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Spin Hall-effect in two-dimensional hopping systems
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A two-dimensional hopping system with Rashba spin-orbit interaction is considered. Our main interest is
concerned with the evolution of the spin degree of freedom of the electrons. We derive the rate equations
governing the evolution of the charge density and spin polarization of this system in the Markovian limit in
one-particle approximation. If only two-site hopping events are taken into account, the evolution of the charge
density and of the spin polarization is found to be decoupled. A critical electric field is found, above which
oscillations are superimposed on the temporal decay of the total polarization. A coupling between charge
density and spin polarization occurs on the level of three-site hopping events. The coupling terms are identified
as the anomalous Hall-effect and the recently proposed spin Hall-effect. Thus, an unpolarized charge current
through a sheet of finite width leads to a transversal spin accumulation in our model system.
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[. INTRODUCTION affecting the spins in a systematic way, i.e., realize spintron-
ics.

The emerging field of spintronics tries to put the spin  To be specific, we consider a system where the spin dy-
degree of freedom of electrons to use in a fashion akin taamics is solely determined by spin-orbit interaction through
electronics, where the charge of the electrons is utilfZed. the Rashba mechaniéfi*®and no other spin scattering oc-
One of the advantages of spintronics is that spatial inhomoeurs (e.g., no magnetic impurities or spin scattering on
geneities of the spin distribution are not burdened with archarged impurities The electronic system is two-
energetic penalty, quite in contrast to inhomogeneous chargéimensional (2D) and—in order to calculate explicit
distributions. On the other hand, spin is not conservedgxpressions—assumed to be ordefsmhall polaronic sys-
whereas charge is. This is a disadvantage of spintronicéem. The disordered system is expected to behave qualita-
which means that spin polarization normally decays withtively similar, but its investigation must be delegated to fu-
time. Of special interest are techniques which influence théure publications.
spin by purely electrical means, without utilizing magnetic ~ TW0 prominent examples of the interplay between charge

fields or magnetic materials. Spin-orbit interacti¢8Ol) and spin transport are the anomalous Hall effect and the spin

provides such a mechanism. Hall-effect: The observation that a spin-polarized charge cur-
In recent years much has been done in this field for itinfent leads to a transversal Hall voltage, even without an ex-
erant electrons, favoring very clean samples of higlhternal magnetic field, is called the anomalous Hall-effect
mobility.3 This investigation, on the other hand, studies the(see,_e.g., Re_f. 19 and _references therdihe inverse effect,
. S . . that, in materials showing the anomalous Hall-effect, an un-
behavior of spins in a hopping system. Here, mobilities are

. ! o polarized charge current leads to a transversal @mim not
very low, either through dlsordQA_ndersor) localization or charge) current has been proposed by HirkR? and is
through strong electron-phonon interacti@grolaron forma-

. ) . . called the spin Hall-effect. Both of these effects will in the
tion). Transport is thermally activated and incoherent. In thefollowing be identified for our model system.

absence of effective spin scattering mechanisms, the low mo- Tpis paper is organized in the following way: Section Il is

bility might lead to long spin coherence times for a givenconcerned with the question of how to include the Rashba
Spin coherence Iength, which is one motivation for this Study80| into the hopp|ng formalism. In Sec. Ill the rate equa-
apart from the intrinsic scientific interest of the question oftions governing the evolution of th@ne-particle density
spin behavior in hopping systems. matrix are derived. This is done by calculating the diagrams
Previous studies of SOI in hopping systems centered obf second and third ordeitwo-site hopping and three-site

the influence of the spin dynamics on charge transfgog.,  hopping in the Konstantinov-Perel diagram technique in
magnetoconductante9, not on the spin dynamics itself. one-particle approximation and applying the Markovian
Furthermore, the effective spin coupling between hoppindimit. The rate equations for the density matrix are trans-
sites has normally been taken to be randott~**which is  formed into rate equations for the particle density and the
appropriate for spin scattering on charged impurities, but nospin orientation, which is an equivalent representation, but
for SOI due to intrinsic or external electric fields which are much more lucid physically. It is found that two-site hopping
constant over length scales of several hopping lengths. Butoes not introduce a coupling between the equations for the
such a mechanism would be required if one has the intent gdarticle (charge density and the equations for the spin po-
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IarizaFion. Thr.ee-site hopping processes introduce such &iemin spin states, e, is the site energy, a”ﬂﬂql/lrfn is the
coupling and indeed lead to the anomalous Hall-effect anqesonance integral between the states andm’o’. With-

the spin Hall-effect for this hopping system. ; o ; -
, . . . out SOI, the resonance integral is diagonal in spin space and
Sections IV and V give solutions of the rate equations for. ¢ g pIn Sp

dered hooi o i ; Il ool will be denoted ag,,,, in the following. Note that the usual
an ordered hopping sys efire., a sys em of small po arons spin splitting due to Rashba SOl is not manifest here, since
First, bulk propertiesi.e., no boundarigsare considered. A

i .Kramer’s degeneracy demands that the two spin states of a
short account of the results of Sec. IV has been published iNcalized eiggenstate )rl1ave to be degenerate P!

