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Large change in biaxial anisotropy of in-plane hole dispersion in a„110… quantum well
under †110‡ uniaxial stress

Y. Kajikawa, N. Nishimoto, and Y. Higuchi*
Department of Electric and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane Unive

1060 Nishi-Kawatsu, Matsue, Shimane 690-8504, Japan
~Received 18 October 2003; revised manuscript received 27 February 2004; published 28 May 2004!

We present a theoretical study of a valence-subband dispersion in a~110!-oriented quantum well~QW! under
@110# uniaxial stress. As an example, we present calculated results for a~110! GaAs QW. The 434 Luttinger-
Kohn k•p Hamiltonian in conjunction with the Bir-Pikus strain Hamiltonian is solved within the infinitely high
barrier model in order to obtain the in-plane dispersion curves of valence subbands. Then, confinement ener-

gies, effective masses along the two orthogonal in-plane directions~@001# and @ 1̄10#), and optical matrix

elements for@001# and@ 1̄10# polarized light are obtained at zero in-plane momentum (ki50) and are plotted
as functions of the@110# uniaxial stress. The confinement energies of the first two subbands show anticrossing
behavior as functions of the stress. Due to the drastic change in valence-band mixing near the anticrossing, the
effective masses of the two subbands show changes in their signs, magnitudes, and in-plane anisotropies. The
most outstanding point is the saddle-point character of the first hole subband atki50, which appears under the
stress corresponding to the anticrossing and under the larger stress. An intimate relation is shown between the
biaxial anisotropy in optical matrix elements and that in the hole effective mass. A simple model based on the
tight-binding approximation is presented for understanding the intimate relation between them.

DOI: 10.1103/PhysRevB.69.205320 PACS number~s!: 73.21.Fg, 73.61.Ey
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I. INTRODUCTION

Valence-band engineering in semiconductor quant
wells ~QW’s! by utilizing strain effects is an important aren
for developing high-performance optical and electronic
vices. In the theoretical investigations, envelope-funct
framework, based on the multiband effective-mass theor
the Luttinger-Kohnk•p Hamiltonian in the spinJ53/2 basis
in conjunction with the Bir-Pikus strain Hamiltonian, ha
been most widely employed to study the valence subb
structure in the QW subjected to strain. It is well known th
the off-diagonal terms in both the Luttinger-Kohn and t
Bir-Pikus Hamiltonians cause valence-band mixing and l
to much more complicated dispersion curves of valence s
bands than those of conduction subbands. In addition to
quantum confinement potential and strain field, crysta
graphic orientation can be another important degree of f
dom for tailoring valence-band mixing in the QW. Note th
at zero in-plane momentum, mixing between the heavy-h
state withuJzu53/2 and the light-hole state withuJzu51/2 is
absent in~001! and~111! QW’s owing to their high symme-
tries, whereas it does exist in (11l ) QW’s (lÞ1) due to their
lower symmetries even in the absence of strain. Since
symmetries of the QW’s remain unchanged by applying
stress perpendicular to the hetero-interfaces, level crossin
allowed between any two confined hole states at zero
plane momentum in~001! and ~111! QW’s as a function of
the perpendicular stress,1 whereas the crossing is replaced
anticrossing for two hole states having the same parity
(11l ) QW’s.2,3

Several experimental studies revealed that QW’s gro
along the@11l # directions show remarkably different optic
properties from the conventional~001! QW’s. Such a differ-
ence comes partially from the lower symmetries of the (1l )
0163-1829/2004/69~20!/205320~9!/$22.50 69 2053
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QW’s than those of the~001! and~111! QW’s. Namely, while
the square and hexagonal symmetries of the~001! and~111!
QW’s, respectively, promise isotropic optical property, t
rectangular symmetry of (11l ) QW’s results in biaxial de-
pendence on in-plane polarization. For example, it has b
shown both experimentally and theoretically that~110!,4

~112!,5 and ~113! ~Ref. 6! unstrained QW’s exhibit aniso
tropic dependence of optical transitions on the in-plane lin
polarization. Furthermore, theoretical studies suggest tha
anisotropy can be modified by changing the extent of mix
among the heavy-hole, light-hole, and spin-orbit split-o
states through varying the well width,7 the barrier height,8

strain,9 or electric field applied externally.10 Especially, it has
been predicted that strain-induced anticrossing between
hole energy levels in~110! QW’s leads to perfect linearly
polarized dependence of the matrix elements for the in
band optical transition.2,9,11

Biaxial anisotropy is also shown for the valence subba
dispersion in (11l ) QW’s by theoretical studies.12–20Analyti-
cal expressions have been derived for anisotropic in-pl
effective masses of hole subbands in unstained~110! QW’s
within the infinite-barrier-height model by Shechteret al.21

They found that some subbands in~110! QW’s exhibit
saddle-point dispersion at zero in-plane momentum.22 Simi-
larly, Valadares23 showed theoretically that some subbands
~113! QW’s also exhibit saddle-point dispersion. The sadd
point character of some valence subbands in a~113! QW has
been evidenced by resonant magnetotunneling spectros
on a double-barrier AlAs/GaAs/AlAs resonant tunneling d
ode structure.24,25 However, in the unstrained QW’s invest
gated in these studies, the saddle-point dispersion is fo
only for higher-order subbands having quantum numb
n.1.

