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Adiabatic quantum pump in the presence of external ac voltages
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We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating
external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents
flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the
adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical
rectification. In addition to two known terms we find a third contribution which arises from the interference of
the ac currents generated by the external potentials and the ac currents generated by the pump. The interference
contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this inter-
ference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based
on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the
current generated by the oscillating potentials, and the ac current due to the variation of the charge of the
frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating
scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous
ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a
nonstationary scattering process.
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[. INTRODUCTION ac conductanck Here, this distinction helps us to perform
detailed partitioning of the current generated by the pump
Dynamical transport in mesoscopic structures attractfsee Eqs(33) and(38)].

presently considerable attentibn? In particular, the possi- ~ The aim of the present paper is to investigate both above-

bility to vary several parameters at the same frequency bunhentioned mechanisms on the same footing. To this end we

different phasesof a mesoscopic system opens up new prosconsider a phase-coherent oscillating scatterer coupled to

pects for the investigation of quantum transport. Applyingreservoirs with oscillating potential&ig. 1). We will show

two slowly oscillating potentials at frequeney with fixed  that in general the above-mentioned mechanisms do not sim-

phase lag\ ¢ to a mesoscopic conductor connected to reserply add but interfere between themselves. This leads to a

voirs having equal electrochemical potentials one can generenormalization of both the quantum pump effect as well as

ate an adiabatic dc current the rectification effect in the total dc current. To find this
additional interference contribution we go beyond the frozen
lgo~ o SIN(Ag). (1)  scattering matrix approximation and take into account the

Such a current was measured experimenfatipwever, the

precise origin of the measured current is still unclear. At least

two mechanisms considered in the literature can contribute llz(t)

to the experimentally measured currdsee Fig. 1 First, \2

there exists aquantum pump effett®=*® which is due to

guantum-mechanical interference and dynamical breaking of

time-reversal invariance. Second, there also exigtscfi- S(t)
cation of ac currentdy the oscillating scatter&r*”48if it is L

part of an external circuit with nonzero impedance. Closely

related to this second effect is a pump in the presence of IN
inelastic scattering: in addition to the externally driven pump lll(t) !
parameters, inelastic scattering leads to an effective oscillat-

ing (electrochemical potential of the pump which acts like

an additional pump paramefer. ) ) _ FIG. 1. A mesoscopic pump with scattering mat8) oscil-

We stress that from the physical point of view the 0sCil-aing with frequencyw is coupled toN, reservoirs with electro-
lating electrochemical potentialexternal voltagesdiffer es-  chemical potentialg.,(t) oscillating with the same frequenay. A
sentially from the oscillating pump parametérgternal volt-  gquantum pump effect and a classical rectification effect together
ages. If the latter affect only the outgoing carriers the former result in dc currents,, flowing through the scatterer. The full cur-
affect the incoming carriers. The distinction between externatent is time dependent and is needed to characterize pumps in a
voltages and internal potentials is also central in theories ofionzero impedance external circuit.

OC = 3, ...,Nr_l

L, ()
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first order in pump frequency corrections to the scatteringd to number the leads connecting the scatterer to the reser-
matrix. The necessity to include such corrections in a generaloirs: «,8=1, ... N,.

case emphasizes that the quantum adiabatic pump effect is an Denoting byé/ an annihilation operator for incoming par-

essentially “nonadiabatic” phenomendh. ticles we can write down the expression for the annihilation
Theoretically, quantum pumps have been investigate%peratorgy for outgoing particleg®-26:52

mostly under théimplicit) condition that the external circuit

exhibits zero impedance. The work of BrouéiRolianski R -

and Brouwef*® the work on inelastic scatterifymentioned b;(E)=§ﬁ: EZO Sk, ap(E.En)ag(Ey). 2

already, and the recent work of Martinez-Mares, Lewenkopf, "

and Mucciol3® represent the few exceptions. In reality the By definition the reservoirs are not affected by the cou-

zero-impedance condition seems never exactly fulfilledpling to the scatterer and thus they are in an equilibribot