Ref. 23: Then, in Sec. V, a strip of f|.n.|te width is considered, The central question for the inclusion of SOI into the
which mtroducgs boundary pondltlon at t.he transversahoppmg Hamiltonian now consists in determining the spin
edges. The stationary state with an unpolarized charge cur- oo _ _
rent shows spin accumulation at the boundaries, which is affructure o, ... The four numbers belonging to each pair
expression of the spin Hall-effect. of sitesm’m are collected into a 2 matrix in spin space
The Appendixes primarily deal with mathematical details.J,,, ,,. Clearly 3 m—Jmml» for K—0, wherel, denotes
Appendix C considers the magnetic field due to spin accuthe two-dimensional unit matrix. Since the Hamiltonian has
mulation as a possible means of detection of spin accumuldurthermore to be Hermitic and invariant under time-reversal
tion. symmetry, the spin structure is given by an (8JU
matrix®91b1724-273 | —exp(~io- Ay m)Imm, Where all
Il. RASHBA SPIN-ORBIT INTERACTION IN HOPPING components of the vect@ have to be real numbers and the
SYSTEMS condition A= —Amnw Must be obeyed. The arguments

The first question which arises is how to include the SOIafter Eq.(2) show that the term linear i reads—io- (K

into the formalism of hopping transport. The Rashba HamiI->< Rn'm)., wh_ereRm,mz Rm'_ R IS the distance vectc_>r be-
tonian reads tween the sites an®,, is the coordinate vector of site.

Thus,
p2 h 3 —io- (KXR

H:ﬁ_a"'(pr)JrV(r), (1) ‘-]m’m:e l( Im,m)‘]m’m- (4)
where we introduce the quantily=mae, /%2, which (i) has For this express_ion quB to be valid,K has to be suﬁicien_tly
the dimension of an inverse lengtfi,) is perpendicular to  SMall, as explained in the paragraph after Eg). In this
the two-dimensional planéunit vector e,), and (iii) the ~ €@Se, this means that the conditiérx Ry/p,<1 must be
length of which signifies the Rashba SOI strength The valid for the distance vectoBy,,, which are relevant to
same expression, EGL), can be used for the generic SOI the case at hante.g., the typical hopping length or the lat-
due to a spatially constant electric figfg in which case ~ [iC€ constant The same expression, but applied to the
= (e/4m@)E. The symbolo- denotes the vector of Pauli spin Green’s function of a hopping system, has been derived in
matrices. The quantitp denotes the momentum the (ef- Ref. 4.

fective) electron masse the electron charge, and(r) the Inf Some nggenshe, thr:s . I?I equwaflent to thef_ I-||é)lste|n
(spatially varying potential. transformatiorf,” where the influence of a magnetic field on a

Equation(1) can be transformed to hopping system is taker! into account t.hrolugh a phas_,e factor,
and where higher-ordetin the magnetic field corrections
1 are neglected.
H= ﬁ(p—ﬁox K)2+V(r), (2 We are now prepared to derive rate equations governing
the hopping system with the inclusion of Rashba SOl in the
while ignoring an irrelevant constant energy offset. Thus, infollowing section.
principle, the Rashba SOI can be dealt with as &3 dauge

potential. Since the gauge potential is a constant, this would lll. RATE EQUATIONS
be quite trivial, were it not for the fact that $2) is non- ) ) ) )
Abelian. If the gauge were Abelian, a wave functigt(r) We apply the Konstantinov-Perel diagram technique in

would be studded with the factor dkp-- (K xr)] in order to order to obtain rate equations for the density_ matrix._ The
include SOI. Due to the non-Abelian nature, there are r:1ddi9ff,;d""lgonal elements of théone-electron density matrix

tional higher-order contributions iiK. Those can be ne- (&m,@ms) Can usually be neglected in a hopping system

glected, provide is sufficiently small. (otherwise, the transport mechanism would not be hopping
The Hamiltonian which we consider reads Here, we have to keep in mind that the correlations between
different spin states on the same site contain information
, regarding théexpectation value of thespin orientation. Fur-
_ t oot . 8 .
H_% €mamgame+ E Imm@mrgr@motHe—pntHpn,  thermore, the model which we consider aims at systems
mm oo

3) where the spin degrees of freedom do not decolilerse
their phase memojywhile the electron stays on a site. Thus,
where H_,, denotes the electron-phonon interaction andwe must retain the off-diagonal elements in spin spatéhe
Hyp is the Hamiltonian of the phonon system. Hetaq—iimr same sitgi.e., diagonal in the site indéxf the density ma-
(am,) is the creatiorannihilation operator of an electron at trix. In this way, by including the SOI the occupation prob-
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ability pn=(ala,) becomes a X2 matrix pp|, s
=<a;a,amg) in spin space.
In order to adapt the Konstantinov-Perel diagram tech-
nique to the SOI case, each site index can be thought of as R
i o o . + K- (Rmm XR oK{W,
additionally containing the spin index. The summations run m%]z (Rimm, X R, )°K{ mympmPm;
over all sites and also the two spin states. The electron-

phonon interaction is unaffected by the spin state. Thus, the

d “
apm: % D mym’ pmlwmlm_ memml}

_Ws'lmlmzpm}_ E K- (Rmml>< Rmmz)oK

extension of the formalism reduces (i9p studding each site mymy
index with a spin indexand extending the corresponding | |
sums and i) allowing expectation values which are nondi- X{Win, m,mPm, = Winm, m, Pm} (7)

agonal in spin space. The number of terms in a given dia-

gram proliferates quite rapidly with the order of the diagram

and makes its computation tedious. The calculations arehere only terms up to orde? have been retained and
greatly simplified, if one replaces the explicit summationsuperfluous correction terms of higher ordas mentioned
over the spin indices by matrix multiplication in spin space.above have been neglected. Some details of the calculations
This can be achieved by collecting the interaction matrixof the traces in spin space can be found in Appendix A. The
elements] (which depend on two site and two spin indites o ,aniity 5 is a 3x 3 matrix describing a rotation about the
into appropriate matrices in spin spadg ,, (which only aXiSAmlm:KXlem-

depend on two site indicgsand doing likewise with the
density-matrix elements. tions for the model considered heanly Rashba SOl affects
|

The second-order diagraniswo-site hopping yield in . .

