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Reduction of the three-dimensional Schro¨dinger equation for multilayered films
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In this paper we present a method for reducing the three-dimensional Schro¨dinger equation to study confined
metallic states, such as quantum well states, in a multilayer film geometry. While discussing some approxima-
tions that are employed when dealing with the three dimensionality of the problem, we derive a one-
dimensional equation suitable for studying such states using an envelope function approach. Some applications
to the Cu/Co multilayer system with regard to spin tunneling/rotations and angle-resolved photoemission
experiments are discussed.
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I. INTRODUCTION

There has been much recent interest in magnetoelectr
devices due to their potential applications as miniaturiz
computer memory components and high-speed an
devices.1,2 The ability to synthesize systems with artifici
structures has grown remarkably over the past decade.
example, it has been shown recently that molecular-be
epitaxy techniques allow for the growth of independent f
romagnetic layers on a semiconducting substrate, in c
such as Fe on InAs~100! ~Ref. 2! and MnGa on GaAs~100!.3

The search for new device materials and making optim
use of such new devices will greatly benefit from an accur
understanding of the underlying quantum-mechanical p
cesses involved in electron transport as the dimensions o
device approach the wavelength of transmitting electro
Recent experimental studies of spin-dependent, hot-elec
transmission such as those described in Ref. 4 and reso
tunneling through two discrete states~Ref. 5! have raised a
number of interesting issues related to the ferromagnetic
insulating materials used, the nature of the electronic st
that are involved in transmission, and enhancements in
filtering effects. Apart from the first principles based a
tempts which can be quite tedious, most theoretical stu
of these spin dependent effects have used free-electron
structures and other simplifications in the metallic as w
as in the insulating regions. Our work, though motivated
free electron approaches such as those introduced by S
zewski and others,6,7 is an attempt to bring out a more rea
istic lateral dependence of the electronic states under con
eration.

This paper is organized as follows. First, starting from
three-dimensional Schro¨dinger equation, we proceed to d
rive an envelope function approach suitable for multilaye
films. This procedure will go beyond the free-electron me
ods that have been commonly used in the past, making us
more realistic wave functions, but avoiding a full fledgedab
initio calculation when studying such systems. We introdu
an approach which incorporates the two-dimensional Bl
wave vectorkuu and show that the associated parallel ba
structure characteristic of the material being used play
major role in perpendicular transmission.
0163-1829/2004/69~20!/205412~6!/$22.50 69 2054
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Second, we will study spin tunneling and rotation effec
~to be defined later! in a multilayer system with two ferro-
magnetic layers separated by a nonmagnetic metal suc
Co/Cu/Co. We will also address some issues related to an
resolved photoemission and inverse photoemission exp
ments focused on confined states in metallic multilayers.
though there have been attempts to explain such spe
using a phase analysis model with some success,8 a better
understanding of the multilayering, tunneling, spin rotati
effects, etc., is necessary, for example, to go beyond sim
situations and study more complicated heterostructures9–15of
different sizes and shapes. For such systems, quan
mechanical calculations of spin-dependent transmission
ing a simple free-electron model have already be
performed.7,13 However, there is a growing need for mo
realistic, yet simple enough calculations in order to und
stand new and small structures that are being synthes
today.

II. MODEL AND APPROXIMATIONS

There have been some recent attempts to evaluate th
fects of the two-dimensional~planar!, metallic periodic
structures on the confined states in various devices u
simplified models.16 Some of these have focused on a Fo
rier space description of the one-particle Schro¨dinger wave
function. We will be examining some of the assumptio
made in these Fourier as well as real-space models abou
confined states, the effects of the planar regions on them
the importance of spin asymmetry on the spin filteri
process.