In the present study, we calculate the valence subb
©2004 The American Physical Society20-1
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dispersion in a~110!-oriented QW under the uniaxial stres
perpendicular to the hetero-interfaces within the four-ba
effective-mass approximation in the spinJ53/2 basis. In
Sec. II we briefly describe the calculation method for valen
subband dispersion. In Sec. III the calculated results
shown for a~110! GaAs QW under the@110# uniaxial stress.
A main result of this work is the finding that the first (n
51) subband of hole shows the saddle-point dispersion
der adequate stresses. Relation between the anisotropy i
tical matrix elements and that in effective masses is d
cussed in Sec. IV.

II. CALCULATION METHOD

We deal with a semiconductor single QW having a w
width of d whose heterointerfaces are parallel to the~110!
plane. We use the~110! film coordinate system where th
axes are taken so thatxi@001̄#, yi@ 1̄10#, andzi@110#. We
assume the barrier height of the QW is infinite.

According to the four-band effective-mass theory, t
valence-band structure near theG8 point of bulk III-V com-
pounds subjected to the strain can be obtained by using
following type of a 434 Hamiltonian, which is defined in an
orthonormal basis set$uJ,Jz&% of a cell-periodic wave func-
tion at k50, whereJ5 3

2 andJz52 3
2 , 2 1

2 , 1
2 , 3

2 designate
the total angular momentum and itsz components, respec
tively:

H5S L S N 0

S* M 0 N

N* 0 M 2S

0 N* 2S* L

D u 3
2 ,2 3

2 &

u 3
2 ,2 1

2 &

u 3
2 , 1

2 &

u 3
2 , 3

2 &

. ~1!

Here each matrix element is the sum of the correspond
matrix elements of the Luttinger-Kohn~LK ! and the Bir-
Pikus ~BP! Hamiltonians:

L5LLK~kx ,ky ,kz!1LBP, ~2a!

M5MLK~kx ,ky ,kz!1MBP, ~2b!

N5NLK~kx ,ky ,kz!1NBP, ~2c!

S5SLK~kx ,ky ,kz!1SBP. ~2d!

The expressions for these matrix elements of the Lutting
Kohn and the Bir-Pikus Hamiltonians in the~110! film coor-
dinate system are given in the Appendix, which are quo
from Ref. 18.

The hole wave function in the QW can be written as

F~r !5F23/2~r !u 3
2 ,2 3

2 &1F21/2~r !u 3
2 ,2 1

2 &1F1/2~r !u 3
2 , 1

2 &

1F3/2~r !u 3
2 , 3

2 &, ~3!

where

F~r !5 t@F23/2~r !,F21/2~r !,F1/2~r !,F3/2~r !#

5 t@ f 23/2~r !, f 21/2~r !, f 1/2~r !, f 3/2~r !#exp@ i ~kxx1kyy!#
20532
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is the four-component envelope function which satisfi
HF(r )5EF(r ) in the QW (2d/2,z,d/2) and vanishes a
the interfaces (z56d/2).

For the confined state in the square QW,F~r ! has either of
the odd or even parity. For the odd state, the four-compon
envelope function atki5(kx ,ky) can be written in the
form,26

f~z!5S f 23/2~z!

f 21/2~z!

f 1/2~z!

f 3/2~z!

D
5A1S S1 cos~k1z!

2 iL 1 sin~k1z!

0
iN1* sin~k1z!

D 1B1S 2N1 cos~k1z!

0
L1 cos~k1z!

iS1* sin~k1z!

D
1A2S S2 cos~k2z!

2 iL 2 sin~k2z!

0
iN2* sin~k2z!

D 1B2S 2N2 cos~k2z!

0
L2 cos~k2z!

iS2* sin~k2z!

D ,

~4!

where

L j 65L~kx ,ky ,6kj !2E, ~5a!

Nj 65N~kx ,ky ,6kj !, ~5b!

Sj 65S~kx ,ky ,6kj !. ~5c!

In the above equations,kj ( j 51, 2! denotes the absolut
values of the solutions ofkz for the bulk hole dispersion
relation

E5~L1M !/26@~L2M !2/41NN* 1SS* #1/2 ~6!

in the presence of strain for a given energy andki

5(kx ,ky). k1 corresponds to the solution of Eq.~6! with the
plus sign, whilek2 to that with the minus one.