one-particle approximatiogn and in the Mz?r?(o?ign limit the spin. The transition rate®:m, Wﬁlmzm’ andWmlmZm are

rate equations independent of spin and are determined by the type of hop-
ping considerede.g., small polaron hopping or hopping be-
tween impurities In the remaining part of the paper, we

Equations(6) and (7) are the generic hopping rate equa-

i;)m:E (e 1T (KR o (KXRmyy focus on an ordere(bolar.onic) system, but_Eqs(.G} an'd(7)
dt m 1 1 would also be the starting point for an investigation of a
. disordered system. Summing E&) over all sitesm yields
= PWinm,}, ) (d/dt)Z,,pn=0, thus, the derived rate equation for the par-

ticle density obeys particleand charggconservation.

where the transition raté#/,,.,, are the same as are obtained The f|rst ‘e”.“ on the nght-lhan.d side of Eq§) _and(?), :
without SOI. An explicit expression is given in E(B1). respectively, gives the contribution from two-site hopping

Next, the three-site probabilitieghird-order diagrams Processes. The remaining terms arise frpm three-sjte hppping
are calculated. These contributions yield higher-order corred?/0c€sses. One can see that in two-site approximation the
tions to the two-site probabilities, as well as some terms€quations for the occupation number and the spin orientation
which go beyond the physics of the two-site expressionsdecouple.

Only the latter type of third-order terms will be retained in ~ Whereas the second-order transition ratés , are those
the following calculations. The third-order terms in matrix of a system without SOI, the third-order transition rates

representation are given in Appendix B. Wimm, differ from the corresponding quantities without
T_he _phy_5|cal meaning of Eoi_5) and its t_hlrd-order 9€N" " 50, without SOl, the third-order transition ratgst us call
eralization is easier to assess, if the following transformatio

(3) i i - (3)
is applied: Representing thex2 -density matrix at siten by themw summarily are important for the Hall-effectv

~ 1 A = wherel. is th di ional uni are divided into parts which are symmetric in the magnetic
Pm=2pPml2F 2pm @, Wherel, is the two-dimensional unit - gey ang parts which are antisymmetric. Only the latter are

matrix, the occupation probabilitym=Tr(pm) and the(ex-  important for the Hall-effect, thus the symmetric parts are
pectation value of thespin orientatiorp,,= Tr(op,) are in-  normally neglected. Here, since the magnetic field is zero,
troduced. Please note that in the following we will use thethe antisymmetric part vanishes. Thus, we have to calculate
wording “spin orientation” without emphasizing each time the usually neglected symmetric partswf®). Furthermore,
that its expectation value is meant. Of course, a spin-1/3oth, real WR) and imaginary \') part of W find entry
particle does not have a classical spin orientation. in the formalism, whereas only the real part of the second

Taking the appropriate tradsee Appendix Ayields the  orgerw occurs. NeverthelessyR is connected with the Hall
rate equations governing the evolution of these quantities mobility of a hopping system. The calculations are shown in
Appendix B.

If the system is orderedi.e., polaronig, it is advanta-

d : .
—pm= 2 Wi mPm. = Winm Pt + > K- (Rmm X Rmm.) geous to transform the equations into wave vector space.
at™™ e M MM Note that, since the spatial vectors are two-dimensional, the
. R _WR wave-vectorg] will also be two dimensional. This transfor-
K'{Wmlmzmpml Wmmlmzpm}’ 6) mation leads to the rate equations
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d
giP(@=[W(a)—W(0)]p(a)+ [WR(a)—WR(0)]-p(q)

(8
and
d .
ap(q)=[W(q)—W(0)]p(q)—2W(q)~p(q)
—2[KXW(q)]xp(q)+[WR(q)—WR(0)]
X p(q)—[W'(q)—W'(0)]x p(q). 9
Here,
19
W(q)= T EW(q), (10
A Jd d J d
W(q)=—<K2£o%+KoK%-E)W(q), (1)
WRI >=KoK~(ixi)wR'< ) (12
q 99 9q; ad1)lq,=0>

where the last equation is to be understood as applying to t
superscriptdk and|, respectively.
The basic transition rates are

W(g)=2, e RmWq,, (13

WRl(qqy) = 2, e Fneld Rm W, (.. (14)
1

In an isotropic system, taking the long wavelength limit, they

read

W(q)=W(0)—Dg*~iuq-E (19

and

WRI(q)=iKoqg- (EXK)WR!, (16)

the latter being calculated for a triangular lattisee Appen-
dix B). Here,D is the diffusion constanj the mobility, and
the quantitiesAVR andW' are constants defined through Eq.
(B10).

The rate equations thus take the shape

17

d o
&p(q)——lqw(q),

with the particle current densitiproportional to the charge
current densityej)

j(a)=puEp(q)—iDgp(q) + WRK X EK-p(q), (18)

and

d .
Ep(q)=—iq~J(q)+Q(q), (19

with the (tensoria) spin current density

PHYSICAL REVIEW B 69, 205327 (2004

J(q)=pE°p(q)—iDqep(q)+4Di 5K - p(q) — 4D p(q)°K
+WRK X EoK p(q) — W'K X EoK X p(q) (20)

and the spin source density

Q(q)=—4DK?p(q) —4DK<K - p(q) +2u(K X E)XP(?Z)i)

Equation(17) is the continuity equation for the particle
(charge density. Equation(19) contains a source term in
addition to the divergence of the current, since there is no
conservation law for spin. The first two terms contributing to
the charge currer{iL8) are the drift term in the electrical field
and the diffusion. The third term only occurs, when there is a
finite z component of the polarizatiofi.e., a magnetization
M,). The resulting current is directed perpendicular to the
electric field. Thus, this term corresponds to the anomalous
Hall-effect. The corresponding mobility is seen to pe,
=WRK2. The quantityu,/u is related to the Hall mobility
(see Appendix R

The spin current, Eq(20), mainly consists of the drift
term and some diffusion terms. But the most interesting con-

htéibution is the fifth term on the right-hand side, since it is
also present for vanishing spin polarizatips 0. This term
describes a current afspins into the direction perpendicular
to the electric field K XE). Thus, it is an expression of the
spin Hall-effect. The coefficieV® is the same, as the one
responsible for the anomalous Hall-effect.