Coupling an oscillating gate voltage to a scatterer leads, dugot necessary stationargtate. Therefore the properties of

to the long-range nature of the Coulomb interaction, effecincoming particles are independent of the scatterer and are

tively to oscillating voltages at all terminatéIn addition, in  determined by the reservoirs. To be definite we suppose that

experiments, the pump is investigated with an impedance ighe cyclic evolution of any reservoir is due to solely an
series with the oscillating scatterer. Furthermore, a voltag@scillating electrochemical potential,(t):

probe, to maintain zero current in the presence of pumping,

in effect generates an oscillating potential which acts back on Ma(t)= oo TeV,(l),
the pump® Therefore, for theory to make contact with ex-
periment, it is necessary to consider the effect of oscillating Vu(t)=V,cogot+g,), ©)
voltages at the contacts of the conductor.
The paper is organized as follows. In Sec. Il we develop eVy<toa-

the Floquet scattering matrix approach for ac quantuny, o emphasize that we must keep track of the phase shjfts

transport through the nonstationaigscillating scatterer in since there are a number of oscillating potentials and we

the presence of os<_:|IIat|ng reservoir potentials., A full .theqrycannot eliminate all the phases, simultaneously by merely
requires even to first order in frequency an investigation

. . . . shifting the time origin.
.Of nonad!abatlc correctlons_ to the adla}ba(ﬁmzerib _scatter- It is well known (see, e.g., Ref. 53that the wave func-
ing matrix. These corrections are discussed in Sec. lll

. . . ) . tions for free electrons in the reservdgay, @) with an os-
The current to linear order in the reservoir potentials 'Scillating uniform potentialV,(t) are of the Floquet function
calculated in Sec. IV. We illustrate the results for a simplet ) @
one-channel scatterer with two contacts. In Sec. V we’PS
present a general expression for the current valid for finite o eV
potentials. Section VI gives the expression for the instanta- Y (E t,r)=ek ~IEVA E Jn( i

neous current. n="w hw

Here J,(x) is the Bessel function of the first kind of timth
order; E=%2k?/(2m,) (m, is an electron magsThe corre-
sponding distribution functiorf,,=(a!(E)a,(E)) (here
For simplicity we consider here the mesoscopic sample(- - -) means gquantum-statistical averagirg independent
the pump, connected tdl, reservoirs via single channel of the oscillating potentiaV, and is the Fermi distribution
leads(Fig. 1). We are interested in the dc and ac currentsfunction
flowing in the system if this system is subject to a cyclic
evolution with periodZ. The general situation we want to fo(E)=
consider admits the scatterer and the reservoir properties to “ E—oq
be oscillating with frequencw=27/7. 1+ex;{m
We use the scattering matrix approach to ac transport in _ ) )
phase-coherent mesoscopic systémscording to this ap- Here T, is the temperature of the reservair, kg is the
proach the currents flowing in the system are determined bffoltzman constant. A
the scattering of electrons coming from the reservoirs by the In general, to find the Floguet scattering matgk, we
mesoscopic sampR&:>2 In the present paper we deal with have to investigate the transmission and reflection ampli-
noninteracting electrons. A full theory has eventually to treatudes of electrons with a wave functiopi(E,t,r) given
the internal potential of the pump in a self-consistent manneiby Eq. (4) incident on the oscillating scatterer. However,
The scattering properties of a mesoscopic sample oscillaff the frequencyw is small compared with the energy of
ing with frequencyw can be described via the Floquet scat-electrons participating in the transpdite., with the Fermi
tering matrixS;- (see, e.g., Ref. 30 energypu)
The matrix element S’F‘aﬁ(En,E) is a quantum-
mechanical amplitude for an electron with eneEygntering
the scatterer through legfl to leave the scatterer through we can reduce the problem to scattering of ordinary plane
lead« having energE,,=E+nfw. We use Greek letters,  waves. To this end we use the following trickWe imagine

e_i”(“’t""Pa) (4)

Il. GENERAL APPROACH

) . (5

ho<u, (6)