Our model consists of multilayered slabs of different m
terials sandwiched together to form a device. For exam
the device may contain several layers of Cu sandwiched
tween two ferromagnetic slabs of Co as in Co/Cu/Co.
will choose thez direction to be perpendicular to these sla
and the (x,y) to be parallel planes consisting of slabs. The
can also be labeled longitudinal and transverse directio
respectively. There are several simplifications that are u
ally made in attempt to calculate properties of such str
tures. When approximations are made to the wave func
near an interface, it is a common practice to separate
transverse (x,y) dependence and the longitudinal~z! depen-
©2004 The American Physical Society12-1
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dence~see Ref. 16!. Let us carefully consider the condition
on the one-particle potential and the tunneling states that
to such a description of the problem at hand. An arbitr
eigenstate here can be expressed in the~planar! Bloch form
as

Ckuu
~r uu ,z!5(

Guu

CGuu

kuu ~z!exp$ i ~kuu1Guu!•r uu% ~1!

and the one-particle potentialU(x,y,z) can be expressed a

U~x,y,z!5(
Guu

VGuu
~z!exp~ iGuu•r uu! ~2!

to elucidate the periodic nature of the potential and
Bloch-like form of the wave function in the planar~i.e., par-
allel! direction. HereGuu refers to a planar reciprocal, lattic
vector, whiler uu5(x,y).

It is possible to analyze the effects of the planar states
the perpendicular behavior in several different ways. Fi
using the Fourier coefficients defined above, the comp
one-particle solution may be expressed as

2
\2

2m

]2

]z2
CGuu

kuu ~z!1 (
Gzz8ÞGuu

VGzz2Guu8
~z!CGzz8

~z!

5H E2
\2

2m
~kuu1Guu!

22V0~z!J CGuu

kuu ~z!. ~3!

Note that unless the~parallel andz direction! potential coef-
ficientsVGuu2Guu8(z) are weak compared to the relevant ener

scale of the problem, the above equation couples the Fou
coefficients of the wave function through the potential co
ficients and hence does not necessarily yield exponent
decaying solutions in the perpendicularz direction for the
wave function even if the energyE satisfies the condition

E,
\2

2m
~kuu1Guu!

21V0~z! ~4!

for all values ofz.
Consider the wave function as defined in Eq.~1!. An as-

sumption that is usually made16 when looking for such solu-
tions is the following ‘‘separability’’ condition:

C5j8~x,y!f8~z!. ~5!

The assumption of the wave function separating into pla
(j8) and perpendicular (f8) parts is equivalent to having
CGuu

(z)5f8(z)DGuu
, whereDGuu

Fourier coefficient has noz
dependence. These ideas can be expressed in terms o
one-particle potentialU(x,y,z) and its Fourier expansion
given by Eq.~2!. It is clear that if this potential satisfies th
~additivity! condition, U(x,y,z)5U1(x,y)1U2(z) with no
coupling between the planarx,y and perpendicularz depen-
dencies, then the above separation of variables in the w
function can be justified. In such situations, the Hamilton
H also becomes additive asH(x,y,z)5H1(x,y)1H2(z) and
a simple quantum well equation,
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F2
\2

2m

]2

]z2
1U2~z!Gf8~z!5ECf8~z!, ~6!

can be obtained forf8(z).
However, we argue that the above assumptions are

restrictive when one is dealing with states that havep, d, or
f character in local-orbital angular momentum. The coupl
of the three directions in the wave functions has to be d
with more rigor, since such atomic wave functions are u
likely to satisfy the separability condition expressed in E
~5!. Significant corrections will be necessary if the separa
ity condition is used as a starting point for better calcu
tions. Hence we have sought a different starting point
carrying out the reduction of the three-dimensional Sch¨-
dinger equation. The envelope function approach discus
below provides an ideal and formal platform for handling t
situation at hand.

III. ENVELOPE FUNCTIONS AND THE FULL PROBLEM

With the advent of methods related to semiconduc
quantum wells, the simplistic theory surrounding them h
been so successful that sometimes it is easy to undermin
connections to the well understood regime of weak pertur
tions in bulk crystals. However, since the potentials e
ployed in quantum wells are strongly perturbed at vario
boundaries, some formal justification seems necessary in
der to use simple quantum well equations for multilayer s
tems. In fact, some applications of quantum well based te
niques to semiconductor heterostructures have been just
using an envelope function approach.14