In order to simplify notation, dimensionless quantities are
introduced: dimensionless space=Kr, wave vector &
=q/K, time r=DK?t, and electric fielde= wE/(DK). The
transformed third order probabilities are denoted es
=(KE/D)WR and ¢, = (KE/D)W'. Note thateg can be ex-
pressed ag, e/ u. Thus,eg is an analog of the Hall mobil-
ity multiplied by the electrical field. Furthermore, the coor-
dinate system is fixed such thaj<K, exE, and =K
XE. ThenK=Ke, and E=Eg,. This transforms the rate
equationg17) and(19) to

d
d—TP(§,T)=—(§2+i§x6)P(§,T)—iER§ypz(§,T) (22)

and

d
GPED=—(EFibep—dilexHXp-ientep

+ie &, Xp—4p—4ep,+2eeXp. (23

The three terms on the right-hand side of E2R) are the
diffusion contribution, the drift in the electric field, and the
anomalous Hall-effect. The first terms on the right-hand side
of Eq. (23) are: diffusion, drift(Ohmic currenk, a precession
term for diffusing spins, the spin Hall-effect, and a preces-
sion of the spin about the axis. The last three terms con-
tribute to the spin decay. The first two of those can be ex-
panded as-4e,p,—4€,p,—8€,p,, thus the decay rate for
thez component is twice as large compared with the in-plane
components.
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IV. BULK SYSTEM Note that the frequency of the polarization oscillation
2\/é—1 increases with the electric field Apart from the
decay factore 87, the polarizatiorp(r) describes a slanted
ellipse in thex-z plane, i.e., the plane spanned by the Rashba
field K and the electric fieldE. The coordinatesx
=p,e%"\Je?—1/e and z=p,e®"\/e’—1/e determine the el-
lipse x?+ 2xzsin ¢+ 72=cog¢. The inclination of this el-
4,P(0.1=0, (24)  lipse (angle between axis and the main diagonadioes not
depend on the electric field. Fa—1 the angle¢— 7/2,
d i.e., the ellipse degenerates to a line with an inclination of
d—Tp(O, 7)=—4p—4e,p,+2ee X p. (25 45° to the perpendicular direction. In the limit of strong elec-
tric field e—, the angle¢ vanishes, and the ellipse be-
Equation(24) is an expression of charge conservation. It is tocomes a circle. In order to observe these oscillations, the
be seen that the evolution of the space integrated quantiti€®rresponding frequency should be larger or of the order of
does not depend on the third-order parametgrande, . the inverse decay time constant, which leads in this case to
The solution of Eq(25) reads the approximate conditioe=10.
Let us consider next the case of an inhomogeneous initial
condition. We take a-spin starting at the origip(x,7=0)
px(0)cosh27y1—€?) =48(x)e,. The total spin polarization is still described by
Egs. (26). In order to obtain the local spin orientation, one
p(0)+ €p,(0) has to solve Eq€22) and(23). This is done by solving these
+ 2 sinh 21— 62)], (268  equations in Laplace-space and the following back transfor-

By setting the wave vectdf to zero, the evolution equa-
tions for the quantities integrated over the whole system
tal charge and total spin polarization, e.ga(£€=0,7)
= [d?xp(x,7)] are obtained

px(7)= e "

Ji-¢€ mation from Laplace space to time  and wave-vector
. spaceé to x.
py(T) =€ "Tpy(0), (26b) The asymptotic behavior of the local spin polarization for

large timesr—o and small distancel| <27 [Large dis-
tances will not be relevant here, since they are strongly sup-
pz(0)cosh27y1—€) pressed by the “diffusion factor” exp{x%/47).] is

epx(0)+ p0) _ o] _Xten? 7 3 (Jl_S )
- ﬁSIHHZT\/l_Gz)], (26C) pZ(X,T)—eX4 At 47-]8\/;_‘]0 |X| :

(28)
where p,(0), p,(0), andp,(0) are the initial conditions. ] ) o ) ]
Note that there is a critical electrical-field strength=1. In ~ Note that in this approximatioflong times and short dis-
smaller fields the total spin polarization decays exponentiallj@nces, the sign of the polarization—determined by the ar-
with time, but in larger fields, it additionally rotates with gument of the Bessel functiol,—only depends on the dis-
time. Expressed differently, for>1 the eigenvalues of the ance to the origin, and is furthermore not time dependent.
set of equation$25) become complex, which means that its This spatlgl oscillation is due to the precession terms in the
eigenmodes become oscillatory. This critical electric fieldrate equations. The exponential factor exhibits a decay term
E.=DK/u can also be expressed Bs=kgTK/e, provided With (dimensionlesstime constant 4/7 and a drift-diffusion
the Einstein relation betwedd and  is valid. Furthermore, ~t€rm with drift velocity — e and diffusion constant 1.
without electric field, thez component of the total spin po-
larization decays twice as fast as the other two V. STRIP OF FINITE WIDTH
component$3%°

