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Spin Hall-effect in two-dimensional hopping systems
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A two-dimensional hopping system with Rashba spin-orbit interaction is considered. Our main interest is
concerned with the evolution of the spin degree of freedom of the electrons. We derive the rate equations
governing the evolution of the charge density and spin polarization of this system in the Markovian limit in
one-particle approximation. If only two-site hopping events are taken into account, the evolution of the charge
density and of the spin polarization is found to be decoupled. A critical electric field is found, above which
oscillations are superimposed on the temporal decay of the total polarization. A coupling between charge
density and spin polarization occurs on the level of three-site hopping events. The coupling terms are identified
as the anomalous Hall-effect and the recently proposed spin Hall-effect. Thus, an unpolarized charge current
through a sheet of finite width leads to a transversal spin accumulation in our model system.
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I. INTRODUCTION

The emerging field of spintronics tries to put the sp
degree of freedom of electrons to use in a fashion akin
electronics, where the charge of the electrons is utilized1,2

One of the advantages of spintronics is that spatial inho
geneities of the spin distribution are not burdened with
energetic penalty, quite in contrast to inhomogeneous ch
distributions. On the other hand, spin is not conserv
whereas charge is. This is a disadvantage of spintron
which means that spin polarization normally decays w
time. Of special interest are techniques which influence
spin by purely electrical means, without utilizing magne
fields or magnetic materials. Spin-orbit interaction~SOI!
provides such a mechanism.

In recent years much has been done in this field for i
erant electrons, favoring very clean samples of h
mobility.3 This investigation, on the other hand, studies
behavior of spins in a hopping system. Here, mobilities
very low, either through disorder~Anderson localization!, or
through strong electron-phonon interaction~polaron forma-
tion!. Transport is thermally activated and incoherent. In
absence of effective spin scattering mechanisms, the low
bility might lead to long spin coherence times for a giv
spin coherence length, which is one motivation for this stu
apart from the intrinsic scientific interest of the question
spin behavior in hopping systems.

Previous studies of SOI in hopping systems centered
the influence of the spin dynamics on charge transport~e.g.,
magnetoconductance4–10!, not on the spin dynamics itsel
Furthermore, the effective spin coupling between hopp
sites has normally been taken to be random,8,9,11–14which is
appropriate for spin scattering on charged impurities, but
for SOI due to intrinsic or external electric fields which a
constant over length scales of several hopping lengths.
such a mechanism would be required if one has the inten
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affecting the spins in a systematic way, i.e., realize spintr
ics.

To be specific, we consider a system where the spin
namics is solely determined by spin-orbit interaction throu
the Rashba mechanism15–18 and no other spin scattering oc
curs ~e.g., no magnetic impurities or spin scattering
charged impurities!. The electronic system is two
dimensional ~2D! and—in order to calculate explici
expressions—assumed to be ordered~small polaronic sys-
tem!. The disordered system is expected to behave qua
tively similar, but its investigation must be delegated to f
ture publications.

Two prominent examples of the interplay between cha
and spin transport are the anomalous Hall effect and the
Hall-effect: The observation that a spin-polarized charge c
rent leads to a transversal Hall voltage, even without an
ternal magnetic field, is called the anomalous Hall-effe
~see, e.g., Ref. 19 and references therein!. The inverse effect,
that, in materials showing the anomalous Hall-effect, an
polarized charge current leads to a transversal spin~but not
charge!! current has been proposed by Hirsch20–22 and is
called the spin Hall-effect. Both of these effects will in th
following be identified for our model system.

This paper is organized in the following way: Section II
concerned with the question of how to include the Rash
SOI into the hopping formalism. In Sec. III the rate equ
tions governing the evolution of the~one-particle! density
matrix are derived. This is done by calculating the diagra
of second and third order~two-site hopping and three-sit
hopping! in the Konstantinov-Perel diagram technique
one-particle approximation and applying the Markovi
limit. The rate equations for the density matrix are tran
formed into rate equations for the particle density and
spin orientation, which is an equivalent representation,
much more lucid physically. It is found that two-site hoppin
does not introduce a coupling between the equations for
particle ~charge! density and the equations for the spin p
©2004 The American Physical Society27-1
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larization. Three-site hopping processes introduce suc
coupling and indeed lead to the anomalous Hall-effect
the spin Hall-effect for this hopping system.

Sections IV and V give solutions of the rate equations
an ordered hopping system~i.e., a system of small polarons!.
First, bulk properties~i.e., no boundaries! are considered. A
short account of the results of Sec. IV has been publishe
Ref. 23. Then, in Sec. V, a strip of finite width is considere
which introduces boundary condition at the transver
edges. The stationary state with an unpolarized charge
rent shows spin accumulation at the boundaries, which is
expression of the spin Hall-effect.

The Appendixes primarily deal with mathematical deta
Appendix C considers the magnetic field due to spin ac
mulation as a possible means of detection of spin accum
tion.

II. RASHBA SPIN-ORBIT INTERACTION IN HOPPING
SYSTEMS

The first question which arises is how to include the S
into the formalism of hopping transport. The Rashba Ham
tonian reads

H5
p2

2m
2

\

m
s•~K3p!1V~r !, ~1!

where we introduce the quantityK5maez /\2, which ~i! has
the dimension of an inverse length,~ii ! is perpendicular to
the two-dimensional plane~unit vector ez), and ~iii ! the
length of which signifies the Rashba SOI strengtha. The
same expression, Eq.~1!, can be used for the generic SO
due to a spatially constant electric fieldE, in which caseK
5(e/4mc2)E. The symbols denotes the vector of Pauli spi
matrices. The quantityp denotes the momentum,m the ~ef-
fective! electron mass,e the electron charge, andV(r ) the
~spatially varying! potential.