In principle, the relevant many-particle Hamiltonian in a
the different regions of the heterojunction carries all the n
essary~interaction! information. When combined with the
proper boundary conditions, its appropriate eigenstates
be used to describe, for example, tunneling in such a dev
However, this problem is highly nontrivial and various a
proximations are sought in order to simplify it. Firs
principles methods, such as those based on the den
functional theory, can be utilized for this purpose but le
complicated approaches that can reduce the computati
burden are quite attractive. The envelope function meth
introduced by Bastard12 is one such approach. Here the rea
space equations satisfied by the envelope functions w
equivalent to thek•p method of Kane15 with the band edges
allowed to be functions of position. For heterojunctions w
planar metallic regions, the applications of such ideas can
clarified and presented in a relatively straightforward w
starting from the nonrelativistic three-dimensional Sch¨-
dinger equation

F2
\

2m
¹21Us~x,y,z!GC~x,y,z!5EC~x,y,z!. ~7!

As is commonly done for~nonrelativistic! itinerant systems,
the spin dependence in the Hamiltonian has been abso
into a spin-dependent potentialUs , and the two equations
representing the up and down spins can be solved separa
Hence, from now on, we will drop the spin indexs and
2-2
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REDUCTION OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 69, 205412 ~2004!
focus on the reduction of a single, one-particle Schro¨dinger
equation. In the parallel direction, the metallic as well
insulating regions are assumed to have perfect, t
dimensional crystalline order, giving rise to extended el
tronic states with well-defined parallel Bloch momenta\kuu .
We also assume perfect~parallel! lattice vector matches a
various interfaces.

An important point to note here is that in these proble
that involve heterojunctions, there are~at least! two relevant
length scales; namely, the interatomic length scale and
scale associated with the~confining! structures. The envelop
function may vary on the latter length scale or on some co
bination of the two, which is to be determined later. Based
this argument, one can expect a nontrivial envelope funct
when it exists, to modify the rapidly varying atomic wav
functions. We regard this as our starting point and expr
the full problem~ignoring the spin dependence! as

H 2
\2

2m

]2

]z2
1F2

\2

2m S ]2

]x2
1

]2

]y2D 1U~x,y,z!G J
3j~x,y,z!f~z!5Ej~x,y,z!f~z!. ~8!

The functionj(x,y,z) can be thought of as a wave fun
tion with rapid variations on the atomic scale that has
two-dimensional Bloch character, whilef(z) is an envelope
function as described above. An important point to note h
is that we do not make an assumption on separability a
Eq. ~5!. The existence of a nontrivial envelope function,
identified by the above equation, will be used as a prere
site for the existence of quantum well or other confin
states. Our search is for envelope functions, as defi
above, that are likely to arise due to the confining structu
One can question the validity of such an expression,
similar forms have been suggested14 such as an expansio
using products of Bloch states and envelope functio
Here, we use the above form and associate an eigenvaluEuu
with the functionj(x,y,z) through the following eigenvalue
problem:

H 2
\2

2mF ]2

]z2
1S ]2

]x2
1

]2

]y2D G1U~x,y,z!J j~x,y,z!

5Euuj~x,y,z!. ~9!

We note that this is similar to how two-dimensional ba
structure is calculated for thin films. Although for simplicit
we do not address interface roughness and other simila
sues in this paper, the potentialU(x,y,z) in Eq. ~8! can be
modified to include such effects with appropriate change
the boundary conditions@and az dependent potential in Eq
~11!#. With the above definition ofEuu ~subband energy!, the
full Schrödinger equation can be used to obtain a differen
equation for the envelope functionf(z) in the following
manner:
20541
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2
\2

2mF j~x,y,z!
]2

]z2
f~z!12

]

]z
f~z!

]

]z
j~x,y,z!G

5~E2Euu!j~x,y,z!f~z!. ~10!

The second term on the left-hand side of the above eq
tion contains a product of first-order derivatives and d
scribes some coupling of the lateral~i.e., planar! and longi-
tudinal ~i.e., perpendicular! coordinates, in addition to any
coupling that is already contained inEuu . This coupling term
can be simplified using averages ofj(x,y,z) over the planar
x,y coordinates. In general, this will result in az dependent
term and a second-order differential equation forf(z) as

2
\2

2mF ]2

]z2
f~z!1Puu~z!