Taking for definiteness the initial conditig0)=e,, one The distinguishing feature of a strip of finite width is that
obtains there is no currentneither charge, nor spimcross the trans-

versal boundaries. Thus, the spin Hall current must be com-
6 pensated by a diffusion current, i.e., a finite spin density can
Pyl 7-)=e*672— in(27Je2—1), (279  be expected to occur near the boundary. Indeed, the follow-
ver—1 ing will show that a transversal spin accumulation will occur
in this situation. For a broad strip, the nonzero spin density is
py(7)=0, (27D mainly constricted near the boundaries.
The strip is oriented, so that thedirection is along the
B € length of the strip(the direction of the current flowthey
po(1)=e"% mcos{erez— 1+¢), (279 (girection is along the width of the strip, and theirection is
perpendicular to the 2D strifsee Fig. 1 The strip extends
with sing=1/e. This expression is appropriate fer>1, from y=—b to y=b; thus, its width is . Going from
whereas fore<<1 the trigonometric functions become hyper- wave-vector space back tospace and assuming thafx)
bolic functions. andp(x) = (px,py,p,) depend only on thg coordinate, the

pAT)= e o

2
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A 4€
S AN s S ) A€ s costizy)
z y €Rp @
charge current
2b 4)\2 62
X + T( 16c,S3+ ?)\35103) cosh\,y)+c.c.,

NN N N N N NN N}

FIG. 1. The coordinate system chosen for the strip of finite )
width. The charge current within the strip is nonpolarized. But at pz(y) ~ A;—4 € .
the transversal boundarigs= = b, a finite spin density occurs due €rp N 16,85+ E)\331C3 sinh(A,y) +c.c.,
to eg, i.e., this situation leads to spin accumulation. (310

(31b

following set of differential equations determine the station-With the abbreviations

ary state &2
a= )\2C2 _|)\2|2)\281C3+ 16()\§+ 12+ 62)C153:| —C.C.
"+ erpa=0, (293 2
p RPz 32)
Pyt €ipyt2€ep,—4p,=0, (29  and
py—€py+ap,—4p,=0, (299 ci=coshi\ib), s;=sinh\jb) (i=1,23. (33
Y , ) One can see that the electron dengityand the spin Hall
pzt+erp’ —4py—2€p—8p,=0, (299 coefficienteg only influence the amplitude of the polariza-

tion. They do not affect the spatial dependence@f). The
x andz component of the polarization are antisymmetric with
respect to a sign change gf whereas they component is
symmetric.

For a large electric field>1

where the prime denotes the derivation with respegt fthe
boundary conditions at=*b are obtained by equating the
normal component of the currentd8) and (20) at the
boundary to zero. This yields

(p'+ 6RPZ)|y:tb:01 (30a
, px(Y)=~—sgn(y) ﬂsin( Ve(b=y|)+ 7 |-,
(px+ 6Ipy)|y:tb:01 (30b) \/Z 4
(349
(P),/_ Elpx+4pz)|y:ib:0a (309
€RP . _ Je(b—
, ~— — Ve(b—1yl)
(p+ erp—4py)y- +=0. (30d) py(y)~——_silJe(b=|y|)]e . (34D
One has to keep in mind that we want the solution to 6 .
lowest order inK. The zeroth order solution of Eq&29a— py)~—sgny) chos( Ve(b—y|)+ —| e Yeb=IyD,
(300 is obtained by removing all terms at least linearkin V2e 4
i.e., settinge;=0 and eg=0. This immediately yields the (340

solution p(y) = const andp(y) =0. This solution is inserted The main effects of increasing the electric fieltonsists in

into the terms containingr and €, , which yield the equa- 5 sharper concentration of the polarization near the boundary
tions for the first-order solution. Compared to the zeroth Or{due to the exponential tepnand an increase of the ampli-
der equations, there is only one additional teegp gives @ tyde of thex and z component of the polarizatiofbecause
finite right-hand side in the boundary condition for the en/Je=euyl uxe).

componentcorresponding to Eq30d], all other terms con- For b>1 )(/i.e., in natural units: width>K ) the spin
taining e and ¢, are still zero. The solution of this set of ,4|4rization is significant only near the boundaries due to the
equations is easily constructed. Agajrly) =const, and the  pyherholic functions. This suggests that there is a “spin-
three vectoriap components are weighted sums of functionsg;t,sion length” governing the spatial extent of nonzeyo
sinh(.y) and coshxy), wh?/rf A takes on thszthree values: near the borders. This suggestion can be fleshed out in the
A=2, Ap=(V8+e —1)"+i(y8+e"+1)™ and A3  following way: We consider the half plang=0, set the

=\; . Thus, to lowest order i, electric field e to zero, and apply the boundary condition
p(y=0)=pyo. The differential equations for the stationary
puly) _ 16e state(and homogeneous ix) are

s :—7)\Zczs3smr(2y)
px—4px=0, py+4p,—4p,=0, p;—4p,~8p,=0,
(39

which conceptually corresponds to an equation with the
(319 structureDAp—p/7=0, only that here the decay raterl/

62

2€
+ - 16c,S3+ ?)\35103 sinh(\,y)+c.c.,
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FIG. 2. The magnetic field due to the spin accumulation in the FIG. 3. The magnetic field due to the current through the strip.
z-y plane. The parameters doe=1, e=1. The horizontal line de- The parameters are the same as in Fig. 2.
notes the extent of the strip.

o o , neglected in this paper. THé)significance of the back re-
depends on the directidithus, itis a tensgrand there is an ;5 of the magrl?etFi)c field due?o the spins on the spins can
additional *torque” term. Since in Eq(35) all coefficients be estimated in the following way: Using the magnetic sus-
are numbers(in dimensionless unijsthe resulting spin- ceptibility y and the Bohr magnetong, the spin polariza-
diffusion lengthyD 7 is also a number of the order of ofie o0 due to the back reaction can be expressedpgs
the present case: 1/2 for thecomponent and 1{(5—_ 1) = H/ ug~ M/ ug= xp. Thus, the influence of the mag-
~0.74 for the other two components, corresponding to thggtjc field on the spins can be neglected, provided the con-
real parts ofA;, \,, and\; at e=0]. Thus, expressed in ition y<1 is fulfilled.
natural units, this length i& ! times a constant of order
one, i.e., this spin diffusion does not introduce a new length
scale in addition to the Rashba length sdéle'. VI. DISCUSSION