Equation~1! can be transformed to

H5
1

2m
~p2\s3K !21V~r !, ~2!

while ignoring an irrelevant constant energy offset. Thus
principle, the Rashba SOI can be dealt with as a SU~2! gauge
potential. Since the gauge potential is a constant, this wo
be quite trivial, were it not for the fact that SU~2! is non-
Abelian. If the gauge were Abelian, a wave functionC(r )
would be studded with the factor exp@is•(K3r )# in order to
include SOI. Due to the non-Abelian nature, there are ad
tional higher-order contributions inK . Those can be ne
glected, providedK is sufficiently small.

The Hamiltonian which we consider reads

H5(
ms

emams
† ams1 (

mm8ss8
Jm8m

s8s am8s8
† ams1He2ph1Hph ,

~3!

where He2ph denotes the electron-phonon interaction a
Hph is the Hamiltonian of the phonon system. Here,ams

†

(ams) is the creation~annihilation! operator of an electron a
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site m in spin states, em is the site energy, andJm8m
s8s is the

resonance integral between the statesms andm8s8. With-
out SOI, the resonance integral is diagonal in spin space
will be denoted asJm8m in the following. Note that the usua
spin splitting due to Rashba SOI is not manifest here, si
Kramer’s degeneracy demands that the two spin states
localized eigenstate have to be degenerate.

The central question for the inclusion of SOI into th
hopping Hamiltonian now consists in determining the sp

structure ofJm8m
s8s . The four numbers belonging to each pa

of sitesm8m are collected into a 232 matrix in spin space
Ĵm8m . Clearly Ĵm8m→Jm8mÎ 2 for K→0, where Î 2 denotes
the two-dimensional unit matrix. Since the Hamiltonian h
furthermore to be Hermitic and invariant under time-rever
symmetry, the spin structure is given by an SU~2!

matrix,8,9,11,17,24–27Ĵm8m5exp(2is•Am8m)Jm8m , where all
components of the vectorA have to be real numbers and th
condition Am8m52Amm8 must be obeyed. The argumen
after Eq.~2! show that the term linear inK reads2 is•(K
3Rm8m), whereRm8m5Rm82Rm is the distance vector be
tween the sites andRm is the coordinate vector of sitem.
Thus,

Ĵm8m5e2 is•(K3Rm8m)Jm8m . ~4!

For this expression forĴ to be valid,K has to be sufficiently
small, as explained in the paragraph after Eq.~2!. In this
case, this means that the conditionK3Rm8m!1 must be
valid for the distance vectorsRm8m , which are relevant to
the case at hand~e.g., the typical hopping length or the la
tice constant!. The same expression, but applied to t
Green’s function of a hopping system, has been derived
Ref. 4.

In some sense, this is equivalent to the Holste
transformation,28 where the influence of a magnetic field on
hopping system is taken into account through a phase fa
and where higher-order~in the magnetic field! corrections
are neglected.

We are now prepared to derive rate equations govern
the hopping system with the inclusion of Rashba SOI in
following section.

III. RATE EQUATIONS

We apply the Konstantinov-Perel diagram technique
order to obtain rate equations for the density matrix. T
off-diagonal elements of the~one-electron! density matrix
^am8s8

† ams& can usually be neglected in a hopping syste
~otherwise, the transport mechanism would not be hoppin!.
Here, we have to keep in mind that the correlations betw
different spin states on the same site contain informat
regarding the~expectation value of the! spin orientation. Fur-
thermore, the model which we consider aims at syste
where the spin degrees of freedom do not decohere~lose
their phase memory! while the electron stays on a site. Thu
we must retain the off-diagonal elements in spin spaceon the
same site~i.e., diagonal in the site index! of the density ma-
trix. In this way, by including the SOI the occupation pro
7-2
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ability rm5^am
† am& becomes a 232 matrix r̂mus8s

5^ams8
† ams& in spin space.

In order to adapt the Konstantinov-Perel diagram te
nique to the SOI case, each site index can be thought o
additionally containing the spin index. The summations r
over all sites and also the two spin states. The electr
phonon interaction is unaffected by the spin state. Thus,
extension of the formalism reduces to~i! studding each site
index with a spin index~and extending the correspondin
sums! and ~ii ! allowing expectation values which are nond
agonal in spin space. The number of terms in a given d
gram proliferates quite rapidly with the order of the diagra
and makes its computation tedious. The calculations
greatly simplified, if one replaces the explicit summati
over the spin indices by matrix multiplication in spin spac
This can be achieved by collecting the interaction ma
elementsJ ~which depend on two site and two spin indice!

into appropriate matrices in spin spaceĴm8m ~which only
depend on two site indices! and doing likewise with the
density-matrix elements.

The second-order diagrams~two-site hopping! yield in
one-particle approximation and in the Markovian limit th
rate equations

d

dt
r̂m5(

m1

$e2 is•(K3Rm1m)r̂m1
eis•(K3Rm1m)Wm1m

2 r̂mWmm1
%, ~5!

where the transition ratesWm8m are the same as are obtain
without SOI. An explicit expression is given in Eq.~B1!.

Next, the three-site probabilities~third-order diagrams!
are calculated. These contributions yield higher-order cor
tions to the two-site probabilities, as well as some term
which go beyond the physics of the two-site expressio
Only the latter type of third-order terms will be retained
the following calculations. The third-order terms in matr
representation are given in Appendix B.

The physical meaning of Eq.~5! and its third-order gen-
eralization is easier to assess, if the following transformat
is applied: Representing the 232-density matrix at sitem by
r̂m5 1

2 rmÎ 21 1
2 rm•ŝ, where Î 2 is the two-dimensional uni

matrix, the occupation probabilityrm5Tr( r̂m) and the~ex-
pectation value of the! spin orientationrm5Tr(sr̂m) are in-
troduced. Please note that in the following we will use t
wording ‘‘spin orientation’’ without emphasizing each tim
that its expectation value is meant. Of course, a spin-
particle does not have a classical spin orientation.

