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We present a theoretical study of a valence-subband dispersigii Iff)eoriented quantum wellQW) under
[110] uniaxial stress. As an example, we present calculated results(1d0rGaAs QW. The 4«4 Luttinger-
Kohn k- p Hamiltonian in conjunction with the Bir-Pikus strain Hamiltonian is solved within the infinitely high
barrier model in order to obtain the in-plane dispersion curves of valence subbands. Then, confinement ener-
gies, effective masses along the two orthogonal in-plane direct{@@i] and [TlO]), and optical matrix
elements fof001] and[TlO] polarized light are obtained at zero in-plane momenti=Q) and are plotted
as functions of th¢110] uniaxial stress. The confinement energies of the first two subbands show anticrossing
behavior as functions of the stress. Due to the drastic change in valence-band mixing near the anticrossing, the
effective masses of the two subbands show changes in their signs, magnitudes, and in-plane anisotropies. The
most outstanding point is the saddle-point character of the first hole subbked@twhich appears under the
stress corresponding to the anticrossing and under the larger stress. An intimate relation is shown between the
biaxial anisotropy in optical matrix elements and that in the hole effective mass. A simple model based on the
tight-binding approximation is presented for understanding the intimate relation between them.
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I. INTRODUCTION QW's than those of théd01) and(111) QW's. Namely, while
the square and hexagonal symmetries of (@) and(112)
Valence-band engineering in semiconductor quantun@QW'’s, respectively, promise isotropic optical property, the
wells (QW’s) by utilizing strain effects is an important arena rectangular symmetry of (1L QW's results in biaxial de-
for developing high-performance optical and electronic dependence on in-plane polarization. For example, it has been
vices. In the theoretical investigations, envelope-functiorshown both experimentally and theoretically that0),*
framework, based on the multiband effective-mass theory 0f112),° and (113 (Ref. 6 unstrained QW's exhibit aniso-
the Luttinger-Kohrk - p Hamiltonian in the spid=3/2 basis  tropic dependence of optical transitions on the in-plane linear
in conjunction with the Bir-Pikus strain Hamiltonian, has polarization. Furthermore, theoretical studies suggest that the
been most widely employed to study the valence subbandnisotropy can be modified by changing the extent of mixing
structure in the QW subjected to strain. It is well known thatamong the heavy-hole, light-hole, and spin-orbit split-off
the off-diagonal terms in both the Luttinger-Kohn and thestates through varying the well widththe barrier height,
Bir-Pikus Hamiltonians cause valence-band mixing and leadtrain® or electric field applied externally.Especially, it has
to much more complicated dispersion curves of valence sutbeen predicted that strain-induced anticrossing between the
bands than those of conduction subbands. In addition to thieole energy levels i110 QW's leads to perfect linearly
guantum confinement potential and strain field, crystallopolarized dependence of the matrix elements for the inter-
graphic orientation can be another important degree of freeband optical transitiof®**
dom for tailoring valence-band mixing in the QW. Note that  Biaxial anisotropy is also shown for the valence subband
at zero in-plane momentum, mixing between the heavy-hol@ispersion in (1) QW's by theoretical studie¥2° Analyti-
state with|J,|=3/2 and the light-hole state wifd,|=1/2is  cal expressions have been derived for anisotropic in-plane
absent in(001) and(111) QW'’s owing to their high symme- effective masses of hole subbands in unstaifigd) QW’s
tries, whereas it does exist in (191QW's (I #1) due to their  within the infinite-barrier-height model by Shechttral?
lower symmetries even in the absence of strain. Since th&hey found that some subbands {#10 QW'’s exhibit
symmetries of the QW’s remain unchanged by applying thesaddle-point dispersion at zero in-plane momentti®imi-
stress perpendicular to the hetero-interfaces, level crossing larly, Valadare$® showed theoretically that some subbands in
allowed between any two confined hole states at zero in¢113) QW's also exhibit saddle-point dispersion. The saddle-
plane momentum it001) and(111) QW'’s as a function of point character of some valence subbands (h1®) QW has
the perpendicular stressyhereas the crossing is replaced by been evidenced by resonant magnetotunneling spectroscopy
anticrossing for two hole states having the same parity iron a double-barrier AIAs/GaAs/AlAs resonant tunneling di-
(11) Qws23 ode structuré*?® However, in the unstrained QW’s investi-
Several experimental studies revealed that QW's growmated in these studies, the saddle-point dispersion is found
along the[ 1117 directions show remarkably different optical only for higher-order subbands having quantum numbers
properties from the conventionéd01) QW’s. Such a differ- n>1.
ence comes partially from the lower symmetries of thel (11 In the present study, we calculate the valence subband
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dispersion in a110)-oriented QW under the uniaxial stress is the four-component envelope function which satisfies
perpendicular to the hetero-interfaces within the four-bandHF(r)=EF(r) in the QW (—d/2<z<d/2) and vanishes at
effective-mass approximation in the spin=3/2 basis. In the interfacesZ= *+d/2).