205316-2



ADIABATIC QUANTUM PUMP IN THE PRESENCE @ . .. PHYSICAL REVIEW B 69, 205316 (2004

that in the leads connecting scatterer to the reservoirs the o *
oscillating potentials tend to zerd:,=0. Then in the leads Iazﬁf dED, X fos(E-nhw)
the electron wave functions are simply plane waves, 0 B n=-c

woya(E,r):eikrfiEt/h_ 7) X{ . qu St wp(EsEq) Sk ap(E,Em)
!n thi; region we in.troduce_annihilation pperattixsﬁ for %3 e_\/g 3 eVB ia-mes_ 5 32 ev,
incoming and outgoing particles, respectively. In close anal- ntal F o TN A apn| F
ogy with Eq. (2) they are related but through the Floquet
scattering matrixSe ,5(E, ,E) describing scattering of inci- (12

dent and outgoing plane waves: , . i )
Equation (12) is the basic result which allows us to

analyze the dc currents flowing in the system under consid-
b (E)= S E E)AAE.). 8 eration. So far we put no restrictions on the_ reservoirs.
«(E) E 2 F s )as(En) ® Different temperatures of reservoirs as well as diffe(sta-
tionary) electrochemical potentials can by themselves
Comparing the wave functions, Eq#l) and (7), we see give rise to (_jc currents. W_e WI|| not consider the most
2o - ; ) general situation here. Pumping in the presence of stationary
that the annihilation operatoesfor particles in the leads can chemical potential differences is investigated by Entin-

be expressed in terms of the annihilation opera@wrsfor  Wohiman et al?®*® Here we focus on dynamically
particles in the reservoirs as follows: oscillating potentials.

In what follows we assume the reservoirs to have equal
temperatures and equal dc components of electrochemical

JE)= 2 J ( ) —ing.g’ "(E-nho). (9) potentials but the oscillating reservoir potentigls can be
n=-—o different:
The above representation is valid for small frequencies, Eq. To=To, Moa=mo, a=1,...N;. (13

(6). Thus we can puk(E,)~k(E) ignoring the terms of
orderw/n and smaller. In other words we ignore the re-  In this case the distribution functions entering Etp) are
flection at the interface between the region with oscillatingindependent of the lead indekg . (X) = fo(X), wheref,

potential and the region without one. is the Fermi distribution function with temperatuig and
Using Eqgs.(8) and(9) we calculate the distribution func- chemical potentiak,.

tions f°“9(E)=(b!(E)b,(E)) for outgoing andfi™(E) To calculate the Floquet scattering matBx(E,E,,) one

=(al(E)a,(E)) for incoming electrons in the leads as fol- N€eds to solve the time-dependent scattering problem. Gen-

lows: erally this can be done only numericallgee, e.g., Ref. 30

Here we are interested in the limit of low frequencies. In
this limit we can use the adiabatic approximation as a start-
(in) 2 ing point and can express the Floquet scattering matrix in
fa (B)= n—E—w J ( )fO(,(E nhw), (10a terms of a stationary scattering matrix with time-dependent
parameters (the frozen scattering matrix éo(E,t)

=S,(E.{P(t)}). Here {P} is a set of parameter®(t)

fgout)(E):E 2 Sd op(EEq) Sk ap(E,Em) =Pj ot Pjcoswt+¢),i=1,2, = N, oscillating with fre-
B onmg=—e ' ' quencyw. The scattering matri$,(E,{P}) describes reflec-
eV eV tion and transmission Qf particlles. Wi.th eqer_&yat given
X‘Jn+q<h_ﬁ>‘]n+m< B) a=meg frozen parameterB; . This description is valid if the energy
@ scalefi w dictated by the modulation frequency is small com-

X fop(E—Nhw). (10b) pared with the energy scaléE over which the scattering
' matrix S(E) changes significantf}
Now the dc current, of spinless electrons, the quantity

of interest here, flowing from the scatterer through the kead IIl. ADIABATIC APPROXIMATION

can be expressed in terms of these distributfns, To zeroth order in frequency the elements of the Floquet

scattering matrix can be approximated by the Fourier coeffi-

c[” i ientsS, of the stati tteri =
ZHJO dE{fU(E)— £IM(E)1. (11) cientsSy,, of the stationary scattering matrg