In case of the~001! QW problem in whichkz is taken
along @001#, the plus sign in Eq.~6! ~and thusk1) corre-
sponds to heavy holes~hh! while the minus sign~and thus
k2) to light holes~lh!. Explicit forms of the solutionskj in
the @001# direction are given by Eq.~29! in Ref. 1 or by Eqs.
~5! and ~6! in Ref. 27 for the strained film on the~001!
substrate.~However, note that the second term in the righ
hand side of Eq.~6! in Ref. 27 should beC4ki

4/4 instead of
C4ki

4 .)
For the purpose of solving the~110! QW problem, the

solutionskj in the @110# direction are necessary. Their ex
plicit forms in the absence of strain are given by Eqs.~6! and
~8! in Ref. 15. @Note that in Ref. 15 the first term in th
right-hand side of Eq.~8! in the expression forb should be
E2(g2

213g3
2) instead ofE2(g2

21g3
2) and that the values o

the coefficients in the expressions forR in Eqs.~3!, ~4!, and
~5! are also incorrect.#

In the absent of strain, the plus sign in Eq.~6! ~and thus
k1) corresponds to the heavy-hole branch and the minus
0-2
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~and thusk2) to the light-hole one as in the case of the~001!
QW problem. On the other hand, in the presence of str
the terms ‘‘heavy-~light-! hole branch’’ become meaningles
for the ~110! QW. Then, we refer to the v1 and v2 branch
instead of the heavy- and light-hole branches in the prese
of strain, corresponding tok1 andk2 , respectively. Deriving
explicit forms of kj for the ~110! QW in the presence o
strain is also straightforward, but the expressions are
long to be written here.

The requirement for the vanishing off(z) at z56d/2
yields the following equation:

detF S1c1 2N1c1 S2c2 2N2c2

2 iL 1s1 0 2 iL 2s2 0

0 L1c1 0 L2c2

2 iN1* s1 iS1* s1 iN2* s2 iS2* s2

G50, ~7!

where

cj5cos~kjd/2!, ~8a!

sj5sin~kjd/2!. ~8b!

For ki50, Eq.~7! reduces to cos(k1d/2)cos(k2d/2)50 for
the odd state, while sin(k1d/2)sin(k2d/2)50 must be satisfied
for the even state. Thus,k15np/d or k25np/d must be
satisfied atki50. Inserting these values fork1 andk2 to Eq.
~6! gives thenth energy level atki50 corresponding to the
v1 or v2 branch, respectively. Therefore, hole subband
the ~110! strained QW can be referred to as v1n or v2n . For
each hole subband, the dispersion curve in the presenc
strain can be obtained by solving Eq.~7! for the values of
kiÞ0.

In case of the~001! strained QW, the equation corre
sponding to Eq.~7! can be reduced to the compact form as
given by Eq.~16! in Ref. 28 or by Eq.~12! in Ref. 29.„ Note
that in Ref. 28,g3kikHkL in the last term in the right-hand
side of Eq.~16! should be replaced byg3ki

2kHkL and that
the value of the coefficient in the expression forL in Eq. ~6!
is also incorrect. Note also that, in Ref. 29,@(P21Q21S
2«)(P22Q22S2«)22R2# in the right-hand side of Eq
~12! should be replaced by@(P11Q11S2«)(P22Q22S
2«)22R2# and that the values of the coefficients in Eqs.~7!
and ~9! are also incorrect.… A similar compact form can be
obtained for the~110! QW problem in the absence stain, as
given by Eq.~7! in Ref. 21. On the other hand, such a com
pact form cannot be obtained anymore in case of the~110!
QW in the presence of strain. It is, therefore, necessar
solve Eq. ~7! directly for calculating the valence subban
dispersion in the~110! strained QW.

III. RESULTS OF CALCULATIONS

We consider here a~110!-oriented GaAs QW having a
well width of 10 nm under the@110# uniaxial stress. The
dispersion curves of valence subbands in a 10-nm~110!
GaAs QW in the absence of stress have been calculate
Shechteret al.21 and shown in Fig. 1 of their paper. In orde
to check our calculated results by comparing them with
20532
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results in Ref. 21, the Luttinger parameters for GaAs
taken to be the same as in Ref. 22, while deformation po
tials and stiffness constants for GaAs are taken to be
same as in our previous studies.9,11 Our results precisely re
produce those in Fig. 1 of Ref. 21. As can be seen in Fig
of Ref. 21, the dispersion and hence the effective masse
hole subbands are already anisotropic under zero stress
pecially, the hh2 subband shows saddle-point dispersion. E
fective masses along@001# and @ 1̄10# at ki50 may be ob-
tained by the parabolic fit or by utilizing analytic formula o
Eqs.~9! and~10! in Ref. 21.@Note that the numerator of th
last term in Eq.~10! in Ref. 21 should be 6g1(g3