Taking the appropriate trace~see Appendix A! yields the
rate equations governing the evolution of these quantitie

d

dt
rm5(

m1

$Wm1mrm1
2Wmm1

rm%1 (
m1m2

K•~Rmm1
3Rmm2

!

+K•$Wm1m2m
R rm1

2Wmm1m2

R rm%, ~6!
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d

dt
rm5(

m1

$D̂m1m•rm1
Wm1m2rmWmm1

%

1 (
m1m2

K•~Rmm1
3Rmm2

!+K$Wm1m2m
R rm1

2Wmm1m2

R rm%2 (
m1m2

K•~Rmm1
3Rmm2

!+K

3$Wm1m2m
I rm1

2Wmm1m2

I rm%, ~7!

where only terms up to orderK2 have been retained an
superfluous correction terms of higher order~as mentioned
above! have been neglected. Some details of the calculati
of the traces in spin space can be found in Appendix A. T

quantity D̂ is a 333 matrix describing a rotation about th
axis Am1m5K3Rm1m .

Equations~6! and ~7! are the generic hopping rate equ
tions for the model considered here~only Rashba SOI affects
spin!. The transition ratesWm8m , Wm1m2m

R , andWm1m2m
I are

independent of spin and are determined by the type of h
ping considered~e.g., small polaron hopping or hopping b
tween impurities!. In the remaining part of the paper, w
focus on an ordered~polaronic! system, but Eqs.~6! and~7!
would also be the starting point for an investigation of
disordered system. Summing Eq.~6! over all sitesm yields
(d/dt)(mrm50, thus, the derived rate equation for the pa
ticle density obeys particle~and charge! conservation.

The first term on the right-hand side of Eqs.~6! and ~7!,
respectively, gives the contribution from two-site hoppi
processes. The remaining terms arise from three-site hop
processes. One can see that in two-site approximation
equations for the occupation number and the spin orienta
decouple.

Whereas the second-order transition ratesWm1m are those

of a system without SOI, the third-order transition rat
Wmm1m2

R or I differ from the corresponding quantities withou

SOI. Without SOI, the third-order transition rates~let us call
themW(3) summarily! are important for the Hall-effect.W(3)

are divided into parts which are symmetric in the magne
field and parts which are antisymmetric. Only the latter a
important for the Hall-effect, thus the symmetric parts a
normally neglected. Here, since the magnetic field is ze
the antisymmetric part vanishes. Thus, we have to calcu
the usually neglected symmetric parts ofW(3). Furthermore,
both, real (WR) and imaginary (WI) part of W(3) find entry
in the formalism, whereas only the real part of the seco
orderW occurs. Nevertheless,WR is connected with the Hal
mobility of a hopping system. The calculations are shown
Appendix B.

If the system is ordered~i.e., polaronic!, it is advanta-
geous to transform the equations into wave vector spa
Note that, since the spatial vectors are two-dimensional,
wave-vectorsq will also be two dimensional. This transfor
mation leads to the rate equations
7-3
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d

dt
r~q!5@W~q!2W~0!#r~q!1@WR~q!2WR~0!#•r~q!

~8!

and

d

dt
r~q!5@W~q!2W~0!#r~q!22Ŵ~q!•r~q!

22@K3W~q!#3r~q!1@WR~q!2WR~0!#

3r~q!2@WI~q!2WI~0!#3r~q!. ~9!

Here,

W~q!5
1

i

]

]q
W~q!, ~10!

Ŵ~q!52S K2
]

]q
+

]

]q
1K +K

]

]q
•

]

]qDW~q!, ~11!

WRI~q!5K +K•S ]

]q
3

]

]q1
DWRI~qq1!uq150 , ~12!

where the last equation is to be understood as applying to
superscriptsR and I, respectively.

The basic transition rates are

W~q!5(
m

eiq•RmW0m , ~13!

WRI~qq1!5 (
m1m

eiq•Rmeiq1•Rm1W0m1m
RI . ~14!

In an isotropic system, taking the long wavelength limit, th
read

W~q!5W~0!2Dq22 imq•E ~15!

and

WRI~q!5 iK +q•~E3K !WRI, ~16!

the latter being calculated for a triangular lattice~see Appen-
dix B!. Here,D is the diffusion constant,m the mobility, and
the quantitiesWR andWI are constants defined through E
~B10!.

The rate equations thus take the shape

d

dt
r~q!52 iq• j ~q!, ~17!

with the particle current density~proportional to the charge
current densityej )

j ~q!5mEr~q!2 iDqr~q!1WRK3E+K•r~q!, ~18!

and

d

dt
r~q!52 iq• Ĵ~q!1Q~q!, ~19!

with the ~tensorial! spin current density
20532
he

Ĵ~q!5mE+r~q!2 iDq+r~q!14DÎ 3K•r~q!24Dr~q!+K

1WRK3E+Kr~q!2WIK3E+K3r~q! ~20!

and the spin source density

Q~q!524DK2r~q!24DK +K•r~q!12m~K3E!3r~q!.
~21!

Equation~17! is the continuity equation for the particl
~charge! density. Equation~19! contains a source term in
addition to the divergence of the current, since there is
conservation law for spin. The first two terms contributing
the charge current~18! are the drift term in the electrical field
and the diffusion. The third term only occurs, when there i
finite z component of the polarization~i.e., a magnetization
Mz). The resulting current is directed perpendicular to t
electric field. Thus, this term corresponds to the anomal
Hall-effect. The corresponding mobility is seen to bemyx
5WRK2. The quantitymyx /m is related to the Hall mobility
~see Appendix B!.