]

]z
f~z!G5~E2Euu!f~z!,

~11!

with

Puu~z!5S 2E E dxdyj*
]j

]zD Y S E E dxdyj* j D .

~12!

The double integral over the planar coordinatesx,y has to be
carried out over a suitable two-dimensional unit cell. This
a mathematically rigorous result, based solely on the
sumptions stated previously, and the theory at this level c
not and should not distinguish between metals, semicond
tors, or insulators.

Now we can look for possible simplifications to Eq.~11!
by monitoring the properties ofPuu(z). Note that if the Bloch
function j(x,y,z) has an oscillatoryz dependence, then
Puu(z) will be purely imaginary. However, the imaginary pa
of Puu(z) @ Im P(z)# is directly related to the (x,y) averaged
flux, J(z) along thez direction. Hence, we can make use
~steady-state! flux conservation which leads to]J(z)/]z
50; i.e., the conservation of flux implies that Im(Puu) has to
be independent ofz. When Puu(z) has a non-negligible rea
part, we cannot make use of the above argument, and
type of confined states that we are searching for@through Eq.
~14!# will not exist. However, note that even for this situ
tion, we have achieved the reduction of the thre
dimensional Schro¨dinger equation to a one-dimensional on
Now settingPuu(z)5Quu (z independent!, the substitution

f~z!5exp~2zQuu/2!z~z! ~13!

can be used to eliminate the first-order derivative leading
a familiar equation, similar to Eq.~6!. The functionz(z)
appearing here has a different interpretation, as a part o
envelope function, and the boundary conditions in the qu
tum well problem should be applied to the envelope funct
f(z) or z(z). Note that if z(z) and its derivative are con
tinuous across various boundaries along thez direction, then
similar properties can be established forf(z),

2
\2

2mF ]2

]z2Gz~z!5FE2Euu~kuu!2
\2Quu

2

8m Gz~z!5ECz~z!.

~14!
2-3
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The above equation illustrates several important po
that are often overlooked or misinterpreted in simplis
quantum well and free-electron approaches. As observe
Ref. 16, a possible reduction in tunneling rates can be
pected due to the lateral variation of the wave function.
though our method is somewhat different, note that Eq.~4! of
Ref. 16 has a (x,y) averaged term similar toQuu in our dis-
cussion, which affects, for example, decay rates associ
with s, p functions differently. The subband structure, i.
Euu(kuu), in the multilayers affects the confined eigensta
and eigenvalues. The envelope functions are also affecte
the averages of the parallel Bloch functions throughQuu . For
each ‘‘confined energy level’’ with energyEC , there exists a
continuous subband of states that share the same perpen
lar wave functionf(z) but differ in parallel Bloch momen-
tum kuu , Euu, andj(x,y,z). Note thatEuu can depend on the
thickness of a given multilayer film and carries informati
not only about the planar structures, but also about the
gitudinal coupling, following our definition through Eq.~9!.
Finally, the energyE of a given electron in such a quantum
mechanical state depends on all of the above.

IV. APPLICATIONS—CONFINED STATES IN METALLIC
MULTILAYERS

We are now ready to apply our model to test devices. T
first device consists of several layers of~nonmagnetic! Cu,
sandwiched between two slabs of~ferromagnetic! Co ~i.e.,
Co/Cu/Co! which will be used to discuss spin transmissio
rotation effects. For an incident electron of energyEtotal , we
obtain the following electronic perpendicular momenta:

\k↑z5A2m~Etotal2Euu!2\2Quu
2/4, ~15!

\k↓z
D 5A2m~Etotal2Euu2D!2\2Quu

2/4, ~16!

wherek↑ (k↓
D) is the perpendicular wave vector for majori

~minority! electrons in the ferromagnetic, metallic regio
where the lateral effects have been taken into account u
the ideas developed in the previous sections. HereD is the
spin splitting in the two-dimensional bands assumed to bekuu
independent in our simple model. Another simplificati
used in the following example is to ignoreQuu . In transition
metals such as Co, one would expectQuu to be nonzero~and
imaginary! with some spin dependence. For example, if th
is a gap of minority states in the vicinity of the energyEtotal
then one would expectuQuuu to be negligible for such states
reducing the minority ~spin! transmission. For majority
spins, a non-negligibleuQuuu will help enhance transmissio
since2\2Quu

