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The role of polar nanoregions in relaxor ferroelectrics of lead magnesium niobate type is investigated in the
framework of the spherical random bond–random-field model. Assuming that the interaction between polar
nanoregions is modified by a homogeneous lattice stress, an expression for the macroscopic electrostrictive
coefficients is obtained. A simple relation between the hydrostatic electrostrictive coefficient and the pressure
derivative of the effective transition temperature and the Curie constant is derived.
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Relaxor ferroelectrics are characterized by a large elec-
trostrictive response and a giant piezoelectric effect in the
applied electric field. So far, the microscopic origin of these
phenomena has not been fully understood. It has recently
been suggested that the leading mechanism of electrostric-
tion in PbsMg1/3Nb2/3dO3 (PMN) and related systems are the
charge-transfer fluctuations occurring in Mg-rich regions on
localized pairs and/or triads of Nb and O ions.1 Meanwhile,
nanosized polar regions, which are known to exist in relax-
ors, are believed to be responsible for the relaxor freezing
phenomena observed in the linear and nonlinear dielectric
response and in NMR line shape. Thus, the question arises
whether the same polar nanoregions may also play a key role
in electrostriction and piezoelectricity. To answer this ques-
tion we use a semimicroscopic approach, which is based on
the polar nanoregion picture in the framework of the so-
called spherical random bond–random-field(SRBRF) model
of relaxors.2–5 We derive an expression for the electrostric-
tive coefficients in terms of a microsocopic stress coupling
term in the Hamiltonian. The field and temperature depen-
dence of piezoelectric coefficients is then calculated using
the SRBRF model.

The starting point of the present discussion is the SRBRF
model of relaxor ferroelectrics,2–5 which is based on the in-
teracting polar nanoregions picture. The model Hamiltonian
is written as

H = −
1

2o
iÞ j

o
m

JijSimSjm − o
im

himSim − go
im

EmSim, s1d

whereSim sm=1,2,3d are components of the dimensionless

dipole moment fieldSW i subject to the spherical condition

oisSW id2=aN (here we seta=1). The first term represents ran-
dom bondsJij , which have a Gaussian distribution with mean
value fJijgav=J0/N and varianceJ2/N, while the Gaussian

random fieldshW i in the second term have zero mean and
varianceD. Finally, g is the average dipole moment of a

polar nanoregion, andEW the applied electric field.
Under the action of a homogeneous stress fieldXmn both

the dipole momentg and the intercluster couplingJij will, in
general, be modified. Ignoring for the moment the stress de-

pendence forg, we can write down an additional stress
modulated interaction term

dHJ = −
1

2o
iÞ j

o
mnrs

msi j dmnrsXrsSimSjn. s2d

Here the parametersmsi j dmnrs represent stress derivatives of
the interactionJij , which are defined by the expansion

JijsXdmn = Jijdmn + o
rs

msi j dmnrsXrs + ¯. s3d

The phenomenological electrostrictive coefficientsQmnrs

are defined by the relation between the equilibrium strainxmn

and the dielectric polarizationPr, namely,

xmn = o
rs

QmnrsPrPs. s4d

Note that strains are related to the stress tensor by the elastic
compliance tensorsmnkl=Cmnkl

−1 , i.e., xmn=oklsmnklXkl,
whereCmnkl are the elastic constants. In relaxors with aver-
age cubic symmetry there are three independent coefficients
Qmn (in Voigt notation): Q11, Q13, andQ44.

Rather than trying to calculate the equilibrium strains by
minimizing the free-energy functional determined by the
above HamiltonianH+dHJ, we focus on the thermodynamic
Maxwell relation,6,7

Qmnrs = −
1

2
S ] xmn

−1

] Xrs
D

P,T
, s5d

wherexmn
−1 are elements of the inverse of the general suscep-

tibility tensor xmn defined by the relationPm=onxmnEn.
The linear susceptibilityxmn can then be calculated from

the SRBRF model(1) using the replica approach.2 In zero
external field we obtain the result2

xmn = dmnSg2

vc
D bs1 − qd

1 − bJ0s1 − qd
, s6d

whereb;1/kT andq is the spherical glass order parameter.
The above expression corresponds to the static field-cooled
dielectric susceptibility,8 to be distinguished from the real
part of the low-frequency complex dielectric permittivity,
which shows a different behavior below the freezing tem-
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perature. At constant polarization, the stress dependence ofx
will mainly arise from the stress modulation of the coupling
parameterJ0 resulting from the expansion(3), where it
should be kept in mind that the order parameterq is inde-
pendent ofJ0 for T.J0/k.2 An estimate of the stress depen-
dence of the dipole momentg indicates that this effect is of
minor importance.9 Moreover, it would lead to temperature
dependent electrostrictive coefficientsQ~1/x, contrary to
experiments in PMN. It should be noted, however, that
T-dependent coefficientsQ11 have been observed in the
mixed system 0.9 PMN–0.1PT.10