The spin current, Eq.~20!, mainly consists of the drift
term and some diffusion terms. But the most interesting c
tribution is the fifth term on the right-hand side, since it
also present for vanishing spin polarizationr50. This term
describes a current ofz spins into the direction perpendicula
to the electric field (K3E). Thus, it is an expression of th
spin Hall-effect. The coefficientWR is the same, as the on
responsible for the anomalous Hall-effect.

In order to simplify notation, dimensionless quantities a
introduced: dimensionless spacex5Kr , wave vector j
5q/K, time t5DK2t, and electric fielde5mE/(DK). The
transformed third order probabilities are denoted aseR
5(KE/D)WR ande I5(KE/D)WI . Note thateR can be ex-
pressed asmyxe/m. Thus,eR is an analog of the Hall mobil-
ity multiplied by the electrical field. Furthermore, the coo
dinate system is fixed such thatez}K , ex}E, and ey}K
3E. Then K5Kez and E5Eex . This transforms the rate
equations~17! and ~19! to

d

dt
r~j,t!52~j21 i jxe!r~j,t!2 i eRjyrz~j,t! ~22!

and

d

dt
r~j,t!52~j21 ijxe!r24i ~ez3j!3r2 i eRjyezr

1 i e Ijyez3r24r24ezrz12eey3r. ~23!

The three terms on the right-hand side of Eq.~22! are the
diffusion contribution, the drift in the electric field, and th
anomalous Hall-effect. The first terms on the right-hand s
of Eq. ~23! are: diffusion, drift~Ohmic current!, a precession
term for diffusing spins, the spin Hall-effect, and a prece
sion of the spin about thez axis. The last three terms con
tribute to the spin decay. The first two of those can be
panded as24exrx24eyry28ezrz , thus the decay rate fo
thez component is twice as large compared with the in-pla
components.
7-4
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IV. BULK SYSTEM

By setting the wave vectorj to zero, the evolution equa
tions for the quantities integrated over the whole system@to-
tal charge and total spin polarization, e.g.,r(j50,t)
5*d2xr(x,t)] are obtained

d

dt
r~0,t!50, ~24!

d

dt
r~0,t!524r24ezrz12eey3r. ~25!

Equation~24! is an expression of charge conservation. It is
be seen that the evolution of the space integrated quan
does not depend on the third-order parameterseR ande I .

The solution of Eq.~25! reads

rx~t!5e26tFrx~0!cosh~2tA12e2!

1
rx~0!1erz~0!

A12e2
sinh~2tA12e2!G , ~26a!

ry~t!5e24try~0!, ~26b!

rz~t!5e26tFrz~0!cosh~2tA12e2!

2
erx~0!1rz~0!

A12e2
sinh~2tA12e2!G , ~26c!

where rx(0), ry(0), and rz(0) are the initial conditions.
Note that there is a critical electrical-field strengthec51. In
smaller fields the total spin polarization decays exponenti
with time, but in larger fields, it additionally rotates wit
time. Expressed differently, fore.1 the eigenvalues of the
set of equations~25! become complex, which means that
eigenmodes become oscillatory. This critical electric fie
Ec5DK/m can also be expressed asEc5kBTK/e, provided
the Einstein relation betweenD andm is valid. Furthermore,
without electric field, thez component of the total spin po
larization decays twice as fast as the other t
components.23,29

Taking for definiteness the initial conditionr(0)5ez , one
obtains

rx~t!5e26t
e

Ae221
sin~2tAe221!, ~27a!

ry~t!50, ~27b!

rz~t!5e26t
e

Ae221
cos~2tAe2211f!, ~27c!

with sinf51/e. This expression is appropriate fore.1,
whereas fore,1 the trigonometric functions become hype
bolic functions.
20532
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Note that the frequency of the polarization oscillatio
2Ae221 increases with the electric fielde. Apart from the
decay factore26t, the polarizationr(t) describes a slanted
ellipse in thex-z plane, i.e., the plane spanned by the Rash
field K and the electric fieldE. The coordinatesx
5rxe

6tAe221/e and z5rze
6tAe221/e determine the el-

lipse x212xzsinf1z25cos2f. The inclination of this el-
lipse ~angle betweenz axis and the main diagonal! does not
depend on the electric field. Fore→1 the anglef→p/2,
i.e., the ellipse degenerates to a line with an inclination
45° to the perpendicular direction. In the limit of strong ele
tric field e→`, the anglef vanishes, and the ellipse be
comes a circle. In order to observe these oscillations,
corresponding frequency should be larger or of the orde
the inverse decay time constant, which leads in this cas
the approximate conditione*10.

Let us consider next the case of an inhomogeneous in
condition. We take az-spin starting at the originr(x,t50)
5d(x)ez . The total spin polarization is still described b
Eqs. ~26!. In order to obtain the local spin orientation, on
has to solve Eqs.~22! and~23!. This is done by solving these
equations in Laplace-space and the following back trans
mation from Laplace spaces to time t and wave-vector
spacej to x.

The asymptotic behavior of the local spin polarization f
large timest→` and small distancesuxu!2At @Large dis-
tances will not be relevant here, since they are strongly s
pressed by the ‘‘diffusion factor’’ exp(2x2/4t).# is

rz~x,t!5expH 2
~x1et!2

4t
2

7

4
tJ 3

8Apt
J0SA15

2
uxu D .

~28!

Note that in this approximation~long times and short dis
tances!, the sign of the polarization—determined by the a
gument of the Bessel functionJ0—only depends on the dis
tance to the origin, and is furthermore not time depende
This spatial oscillation is due to the precession terms in
rate equations. The exponential factor exhibits a decay t
with ~dimensionless! time constant 4/7 and a drift-diffusion
term with drift velocity2e and diffusion constant 1.

V. STRIP OF FINITE WIDTH

The distinguishing feature of a strip of finite width is th
there is no current~neither charge, nor spin! across the trans
versal boundaries. Thus, the spin Hall current must be c
pensated by a diffusion current, i.e., a finite spin density
be expected to occur near the boundary. Indeed, the foll
ing will show that a transversal spin accumulation will occ
in this situation. For a broad strip, the nonzero spin densit
mainly constricted near the boundaries.