22g2
2) in-

stead of 6g1(g32g2).]
When applying external stress to the QW, the subba

states cannot be categorized to hh or lh anymore due to
valence-band mixing even atki50. Therefore, the hole sub
bands in the QW under stress are designated as v1n and v2n
instead of hhn and lhn ~see also Sec. 2 of Appendix B in Re
11!. For n51, by omittingn, we hereafter denote simply v
and v2 instead of v11 and v21 , respectively. The energies o
the v1, v12 , and v2 subbands atki50 relative to the
valence-band top of bulk GaAs are plotted as functions
the @110# uniaxial stresses (X) in Fig. 1. Figures 2~a!, 2~b!,
and 2~c! show the calculated results of the in-plane disp
sion curves for the v1, v12 , and v2 subbands under the@110#
uniaxial stresses of 6, 8, and 10 kbar, respectively. The z
of energy in each figure is chosen as the top of the vale
band of bulk GaAs under the same uniaxial stress as the
is subjected to.

The valence-band top of bulk GaAs has the light-ho
character under the compressive external uniaxial str
Since the energy of the v2 subband atki50 shifts almost
parallel to that of the valence-band top of bulk GaAs as lo
as the external stress is small, it remains almost constant
respect to the reference point of energy. On the other ha
the energies of the v1 and v12 subbands atki50 relative to
the reference point are lowered with increasing the exte
stress. As can be seen in Fig. 1, the zone-center energie
the v12 and v2 subbands cross atX'7 kbar. This indicates
that the v12 and v2 subbands do not couple atki50. This is

FIG. 1. Energies of the v1, v12 , and v2 subbands atki50 in a
10-nm~110!-oriented GaAs QW relative to the valence-band top
bulk GaAs as functions of the@110# stress.
0-3
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FIG. 2. In-plane dispersion for the v1, v12 , and v2 subbands in a 10-nm~110!-oriented GaAs QW under external stresses along@110# of

~a! 6 kbar,~b! 8 kbar, and~c! 10 kbar. Solid curves show the dispersion along@ 1̄10#, while broken ones show that along@001#.
av

-
ce

t
at
r

rg
s
e
th

s

u
yo
on
f

f
v

n
d

o

s

e
e of
the

1

ress
12

the

t
ega-
in

e v1
the

hh

cal

q.

-

hh
igh
av-

the
vel
owing to the orthogonality between the wave functions h
ing different parities atki50. On the other hand, the v12 and
v2 subbands couple atkiÞ0 owing to the valence-band mix
ing, and show repulsive behavior. This repulsion is enhan
with the decrease in energy separation between the v12 and
v2 subbands by increasing the stress to 7 kbar. Owing to
enhanced repulsion, the v12 subband loses its saddle point
ki50, and has a negative~electroniclike! mass along eithe
of @001# and@ 1̄10# at X56 kbar, as can be seen in Fig. 2~a!.

By applying larger stress than 7 kbar, the order in ene
at ki50 is reversed between the v12 and v2 subbands, a
shown in Fig. 1. Corresponding to this reversal, the disp
sion curves of the v2 subband are plotted over those of
v12 subband in Fig. 2~b!. In spite of this reversal atki50,
one can see there that the shapes of the dispersion curve
the two subbands are not changed so much as a whole.

On the other hand, the dispersion curves of the v1 s
band change remarkably when the stress is increased be
6 kbar. While the dispersion curves of the v1 subband al
@001# and@ 1̄10# are both convex atki50 under the stress o
X56 kbar, the curve along@001# between the two solely
becomes almost dispersionless nearki50 under the stress o
X58 kbar. For the stress larger than 6 kbar, the top of the
subband moves fromki50 to ki'331026 cm21 along
@001#. Namely, the band gap between thec1 and the v1 sub-
bands in the QW becomes indirect by applying the exter
stress larger than 6 kbar. The anisotropy of the v1 subban
enhanced by increasing the stress toX510 kbar so that the
v1 subband has a camel’s-back structure with a saddle p
at ki50 @see Fig. 2~c!#.

The inverse effective masses atki50 may be obtained by
the parabolic fit to hole subbands up tok5531025 cm21.
The inverse effective masses of the v1 and v2 subband
the ~110! GaAs QW are plotted as a function of the@110#
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uniaxial stress in Fig. 3~a!. Here, we define the signs of hol
effective masses so that bulk hole masses in the absenc
stress are positive. In the figure, solid curves indicate

inverse masses along@ 1̄10#, while broken ones indicate
those along@001#.

As can be seen in Fig. 3~a!, the inverse mass of the v

subband along@ 1̄10# is slightly enlarged at first by applying
the stress, and is then drastically diminished when the st
increases from 8 to 12 kbar. For the stress larger than

kbar, the@ 1̄10# inverse mass remains almost constant at
small value. On the other hand, the inverse mass along@001#
decreases slowly at first and then steeply to be 0 aX
58.5 kbar; it changes its sign to negative, reaches the n
tive maximum atX512 kbar, and shows gradual decrease
absolute value. Note that the zone-center energies of th
and the v2 subbands show anticrossing behavior when
stress increases from 8 to 12 kbar, as shown in Fig. 1.