~ o (T .
E)==—| dte"“'Sy(E,t), 14
Substituting Eq(10) into Eq. (11) we find Son(E) 277J’o So(E1) (143
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. - - . [E+E+p| . n dSon(E
SO(E,t): 2 efmwtso'n(E), (14b) So,n +n %Sovn(E)iﬁw— SOn( ),
n=—oo 2 2 JE
as follows® and other termsgof higher order inw) should be ignored.
A . . Based on Eq(21) we will show that Eq.(17) is, in fact,
Sr(En E)~Se(E,E_p)=Syn(E). (15 an expansion in powers dfw/SE. Substituting Eqs(17)

into Egs.(16) and keeping the terms of orde® and w! we
get the required relations which can be used to calculate the
current, Eq.(12).

In particular the diagonal parn{=0,8=v) of Egs.(16)
gwes

However, in general this approximation is not sufficient to
calculate the current to order. In particular, if the oscillat-
ing potentialsV,#0 are applied to the reservoirs then to
calculate the dc current to first order in frequensyone
needs to know the Floquet scattering matrix with the sam

accuracy. o
Note that fortunately in the case of stationary reservoirs 2 2 S;;aﬁ W(E)A,zn(E)tc.c.

(V,=0) there exists a representatimee Eq(8) in Ref. 30 a(p) n=-= T

which allows to calculate the dc curretwith accuracy of 19 o

order w) using only the zero-order approximation, Ed5). - E E N|Sos (E)[2. (18)

In contrast, another representat{see Eq(9) in Ref. 37 for 2 B i) n== e

the same dc current requires the knowledge of the Floqu
scattering matrix with higher accuragiye., to the first order
in frequency.

Note that the nonadiabatic corrections to the scatterin%
states and the corresponding corrections to the pumpe
current were considered in Refs. 25 and 46 in the limit
of a small modulating potential. Our approach is valid for Soas=So (19)

. . L . . . apf Ba -+
an arbitrary oscillating potential since we take into A
account the effect of all the harmonics of the pump fre-It follows from Eq. (18) that in this case the matriA is
guencyw. antisymmetric:

To calculate the Floquet scattering matrix with an accu-
racy of orderw we generalize the approach used in Ref. 1 Aup=—Aga - (20
and start from the unitarity conditions for the Floquet scat-ginceA

; 30
tering matrix:

EI'I|ere c.c. denotes complex-conjugate terms. The sign
(+) corresponds to the summation ovefs).

In what follows, we mainly concentrate on the case with-

t magnetic fields and suppose that the stationary scattering
atrix is symmetric in lead indices:

«o=0, we can immediately conclude that the reflec-
tion (a=B) coefficients are with accuracy of order de-
fined by the first terms on the right-hand sigélS) of Egs.

> > St (EnE)St or(EnEm) = 0moSs, (17). This fact justifies our representation for the elements of
2 (2, SFap(En B0y (En Em) = om0 the Floquet scattering matrix in Eqal7).
(163 We next need to determine the off-diagonal elements of
o A. The detailed calculation is given in the Appendix. The
EB n;m St wp(E.EDSe 1 5(Em En) = SmpSay central result is the relatiofvalid to first order inw)
16D c < 5 : 1 .4z
o | B0 S EDAED +AEDS(ED] = P8,
Taking into account that Eq15) is a zeroth-order approxi- (213
mation we will seek the first-order approximation in the fol-
lowing form:

N it a”Sér?%)
E,+ P{%,%}—Iﬁ(ﬁﬁ—ﬁw . (21b

ASF(En,E)zASO’n(TE +hwA(E)+0(w?), (178

Herei is the imaginary unit. Since the scattering matrix is
X unitary ${S,=1 (where | is a unit matriy the matrix
+hwAp(E)+O(w?). P{S); S0} is tracelessE " P{); 50}, =0 (see the Appen-
(17p  dix for the detailed proof
Note Avron et al*® consider a closely related matrid