The strip is oriented, so that thex direction is along the
length of the strip~the direction of the current flow!, the y
direction is along the width of the strip, and thez direction is
perpendicular to the 2D strip~see Fig. 1!. The strip extends
from y52b to y5b; thus, its width is 2b. Going from
wave-vector space back tox space and assuming thatr(x)
andr(x)5(rx ,ry ,rz) depend only on they coordinate, the
7-5
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following set of differential equations determine the statio
ary state

r91eRrz850, ~29a!

rx91e Iry812erz24rx50, ~29b!

ry92e Irx814rz824ry50, ~29c!

rz91eRr824ry822erx28rz50, ~29d!

where the prime denotes the derivation with respect toy. The
boundary conditions aty56b are obtained by equating th
normal component of the currents~18! and ~20! at the
boundary to zero. This yields

~r81eRrz!uy56b50, ~30a!

~rx81e Iry!uy56b50, ~30b!

~ry82e Irx14rz!uy56b50, ~30c!

~rz81eRr24ry!uy56b50. ~30d!

One has to keep in mind that we want the solution
lowest order inK. The zeroth order solution of Eqs.~29a!–
~30d! is obtained by removing all terms at least linear inK,
i.e., settinge I50 and eR50. This immediately yields the
solutionr(y)5const andr(y)50. This solution is inserted
into the terms containingeR and e I , which yield the equa-
tions for the first-order solution. Compared to the zeroth
der equations, there is only one additional term:eRr gives a
finite right-hand side in the boundary condition for thez
component@corresponding to Eq.~30d!#, all other terms con-
taining eR and e I are still zero. The solution of this set o
equations is easily constructed. Again,r(y)5const, and the
three vectorialr components are weighted sums of functio
sinh(ly) and cosh(ly), wherel takes on the three values
l152, l25(A81e221)1/21 i (A81e211)1/2 and l3

5l2* . Thus, to lowest order inK ,

rx~y!

eRr
52

16e

a
l2c2s3sinh~2y!

1
2e

a S 16c1s31
e2

2
l3s1c3D sinh~l2y!1c.c.,

~31a!

FIG. 1. The coordinate system chosen for the strip of fin
width. The charge current within the strip is nonpolarized. But
the transversal boundariesy56b, a finite spin density occurs du
to eR , i.e., this situation leads to spin accumulation.
20532
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ry~y!

eRr
5

4e2

a
l2c2s3cosh~2y!

1
4l2

a S 16c1s31
e2

2
l3s1c3D cosh~l2y!1c.c.,

~31b!

rz~y!

eRr
52

l2
224

a S 16c1s31
e2

2
l3s1c3D sinh~l2y!1c.c.,

~31c!

with the abbreviations

a5l2c2Fe2

2
ul2u2l2s1c3116~l2

21121e2!c1s3G2c.c.

~32!

and

ci5cosh~l ib!, si5sinh~l ib! ~ i 51,2,3!. ~33!

One can see that the electron densityr and the spin Hall
coefficienteR only influence the amplitude of the polariza
tion. They do not affect the spatial dependence ofr(y). The
x andz component of the polarization are antisymmetric w
respect to a sign change ofy, whereas they component is
symmetric.

For a large electric fielde@1

rx~y!'2sgn~y!
eRr

A2e
sinSAe~b2uyu!1

p

4 De2Ae(b2uyu),

~34a!

ry~y!'2
eRr

e
sin@Ae~b2uyu!#e2Ae(b2uyu), ~34b!

rz~y!'2sgn~y!
eRr

A2e
cosSAe~b2uyu!1

p

4 De2Ae(b2uyu).

~34c!

The main effects of increasing the electric fielde consists in
a sharper concentration of the polarization near the bound
~due to the exponential term! and an increase of the ampl
tude of thex and z component of the polarization~because
eR /Ae5Aemyx /m}Ae).

For b@1 ~i.e., in natural units: width@K21) the spin
polarization is significant only near the boundaries due to
hyperbolic functions. This suggests that there is a ‘‘sp
diffusion length’’ governing the spatial extent of nonzeror
near the borders. This suggestion can be fleshed out in
following way: We consider the half planey>0, set the
electric field e to zero, and apply the boundary conditio
r(y50)5r0. The differential equations for the stationa
state~and homogeneous inx) are

rx924rx50, ry914rz824ry50, rz924ry828rz50,
~35!

which conceptually corresponds to an equation with
structureDDr2r/t50, only that here the decay rate 1t

t

7-6
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depends on the direction~thus, it is a tensor!, and there is an
additional ‘‘torque’’ term. Since in Eq.~35! all coefficients
are numbers~in dimensionless units! the resulting spin-
diffusion lengthADt is also a number of the order of one@in
the present case: 1/2 for thex component and 1/(A821)1/2

'0.74 for the other two components, corresponding to
real parts ofl1 , l2, and l3 at e50]. Thus, expressed in
natural units, this length isK21 times a constant of orde
one, i.e., this spin diffusion does not introduce a new len
scale in addition to the Rashba length scaleK21.

The spin current of a nonpolarized electrical current in
infinitely extended plane consists ofz spins being transporte
perpendicularly to the electrical fieldE @see Eq.~20!#. Here,
this spin current is ‘‘transformed’’ into spin accumulation b
applying boundary conditions. Seen in this light, it is perha
somewhat surprising that the resulting spin polarization
finite x and y components, in addition to thez component.
But this can be explained by the following observation: T
calculated spin polarizationr(y) is—though stationary—no
static. It represents an equilibrium between the ‘‘spin s
ply’’ by the spin Hall-effect on the one hand, and other co
tributions of the spin current as well as the spin decay, on
other hand. Even though the ‘‘supply’’ only yieldsz spins,
the tensorial nature of the current leads to spin precess
such that in the equilibrium state all components occur.