For comparison, the inverse effective masses of the1
and lh1 subbands atki50 in a 10 nm~001! GaAs QW under
the @001# uniaxial stress were calculated, using an analyti
expression given by Lee and Vassell.1 @Note that in the nu-
merator of the last term in the analytical expression of E
~34! in Ref. 1, g2 should be replaced byg3 as has been
pointed out by Foreman.30# The calculated results of the in
verse effective masses are plotted in Fig. 3~b! as a function
of the @001# uniaxial stress. In the case of the~001! QW, the
order in energy between the hh1 and lh1 is reversed for the
stress larger than 18 kbar. Namely, the energy levels of1
and lh1 at the zone center cross each other owing to the h
symmetry for this case, in contrast to the anticrossing beh
ior in the~110! QW case. Comparing Fig. 3~a! with Fig. 3~b!,
one can see that the effective mass of the v1 subband in
~110! QW shows the heavy-hole character before the le
0-4
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LARGE CHANGE IN BIAXIAL ANISOTROPY OF IN- . . . PHYSICAL REVIEW B 69, 205320 ~2004!
anticrossing and the light-hole one after the anticrossing.
the other hand, the effective mass of the v2 subband seem
take over the heavy-hole character after the anticrossing

In the anticrossing region, the v1 and v2 states are

strongly mixed states between theu 3
2 ,6 3

2 & and u 3
2 ,7 1

2 &
states even atki50. As the result, the optical matrix ele
ments between the first conduction subband (c1) and the v1
~or v2! subband atki50 show anomalous change in th
anisotropy regarding the in-plane polarization of linearly p
larized light. According to our previous study,9 the squared
optical matrix elements of thec1-v1 transition atki50 for
the in-plane polarization are calculated. The results for
~110! GaAs QW are plotted as a function of the@110#
uniaxial stress in Fig. 4. In the figure, solid and broken lin
represent the squared optical matrix elements for@ 1̄10# and
@001# polarized light, respectively, and the ordinates a
graduated in the unit of the bulk valueuMbu2 of the squared
optical matrix element.

By comparing Fig. 4 with Fig. 3~a!, one can see an inti
mate relation between the anisotropy in optical matrix e
ments and that in inverse effective masses of the hole

FIG. 3. ~a! Inverse effective masses (m0 /m* ) of the v1 and v2
subbands atki50 in a 10-nm~110!-oriented GaAs QW as a func
tion of the @110# stress. Solid curves represent the inverse mas
along @ 1̄10#, while broken ones represent those along@001#. ~b!
Inverse effective masses (m0 /m* ) of the hh1 and lh1 subbands at
ki50 in a 10-nm~001!-oriented GaAs QW as a function of th
@001# stress.
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band at the zero in-plane momentum. In the next section
discuss the relation between the anisotropy in optical ma
elements and that in inverse effective masses of the h
subband based on a simplified tight-binding model.

Prior to proceeding to the next section, we mention so
experimental implications of the calculated results presen
above. If the well or the barrier layer of the~110! QW struc-
ture is doped with acceptor impurity to bep type, the holes
in the well layer will exhibit anisotropic Hall mobility owing
to the anisotropic effective mass of the v1 subband atki

50, as long as the stress is small so that the top of the
subband is atki50. By increasing the stress, the v1 subba
exhibits a camel’s-back structure, and the top of the v1 s
band moves to points with finitek along@001#. The isoener-
getic curves around these new top points are ellipses. T
the Hall mobility exhibits anisotropy, reflecting the aniso
ropy of the ellipses around the two humps. Thus, the val
of the anisotropic mobility will gradually change from th
values reflecting the effective masses atki50 to those re-
flecting the effective masses at the new top points.

As has been pointed out by Shechteret al.,22 the calcula-
tion shows that the saddle-point dispersion of the hh2 sub-
band atki50 in the ~110! GaAs QW can be found even i
the absence of stress. Similarly, the calculation
Valadares23 shows that some subbands in a~113! GaAs QW
exhibit saddle-point dispersion and camel’s-back structu
in the absence of stress. Using resonant magnetotunne
spectroscopy, Haydenet al.24,25 investigated the in-plane dis
persion curves of the hole subbands in a~113! GaAs QW,
and revealed that some subbands really have camel’s-
structures.