~ o E+E_,
SF(EvE—n)zso,n( 2

Here An(E). is a matilx of the Four!er c;oefﬂments for =P{§o;§$}. This matrix is the commutatcfn=i/ﬁ[7’,3] of
some matrix A(E,t)=A(E,{P(t)}) which is treated as

; AL SASE A & &t
independent of energy on the scale of the order ottheW|gnert|me delay matriX:**7: 1%(9So/9E) S, and

nfie: O(w?) denotes the rest which is at least of secondne matrix of the energy shift*® £=i(dS/5t)S). Note,
order in frequencyw and which we neglect. Note that the however, that on the RHS of E@13 the commutator ap-
first terms in Egs.(17) should be expanded to the first pears with a different sequencefﬁ? andS, as compared to
order inw: Q. For this reasorfand other reasons to become clear later

205316-4



ADIABATIC QUANTUM PUMP IN THE PRESENCE @ . .. PHYSICAL REVIEW B 69, 205316 (2004

on, we have introduced a separate notation, the Poisson *
bracketP. As we will show[see Eq.(34)] the diagonal ele- E n23n+m(X)Jn+q(X)
ments @/h)P{éo;ég}aa are just spectral current densities A
(current per energy , X2

If the matrixS, is a symmetric X 2 matrix (N, = 2) then =|met Omg— X([M=0.5]0mq+1)
from Eq. (2139 we can find an expression for the product of 5

. L A X
the frozen scattering matrix with elementsAf +[M+0.5] Spq 1))+ T(ﬁm(q”)+ Smiq-2))-
1 At A i A
4h o RE S 1A )= 5[ P{S): S0} gs~ PSS So aal- (24
(229 After that, substituting Eq(17) and applying the inverse

Fourier transformation, Eq14b), we sum overg and m.

Otherwise we can only conclude that . ST
y Finally, we represent the dc curreh flowing in lead «

N, under the action of an oscillating scatterer and oscillating
4w D, Re{sgaﬁAaﬁ]:p{“sg;go}M, (22  reservoir potentials in the following way:
a=1 ’

N |a:J dE
0

_ @) {| (pump 4 | (rect) 4 | (im)}
0E o [e3 o 1

4t RESE oA =P{S0;: S} wer - 22
w2 RAS 0] =P(S0iS0hee: (220 (253
Here R¢X] is a real part ofX. To get Eq.(22¢ we multi- e [ 95,(E.t)
plied Eq.(21a from the left byS,, and from the right by, | (PUmB(E) =i Z( T’sg(E,t)) . (25b
and used the unitarity conditio®,S)=S}So=1. aa
Below we use Eqs(17) and(22) to evaluate the current
Eq. (12) with an accuracy of ordew. 1TD(E) =G>, [Va(1)—Va()][Soas(E D)2,
B
IV. LINEAR-RESPONSE ADIABATIC CURRENT (250
Now we use the adiabatic approximation introduced in the 4" (E)
preceding section and calculate the zero-frequency, dc cur- G
rent [Eq. (12)] to linear order in the oscillating potentials =0 > V1) (4hwRE S A, ]+ P 'SE ).
V,—0 of the reservoirs at finite temperatufg. We assume 2 G °F Saphasl * Ploas Hast
that the following conditions hold: (250)
hw<kgTo, (238 Here the bar denotes the time average (1/7)fZdtX(t)
over a time period/= 2/ w; Gy=e?/h is the spinless con-
eV,<kgT,. (23b

ductance quantum; the functioR{X;Y} is defined in Eq.

The first inequality f w<kgTy) is relevant for experiments (21b). To arrive at Eq(25¢) we used the unitarity condition
on adiabatic ¢—0) quantum transport. The second inequal-=slSo..sl*=1 and the fact that the average potential is zero:
ity defines nothing but the linear-response regime. V,(t)=0.