To obtain a general form of the susceptibility tensorxmn

we derive a stress dependent coupling parameter matrix
J0sXdmn by performing a random average on Eq.(3) and in-
troducing mmnrs /N=fmsi j dmnrsgav. This will lead to an ex-
pression forxmn analogous to Eq.(6) with X-dependent cou-
pling J0. To lowest order,xmn

−1 is linear in Xrs and we can
easily evaluate the derivative in Eq.(5), leading to the result

Qmnrs =
vc

2g2mmnrs. s7d

This simple expression relates the macroscopic electrostric-
tive coefficientsQmnrs to the mesoscopic stress coupling pa-
rametersmmnrs.

Let us first consider the case of hydrostatic pressureXmn

=−pdmn in Eqs.(5)–(7). The corresponding stress derivative
is mh=−dJ0/dp, and the appropriate electrostrictive coeffi-
cient is given byQh. The value ofmh can be estimated from
the measured pressure derivative of the static dielectric con-
stant at high temperatures. Since at high temperaturesq!1,
it follows from Eq. (6) that the field-cooled static dielectric
constant behaves as7,11 es,Ce / sT−J0/kd, where the Curie
constantCe is given byCe=g2/ ske0vcd. Thus, we conclude
thatJ0/k asymptotically plays the role of an effective Curie-
Weiss temperatureTc.J0/k, and thereforemh is given by
the experimental value of the pressure derivative ofTc,

7

namely,mh=−ksdTc/dpd. This leads to the following rela-
tion:

Qh = −
1

2

dTc/dp

e0Ce

. s8d

The experimental values ofCe and dTc/dp in PMN are7,11

Ce.4.53105 K and dTc/dp.−4.8310−8 K m2/N. This
immediately yields Qh.0.60310−2 m4 C−2, in perfect
agreement with the experimental value ofQh (see Table I).

In fact, the above derivations are not limited to the SR-
BRF model, but are as well applicable to the classical ran-
dom n vector model, which is formally described by the
same type of Hamiltonian, but with a different constraint on
the order parameter field. Our analysis is based on mean-field
type arguments, which are valid in random systems with in-
finite range such as spin and dipolar glasses. As shown in
Ref. 7, Eq.(8) is also applicable to ferroelectric perovskites,
in which the high temperature dielectric constant obeys the
Curie-Weiss lawes,Ce / sT−Tcd, where Tc is the Curie-
Weiss temperature, for example, in BaTiO3 and PbTiO3.

12 It
should be stressed, however, that the ferroelectric transition
in these systems is of first order and may not be described by
a simple mean-field theory. First-principles calculations13

show that both fluctuations and strain coupling are required
for producing the first-order transition in PbTiO3. In case of
a first-order phase transition, the actual transition tempera-
ture Tc

* is generally higher thanTc, and its pressure depen-
dencedTc

* /dp also differs fromdTc/dp.12

In Table I we have summarized the values ofQh calcu-
lated from the published experimental data ondTc/dp andCe

for relaxors PMN and PbsZn1/3Nb2/3dO3, as well as for nor-
mal perovskite ferroelectrics BaTiO3 and PbTiO3. The agree-
ment with the experimental values ofQh is in all cases rather
good.

In analogy to Eq.(8) we can write down the result for the
componentsQkl of the electrostrictive tensor, i.e.,

Qkl =
mkl

2ke0Ce

. s9d

From the experimental values ofQ11 andQ12 in PMN (Ref.
7) we can now estimate the values of the corresponding
stress coupling coefficientsmkl. The result is:m11/k.20
310−8 K m2/N andm13/k=−7.6310−8 K m2/N.

We can now also estimate the magnitude of the interaction
term (2) in the Hamiltonian. A typical value of the electros-
trictive strain is x1,10−4,6 corresponding to a stressX1
,1.63107 N/m2. This gives an interaction energy
m11X1/k,3.2 K, which is small compared to the value of
J0/k,200 K.

