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Using a combination of first-principles and effective-Hamiltonian approaches, we map out the structure of
BaTiO3 under epitaxial constraints applicable to growth on perovskite substrates. We obtain a phase diagram
in temperature and misfit strain that is qualitatively different from that reported by Pertsev, Zembilgotov, and
Tagantsev[Phys. Rev. Lett.80, 1988(1998)], who based their results on an empirical thermodynamic potential
with parameters fitted at temperatures in the vicinity of the bulk phase transitions. In particular, we find a
region of “r phase” at low temperature where Pertsevet al.have reported an “ac phase.” We expect our results
to be relevant to thin epitaxial films of BaTiO3 at low temperatures and experimentally achievable strains.
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The perovskite oxide barium titanatesBaTiO3d is a proto-
typical ferroelectric, an insulating solid whose macroscopic
polarization can be reoriented by the application of an elec-
tric field.1 In the perovskite ferroelectrics, it is well known
both experimentally and theoretically that the polarization is
also strongly coupled to strain,2 and thus that properties such
as the ferroelectric transition temperature and polarization
magnitude are quite sensitive to external stress.

Experimentally, the properties of ferroelectrics in thin film
form generally differ significantly from those in the bulk.3

While many factors are expected to contribute to these dif-
ferences, it has been shown that the properties of perovskite
thin films are strongly influenced by the magnitude of the
epitaxial strain resulting from lattice matching the film to the
substrate. For example, Yonedaet al.4 used molecular-beam
epitaxy to grow BaTiO3 (lattice constant of 4.00 Å) on
(001)-oriented SrTiO3 (lattice constant of 3.91 Å); they
found that the ferroelectric transition temperature exceeds
600 °C, to be compared to the bulk Curie temperature of
TC=130 °C. Other studies have shown that the amount of
strain in BaTiO3/SrTiO3 superlattices on SrTiO3 substrates
strongly influences properties including the observed polar-
ization, phase transition temperature, and dielectric
constant.5–8

In a seminal paper, Pertsev, Zembilgotov and Tagantsev9

introduced the concept of mapping the equilibrium structure
of a ferroelectric perovskite material versus temperature and
misfit strain, thus producing a “Pertsev phase diagram”(or
Pertsev diagram) of the observable epitaxial phases. The ef-
fect of epitaxial strain is isolated from other aspects of thin-
film geometry by computing the structure of thebulk mate-
rial with homogeneous strain tensor constrained to match a
given substrate with square surface symmetry.10 In addition,
short-circuit electrical boundary conditions are imposed,
equivalent to ideal electrodes above and beneath the film.9

Given the recognized importance of strain in determining the
properties of thin-film ferroelectrics, Pertsev diagrams have
proven to be of enormous interest to experimentalists seek-
ing to interpret the results of experiments on epitaxial thin
films and heterostructures.

In Ref. 9 the mapping was carried out with a phenomeno-
logical Landau–Devonshire model taken from the literature.

This should give excellent results in the temperature/strain
regime in which the model parameters were fitted, but will
generally be less accurate when extrapolated to other re-
gimes. In Fig. 1, we compare two Pertsev diagrams for
BaTiO3 computed using two different sets of Landau–
Devonshire parameters, used by Pertsev and co-workers in
Refs. 9 and 11, respectively. While both give the same be-
havior near the bulkTC and small misfit strains, they predict
completely different low-temperature phase behavior.

With first-principles methods, it is possible not only to
resolve such discrepancies arising in phenomenogical theo-
ries, but also to generate a wealth of microscopic information
about the structure and properties of epitaxial phases at vari-
ous temperatures and substrate lattice constants. In this pa-
per, using parameter-free total-energy methods based on den-
sity functional theory(DFT), we map out the equilibrium
structure of BaTiO3 as a function of epitaxial constraints at
zero temperature, and then extend the results to finite tem-
perature via an effective-Hamiltonian approach. The Pertsev
diagram obtained in this way has a similar global topology as
that of Ref. 11(but not to the one in Ref. 9). This allows us
to predict the impact of misfit strain on the magnitude and

FIG. 1. Phase diagrams of epitaxial BaTiO3 as predicted by the
theory of Pertsevet al. (see Ref. 9). (a) Using the parameters quoted
in Ref. 9. (b) Using the parameters quoted in Ref. 11. The second-
and first-order phase transitions are represented by thin and thick
lines, respectively.
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orientation of the polarization and Curie temperature of
BaTiO3. Our results should thus be of considerable impor-
tance for understanding experimental growth of high-quality,
coherent epitaxial thin films of BaTiO3 on perovskite sub-
strates, as well as more generally illustrating the utility of
first-principles Pertsev diagrams.