Sec. Il we briefly describe the calculation method for valence For the confined state in the square QW) has either of
subband dispersion. In Sec. Il the calculated results aréhe odd or even parity. For the odd state, the four-component
shown for a(110 GaAs QW under th¢110] uniaxial stress. envelope function atk,=(k,,k,) can be written in the

A main result of this work is the finding that the firsh ( form,2®

=1) subband of hole shows the saddle-point dispersion un-

der adequate stresses. Relation between the anisotropy in op- f_32(2)
tical matrix elements and that in effective masses is dis- f(2)= f_12)
cussed in Sec. IV. f15(2)
fa2(2)
Il. CALCULATION METHOD
S, cogk,2) —N; cogk,2)
We deal with a semiconductor single QW having a well —iL, sin(k;2) 0
width of d whose heterointerfaces are parallel to th&0) =A; 0 +B; L, cogk,2)
plane. We use th€110) film coordinate system where the N ok
— — iNT sin(k,z) iS7 sin(k,2)
axes are taken so thaii[ 001], yll[110], andz/[110]. We
assume the barrier height of the QW is infinite. S, cogk,z) —N, cogk,z)
According to the four-band effective-mass theory, the —iL,sin(k,2z) 0
valence-band structure near thig point of bulk Ill-V com- tA; 0 B2 L,cogk,z) |°
pounds subjected to the strain can be obtained by using the iN% sin(k,2) iS% sin(k,2)
following type of a 4<4 Hamiltonian, which is defined in an 2 2 2 2
orthonormal basis sdtJ,J,)} of a cell-periodic wave func- 4
tion atk=0, whereJ=3 andJ,= -3, —3, 7, 3 designate |;here
the total angular momentum and iscomponents, respec-
tively: Lj+=L(ky,ky,*kj)—E, (59
L S N 0 | y > Nji:N(k)Ukylikj)! (5b)
ho| SOM 0 NAE) S = S(ky kg k). (50

N* O M -S _ )
. . In the above equationsk; (j=1, 2) denotes the absolute
0 N* =S L values of the solutions ok, for the bulk hole dispersion
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Here each matrix element is the sum of the correspondin
matrix elements of the Luttinger-Koh(LK) and the Bir- E=(L+M)/2+[(L—M)2/4+NN*+SST¥2  (6)

Pikus (BP) Hamiltonians:
in the presence of strain for a given energy akg

L=Lik(kx,Ky k) +Legp, (28 =(Ky,ky). k; corresponds to the solution of E@) with the
plus sign, whilek, to that with the minus one.
M =Mk (ks Ky ,K;) +Mpgp, (2b) In case of the(001) QW problem in whichk, is taken
along [001], the plus sign in Eq(6) (and thusk,) corre-
N=Nyk(Kkx,Kky kz) +Ngp, (29 sponds to heavy holehh) while the minus signand thus
kz) to light holes(lh). Explicit forms of the solutionk; in
S= Sk (k. ky ,Kz) + Sgp. (2d) the[001] direction are given by Eq29) in Ref. 1 or by Egs.

The expressions for these matrix elements of the Luttinger® and (6) in Ref. 27 for the strained film on th€d0l)
Kohn and the Bir-Pikus Hamiltonians in tti&10) film coor- substrate(However, note that the second term in the right-
dinate system are given in the Appendix, which are quotedand side of Eq(6) in Ref. 27 should b&*ki'/4 instead of
from Ref. 18. C*ki'.)
The hole wave function in the QW can be written as For the purpose of solving th€l10) QW problem, the
solutionsk; in the [110] direction are necessary. Their ex-
D(r)=F_g0)|3,— 3)+F_1r)|3,— 3)+F1(0)]3,3) plicit forms in the absence of strain are given by E@$.and
(8) in Ref. 15.[Note that in Ref. 15 the first term in the
+F3(n)]3, %), (3)  right-hand side of Eq(8) in the expression fob should be
E2(y5+373) instead ofE?(y5+ y3) and that the values of
the coefficients in the expressions frin Egs.(3), (4), and
_t (5) are also incorrec}.
FN=1F 521, P2l 1). Fad1). Faalr)] In the absent of strain, the plus sign in E§) (and thus
= _go(r), Foya(r), Foa(r), Fa(r) ]exd i (Kx+ kyy)] k;) corresponds to the heavy-hole branch and the minus sign