Due to the spin polarization~magnetization! a magnetic
field HM is generated, which may in principle allow to dete
this polarization. In order to actually measure this magne
field, one has to take into account that there is also a m
netic field HI due to the electric current through the stri
These fields are calculated in Appendix C.

The y-z components of the magnetic field due to the s
polarization is shown in Fig. 2. For comparison, the behav
of the magnetic field due to the charge current is shown
Fig. 3. The parameters are chosen such that the dimen
less width of the strip and the dimensionless electric field
1, respectively. One can see that the spatial behavior of
two contributions to the total magnetic field is quite differe
This would, at least in principle, allow to differentiate b
tween them.

As a last point, the magnetic fieldHM1HI also interacts
with the spin degrees of freedom through the Zeeman en
and applies a torque to the spins. These effects have

FIG. 2. The magnetic field due to the spin accumulation in
z-y plane. The parameters areb51, e51. The horizontal line de-
notes the extent of the strip.
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neglected in this paper. The~in!significance of the back re
action of the magnetic field due to the spins on the spins
be estimated in the following way: Using the magnetic s
ceptibility x and the Bohr magnetonmB , the spin polariza-
tion due to the back reaction can be expressed asrbr
5xH/mB'xM /mB5xr. Thus, the influence of the mag
netic field on the spins can be neglected, provided the c
dition x!1 is fulfilled.

VI. DISCUSSION

We have studied the spin dynamics of a hopping mo
where Rashba SOI is the sole spin scattering mechan
Rate equations have been derived in the one-particle
proximation and the Markovian limit, including two-site an
three-site hopping processes. Further calculations are
formed for the case of polaron hopping, where one can w
in wave-vector space.

As expected, an initial spin polarization has been found
decay exponentially with time, if the electric field is low
But, there is a critical electric field, above which the to
spin polarization shows oscillations~rotations! overlaying
the decay. This can be understood as follows: The rotatio
a spin initially at a certain sitem1 during a single hop to
another sitem2 depends only on the difference vectorRm2m1

.

The spin rotates in the plane spanned by the vectorsK and
Rm2m1

. Let us consider a spin starting at the origin and be

oriented along thez direction at t50. The motion of the
electron in the radial directions leads to concentric ‘‘wave
around the origin of spins having the samez and radial com-
ponent. But, due to the diffusive motion, the electron do
not only take the straight path radially outwards, but explo
an increasingly entangled trajectory, thereby randomizing
spin orientation. The random motion only affects a decre
of the magnitude of the polarization~it neither creates polar
ization, nor does it favor any specific orientation!. Thus, the
preferred orientation given by the radial motion is preserv
but its magnitude diminished.

An electric field does affect the charge transport, but
two-site hopping approximation it does not affect the
ementary processes responsible for the transport of spin
entation. Thus, in this case, the spin polarization is sim
the product of particle density and spin orientation, whi

e FIG. 3. The magnetic field due to the current through the st
The parameters are the same as in Fig. 2.
7-7
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has a constant magnitude itself~quite in contrast to the situ
ation with three-site hopping processes!. In this way, one can
see that the electric field does not change the spatial di
bution of the spin orientation~e.g., the sign of thez compo-
nent!, but only changes the temporal evolution of the spa
charge distribution~the ‘‘weight’’ of the local spin orienta-
tion!. This explains the time independence of the argum
of the Bessel function in Eq.~28!.

On the other hand, in a very large electric field an elect
follows preferably a straight trajectory along the field~large
drift component in comparison to the diffusion!. The impor-
tance of diffusion about this trajectory is reduced, there
also reducing the randomization of the spin. This expla
why it is possible for the electric field to become so stron
that the spatial oscillations of the spin orientation survive
averaging over the whole volume, so that they appea
temporal oscillations.

Without an electric field, the decay of an initial spin or
entation is found to behave anisotropically: Thez component
~perpendicular to the plane! decays twice as fast as the in
plane components.

The inclusion of three-site hopping terms leads to the
currence of a transport co-efficient (eR or myx) which pro-
vides a coupling between charge and spin transport. A s
current produces a transversal charge current~anomalous
Hall-effect!, and a charge current produces a transversal
current~spin Hall-effect!. In a two-dimensional strip of finite
width, this transversal spin current manifests itself as a s
accumulation at the boundaries of the strip.

Finally, some remarks about the experimental releva
are in order here. The Rashba SOI strength is widely give
being of the ordera'1029 eV cm.4,18 It is possible to
change this value by applying a gate voltage to the tw
dimensional plane,30 where a variation by at least 50% ha
been shown to be realizable. This might be conceptually
vorable for the implementation of spintronics devices, wh
electric means to control spins are sought.

Using the value ofa mentioned above, one obtainsK
'1/(76 Å), assuming that the effective electron mass
equal to its elementary mass. Thus, the conditionK3Rm8m
!1 for the validity of our theory demands in this case th
the typical hopping length is shorter than 76 Å. This value
conveniently large, so that the range of polaronic near
neighbor hopping is well within the validity range. But im
purity hopping or variable range hopping are also not ou
the question. Furthermore, for a smaller Rashba coeffici
the permitted length increases and it is furthermore modi
by the effective electron mass. If the Einstein relation b
tween diffusion coefficient and mobility is assumed to
valid, the critical electric fieldEc5kBTK/e for the oscilla-
tory behavior of the total spin polarization is estimated to
about 104 V/cm at a temperature of 100 K.