In the unstressed~110! and~113! QW’s investigated in the
above studies, the saddle-point dispersion is found only
higher order subbands having quantum numbersn.1. On
the other hand, the saddle-point dispersion is found for
top most valence subband withn51 under the uniaxial
stress in the present study. As in the case of the~113! QW,
the saddle-point dispersion in the~110! QW, regarding both

es

FIG. 4. Squared optical matrix elements of thec1-v1 transition
at ki50 in a 10-nm~110!-oriented GaAs QW for linearly polarized
light as functions of the@110# stress. A solid line corresponds to th

@ 1̄10# polarization while a broken line to@001#. The values are
normalized by the bulk valueuMbu2.
0-5



a
n

-

is
of
pu

he
h
c

clo
o

ni
ive
di

by
e

f

e

nt
e

x-
ls

V

f

uc-
c-

KAJIKAWA, NISHIMOTO, AND HIGUCHI PHYSICAL REVIEW B 69, 205320 ~2004!
the hh2 subband in the absence of stress and the v1 subb
at the presence of the stress, can be examined by reso
magnetotunneling spectroscopy experiments.

Very recently, Takedaet al.31 used angle-resolved photo
electron spectroscopy~ARPES! for observing the dispersion
curves of hole subbands in a Si inversion layer. ARPES
powerful tool for probing directly the electronic structure
solids. Using ARPES, they observed crossings and re
sions of the subbands as well as negative~electronlike! ef-
fective masses aroundki50, as has been calculated using t
triangle potential approximation. This experimental tec
nique can also be used for investigating the unique chara
of dispersion curves in~110! QW’s under the@110# uniaxial
stress.

The unusual dispersions of Figs. 2~a!–2~c! may be mani-
fested in infrared-absorption experiments as well as in cy
tron experiments, since the density of states of a tw
dimensional saddle point has a logarithmic singularity.32

IV. DISCUSSION

In this section, we discuss the relation between the a
tropy in optical matrix elements and that in inverse effect
masses of hole subbands based on a simplified tight-bin
model.

The expansion of the hole wave functionF~r ! in the J
5 3

2 basis in the envelope-function theory given
Eq. ~3! can be transformed into that in th
$ux↓&,uy↓&,uz↓&,ux↑&,uy↑&,uz↑&% basis as

F~r !5Gx↓ux↓&1Gy↓uy↓&1Gz↓uz↓&1Gx↑ux↑&

1Gy↑uy↑&1Gz↑uz↑&, ~9!

where

Gx↓5
1

&
F23/22

1

A6
F1/2,

Gy↓52
i

&
F23/22

i

A6
F1/2,

Gz↓5S 2

3D 1/2

F21/2,

Gx↑52
1

&
F3/21

1

A6
F21/2,

Gy↑52
i

&
F3/22

i

A6
F21/2,

Gz↑5S 2

3D 1/2

F1/2. ~10!

For the v1 state atki50, sinceA15A25B250 andS150,
Eq. ~4! becomes
20532
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F~z!5f~z!5B1 cos~pz/d!S 2N1

0
L1

0
D . ~11!

Therefore, for the v1 state at ki50, G
5(Gx↓ ,Gy↓ ,Gz↓ ,Gx↑ ,Gy↑ ,Gz↑) can be written as

G5CA2

d
cosS pz

d D , ~12!

whereC5(Cx↓ ,Cy↓ ,0,0,0,Cz↑). Thus, the wave function o
the v1 state atki50 is expressed by

Fki50
v1 ~r !5~Cx↓ux↓&1Cy↓uy↓&1Cz↑uz↑&)A2

d
cosS pz

d D .

~13!

Using the aboveCi ’s, the optical matrix elements for th
c1-v1 transition atki50 can be expressed as2,3,9

uMxu25uCx↓u2P2,

uM yu25uCy↓u2P2, ~14!

uMzu25uCz↑u2P2,

where P is the momentum matrix element between thes
and p states,P5^supxux&5^supyuy&5^supzuz&. Therefore,
the ratio of the squared optical matrix eleme
uMxu2:uM yu2:uMzu2 directly represents the ratio of existenc
probability among theux&, uy&, anduz& states.

The ux&, uy&, and uz& states can be approximately e
pressed by the linear combination of atomic orbita
~LCAO!. For example, theux& state in a III-V compound
semiconductor can be written as

ux&'(
i

@afpx

III ~r2Ri
III !1bfpx

V ~r2Ri
V!#

5(
i

Fa
x2Xi

III

ur2Ri
III u

r III ~ ur2Ri
III u!