where
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(and thusk,) to the light-hole one as in the case of {{0®1) 0
QW problem. On the other hand, in the presence of strain,
the terms “heavy{light-) hole branch” become meaningless
for the (1100 QW. Then, we refer to the vl and v2 branches
instead of the heavy- and light-hole branches in the presence
of strain, corresponding tl; andk,, respectively. Deriving
explicit forms of k; for the (1100 QW in the presence of
strain is also straightforward, but the expressions are too
long to be written here.

The requirement for the vanishing é&fz) at z==*d/2
yields the following equation:

Energy [meV]
3

- PO T [ Y VU T N ST S T RN
SiCq —Nic1 S0 —Nyc, 1000 4 8 12 16
—iL,s; 0 —iL,s, 0 External stress [kbar]
de =0, (7
0 Lqicq 0 L,c,

FIG. 1. Energies of the v1, yl and v2 subbands &;=0 in a
—iN7s; iSs; iN3s, iS}s, 10-nm(110)-oriented GaAs QW relative to the valence-band top of
bulk GaAs as functions of thgl10] stress.

where
B results in Ref. 21, the Luttinger parameters for GaAs are
¢j=cogk;d/2), (83 taken to be the same as in Ref. 22, while deformation poten-
s, =sin(k,d/2). 8b) tials and stiffness constants for GaAs are taken to be the

same as in our previous studies.Our results precisely re-
Fork,=0, Eq.(7) reduces to cok(d/2)cosk,d/2)=0 for produce those in Fig. 1 of Ref. 21. As can be seen in Fig. 1

the odd state, while sik{d/2)sin,d/2)=0 must be satisfied of Ref. 21, the dispersion and hence the effective masses of
for the even state. Thusk, =nm/d or ky=n/d must be hole subbands are already anisotropic under zero stress. Es-

satisfied ak,=0. Inserting these values & andk, to Eq. pecially, the hh subband shows saddle-point dispersion. Ef-

(6) gives thenth energy level ak,=0 corresponding to the fective masses alon01] and[110] atk;=0 may be ob-
vl or v2 branch, respectively. Therefore, hole subbands if@ined by the parabolic fit or by utilizing analytic formula of
the (110) strained QW can be referred to aswr v2,,. For Egs.(9) and(10) in Ref. 21.[Note that the numerator of the
each hole subband, the dispersion curve in the presence st term in Eq(10) in Ref. 21 should be §,(y5— y3) in-
strain can be obtained by solving Eq) for the values of stead of 6/1(yz—v2).]
k,#0. When applying external stress to the QW, the subband
In case of the(001) strained QW, the equation corre- States cannot be categorized to hh or Ih anymore due to the
sponding to Eq(7) can be reduced to the compact form as isvalence-band mixing even &f=0. Therefore, the hole sub-
given by Eq.(16) in Ref. 28 or by Eq(12) in Ref. 29.( Note ~ bands in the QW under stress are designated asand v2,
that in Ref. 28,y°k kyk, in the last term in the right-hand instead of hj and I, (see also Sec. 2 of Appendix B in Ref.
side of EqQ.(16) should be replaced by®k?kyk,_ and that 11). Forn=1, by omittingn, we hereafter denote simply v1
the value of the coefficient in the expression fom Eq.(6) ~ and v2 instead of viand v2, respectively. The energies of
is also incorrect. Note also that, in Ref. Jg4P,+Q,+S  the vl, v, and v2 subbands a;=0 relative to the
—&)(P,—Q,—S—¢)—2R?] in the right-hand side of Eq. valence-band top of bulk GaAs are plotted as functions of
(12) should be replaced by(P,+Q,+S—¢)(P,—Q,—S  the[110] uniaxial stressesX) in Fig. 1. Figures @), 2(b),
—¢)—2R?] and that the values of the coefficients in EGB. a_nd Zc) show the calculated results of the in-plane disper-
and (9) are also incorredt.A similar compact form can be Sion curves for the v1, v, and v2 subbands under tfELO]
obtained for th&110) QW problem in the absence stain, as is Uniaxial stresses of 6, 8, and 10 kbar, respectively. The zero
given by Eq.(7) in Ref. 21. On the other hand, such a com-0f energy in each figure is chosen as_tht_a top of the valence
pact form cannot be obtained anymore in case of(iH) _band (_)f bulk GaAs under the same uniaxial stress as the QW
QW in the presence of strain. It is, therefore, necessary té subjected to.

solve Eq.(7) directly for calculating the valence subband The valence-band top of bulk GaAs has the light-hole
dispersion in the110) strained QW. character under the compressive external uniaxial stress.