The spin current of a nonpolarized electrical current in an
infinitely extended plane consists n$pins being transported

perpendicularly to the electrical field [see Eq(20)]. Here, \ggge Rasthba ShOI 'S t;[he sgle.sp(ljn _sc?r':tenng mecth?msm.
this spin current is “transformed” into spin accumulation by equations have been derived In e one-partcle ap-

applying boundary conditions. Seen in this light, it is perhap gox'm"?}“o?‘ anq the Markovian Illzmlt,hmcludllngl txvo—sne and
somewhat surprising that the resulting spin polarization ha ree-site hopping processes. Further caicuiations are per-
finite x andy components, in addition to the component. _ormed for the case of polaron hopping, where one can work
But this can be explained by the following observation: The'l Wave-vector space.

: o . . As expected, an initial spin polarization has been found to
calculated spin polarizatig is—though stationary—not » o . o .
pin p p(y) g 4 decay exponentially with time, if the electric field is low.

;Tsflg'yI:h;eg:)?se;;ﬂ_:;ei?gwmgn;nzeﬁ]v;ﬁg? atrr:g otshpé? CS Ou r? Bu't, there'is a critical electrip fi_eld, aboye which the total
tributions of the spin current as well as the spin decay, on th pin polanza’glon shows oscnlatlon(sotanons). overlaymg
other hand. Even though the “supply” only yieldsspins, e d_ec_ay..Thls can be un_der_stood as.followsl. The rotation of
the tensorial nature of the current leads to spin precessiof], Spin |n|_t|ally at a certain siten, du_rlng a single hop to
such that in the equilibrium state all components occur. ~ 2nother siten, depends only on the difference veck, .
Due to the spin polarizatiofmagnetization a magnetic ~ The spin rotates in the plane spanned by the ved{oend
field Hy, is generated, which may in principle allow to detect Rm,m,- L€t us consider a spin starting at the origin and being
this polarization. In order to actually measure this magnetioriented along the direction att=0. The motion of the
field, one has to take into account that there is also a magelectron in the radial directions leads to concentric “waves”
netic field H, due to the electric current through the strip. around the origin of spins having the samand radial com-
These fields are calculated in Appendix C. ponent. But, due to the diffusive motion, the electron does
They-z components of the magnetic field due to the spinnot only take the straight path radially outwards, but explores
polarization is shown in Fig. 2. For comparison, the behaviom@n increasingly entangled trajectory, thereby randomizing the
of the magnetic field due to the charge current is shown irspin orientation. The random motion only affects a decrease
Fig. 3. The parameters are chosen such that the dimensionf the magnitude of the polarizatidit neither creates polar-
less width of the strip and the dimensionless electric field arézation, nor does it favor any specific orientatiomhus, the
1, respectively. One can see that the spatial behavior of thereferred orientation given by the radial motion is preserved,
two contributions to the total magnetic field is quite different. but its magnitude diminished.
This would, at least in principle, allow to differentiate be-  An electric field does affect the charge transport, but in
tween them. two-site hopping approximation it does not affect the el-
As a last point, the magnetic field,,+H, also interacts ementary processes responsible for the transport of spin ori-
with the spin degrees of freedom through the Zeeman energgntation. Thus, in this case, the spin polarization is simply
and applies a torque to the spins. These effects have bedime product of particle density and spin orientation, which

We have studied the spin dynamics of a hopping model
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has a constant magnitude itséjuite in contrast to the situ- hopping(in a certain range of concentratiorsnd for high
ation with three-site hopping processds this way, one can temperatures The reported Hall mobility in the polaronic
see that the electric field does not change the spatial distrhopping regime is of the order of 100 éHVs). Using this
bution of the spin orientatiofe.g., the sign of the compo-  value, Eq.(B14) gives the estimate,,/u~0.23, i.e., the
nend, but only changes the temporal evolution of the spatiatransversal mobility for the spin Hall-effect is about a fourth
charge distributior(the “weight” of the local spin orienta- Of the longitudinal mobility. Taking Eq(31¢) into account,
tion). This explains the time independence of the argumenthis gives a relative spin polarizatioz component at the

of the Bessel function in Eq28). boundary of a two-dimensional str|p,(b)/p| of about 5%
On the other hand, in a very large electric field an electrorfit the critical electric-field strengté=1. _ _
follows preferably a straight trajectory along the figldrge The present investigation can be extended in several di-

drift component in comparison to the diffusiohe impor- ~ rections. A natural generalization would be the extension to a
tance of diffusion about this trajectory is reduced, therebyfinite electron density, which would require Pauli and/or
also reducing the randomization of the spin. This explainsHubbard correlations to be taken into consideration. This
why it is possible for the electric field to become so strong,also opens the possibility to investigate equilibrium proper-
that the spatial oscillations of the spin orientation survive thdies and the behavior near equilibrium. Another line of study
averaging over the whole volume, so that they appear awould be the introduction of spatial or energetic disorder.
temporal oscillations. This includes disordered polaronic systems, but also hopping
Without an electric field, the decay of an initial spin ori- on impurities or Anderson localized states, and would also
entation is found to behave anisotropically: heomponent ~ allow the investigation of variable range hopping in the
(perpendicular to the planelecays twice as fast as the in- present context. Some of these extensions are work in

plane components. progress.
The inclusion of three-site hopping terms leads to the oc-

currence of a transport co-efficieng or ,u_yx) which pro- . ACKNOWLEDGMENTS

vides a coupling between charge and spin transport. A spin . o

current produces a transversal charge curf@momalous This work is in part supported by the DF(®eutsche