The calculations in Appendix B show a close connect
between Hall-mobility and the coefficient for the spin Ha
effect. Thus, a large Hall mobility favors also the occurren
of the spin Hall-effect. We take Ref. 31 as an examp
There, the conductivity and the Hall mobility of th
hexaboride compounds Eu12xCaxB6 are measured, and th
authors conclude that the transport mechanism is pola
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hopping~in a certain range of concentrationsx and for high
temperatures!. The reported Hall mobility in the polaronic
hopping regime is of the order of 100 cm2/(Vs). Using this
value, Eq.~B14! gives the estimatemyx /m'0.23, i.e., the
transversal mobility for the spin Hall-effect is about a four
of the longitudinal mobility. Taking Eq.~31c! into account,
this gives a relative spin polarization (z component! at the
boundary of a two-dimensional stripurz(b)/ru of about 5%
at the critical electric-field strengthe51.

The present investigation can be extended in severa
rections. A natural generalization would be the extension
finite electron density, which would require Pauli and/
Hubbard correlations to be taken into consideration. T
also opens the possibility to investigate equilibrium prop
ties and the behavior near equilibrium. Another line of stu
would be the introduction of spatial or energetic disord
This includes disordered polaronic systems, but also hopp
on impurities or Anderson localized states, and would a
allow the investigation of variable range hopping in t
present context. Some of these extensions are work
progress.
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APPENDIX A: CALCULATION OF THE SPIN MATRICES

Applying the identity (s•A)(s•B)5(A•B)1 is•(A
3B), valid for any vectorsA andB, to the series expansio
of the exponential function, one easily obtains the relatio

eis•A5cosuAu1 is•A
sinuAu

uAu
, ~A1!

which is valid for any vectorA.
The quantity Tr(se2 isAm1mr̂m1

eisAm1m) occurs in the
calculation of the contribution of two-site diagrams
the rate equations. It can be transformed
Tr(eisAm1mse2 isAm1mr̂m1

). With the help of Eq.~A1!, the
spin factors in the trace can be calculated to be

eisAm1mse2 isAm1m'D̂m1m•s, ~A2!

where the quantityD̂ is a 333 matrix describing a rotation
about the axisAm1m5K3Rm1m and through the angle

2uAm1mu. This is valid to quadratic order inA. Explicitly,

D̂m1m5ez3eR+ez3eR1sinu2Au~eR+ez2ez+eR!

1cosu2Au~ez+ez1eR+eR!. ~A3!

The symbol ‘‘+ ’’ denotes the dyadic product and the o
thogonal unit vectors areez5K /K and eR5Rm1m /uRm1mu.
Here, it is used thatK is perpendicular to the plane, i.e
7-8
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K•R50 for all vectorsR within the plane. Retaining in this
expression only terms of up to second order inK ~sinceA
!1), one obtains

D̂m1m5 Î 312uAu~eR+ez2ez+eR!22uAu2~ez+ez1eR+eR!,
~A4!

whereÎ 3 is the identity matrix in three dimensions. Note th
det(D̂)511O(A4), whereO(x) is Landau’s big-O notation
i.e., that the length of the vectorr does not change@up to
O(A4)] due to the application of the operatorD̂. Omitting
theA2 term, the length of the vector would change in seco
order ofA; then,D̂ would not represent a rotation.

The products of spin matrices in the three-site diagra
are calculated using the following scheme: After rotating
operators within the trace, so thatr̂ is the last operator, the
spin factors precedingr̂ in the trace are calculated in order
obtain an expression of the formf 1gs. Here, f and g are
scalars in spin space. Thus, taking the trace yields Tr@( f

1gs) r̂ #5 f r1gr, an expression where the spin operato
have disappeared and are replaced by the particle density
the spin orientation. Using the operator identityeAeB

'eA1Be[A,B]/2, where the error is of third and higher order
the operatorsA andB, one obtains

e2 is•Amm2e2 is•Am2m1'e2 is•Amm1eis•(Amm1
3Amm2

) ~A5!

and

e2 is•Amm2e2 is•Am2m1e2 is•Am1m'eis•(Amm1
3Amm2

). ~A6!

Using Eqs.~A2!, ~A5!, and~A6!, which are all valid to sec-
ond order inA ~i.e., also inK), and Eq.~A1!, the spin struc-
ture of the three-site terms can be calculated, e.g.,

Tr~e2 is•Amm2e2 is•Am2m1e2 is•Am1mr̂ !

'cosuA2ur1 i
sinuA2u

uA2u
A2•r

'r1 iA2•r, ~A7!

Tr~e2 is•Amm2se2 is•Am2m1e2 is•Am1mr̂ !

'D̂m2m•FcosuA2ur1 i
sinuA2u

uA2u
A2r2

sinuA2u
uA2u

A23rG
'D̂m2m•r1 iA2r2A23r, ~A8!

where the abbreviationA25Amm1
3Amm2

is used, and the
second approximation for each relation is the truncation
second order inK .

The expressions~A7! and ~A8! occur together with the
~complex! third-order transition rateW(3). Adding the corre-
sponding complex conjugate diagram, one obtains so
terms which contain the real partWR52Re(W(3)) and some
which contain the imaginary partWI52Im(W(3)). Without
SOI, only the real part is relevant, since there is no comp
prefactor in this case.
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APPENDIX B: TRANSITION PROBABILITIES FOR
SMALL POLARONS

The second-order diagrams~two-site hopping! give rise to
the transition rate32

Wm1m5
1

\2
uJm1mu2e22STE

2`

`

dt1S expH(
q

Gq

sinh~\vqb/2!

3cosvqS t11 i\
b

2 D J 21D expH i

\
eE•Rmm1

t1J ,

~B1!

with the abbreviations

Gq5
ug~q!u2~12cosq•g!

N
~B2!

and

ST5(
q

Gq

2
cothS \vq

b

2 D . ~B3!

The sums run over the phonon wave vectorsq. g(q) is the
electron-phonon interaction constant,vq the phonon fre-
quency,N the number of phonon states, andb51/(kBT).
The quantityg5Rm1m can be restricted to be a vector co
necting two nearest-neighbor sites, since we are intereste
nearest-neighbor hopping only. Note that in this case,
integral is independent of the direction ofg. Thus, the result-
ing expression is isotropic in the absence of an electric fi
E.