In Eqg. (12) the sum ovem contains approximatelp,, We emphasize that in the above expressions we omitted
~(eVIhw) terms. Thereforehwn<eV and because of Eq. all the terms which are of the secofand highey order in
(23b) we haveh wn<kgT. Hence we can expand the Fermi frequencye and/or in potentials/,. Next we characterize
function entering Eq(12). Taking into account Eq13) this  briefly the three contributions to the current.
expansion (up to second order inw) is fo4(E—nho) The currentI{P'™ s due to solely the oscillating
~ fo(E) — nhw[afo(E)/ JE] + L n2h2w2 [ fo(E)/ 9E2].  Scatterer. It determines the quantum pump effect when the

Substituting this distribution into Eq12), take the sum over F€Servoirs are stationary. It is the formula obtained by

13
n. We use the summation formulas for the Bessel functins: Brouwer. (rect o
The current ;,"*” is a consequence of the rectification of

* ac currents flowing in the system under the influence of ac
2 Jnem(X)In1q(X) = Omq, potentialsV, applied to the reservoirs. In context of pump-
n=-v ing this effect was considered by Brouwer in Ref. 47. Note
" that this rectified current depends on the conducta
E 0oy (X)J0 o(X) :_GO|SaB|2 and the corresponding potential differences
n, Tnm n+a AV ,5(t)=Vg(t) = V,(t) in close analogy with the dc cur-
rent flowing in response to a dc voltage. We stress that here
= —mé, é(ém it B 1), Avaﬁ(.t) depend; not only on the amplitudes of the corre-
at 21 om(@t1) T “m@-1) sponding potentials but also on the phase 8g,;= ¢,
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—¢g as well. In particular, if the amplitudes of two oscillat- induced by the time-dependent pump current flowing
ing potentials are equaM(,=Vz=V,) then the potential dif- through an external circuit, then the magnitude of the
ference reads interference current(") is determined not only by the in-
trinsic properties of the pump but also by the circuit’s
impedance and its frequency dependence. In this case iden-
tifaction of the different contributions to the pump current

AV, 5(t)=2V, sin(@) sin( wt+ ¢ 5
. . . might be difficult unless the external impedance is well
This equationtogether with Eq.(25¢] shows clearly that charaterized.

the rectification O.f ac currents can depend on .the pha"se.lag Before proceeding we check the current conservation. To
between the applied ac potentials and, hence, it can mimic fis end we sun . over the lead indexe. Note that each of

quantum pump effect the currentsl (PU™P - (rec) —and |0 is separately con-

The third terml i"Y is novel. Interestingly, as we will see, : NS
. a pump {rect) served. This fact supports the current decomposition intro-
this current renormalizes botHy andl,”". The cur- 4 o4 above

rentl "V is a consequence of tlieterferencebetween the ac For the pump current&P'™ | using the Birman-Krein
currents produced by the external voltages and the ac CUkSrmula®” we find “ '
rents produced by the nonstationary scatterer. An “oscillat-

ing” scatterer is much richer in physics than expressed by 98, FE
Eq. (250. The expression far"®Y is widely used but this is > 1Pump 1y —”sg> = —In(detSy)=0.

only a part of a correct answer. The part'§®?) is due to a a at at

rectification of external currents caused by the time depenriere we take into account that the average of a time deriva-

dence of the conductances. The oscillating scatterer is mugh ¢ is identically zero@X(t)/9t=0: Tr denotes the trace of
richer. It generates its own ac currents which can interfere RPN ’
matrix: TS=X_,S,, -

with the external ac currents. This interference effect leads t8 . I
| (int) The conservation of the rectification currents,| {®°Y
. ) _ 2_ i

Note that one can extract the contributidff from the —Goza,ﬁ[\_/ﬁ(t)_Va(t)]|230,aﬂ| =0 1‘20IIows from the uni-
experimentally measured current by using its linear depentafity condition= ,|So .4l “=24[Sp el *=1. _
dence in both the pump frequen‘byand the amp"tude of the The currentl S,nt) is conserved as well. Since the matrix
external voltage¥/;, assuming that the latter can be exter- P{ég;éo} [Eg. (21b)], is traceless, we get from Eq&5d)
nally controlled. On the other hand if the voltagég are  and(22b) the following:

a+(PB

. (26

N

& any G i G = =
2 18M=5 2 Va0 Z, (HhoRES Al P{SoapiShash) = 5 2 Va0 PSiSob g~ PIS:Sobp) =0