Since the energy of the v2 subbandkat0 shifts almost
parallel to that of the valence-band top of bulk GaAs as long
as the external stress is small, it remains almost constant with
We consider here @110)-oriented GaAs QW having a respect to the reference point of energy. On the other hand,
well width of 10 nm under thd110] uniaxial stress. The the energies of the v1 and ykubbands ak,=0 relative to
dispersion curves of valence subbands in a 10{it0  the reference point are lowered with increasing the external
GaAs QW in the absence of stress have been calculated Isyress. As can be seen in Fig. 1, the zone-center energies of
Shechtetet al?! and shown in Fig. 1 of their paper. In order the vl, and v2 subbands cross ¥t=7 kbar. This indicates
to check our calculated results by comparing them with thehat the v, and v2 subbands do not couplekat 0. This is

Ill. RESULTS OF CALCULATIONS
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FIG. 2. In-plane dispersion for the v1, yland v2 subbands in a 10-n¢h10)-oriented GaAs QW under external stresses a[dAdg)] of
(a) 6 kbar,(b) 8 kbar, and(c) 10 kbar. Solid curves show the dispersion alpad0], while broken ones show that aloh@01].

owing to the orthogonality between the wave functions hav-uniaxial stress in Fig. (@). Here, we define the signs of hole
ing different parities ak;=0. On the other hand, the yand  effective masses so that bulk hole masses in the absence of
v2 subbands couple &+ 0 owing to the valence-band mix- stress are positive. In the figure, solid curves indicate the
ing, and show repulsive behavior. This repulsion is enhanceg,yerse masses alongL10], while broken ones indicate
with the decrease in energy separation between theamtl  ,7ce along001].

v2 subbands by increasing the stress to 7 kbar. Owing to the As can be seen in Fig.(8, the inverse mass of the v1
enhanced repulsion, the ysubband loses its saddle point at —

k,=0, and has a negativelectroniclike mass along either . ’ o
£[001] and[110] at X— 6 kbar nb nin FigaR the stress, and is then drastically diminished when the stress
0 and[110] atX= ar, as can be see increases from 8 to 12 kbar. For the stress larger than 12

By applying larger stress than 7 kbar, the order in energy — _
at k,=0 is reversed between the y&nd v2 subbands, as kbar, the[110] inverse mass remains almost constant at the

shown in Fig. 1. Corresponding to this reversal, the dispersmall value. On the other hand, the inverse mass &l00j

sion curves of the v2 subband are plotted over those of thélecreases slowly at first and then steeply to be OXat

v1l, subband in Fig. @). In spite of this reversal a,=0, =8.5 kbar; it changes its sign to negative, reaches the nega-

one can see there that the shapes of the dispersion curves five maximum aiX=12 kbar, and shows gradual decrease in

the two subbands are not changed so much as a whole. absolute value. Note that the zone-center energies of the v1
On the other hand, the dispersion curves of the v1 suband the v2 subbands show anticrossing behavior when the

band change remarkably when the stress is increased beyosttess increases from 8 to 12 kbar, as shown in Fig. 1.

6 kbar. While the dispersion curves of the v1 subband along For comparison, the inverse effective masses of the hh

[001] and[110] are both convex dt,=0 under the stress of and I subbands &t;=0 in a 10 nm(001) GaAs QW under
X=6 kbar, the curve alon§001] between the two solely the[001] uniaxial stress were calculated, using an analytical
becomes almost dispersionless nleat 0 under the stress of expression given by Lee and Vasse[Note that in the nu-
X=8 kbar. For the stress larger than 6 kbar, the top of the vinerator of the last term in the analytical expression of Eq.
subband moves fronk,=0 to k,~3x10"°cm ! along (34) in Ref. 1, y, should be replaced by; as has been
[001]. Namely, the band gap between theand the v1 sub- pointed out by Foremat?] The calculated results of the in-
bands in the QW becomes indirect by applying the externalerse effective masses are plotted in Figh)3s a function
stress larger than 6 kbar. The anisotropy of the v1 subband f the[001] uniaxial stress. In the case of tf@01) QW, the
enhanced by increasing the stressXte 10 kbar so that the order in energy between the hand Ih is reversed for the
v1 subband has a camel’s-back structure with a saddle poirstress larger than 18 kbar. Namely, the energy levels ¢f hh
atk,=0 [see Fig. Zc)]. and |h, at the zone center cross each other owing to the high
The inverse effective masseskat=0 may be obtained by symmetry for this case, in contrast to the anticrossing behav-
the parabolic fit to hole subbands upke=5x107°> cm %, iorin the(110 QW case. Comparing Fig(& with Fig. 3(b),
The inverse effective masses of the vl and v2 subbands ione can see that the effective mass of the v1 subband in the
the (110 GaAs QW are plotted as a function of th&l0] (110 QW shows the heavy-hole character before the level