The first-principles DFT calculations are carried out in the
Kohn–Sham framework12 using theVASP software package.13

The electron-ion interaction is described by the projector
augmented wave method;14 semicore electrons are included
in the case of Bas5s25p66s2d and Ti s3s23p64s23d2d. The
calculations employ the Ceperley–Alder15 form of the local-
density approximation (LDA ) exchange-correlation
functional,16 a 700 eV plane-wave cutoff, and a 63636
Monkhorst–Pack sampling of the Brillouin zone.17

We begin by systematically performing optimizations of
the five-atom unit cell of the cubic perovskite structure

(space groupPm3̄m) in the six possible phases considered by
Pertsev and co-workers in Ref. 9. A description of these
phases is given in Table I. Starting from a structure in which
the symmetry is established by displacing the Ti and O at-
oms, we relax the atomic positions and the out-of-plane cell
vector until the value of the Hellmann–Feynman forces and
zz, yzandzxstress tensor components fall below some given
thresholds(0.001 eV/Å and 0.005 eV, respectively).

In Fig. 2 we present the computed energy for each phase
as a function of the misfit strains=a/a0−1, wherea0 is our
DFT lattice constant for free cubic BaTiO3 s3.955 Åd. For
large compressive strains, the lowest energy corresponds to
thec phase; for large tensile strains, theaa phase is favored.
At a misfit strain ofsmaxscd=−6.4310−3 sa=3.930 Åd, there
is a second-order transition from thec phase to ther phase,
with the polarization in ther phase continuously rotating
away from thez direction as the misfit strain increases. At
misfit strain sminsaad=6.5310−3sa=3.981 Åd, the r phase
polarization completes its rotation into thexy plane, resulting
in a continuous transition to theaa phase. The minimum
energyr phase is at misfit strain of 2.2310−3 sa=3.964 Åd;
lattice matching to the substrate would be optimal at this
point. At the misfit strain of thec→ r transition, the polar-
ization could also begin a continuous rotation into the(010)
plane, corresponding to theac phase. However, it is clear
from the figure that the energy of theac phase is always

higher than that of ther phase, which makes sense given that
ther phase is an epitaxial disortion of the ground-state rhom-
bohedral phase of bulk BaTiO3, while theac phase is related
to the higher-energy bulk orthorhombic phase. We conclude
that the phase sequence at low temperatures is notc→ac
→aa as given in Ref. 9, butc→ r →aa.

Figure 3 shows the computed behavior of the atomic dis-
placements for the lowest-energy phase with increasing mis-
fit strain. For large compressive strains, the pattern of dis-
placements corresponds to thec phase, and atoms relax only
along the[001] direction. As the in-plane strain increases, we
observe a second-order phase transitionsc→ rd, and while
the magnitude of the atomic displacements continues to di-
minish along[001], the displacements in thexy plane begin
to grow. With increasing tensile strain, the displacements
along [001] vanish at ther →aa transition, while the dis-

TABLE I. Summary of possible epitaxial BaTiO3 phases. In-
plane cell vectors are fixed ata1=ax̂, a2=aŷ. Columns list, respec-
tively: phase; space group; out-of-plane lattice vector; number of
free internal displacement coordinates; and form of the polarization
vector.

Phase SG a3 Np Polarization

p P4mmm czˆ 0 0

c P4mm cẑ 3 Pzẑ

aa Amm2 cẑ 4 Psx̂+ ŷd
a Pmm2 cẑ 4 Px̂

ac Pm cax̂+cẑ 8 Px̂+Pzẑ

r Cm casx̂+ ŷd+cẑ 7 Psx̂+ ŷd+Pzẑ

FIG. 2. (Color online) Energies of the possible epitaxial BaTiO3

phases for different misfit strains, as obtained from the fullab initio
calculations. The vertical lines denote the phase transition points
given by the stability analysis.

FIG. 3. (Color online). Displacements of the atoms from the
cubic perovskite cell positions, for the most energetically favorable
configuration at a given misfit strain. The vertical lines denote the
phase transition points obtained from the stability analysis.D3sTid
labels the displacement of the Ti atom in units the third lattice
vector, etc.
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placements in thexy plane continue to grow smoothly. Simi-
lar results are found when we analyze thec→ac→a se-
quence(not shown), where what was said for thexy plane
applies now to the[100] direction. The clear change in char-
acter of the displacement pattern within ther phase wit-
nessed here illustrates the quantitative limitations of using a
single misfit-strain-independent local mode to model the
phase diagram.