2/4 is always positive foruQuuuÞ0.
In this device, we can rotate the magnetization of the ri

R ferromagnet by an angleu with respect to the magnetiza
tion of the left L ferromagnet. The spin rotation is introduc
at the boundaryz50 inside the spacer~Cu! layer for sim-
plicity. For this device, solutions to Eq.~14! in various spa-
tial regions~L and R, subdivided intoa,c,d,e) take the form
20541
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F za↑
L

za↓
L G5F Ieik↑

az1R↑↑e2 ik↑
az

R↑↓e2 ik↓
Daz G ,

F zc↑
L

zc↓
L G5FC↑1eik↑

cz1C↑2e2 ik↑
cz

C↓1eik↓
cz1C↓2e2 ik↓

czG ,

F zd↑
R

zd↓
R G5FD↑1eik↑

dz1D↑2e2 ik↑
dz

D↓1eik↓
dz1D↓2e2 ik↓

dzG ,

F ze↑
R

ze↓
R G5F T↑↑eik↑

ez

T↑↓eik↓
DezG . ~17!

Finally, we impose the boundary conditions atz6z2 ~where
2z2 is the thickness of the center slab! and atz50 for spin
rotations:

F za↑
L ~2z2!

za↓
L ~2z2!

G5F zc↑
L ~2z2!

zc↓
L ~2z2!

G ,

F zd↑
R ~0!

zd↓
R ~0!

G5S~u!F zc↑
L ~0!

zc↓
L ~0!

G ,

F zd↑
R ~z2!

zd↓
R ~z2!

G5F ze↑
R ~z2!

ze↓
R ~z2!

G , ~18!

and identically for the first derivative. The matrixS(u)
5(2sin(u/2) cos(u/2)

cos(u/2) sin(u/2) ) is the spinor transformation, whereu
Þ0 is tied to the spin rotation effects as discussed below.
can then fully determine the transmission coefficients uti
ing numerical techniques.

A. Spin transmission and rotations

An interesting application of the above ideas has to
with ballistic transport and spin rotation effects. When pol
ized electrons are transmitted from one region to anot
with a different polarization axis, they experience a sp
torque and a transfer of angular momentum to the n
medium.17 These ideas have now been demonstrated exp
mentally, for example, through the phenomenon of gi
magnetoresistance where large current densities flowing
pendicular to the films have been observed in reversals
magnetization,18 and spin precession.19 This field is an
emerging one related to ‘‘magnetoelectronics’’ and ma
new experiments are expected to be conducted on
transmission/rotation effects in magnetic multilayer system

We do not wish to focus on the mechanisms of spin ro
tions but simply use spin rotation angle as an input to
calculations and obtain the corresponding transmission c
ficients in a device consisting of two magnetic films sep
rated by a nonmagnetic one~i.e., Co/Cu/Co!. Spin rotation
effect is introduced, by hand, at the center of the nonm
netic film ~Cu! for simplicity as has been done previously6

However, unlike in the previous studies, the underlying ba
structure and lateral effects have been taken into accoun
2-4
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REDUCTION OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 69, 205412 ~2004!
using the theory of confined states developed here. Th
band dispersions play a crucial role in determining the sp
dependent transport properties. For example, when such
fined states in a ferromagnetic film are located in a gap
minority-spin states, the system can act as an almost pe
spin filter. The k-dependent transmission coefficients,T↑↑
and T↑↓ , that were introduced in the preceding section c
be used through a Landauer-type formula,20

G5
e2

h (
kuu

T~kuu! ~19!

to obtain the conductivity in the quantum well problem und
discussion. Here we calculate transmission coefficients a
ḠX̄ using selected subbands, as defined in Eq.~20!,

Euu~kuu!5Euu
01W$12cos~kxa!%, ~20!

in the transmission device~Co/Cu/Co! for the following set
of parameters~Fig. 1! for illustrational purposes:W(Co)
50.07, W(Cu)50.06, D50.19 ~all in rydbergs!, z2513.6,
a56.8 ~all in bohrs!.