subband alon§110] is slightly enlarged at first by applying
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External stress [kbar] External stress [kbat]
20— FIG. 4. Squared optical matrix elements of thevl transition
(b) (00H)QW atk,=0 in a 10-nm(110-oriented GaAs QW for linearly polarized
hh light as functions of th¢110] stress. A solid line corresponds to the
10p ! 1 [110] polarization while a broken line t§001]. The values are
. normalized by the bulk valugM|2.
g
?é: 0 band at the zero in-plane momentum. In the next section we
discuss the relation between the anisotropy in optical matrix
Lok elements and that in inverse effective masses of the hole
subband based on a simplified tight-binding model.
Prior to proceeding to the next section, we mention some
b v A experimental implications of the calculated results presented
0 4 8 12 16 20 above. If the well or the barrier layer of ti&10 QW struc-

External stress [kbar] ture is doped with acceptor impurity to Ipetype, the holes
in the well layer will exhibit anisotropic Hall mobility owing
FIG. 3. (a) Inverse effective massesng/m*) of the viand v2  to the anisotropic effective mass of the v1 subbandat
subbands ak;=0 in a 10-nm(110-oriented GaAs QW as a func- =(, as long as the stress is small so that the top of the v1
tion of the[110] stress. Solid curves represent the inverse masses;;phpand is ak,= 0. By increasing the stress, the v1 subband
along[110], while broken ones represent those ald091l. (b)  exhibits a camel's-back structure, and the top of the v1 sub-
Inverse effective massesng/m*) of the hh and Ih subbands at  pang moves to points with finite along[001]. The isoener-
k=0 in a 10-nm(001-oriented GaAs QW as a function of the yatic curves around these new top points are ellipses. Then,
[001] stress. the Hall mobility exhibits anisotropy, reflecting the anisot-

anticrossing and the light-hole one after the anticrossing. ofePY of the ellipses around the two humps. Thus, the values

the other hand, the effective mass of the v2 subband seems ?(f) the anisotropic mobility will gradually change from the

take over the heavy-hole character after the anticrossing. vallues reflecting the effective masseskgt0 to those re-

In the anticrossing region, the vl and v2 states are thge(,:fsn%ézebggﬁcggﬁ,gﬁﬁsbstéﬂi Cmvﬁtlo?z ?r? én(t;.l cula-
i 3 3 — Bl
strongly mixed states between thé . +3) and|3.%3)  tion shows that the saddle-point dispersion of the &iib-

states even ak;=0. As the result, the optical matrix ele- pang atk,=0 in the (110) GaAs QW can be found even in
ments between the first conduction subbaag) (@nd the v1  the absence of stress. Similarly, the calculation by
(or v2) subband at,=0 show anomalous change in the valadare& shows that some subbands iff143 GaAs QW
anisotropy regarding the in-plane polarization of linearly po-exhibit saddle-point dispersion and camel's-back structures
larized light. According to our previous stuighe squared in the absence of stress. Using resonant magnetotunneling
optical matrix elements of the]_-Vl transition alkH=O for spectroscopy, Hayd&‘t a|_24~25investigated the in_p|ane dis-
the in-plane polarization are calculated. The results for th‘i)ersion curves of the hole subbands irf143 GaAs QW,
(110 GaAs QW are plotted as a function of tH&10]  and revealed that some subbands really have camel's-back
uniaxial stress in Fig. 4. In the figure, solid and broken linesstryctures.
represent the squared optical matrix elementq 1di0] and In the unstressed 10 and(113) QW's investigated in the
[001] polarized light, respectively, and the ordinates areabove studies, the saddle-point dispersion is found only for
graduated in the unit of the bulk valyisl,|? of the squared higher order subbands having quantum numbersl. On
optical matrix element. the other hand, the saddle-point dispersion is found for the
By comparing Fig. 4 with Fig. @), one can see an inti- top most valence subband with=1 under the uniaxial
mate relation between the anisotropy in optical matrix elestress in the present study. As in the case of(iHs) QW,
ments and that in inverse effective masses of the hole sulthe saddle-point dispersion in tti£10 QW, regarding both
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the hhy subband in the absence of stress and the v1 subband —Ny