Hall-effect, and a charge current produces a transversal spifiorschungsgemeinschaétnder Grant No. 436 RUS 113/67/
current(spin Hall-effec}. In a two-dimensional strip of finite  11-2.
width, this transversal spin current manifests itself as a spin
accumulation at the boundaries of the strip. APPENDIX A: CALCULATION OF THE SPIN MATRICES
Finally, some remarks about the experimental relevance ) ) ) )
are in order here. The Rashba SOl strength is widely given as APplying the identity @-A)(o-B)=(A-B)+io-(A
being of the ordera~10"° eVcm™!® It is possible to X B), valid for any vectordA andB, to the series expansion
change this value by applying a gate voltage to the twoOf the exponential function, one easily obtains the relation
dimensional plané® where a variation by at least 50% has
been shown to be realizable. This might be conceptually fa-
vorable for the implementation of spintronics devices, where
electric means to control spins are sought.
Using the value ofx mentioned above, one obtais  Which is valid for any vectoA.
~1/(76 A), assuming that the effective electron mass is The quantity Tr(re’i”Amlm,Smlei"Amlm) occurs in the

equal to its elementary mass. Thus, the condifonRym  calculation of the contribution of two-site diagrams to
<1 for the validity of our theory demands in this case thatthe rate equations. It can be transformed to

the typical hopping length is shorter than 76 A. This value iSTr(e“’Amlmo-e“"AmlmA ). With the help of Eq.(A1), the
conveniently large, so that the range of polaronic nearest- ' i Pm,J- ' '
neighbor hopping is well within the validity range. But im- SPin factors in the trace can be calculated to be

purity hopping or variable range hopping are also not out of , , .

the question. Furthermore, for a smaller Rashba coefficient, e Ammge ! Amm=D, - o, (A2)
the permitted length increases and it is furthermore modified

by the effective electron mass. If the Einstein relation bewhere the quantit)f) is a 3X 3 matrix describing a rotation
tween diffusion coefficient and mobility is assumed to beabout the axisA,, ,=KXR,., and through the angle
valid, the critical electric fieldE;=ksTK/e for the oscilla- 51 | This is valid to quadiatic order iA. Explicitly
tory behavior of the total spin polarization is estimated to be =~ ™" '
about 16 V/cm at a temperature of 100 K.

. SinA
e A=codA|+io- A#, (A1)

The calculations in Appendix B show a close connection f)mlm:ezx €r°€, X Er+ SIN2A| (ero€,— e,°6R)
between Hall-mobility and the coefficient for the spin Hall-
effect. Thus, a large Hall mobility favors also the occurrence +c042A|(ee,+ exoer). (A3)

of the spin Hall-effect. We take Ref. 31 as an example. _

There, the conductivity and the Hall mobility of the  The symbol *” denotes the dyadic product and the or-
hexaboride compounds Eu,CaBs are measured, and the thogonal unit vectors are,=K/K and ex=Rp, m/|Rpn,ml-
authors conclude that the transport mechanism is polaroHere, it is used thakK is perpendicular to the plane, i.e.
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K -R=0 for all vectorsR within the plane. Retaining in this APPENDIX B: TRANSITION PROBABILITIES FOR
expression only terms of up to second ordeiir(since A SMALL POLARONS

<1), one obtains The second-order diagrartisvo-site hoppinggive rise to

. . ) the transition raté&

Dim,m=13+2|Al(eroe,— e26r) —2|A|*(e0€,+ Er06R),
(A4) 1 r

- Win,m= — [Im,ml °€ ZSTI dty| exp > Wqﬁm)

wherel 5 is the identity matrix in three dimensions. Note that h q “q

det(D) =1+ O(A%, whereO(x) is Landau’s big-O notation, B i

i.e., that the length of the vectgr does not changgup to X COosw t1+iﬁ§> ] —1) p[h eE- Ryt 1],

O(A%] due to the application of the operatbr. Omitting

the A2 term, the length of the vector would change in second (BY)

order ofA; then,D would not represent a rotation. with the abbreviations

The products of spin matrices in the three-site diagrams

are calculated using the following scheme: After rotating the .= |7(9)|*(1—cosq-g)

operators within the trace, so thatis the last operator, the a N

spin factors preceding in the trace are calculated in order to gng

obtain an expression of the forfnt+go. Here,f andg are

scalar§ in spin space. Thus, .taklng the trace-y|elc[$fTr STZE ECOU'(ﬁw _)' (83)
+go)p]=fp+gp, an expression where the spin operators q 2 42

have disappeared and are replaced by the particle density an
the spin orientation. Using the operator identigfe®

~ e BelABI2 \where the error is of third and higher order in
the operator#\ and B, one obtains

(B2)

%e sums run over the phonon wave vectgrsy(q) is the
electron-phonon interaction constant, the phonon fre-
quency,N the number of phonon states, ape= 1/(kgT).
The quantityg= lem can be restricted to be a vector con-

mm el (Amm X Amm,)  (AB) necting two nearest-neighbor sites, since we are interested in
nearest-neighbor hopping only. Note that in this case, the

e*io’-Ammzefi(r-Amzmlm e*io’-A

and integral is independent of the direction@fThus, the result-
=17 A= Anm, 0= 17 Amm i (Amm <Amm)  (AG) ing expression is isotropic in the absence of an electric field
) E.
Using Egs.(A2), (A5), and(A6), which are all valid to sec- The transition rates obey the principle of detailed balance
ond order inA (i.e., also inK), and Eq.(Al), the spin struc- W
ture of the three-site terms can be calculated, e.g., ™M geE-R
W =e mmy, (B4)
Tr(e—iu-.Ammze—io-.Amzmle—imAmlm;)) MM
as is easily verified using E¢B1).
sin|A,| The third-order diagram&hree-site hoppinggive the ad-
~CO3A,| p+ i = A, Az p ditional contribution to the right-hand side of the rate equa-
tion (5)
~p+iAy-p, (A7)
. ) ) R i e—la’ Ammze io-Ap m e io-Ap, W(3)
Tr(efItr-Ammzo_efltr-Amzmlefla'-Amlmp) m%z { 2 1p 1m m;m,m
sinA sinA +e7i‘7'Am 5 e~ io-Am,m e~ io-Am mW(?’)*
szm codA,|p+i |A|\ |2|A p— |A|\ |2|A2 Xp Pm, ' m;m,m
A . _;)me io- Amme™ io Amm,e —io-Ap, mW(3r)’r’1;m2
%szm'p'HAZp_AZva (A8)