It should be added that in the present approach we have
considered only the field induced electrostriction, i.e., the
polarization componentsPr in Eq. (4) appear as a response
to an applied field. In addition to this effect, random fields
contained in the Hamiltonian(1) may give rise to local

TABLE I. Comparison between calculated values,Qh
calc from Eq. (8), and experimental ones listed in

Refs. 6 and 7,Qh
exp, of hydrostatic electrostrictive coefficients in some perovskite-type crystals.

dTc/dp Ce Qh
calc Qx

exp

Substance s10−8 K m2/Nd s105 Kd s10−2 m4 C−2d s10−2 m4 C−2d

BaTiO3 −4.8, Ref. 12 1.5, Ref. 6 1.8 2.0, Ref. 7

PbTiO3 −7.1, Ref. 12 1.0, Ref. 6 4.0 3.7, Ref. 6

2.2, Ref. 7

PbsZn1/3Nb2/3dO3 −5.5, Ref. 7 4.7, Ref. 6 0.66 0.66, Ref. 7

PbsMg1/3Nb2/3dO3 −4.8, Ref. 7 4.5, Ref. 7 0.60 0.58, Ref. 7
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strains of different symmetries. It is known, however, that
random fields in relaxors are relatively weak compared to
dipolar glasses. A typical value of the random-field variance
in relaxors is given byD /J2.0.001.2,3 It is possible that
random-field-induced distortions are responsible for the re-
cently discoveredX phase in PbsZn1/3Nb2/3dO3,

14 which con-
sists of a nearly cubic lattice with slight tetragonal distortion.

An interesting problem, which will be left for future in-
vestigations, is the microscopic origin of Eq.(2). As shown
in Ref. 15, one can derive an effective intercluster coupling
Jij by considering the dipole-phonon interaction. After trans-
forming away the phonon coordinates, one obtains an ex-
pression forJ0 proportional to the square of the interaction
strength divided by the square of the phonon frequencies.
The stress—or strain—dependence ofJ0 is expected to be
mainly due to lattice anharmonicity, which results in a shift
of phonon frequencies under applied stress. An analogous
mechanism could then be responsible for the coefficients
msi j dmnrs.

The piezoelectric coefficientsdmnr are defined, as usual,
by the relation6

dmnr = 2xo
s

QmnrsPs. s10d

Substituting the electrostriction coefficients from Eq.(8) and
using the relationPs=xEs, we have ford11;d111 in a cubic
system:

d11 =
m11

ke0Ce

x2E1. s11d

An analogous relation holds ford13.
The field dependence ofd11sEd can now be obtained by

calculatingxsEd from the SRBRF model. To lowest order of
perturbation theory this can be done in the usual manner,2,3

i.e., by ignoring the extra termdHJ in the Hamiltonian. To
illustrate the behavior ofd11sEd at different temperatures, we
plot in Fig. 1 the dimensionless ratiod11/D11 versusE/Ec,
where D11=m11k

2e0CeEc/J2,3.32310−12 m/V for PMN,
andEc,0.23106 V/m is the critical field, which induces a
relaxor-to-ferroelectric transition. At small values of the
field, d11 increases quasilinearly withE; for T/J=1.33 it
reaches a maximum atE/Ec&5, and falls off withE at larger
fields. This behavior is qualitatively similar to that of PMN
ceramics.16

A similar result ford11 as a function of field and tempera-
ture has been obtained earlier from a local mechanism based
on the charge-transfer fluctuations(CTF’s) in isolated pairs
and triads of Nb and O ions occurring in Mg rich regions in

PMN.1 The same CTF mechanism predicts thatQ13

=−Q11/2 andd13=−d11/2, whereas no such constraints ap-
pear in the present mechanism based on stress modulation of
the interaction between polar nanoregions.

In the present approach, the strong piezoelectric effect is
simply due to the large value of the dielectric susceptibilityx
in relaxors. It has been shown, however, in a microscopic
first-principles study17 that a polarization rotation
mechanism18 is responsible for the ultrahigh piezoelectric re-
sponse observed in mixed single crystals such as PZN-PT
and PMN-PT. It is not clear at present whether local effects
or long-range dipolar interactions are a key factor in the po-
larization rotation mechanism.

In conclusion, polar nanoregions seem to play an impor-
tant role in electrostriction phenomena in relaxors. The main
effect is due to the interactions between polar nanoregions,
which are modified by the local stress tensor. A simple for-
mula relating the hydrostatic electrostrictive coefficient with
the stress derivative of the effective critical temperature and
the Curie constant has been obtained, which does not contain
any adjustable parameters and is also applicable to other
perovskite-type systems.
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