At a given ~total! energy of the incoming electron, and
given relative spin orientation of the Co films, transmissi
coefficientsT↑↑ ,T↑↓ have been obtained from Eqs.~17! and
~18! as a function of the parallel Bloch momentumkuu . From
this figure, it is easy to see the effects of different types
Bloch states on the tunneling. Near the zone boundaryX̄, for
the given relative spin orientationu, we see the device fil-
tering out ‘‘minority’’ spins, while at otherk points along
ḠX̄, a mixture of both majority and minority spins are tran
mitted. This is a direct result of the upward dispersion of
selected subbands alongḠX̄ and the spin splitting in Co
pushing the minority band closer to the given~total! energy
of the electron.

FIG. 1. Transmission coefficientsT↑↑ ,T↑↓ as a function ofkuu

along ḠX̄ in the second device~Co/Cu/Co! for a relative spin ori-

entationu5p/4. At the zone boundaryX̄, the device filters out the
‘‘minority’’ spins. Away from the zone boundary both majority an
minority spins are transmitted.
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B. Energy spectrum

Angle-resolved photoemission~ARP! techniques have be
come a useful tool for studying electronic states and th
~band! dispersions in structures with two-dimensional~pla-
nar! Bloch symmetry. In ARP experiments photons are us
to eject electrons from occupied states while in inverse A
photons are ejected, when the above photoemission pro
is reversed. Photoemission is a many-body phenomenon
an evaluation of the spectral function and appropriate s
energies yield the full photoemission spectrum and p
widths. However, here we follow a simpler approach a
focus on one-particle energy states and the changes in
duced by the multilayering. In this approach, the energyE
that is measured for the photoemitted electron can be a
ciated with the full Schro¨dinger equation~7!. Existence of an
envelope function as defined in Eq.~8! and satisfying the
imposed boundary conditions are necessary for confi
states. The energyEuu as defined through Eq.~9! has to do
with the ordinary subband states due to the periodic poten
in the planar directions. If the multilayering does not pl
any role for a given energyE at a givenkuu , thenEuu andE
have to be identical when these solutions exist in Eqs.~7!
and ~9!. In such cases,f(z) turns out to be a simple multi
plicative constant and Eq.~10! is consistent with this sce
nario. However, when confined states exist, they may a
the usual dispersionsEuu that are observed in their absenc
According to the theory developed above, confined states
be identified as states for which solutions to the differen
equation~14! exist for a given energyE of the electron. It is
also important to realize that, for a given energyE, these
states may not exist for all values ofkuu along a given direc-
tion of the two-dimensional Brillouin zone.

In general, the dispersion of the total energy of the el
tron E, i.e., the energy of the bound electron as a function
kuu , is found whenever confined states exist with appropri
z(z) as solutions to Eq.~14!. In the present context, with
boundary conditions appropriate to stationary states~deter-
mined by the film geometry!, we obtain a set of discrete
energiesEn and states for the one-dimensional quantum w
or barrier problem where

E5En1Euu~kuu!1
\2Quu

2

8m
. ~21!

Hence, the observed energiesE in an ARP experiment for
confined states will depend on the existence of these disc
En’s and the correspondingz functions satisfying the rel-
evant boundary conditions. As in simple quantum well pro
lems, solutions of odd and even parities may sometimes
associated withEn and these will depend on the film geom
etry, interfaces, and growth conditions. We plan to addr
these as well as effects due to film thickness~observed in
Refs. 8 and 21! in a future paper.

V. CONCLUSIONS

Using an envelope function approach, we have redu
the three-dimensional Schro¨dinger equation to a one
dimensional one and analyzed the lateral effects of meta
2-5
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multilayer films through a hypothetical subband structu
that varies with the two-dimensional Bloch vector. Ballis
transmission in a magnetoelectronic device consisting of
Cu/Co has been examined and shows a clear dependen
the Bloch vectorkuu . Energy spectrum of confined multilaye
states that may be observed in angle-resolved photoemis
studies are discussed. Also, this method of reduction of
Schrödinger equation with appropriate modifications may
M
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used in other confined geometries such as nanoparticles
wires.
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