considered only the field induced electrostriction, i.e., the
C.,~4.5x10°K and dT./dp=-4.8x10®8K m?/N. This  polarization componentB, in Eq. (4) appear as a response
immediately yields Q,=0.60x102m*C™2, in perfect to an applied field. In addition to this effect, random fields
agreement with the experimental value@f (see Table)l contained in the Hamiltoniargl) may give rise to local
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strains of different symmetries. It is known, however, that 1.5 ' ' T '
random fields in relaxors are relatively weak compared to
dipolar glasses. A typical value of the random-field variance T/J=1.33
in relaxors is given byA/J?>=0.00122 It is possible that
random-field-induced distortions are responsible for the re-
cently discovereX phase in P&Zn;;3Nb,,3) 03,14 which con- Tr 1
sists of a nearly cubic lattice with slight tetragonal distortion.
An interesting problem, which will be left for future in- &
vestigations, is the microscopic origin of E&). As shown
in Ref. 15, one can derive an effective intercluster coupling
J;; by considering the dipole-phonon interaction. After trans- 0.5 | 50 N
forming away the phonon coordinates, one obtains an ex:
pression forJ, proportional to the square of the interaction
strength divided by the square of the phonon frequencies
The stress—or strain—dependenceJgfis expected to be
mainly due to lattice anharmonicity, which results in a shift 0
of phonon frequencies under applied stress. An analogou: E/E
mechanism could then be responsible for the coefficients
m(ij)wpa- FIG. 1. Calculated electric-field dependence of the piezoelectric
The piezoelectric coefficientd,,, are defined, as usual, coefficientd,;;/Dy; for three values of temperature, as indicated.
by the relatiofi

1.66

d,/D,

yuip = 2X 2 QuuipoPo- (100 PMN! The same CTF mechanism predicts th@s
7 =-Q,,/2 andd;3=-d;;/2, whereas no such constraints ap-
Substituting the electrostriction coefficients from Eg).and  pear in the present mechanism based on stress modulation of
using the relatiorP, = yE,, we have ford;;=d;,; in a cubic  the interaction between polar nanoregions.

system: In the present approach, the strong piezoelectric effect is
simply due to the large value of the dielectric susceptibjlity

L 2E (11) in relaxors. It has been shown, however, in a microscopic
B keCt Y first-principles study that a polarization rotation

mechanisrtf is responsible for the ultrahigh piezoelectric re-
sponse observed in mixed single crystals such as PZN-PT
and PMN-PT. It is not clear at present whether local effects
or long-range dipolar interactions are a key factor in the po-
larization rotation mechanism.

An analogous relation holds faf;s.

The field dependence af;;(E) can now be obtained by
calculatingy(E) from the SRBRF model. To lowest order of
perturbation theory this can be done in the usual maher,

@.e., by ignoring thg extra terrﬁH,q in the Hamiltonian. To In conclusion, polar nanoregions seem to play an impor-
illustrate the behavior ody,(E) at different temperatures, we ot role in electrostriction phenomena in relaxors. The main

plot in Fig. 1 th% d|menS|20nIess rathll/ZDll versusk/E.,  effect is due to the interactions between polar nanoregions,
where D1y =my;K°€CEc/J*~3.32x10*m/V for PMN,  which are modified by the local stress tensor. A simple for-
andE;~0.2x10° V/m is the critical field, which induces a my|a relating the hydrostatic electrostrictive coefficient with
relaxor-to-ferroelectric transition. At small values of the ihe stress derivative of the effective critical temperature and
field, dy; increases quasilinearly witk; for T/J=1.33 it the Curie constant has been obtained, which does not contain

reaches a maximum &/ E. <5, and falls off withE at larger 5y adjustable parameters and is also applicable to other
fields. This behavior is qualitatively similar to that of PMN perovskite-type systems.

ceramicst®
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