at the presence of the stress, can be examined by resonant

magnetotunneling spectroscopy experiments. F(z)=f(z)=B,cognz/d)| | |. (11)
Very recently, Takedat al®! used angle-resolved photo- 01

electron spectroscopfARPES for observing the dispersion

curves of hole subbands in a Si inversion layer. ARPES is gherefore, for the vl state at k=0, G
powerful tool for probing directly the electronic structure of =(Gy, .Gy, .G, ,Gy; .Gy ,G,;) can be written as
solids. Using ARPES, they observed crossings and repul-

sions of the subbands as well as negatielectronlike ef- 2 7z
fective masses arourk=0, as has been calculated using the G=C dCOS( F) )
triangle potential approximation. This experimental tech-

nique can also be used for investigating the unique charactevhereC=(C,, ,C,,,0,0,0C,;). Thus, the wave function of
of dispersion curves 1110 QW’s under thg110] uniaxial  the v1 state ak,=0 is expressed by

stress.

(12

The unusual dispersions of Figgap-2(c) may be mani- " > 7z
fested in infrared-absorption experiments as well as in cyclo- (I)kuzo(r):(Cxllxl>+Cyi|Yl>+CzT|ZT>) Pt Rl B
tron experiments, since the density of states of a two- (13)

dimensional saddle point has a logarithmic singulgfity.
Using the aboveC,;’s, the optical matrix elements for the

IV. DISCUSSION c;-v1 transition atk,=0 can be expressedZs’
In this section, we discuss the relation between the anis- |Mx|2:|cx1|2P2
tropy in optical matrix elements and that in inverse effective
masses of hole subbands based on a simplified tight-bindin
p g g |My|2:|cyi|2p2, (14)

model.

The expansion of the hole wave functidr(r) in the J

3 basis in the envelope-function theory given by

_ |Mz|2:|CZT|2P21
Eg. (3 can be transformed into that in the \yhere p is the momentum matrix element between the

{IxI)lyDulzl) IxT).yT).|21)} basis as and p states,P=(s|p,|x)=(s|p,ly)=(s|p,|z). Therefore,
the ratio of the squared optical matrix element
®(r)=Gy[x1)+ Gy lyl)+ Gy lz] )+ Gy |xT) IMy[2:IM,|%:|M,|? directly represents the ratio of existence
+Gy |y 1)+ Gylz1), (9p  Probability among théx), |y), and|z) states. _
The |x), |y), and|z) states can be approximately ex-
where pressed by the linear combination of atomic orbitals
(LCAO). For example, thdx) state in a Ill-V compound
1 1 semiconductor can be written as
G _a— —=Fup,
x| 2 32 \/6 1/2
)~2 [agp(r=R")+bgy (1=R)]
i i
Gy =~ —=F_ 3= —=Fua, x— X!
v2 V6 :2 ar— :u p"(Jr=R"])
| |I‘ Ri |
1/2
_= x—X
Gzi_(3> F71/21 +b|r_R{/| PV(|r_RiV|) , (15)
i

whereR]"'=(x!",y" ,zI"y andR’=(X,Y,Z) represent
Gy=- ‘72F3,2+ %Fflm the position vectors of the lattice sites of the group Il and V

sublattices, respectively, ancbg'x(v) represents the wave

i i function of thep, orbitals of an isolated group (V) atom.

G =— - In the (110 film coordinate system used heeR'""Y =R!"
y7 32 1/2s ) -
V2 6 - Ri"=(1/4,0,—ﬂ/4)a0, wherea is the lattice constant of
the cubic lattice of the IlI-V compound. While=b stands
2\ 12 for elemental semiconductors with the diamond-type struc-
Gz = 5) Fiz. (10 ture, 0<a<b stands for IlI-V zinc-blende-type semiconduc-

tors.[See Eq(5.27 in Ref. 33

For the v1 state &t;=0, sinceA;=A,=B,=0 andS;=0, The wave function of the v1 state k=0 given by Eq.