1b
x2Xi

V

ur2Ri
Vu

rV~ ur2Ri
Vu!G , ~15!

whereRi
III 5(Xi

III ,Yi
III ,Zi

III ) andRi
V5(Xi

V ,Yi
V ,Zi

V) represent
the position vectors of the lattice sites of the group III and
sublattices, respectively, andfpx

III(V) represents the wave

function of thepx orbitals of an isolated group III~V! atom.
In the ~110! film coordinate system used here,DRIII-V 5Ri

III

2Ri
V5(1/4,0,2&/4)a0 , wherea0 is the lattice constant o

the cubic lattice of the III-V compound. Whilea5b stands
for elemental semiconductors with the diamond-type str
ture, 0,a,b stands for III-V zinc-blende-type semicondu
tors. @See Eq.~5.27! in Ref. 33#

The wave function of the v1 state atki50 given by Eq.
~13! can approximately be expressed by LCAO as
0-6
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Fki50
v1 ~r !'A2

d
cosS pz

d D(
i

cosS pZi

d Duv1~r2Ri !,

~16!

where

uv1~r2Ri !5auv1
III ~r2Ri

III !1buv1
V ~r2Ri

V! ~17!

with

uv1
III(V) ~r2Ri

III(V) !

5Cx↓fpx

III(V) ~r2Ri
III(V) !u↓&1Cy↓fpy

III(V) ~r2Ri
III(V) !u↓&

1Cz↑fpz

III(V) ~r2Ri
III(V) !u↑& ~18!

andRi5(Xi ,Yi ,Zi)5(Ri
III 1Ri

III )/2. uv1(r2Ri) can be re-
written as

uv1~r2Ri !5Cx↓fpx
~r2Ri !u↓&1Cy↓fpy

~r2Ri !u↓&

1Cz↑fpz
~r2Ri !u↑&, ~19!

where

fpa
~r !5afpa

III ~r2R0
III !1bfpa

V ~r2R0
V! ~a5x,y,z!.

~20!

In the tight-binding approximation, the wave function a
small ki can be written as

Fki

v1~r !'A2

d
cos~k1z!(

i
cos~k1Zi !exp~ iki•Ri !

3uv1~r2Ri !. ~21!

This corresponds to neglecting terms proportional to eit
sin(k1z), sin(k2z), or cos(k2z), while leaving the terms propor
tional to cos(k1z) in Eq. ~4!.

The Hamiltonian in the crystal can be written as

H52
\2

2m0
¹21V~r !, ~22!

whereV(r ) represents the periodic potential for the cryst
The expectation value of this Hamiltonian for the wave fun
tion given by Eq.~19! yields the following energy disper
sion:

E~ki!5E12(
i

t~Ri !cos~k1Zi !e
iki•Ri, ~23!

wheret(Ri) is the transfer integral defined by

t~Ri !52E uv1~r !DV~r !uv1~r2Ri !dr , ~24!

with

DV~r !5V~r !2U III ~r1DRIII-V /2!2UV~r2DRIII-V /2!.
~25!
20532
r
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Here,U III (r ) andUV(r ) represent the potentials for the iso
lated group III and V atoms, respectively. The insertion
Eq. ~19! into Eq. ~24! yields

t~Ri !5uCx↓u2txx~Ri !1Cx↓* Cy↓txy~Ri !1Cx↓Cy↓* tyx~Ri !

1uCy↓u2tyy~Ri !1uCz↑u2tzz~Ri !, ~26!

where

tab~Ri !52E fpa
~r !DV~r !fpb

~r2Ri !dr ~a,b5x,y,z!.

~27!

Hereafter we consider the transfer integrals between
nearest-neighbor lattice sites only. The position vectors
the 12 nearest-neighbor lattice sites in the fcc lattice are w
ten in the~110! film coordinate system used here as

R6x6y6z5S 6
1

2
, 6

1

2&
, 6

1

2&
D a0 , ~28a!

R62y5S 0, 6
1

&
, 0D a0 , ~28b!

R62z5S 0, 0, 6
1

&
D a0 . ~28c!

Then, the dispersion given by Eq.~23! yields following in-
plane effective masses atki50:

1

mx*
52

2a0

\2 t~Rx1y1z!, ~29a!

1

my*
52

2a0

\2 @ t~Rx1y1z!1t~R2y!#5
1

2

1

mx*
2

a0

\2 t~R2y!.

~29b!

Here, we assume thattxy(Ri) and tyx(Ri) can be ne-
glected in Eq.~26!. This assumption can be justified whe
a!b stands in Eq.~15!. In this case, one may neglect tran
fer integrals containing the group III atoms, and may co
sider only the transfer integrals between the group V ato
Among the latter transfer integrals, those involving the cro
terms offpx

V (r )DV(r )fpy

V (r2Ri) are considered to be sma

in comparison with those involvingfpa

V (r )DV(r )fpa

V (r

2Ri) (a5x,y,z). Furthermore, using Eq.~14! and the fact
that tyy(Rx1y1z)5tzz(Rx1y1z), Eqs.~29a! and~29b! can be
rewritten as

1

mx*
'2

2a0
2

\2 F tyy~Rx1y1z!1
uMxu2

P2 $txx~Rx1y1z!

2tyy~Rx1y1z!%G , ~30a!
0-7
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1

my*
'

1

2mx*
2

a0
2

\2 F tzz~R2y!1
uMxu2

P2 $txx~R2y!2tzz~R2y!%

1
uM yu2

P2 $tyy~R2y!2tzz~R2y!%G . ~30b!