A stability analysis provides the precise limits of phase
stability shown in Figs. 2 and 3. At each value of misfit in the
c phase, for example, we carry out finite-difference calcula-
tions ofx forces andxzstress as the atomicx coordinates and
xz strain are varied. The zero crossing of the lowest eigen-
value of the resulting 636 Hessian matrix identifies the
critical misfit. A similar analysis is used to considerz dis-
placements and shear strains in thea and aa phases. By
properly considering zone-center phonons, elastic shear, and
linear cross coupling between them, this analysis allows us
to locate the second-order phase boundaries much more pre-
cisely than is possible through direct comparison of total
energies.18

Having established the first principles zero-temperature
phase diagram, we now extend our study of epitaxial BaTiO3
to finite temperatures using the effective Hamiltonian ap-
proach of Zhong, Vanderbilt, and Rabe.19 In this method, the
full Hamiltonian is mapped onto a statistical mechanical
model by a subspace projection, and parametrized through
ab initio calculations of small distortions of bulk BaTiO3 in
the cubic perovskite structure. The reduced subspace is com-
posed of a set of relevant degrees of freedom identified for
ferroelectric perovskites as the unit cell distortions corre-
sponding to local polarization, expressed in the form of local
modes. This subspace is augmented by the inclusion of the
homogeneous strain.

It is straightforward to impose the constraint of fixed in-
plane strain by fixing three of the six tensor strain compo-
nents during the Monte Carlo(MC) simulations. For each
value of in-plane strain, MC thermal averages are obtained
for the unconstrained components of the homogeneous strain
and the average polarization,20 and phase transitions are
identified by monitoring the symmetry of these quantities.
Following Ref. 19, all the simulations were performed at the
same negative external pressure ofP=−4.8 GPa. Misfit is
defined relative toa0=3.998 Å, the lattice constant at the
bulk cubic-to-tetragonal transition as computed with this
approach.19 The resulting phase diagram appears in Fig. 4,
where all phase lines represent second-order transitions.

The Pertsev diagrams of Figs. 1(a), 1(b), and 4 share the
same topology above and just belowTC: p at high tempera-
ture,c at large compressive misfit,aa at large tensile misfit,
and a four-phase point connecting these phases with ther
phase atTC. At lower temperature, there is a drastic differ-
ence between Figs. 1(a) and 1(b), with our theory supporting
the latter. While our theory underestimates the temperature
of the four-phase crossing point in Fig. 4 by about 100 °C,
this is the price we pay for insisting on a first-principles
approach; indeed, this effective Hamiltonian underestimates
the temperature of the bulk cubic-to-tetragonal transition by
about the same amount.

At low temperature, our Pertsev diagram shows the se-
quence of second-order phase transitionsc→ r →aa. The r

phase is predicted to exist in a range that is more than twice
as broad as that shown in Fig. 2. We have found that this
range is reduced to about 1.5 times that of Fig. 2 when the
negative-pressure correction is not included. The remaining
discrepancy is related to technical differences between the
DFT calculations used in Ref. 21 to obtain the parameters for
the effective Hamiltonian method and the DFT calculations
we report here.22 We should also mention that the effective
Hamiltonian used does not include the physics related to the
zero-point motion of the ions. This quantum effect should
alter the shape of the lines of the diagram at very low tem-
peratures, and it would result in those lines approaching the
misfit-strain axis with infinite derivative(see, for example,
Ref. 23). In any case, at zero temperature, the phase se-
quence is quite unambiguously established by the first-
principles results. This clearly indicates that the low-
temperature extrapolation of the Landau–Devonshire
parameters fitted nearTC can give rise to spurious results,
such as the stability of theac phase obtained in Ref. 9.

Finally, we comment on the effect of the assumptions
made in the construction of this first-principles Pertsev dia-
gram. In principle, we should consider the possibility of
equilibrium structures with larger unit cells, particularly
those with cell-doubling octahedral rotations, which have
been shown to be important in SrTiO3, and could condense
in BaTiO3 under sufficiently large misfit strains. As an ex-
ample, we have checked that the paraelectric phase of the
film is stable with respect to octahedral rotations about the
[001] direction (with M3 symmetry) up to an epitaxial com-
pressive strain of −70.9310−3 sa=3.675 Åd, far larger than
those likely to be experimentally relevant. In addition, while
we have studied only the effects of epitaxial strain, other
physical effects may also be relevant to the structure and
properties of thin films, such as atomic rearrangements at the
film-substrate interface and free surface, and the instability to
formation of multiple domain structures.24

To summarize, we have performed density functional
theory calculations in order to obtain the Pertsev diagram of
epitaxial BaTiO3 at zero temperature. The results we obtain
differ from those computed previously9 using a Landau–
Devonshire theory where the parameters needed were ob-

FIG. 4. Phase diagram of epitaxial BaTiO3 obtained using the
effective Hamiltonian of Zhong, Vanderbilt and Rabe(see Ref. 19).
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tained from experimental information about bulk BaTiO3 at
the phase transitions temperatures. Alternatively, the use of a
similar theory where the constants of the model are com-
puted using anab initio method is consistent with both the
first principles results at zero temperature, and with the work
of Pertsev and co-workers9 at high temperature.
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