Eq. (4) becomes (13) can approximately be expressed by LCAO as

205320-6
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2 mZ TZ;
kH o)~ \[ 5( {T)le(r_Ri),

IS o
(16)
where
us(r—R)=ault(r—R"+bu/(r—-RY) (17
with
uy ) (r=R{")
-C, ¢III(V)(r RIII(V))|l>+C ¢III(V)(r_RiIII(V))|L>
+Cyp (r=RI"¥)|1) (18)

andR;=(X;,Y;,Z)=(R"+R")/2.
written as

le(r_Ri):Cxwﬁpx(r—Ri)|l>+cy¢¢py(r_Ri)|l>

+Csz’pZ(r_Ri)|T>'

u,1(r—R;) can be re-

(19
where

¢bp (N=2agy (r—Rg)+bgy (r—Rg) (a=xy,2).

(20

In the tight-binding approximation, the wave function at a
smallk, can be written as

2
@‘,ﬁﬁ(r)m \[acoiklz)zi cogk,Z;)explik;-R;)

X le( r— (21)

R)).

This corresponds to neglecting terms proportional to either

sin(k;2), sink,2), or cosk,z), while leaving the terms propor-
tional to cosk;2) in Eq. (4).
The Hamiltonian in the crystal can be written as

2
2
mOV +V(r),

H (22

2

PHYSICAL REVIEW B 69, 205320 (2004

Here,U" (r) andUY(r) represent the potentials for the iso-
lated group Il and V atoms, respectively. The insertion of
Eq. (19) into Eq. (24) yields

R ) |Cxi|2txx(R )+Cx1 yitxy(R )+Cxicyltyx(Ri)
+ |Cy1|2tyy( Ri)+ |CZT|2tzz(Ri)a (26)

where

taﬂ(Ri)=—f b, (NAV(N ¢y (r=R)dr - (,8=X,y,2).
(27

Hereafter we consider the transfer integrals between the
nearest-neighbor lattice sites only. The position vectors of
the 12 nearest-neighbor lattice sites in the fcc lattice are writ-
ten in the(110 film coordinate system used here as

1 1
R+ +y+z— i_, i_, T—|a ’ 28
X*+y*z ( 2 >v2 2‘/2) 0 (289
1
R+2y=(0, = o) ao, (28b)
R 0, 0, - (289
+ = 3 y *r—Qap. C
2z VI 0

Then, the dispersion given by E(3) yields following in-
plane effective masses kaf=0:

1 28,
Tx ?t(Rx+y+z)a (299
X
1 2a0 o
m—;= ~ 77 [URxiy+2) F Ry = 5 — = 751(Ryy).
(29b)

Here, we assume that,(R;) andt,(R;) can be ne-

whereV(r) represents the periodic potential for the crystal.glected in Eq.(26). This assumption can be justified when
The expectation value of this Hamiltonian for the wave func-a<b stands in Eq(15). In this case, one may neglect trans-
tion given by Eq.(19) yields the following energy disper- fer integrals containing the group lll atoms, and may con-
sion: sider only the transfer integrals between the group V atoms.
Among the latter transfer integrals, those involving the cross
terms of<¢>p (r)AV(r)<¢>p (r—R;) are considered to be small

E(k)=E;— 2 t(R)cogkzpe®, (23
[ in comparison with those mvolvmgzﬁp (r)AV(r)(bp (r
wheret(R;) is the transfer integral defined by —Ri) (e=x,y,2). Furthermore, using Eq14) and the fact
thatt, (Ryiy+2) =t:ARx+y+2), EQs.(299 and(29b) can be
rewritten as
t(Ri)=—f Uy (NAV(r) Uy (r—Rpdr, (29)
ith 1 2a2 R +| x|2 t (R
wit m: ﬁz y( x+y+z) PZ { xx( x+y+z)
AV(H)=V(r)—-U"(r+AR"V/2)—UV(r—AR"V/2).
(25) tyy(Rx+y+Z)} ’ (308)
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W anisotropies of the hole effective masses for the v1 and v2
subbands at zero in-plane momentum have been shown to
change. Especially, it has been shown that the biaxial anisot-
ropy in the in-plane mass of the v1 subband, which already
exists at zero stress, is enhanced by applying the uniaxial
stress. This enlarged anisotropy leads to a saddle-point char-
acter atk,=0 for the v1 subband. The comparison between
NUBSSSPEL S the calculated results of the hole effective masses and those
of the optical matrix elements showed an intimate relation