These expressions indicate that the change in the optical
trix elements is accompanied with that in the inverse eff
tive masses.

We can fit the curves obtained using analytical expr
sions of Eqs.~30a! and ~30b! to the numerically obtained
results shown in Fig. 3~a! by adjusting the transfer integra
as fitting parameters. First, we can estimate the value
(2a0

2/\2)txx(Rx1y1z) and (2a0
2/\2)tyy(Rx1y1z) for the

GaAs QW by fitting the results for 1/mx* shown in Fig. 3~a!
using Eq. ~30a! with the calculated values ofuMxu2/P2.
Next, we can estimate the values of (2a0

2/\2)txx(R2y),
(2a0

2/\2)tyy(R2y), and (2a0
2/\2)tzz(R2y) by fitting the re-

sults for 1/my* using Eq.~30b! with the calculated values o
the squared optical matrix elements shown in Fig. 4. T
fitted curves of the inverse effective masses for the v1 s
band in the GaAs QW obtained using Eqs.~30a! and ~30b!
together with those adjusted parameters are shown in Fi
The curves in Fig. 5 well reproduce those for the inve
effective masses of the v1 subbands in Fig. 3~a!. The excel-
lent reproduction suggests the validity of the simplifi
LCAO model presented above.

V. SUMMARY

We have calculated the valence-subband dispersion f
~110! GaAs QW under the@110# uniaxial stress within the
four-band envelope-function model. We have shown that
dispersion curves of the first two~v1 and v2! subbands dras
tically change when their energies at zero in-plane mom
tum show anticrossing as a function of the stress. As
results of this change, the signs, the magnitudes, and

FIG. 5. Fitted results of the inverse effective masses (m0 /m* )
of the v1 subband atki50 in a 10-nm~110!-oriented GaAs QW as
a function of the@110# stress using analytical expressions of E
~30a! for the inverse mass along@001# ~indicated by a broken curve!

and ~30b! for the inverse mass along@ 1̄10# ~indicated by a solid
curve!.
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anisotropies of the hole effective masses for the v1 and
subbands at zero in-plane momentum have been show
change. Especially, it has been shown that the biaxial ani
ropy in the in-plane mass of the v1 subband, which alrea
exists at zero stress, is enhanced by applying the unia
stress. This enlarged anisotropy leads to a saddle-point c
acter atki50 for the v1 subband. The comparison betwe
the calculated results of the hole effective masses and th
of the optical matrix elements showed an intimate relat
between them. The relation between the optical matrix e
ments and the hole effective masses has been explained
simple LCAO model.

APPENDIX: MATRIX ELEMENTS OF THE HAMILTONIAN

Here we give the expressions for the matrix elements
the Luttinger-Kohn and the Bir-Pikus Hamiltonians in th
~110! film coordinate system, which appear in Eqs.~2a!–
~2d!. For Luttinger parameters we define the linear combi
tions

gnp5~ng31pg2!/~n1p!, ~A1a!

ḡ5~g31g2!/2, ~A1b!

gd5~g32g2!/2. ~A1c!

The diagonal elements of the Luttinger-Kohn Hamiltoni
are given by

LLK5PLK1QLK , ~A2a!

MLK5PLK2QLK , ~A2b!

where

PLK5
\2

2m0
g1~kx

21ky
21kz

2!, ~A3a!

QLK5
\2

2m0
Fg31~kx

21ky
222kz

2!2
3

2
gd~kx

22ky
2!G .

~A3b!

The nondiagonal elements of the Luttinger-Kohn Ham
tonian are given by

NLK5
\2

m0
F2
)

2
g53k2

2 1
)

4
gdS ki

222kz
22

3

2
k1

2 D G ,
~A4a!

SLK5
\2

m0
@)kz~ ḡk21gdk1!#, ~A4b!

whereki
25kx

21ky
2 , k65kx6 iky .

For deformation potentials we define

b1522a52Dd , ~A5a!

b25b5 2
3 Du , ~A5b!

b35d/)5 2
3 Du8 ~A5c!

.

0-8



re

are

ol
ity

st

tt.

m

K.

nd

the
o-

LARGE CHANGE IN BIAXIAL ANISOTROPY OF IN- . . . PHYSICAL REVIEW B 69, 205320 ~2004!
and the linear combinations

bnp5~nb31pb2!/~n1p!, ~A6a!

bd5~b32b2!/2. ~A6b!

The diagonal elements of the Bir-Pikus Hamiltonian a
given by

LBP5PBP1QBP, ~A7a!

MBP5PBP2QBP, ~A7b!

where

PBP5 1
2 b1~«xx1«yy1«zz!, ~A8a!

QBP5 1
2 b31~«xx1«yy22«zz!2 3

4 bd~«xx2«yy!.
~A8b!
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