—|—e_i°"Ammze_i°"Am m e—io’~Am m W(3) B5
where the abbreviatiol,=Anm XA, is used, and the o oWy} (BS)
secong a%proxr;(matlon for each relation is the truncation 10 The third-order transition rates are/R o Wgr?l)mzm
secona oraer | (3)%  _ (3) | _ (3)

The expression$A7) and (A8) occur together with the +W?“31)T m=2ReWy (3? m) and Wm m,m '(W_mlmzm
(compley third-order transition rat®/(®. Adding the corre-  — Wi m,m) = 2IM(Wy 1, ), derived from the quantity
sponding complex conjugate diagram, one obtains some
terms which contain the real patt®=2Re(W®)) and some

- - o I_ Gl Wi W3 = JnmImm Jmoml (B6)
which contain the imaginary paw/' =2Im(W"’). Without MMM ™ 3~ mm,mymy “mym’

SOlI, only the real part is relevant, since there is no complex
prefactor in this case. where the symbol denotes the integral
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r

@ ® howy
_ a-3Sr q _ 9’ g
I(E)=¢ Jiwdtlfo dt, exp[ Eq‘, > Sinfth o 72 E, §q‘, s (B12)

) Combining Eq.(B11) with Eq. (B10), the mobility .,
t2+'ﬁ§ connected with the anomalous Hall-effect and the spin Hall-
effect reads

X + COSwq

2

COqu(tl-HﬁE

B
+cos<uq(tl—t2+|ﬁ 5)“ —1) \/§7T (Ka)2J® e T

Ko 4 B (keT)?

i [
xexq’%eE Rinm,t1— 7 €E- RmmZtZ]- (B7)  whereu,=ea’#, ais the distance between nearest neigh-
bors (lattice constant andJ=Jg, is the overlap integral be-
Again, the integral is independent of the directiongpfand  tween two nearest neighbors. This expression can be com-
the resulting expression is isotropic. pared with the Hall mobilityu, for small polaron hopping
Taking two times the real part, the integral otgwould  to give the relation
extend from—o to «. This would be the expression to be )
calculated for the small polaron Hall-efféét®® Here, we Fyx _oikay2H 2hK "y (814
cannot take this step, because we also need to calculate the ) Mo e
imaginary part of the expressidB7).

The three-site rate obeys the principle of detailed balance The effective activation energy for thve® processee.g.,
the spin Hall-effectis 4E,/3 [see the real part of E¢B11)],

WRK?= yy= (B13)

wE = wW® e BB Rmm, (B8)  which is identical to the situation for the ordinary Hall-effect.
mpymy mymym s
On the other hand, the activation energy for Weprocesses
and has the further symmetry is E,, i.e., W's>WR for small temperaturekgT<E,.
(3) —\w®
Wi mm, = Wi m,m - (B9) APPENDIX C: MAGNETIC FIELDS DUE TO SPIN

Using these symmetries, the long wave-length limit of the ACCUMULATION AND ELECTRIC CURRENT

third-order term, Eq(12), for a triangular latticghexagonal The magnetic field generated by the spin polarization
crystal symmetry can be calculated as (magnetizationM (r) =M (r,) = ugp(y) in the strip reads
. 3346 b ’ ! ’
WR(q)=iKeq- (EXK)7 —ReWE).  (B10) Hu(y.2) = _KV— dy,My(y =y +Ma(y')z.
! o 2m )b Z+(y-y')?
In order to calculat&V' the imaginary part o) has to be (Cy

used_instead of the real par.t. The indices 0, 1, and _2 denoigote that the fielH,, has nox component, even though the

the sites located at the vertices of an elementary triangle Cgpin polarization has a finitecomponenM , . The magnetic

the lattice. WS35 has to be calculated in zero electric field. fig|q H,, may be exploited in order to detect the Spin accu-

Thus, there only remains to determine the inted(@) i yyjation. In this case, one has to keep in mind that the elec-

order to obtain the third-order coefficients. _ trical current inx direction also leads to a magnetic field
_For a sufficiently large phonon dispersion, the main con4y 20 goth fields have different symmetry. ThusHf, is not

tribution to the integral comes from a saddle pointy,tz)  very much smaller thahi,, a measurement of the magnetic

at (i22pI34B/2). Under the conditiomiwa<kgT (high  fie|d near the strip allows a detection of the spin accumula-

temperatures compared with the Debye temperattiie ex-  jon.

ponenf[ in -the integrand can be expanded in a seriegsand . Explicitly, the magnetic field generated by ttizomoge-

tp, which is truncated after the second-order terms. The inpeoug currentl =ebuEp within the strip reads

tegral can then be calculated and one obtains

hlm [3kaT Hi(y,2)= e arcta 2az
|~ o4Eal3kgT| 1 _j B eEal3kgT 47b y2+22—b?
E.ksT44/3 = ’ i :
B11 | 22+(y—b
(B11 +8€Zb=o i (y )2 ' €2
where m z°+(y+b)
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