-10+ - . . .
between them. The relation between the optical matrix ele-
ments and the hole effective masses has been explained by a
%) P E N T B simple LCAO model.
0 4 8 12 16
External stress [kbar] APPENDIX: MATRIX ELEMENTS OF THE HAMILTONIAN
FIG. 5. Fitted results of the inverse effective masseg/(m*) Here we give the expressions for the matrix elements of

of the v1 subband d¢,=0 in a 10-nm(110-oriented GaAs QW as the Luttinger-Kohn and the Bir-Pikus Hamiltonians in the
a function of the[110] stress using analytical expressions of Eq. (110 film coordinate system, which appear in Eq2a)—
(3043 for the inverse mass alofi§01] (indicated by a broken curye  (2d). For Luttinger parameters we define the linear combina-
and (30b) for the inverse mass alorfd 10] (indicated by a solid tions

curve.
Ynp=(Ny3+py2)/(n+p), (Ala)
1 1 ag[ IM, |2 _
~—+— 5| t,ARs) + —7—{tix(Ray) —t,AR5)} y=(v3t+72)/2, (Alb)
m;— 2m§ hz z 2y P2 xx\ M2y z 2y
M, |2 vs=(v3— v2)/2. (Alc)
+ p2 {tyy(Ray) ~tzARgy)}|. (30D The diagonal elements of the Luttinger-Kohn Hamiltonian
are given by
These expressions indicate that the change in the optical ma-
trix elements is accompanied with that in the inverse effec- Lik=Pw+Qwk, (A2a)
tive masses.
We can fit the curves obtained using analytical expres- M k=Pk—Qwk (A2b)
sions of Egs.(30@ and (30b) to the numerically obtained where
results shown in Fig. @) by adjusting the transfer integrals
as fitting parameters. First, we can estimate the values of 52 s o
(285/%)t(Ryry+2) and (2§/19)tyy(Rery,) for the Puc=gm, ikt ky+ka), (A33)
GaAs QW by fitting the results for f; shown in Fig. 8a)
using Eq. (308 with the calculated values df\,|%/P2. 52 3
Next, we can estimate the values of a2%2)t,(Ray), QLK=H[y31(k§+k§—2k§)—Eya(ki—ki)}
(2a§/1%)tyy(Ryy), and (2§/412)t,{Ryy) by fitting the re- 0 (A3b)

sults for 1My using Eq.(30b) with the calculated values of ) . .
the squared optical matrix elements shown in Fig. 4. Thel "€ nondiagonal elements of the Luttinger-Kohn Hamil-
fitted curves of the inverse effective masses for the v1 supionian are given by

band in the GaAs QW obtained using E¢80a and (30b) 521 V3 V3 3

together with those adjusted parameters are shown in Fig. 5. Nig=—| — — yosk + — %( kf—2k2— —ki)},
The curves in Fig. 5 well reproduce those for the inverse Mol 2 4 22

effective masses of the vl subbands in Fi@).3The excel- (Ada)
lent reproduction suggests the validity of the simplified 52
LCAO model presented above. Sic=—T[V3k,(7k_+ ysk )], (A4b)
Mo
V. SUMMARY wherekf=kZ+kZ, ke =k =ik, .

We have calculated the valence-subband dispersion for a FOr deformation potentials we define

(1100 GaAs QW under th¢110] uniaxial stress within the

four-band envelope-function model. We have shown that the p1=—2a=2Dy, (A53)
dispersion curves of the first tw@1 and v2 subbands dras- )

tically change when their energies at zero in-plane momen- B2=b= 3Dy, (ASb)
tum show anticrossing as a function of the stress. As the

results of this change, the signs, the magnitudes, and the Bs=dV3=13%D| (A5c)
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and the linear combinations The nondiagonal elements of the Bir-Pikus Hamiltonian are
given by
Bnp=(NB3+pB2)/(n+p), (A6a) s
3 3
Bs=(Bs— B2)I2. (A6b) Nep=— 5 Bsalexx—eyy) T 5 Bslex 822, (A99)
The diagonal elements of the Bir-Pikus Hamiltonian are
given by Sgp=0. (A9b)

Under the[110] uniaxial stressX, the components of the

Ler=Pgpt Qgp, (A7) strain tensor are given by
Mgp=Pgp— Qgp, (A7b) exx= — S12X, (A10a)
where
1
eyy=" 7 (S11+S12—S4/2) X, (A10b)
Pap=73 Bi(exxT eyyt €57, (A8a) "
€22=— 7 (Su+t Szt Sadf2)X, (A100)

Qpp= % Bai(exxT Eyy— 2847~ % Bslexx— 8yy)-
(A8h) whereS;; are elastic compliance constants.
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