The transition rates obey the principle of detailed balan

Wm1m

Wmm1

5ebeE•Rmm1, ~B4!

as is easily verified using Eq.~B1!.
The third-order diagrams~three-site hopping! give the ad-

ditional contribution to the right-hand side of the rate equ
tion ~5!

i (
m1m2

$2e2 is•Amm2e2 is•Am2m1r̂m1
e2 is•Am1mWm1m2m

(3)

1e2 is•Amm1r̂m1
e2 is•Am1m2e2 is•Am2mWm1m2m

(3)*

2 r̂me2 is•Amm1e2 is•Am1m2e2 is•Am2mWmm1m2

(3)*

1e2 is•Amm2e2 is•Am2m1e2 is•Am1mr̂mWmm1m2

(3) %. ~B5!

The third-order transition rates areWm1m2m
R 5Wm1m2m

(3)

1Wm1m2m
(3)* 52Re(Wm1m2m

(3) ) and Wm1m2m
I 52 i (Wm1m2m

(3)

2Wm1m2m
(3)* )52Im(Wm1m2m

(3) ), derived from the quantity

Wm1m2m
(3) 5

1

\3
Jmm2

Jm2m1
Jm1mI , ~B6!

where the symbolI denotes the integral
7-9
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I ~E!5e23STE
2`

`

dt1E
0

`

dt2S expH(
q

Gq

2 sinh~\vqb/2!

3FcosvqS t11 i\
b

2 D1cosvqS t21 i\
b

2 D
1cosvqS t12t21 i\

b

2 D G J 21D
3expH i

\
eE•Rmm1

t12
i

\
eE•Rmm2

t2J . ~B7!

Again, the integral is independent of the direction ofg, and
the resulting expression is isotropic.

Taking two times the real part, the integral overt2 would
extend from2` to `. This would be the expression to b
calculated for the small polaron Hall-effect.32,33 Here, we
cannot take this step, because we also need to calculat
imaginary part of the expression~B7!.

The three-site rate obeys the principle of detailed bala

Wmm2m1

(3) 5Wm1m2m
(3) e2beE•Rmm1 ~B8!

and has the further symmetry

Wm1mm2

(3) 5Wm1m2m
(3) . ~B9!

Using these symmetries, the long wave-length limit of t
third-order term, Eq.~12!, for a triangular lattice~hexagonal
crystal symmetry! can be calculated as

WR~q!5 iK +q•~E3K !
3a4e

kBT
Re~W012

(3) !. ~B10!

In order to calculateWI the imaginary part ofW(3) has to be
used instead of the real part. The indices 0, 1, and 2 de
the sites located at the vertices of an elementary triangl
the lattice.W012

(3) has to be calculated in zero electric fiel
Thus, there only remains to determine the integralI (0) in
order to obtain the third-order coefficients.

For a sufficiently large phonon dispersion, the main co
tribution to the integralI comes from a saddle point (t1s ,t2s)
at (i2\b/3,i\b/2). Under the condition\vq!kBT ~high
temperatures compared with the Debye temperature!, the ex-
ponent in the integrand can be expanded in a series int1 and
t2, which is truncated after the second-order terms. The
tegral can then be calculated and one obtains

I'
\2p

EakBT4A3
e24Ea/3kBTS 12 iA3kBT

Eap
eEa/3kBTD ,

~B11!

where

*Electronic address: thomas.damker@physik.uni-magdeburg.d
1S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton,

von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M
Treger, Science294, 1488~2001!.

2G.A. Prinz, Science282, 1660~1998!.
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Ea5(
q

\vqGq

4
. ~B12!

Combining Eq.~B11! with Eq. ~B10!, the mobility myx
connected with the anomalous Hall-effect and the spin H
effect reads

WRK25myx5m0

A3p

4

~Ka!2J3

Ea~kBT!2
e24Ea/3kBT, ~B13!

wherem05ea2/\, a is the distance between nearest neig
bors~lattice constant!, andJ5J01 is the overlap integral be
tween two nearest neighbors. This expression can be c
pared with the Hall mobilitymH for small polaron hopping32

to give the relation

myx

m
52~Ka!2

mH

m0
5

2\K2mH

e
. ~B14!

The effective activation energy for theWR processes~e.g.,
the spin Hall-effect! is 4Ea/3 @see the real part of Eq.~B11!#,
which is identical to the situation for the ordinary Hall-effec
On the other hand, the activation energy for theWI processes
is Ea , i.e., WI@WR for small temperatureskBT!Ea .

APPENDIX C: MAGNETIC FIELDS DUE TO SPIN
ACCUMULATION AND ELECTRIC CURRENT

The magnetic field generated by the spin polarizat
~magnetization! M (r )5M (r y)5mBr(y) in the strip reads

HM~y,z!52K“

1

2pE2b

b

dy8
M y~y8!~y2y8!1Mz~y8!z

z21~y2y8!2
.

~C1!

Note that the fieldHM has nox component, even though th
spin polarization has a finitex componentMx . The magnetic
field HM may be exploited in order to detect the spin acc
mulation. In this case, one has to keep in mind that the e
trical current inx direction also leads to a magnetic fie
HI .20 Both fields have different symmetry. Thus, ifHM is not
very much smaller thanHI , a measurement of the magnet
field near the strip allows a detection of the spin accumu
tion.

Explicitly, the magnetic field generated by the~homoge-
neous! currentI 5ebmEr within the strip reads

HI~y,z!5
Iey

4pb
arctanS 2az

y21z22b2D
1

Iez

8pb
logS z21~y2b!2

z21~y1b!2D . ~C2!
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