To shed more insight onto the nature of the new contributiorR, T=1—R, 6,y are functions of the electron enerdy
1" we consider a simple but a quite generic example.  ang the external parameteRy(t) varying with frequency
. Before proceeding we remark that for the symmetric-in-
A. Two terminal single-channel scatterer lead indices case with,=2 the current("Y [Eq. (250)]
Consider a nonstationary scatterer connected to onl§@n be simplified. Substituting Eq22a in Eq. (25d
two reservoirsa=1,2 via single-channel leads. For such We gét
a scatterer, assuming there are no magnetic fields, the

: . P . . Gy
z:zﬂti)xnary scattering matrig, is a symmetric X 2 unitary |Sm)=7(Vﬁ(t)7’{S§55 :Sop5)
\/ﬁe—io |ﬁ _Va(t)P{Sg,aa;SO,aa})v a;t,B (28)
S.=el” nE 2
S=e ( ivT  JR€ 9) @7 Substituting the scattering matrfEq. (27)] into Egs. (25)

] o and (28) we find the current$;= —1, flowing between the
HereR and T are the reflection and the transmission prob-gcatterer and the reservoirs:

ability, respectively R+T=1). The phase characterizes
the asymmetry between the reflection to the left and to the

right. The phase relates to the change of the overall charge |(1P“mp>(E): iR(E,t) (76(E,t)' (299
8Q on the scattereffor instance, a dotvia the Friedel sum 2m at

rule® Sy=mw5Q/e (wheree is the electron chargeor in

different notationsQ=e/(2i)[IndeS]. We assume that 1°°9(E) =G T(E,1)[ V(1) — V4(1)], (29b)
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(int) e? (90 IR 96 JR introduced the full time derivative: d/dt=(4/dt)
I3 (E):E<EE—EE)[Vz(t)ﬂLVM)] +e(dV/dt) (a/3E).
This result can be understood in the following way: For
e’ [dy IR dy JR stationary reservoir§V(t)=0] the pumped current is de-
+ E(E E"IE E) [Va(t) —Vi(D)]. scribed by Eqs(25a@ and (293 with the quantitieR and ¢

taken at the energ of incident electrons. However, if the
(299  chemical potential u(t)=uo+eV(t), V(t)#0 oscillates
slowly (w—0), then we can consider incident electrons hav-
ing energy&é=E+eV(t) following adiabatically the reser-
voir’'s potentialV(t). Substituting in Eq(29a £ instead ofE
and replacing a partial time derivative by a full time deriva-
tive we get Eq.(30).

It should be noted that the above substituti6r E
+eV(t) implies that the potential inside the scatterér (
=0) is independent of the external potentids. This is
correct for noninteracting electrons but it should be modified
if the interactions are preseht.

From Eq.(30) we can conclude that the effect of an os-
cillating external potentiaV(t) is like the effect generated
tﬁ/ an oscillating parameter of the scattefieg., an oscillat-

g internal potentigl Therefore to analyze the ability of
an open systenfthe scatterer plus reservoiro generate
Adiabatic dc currents we have to consider the full set of

These expressions demonstrate that the curt8fi has
common features with both the rectification curréf£c?
and the pumped curreht’'™P. Like the former, the current
1 (") depends on the potential differena®/,,. Like the lat-
ter, the current(") can exist even at equal reservoir poten-
tials V4(t) =V,(t). In this case, the conditions necessary for
the existence of "V and|(PU™P are the samé@’ First, the
scatterer has to be asymmetric, i.8#0, and, second, the
time-reversal symmetryTRS) has to be broken. We note
that the current™Y depends on both the oscillating reser-
voir potentials V,(t) =V coswt+¢,) and the oscillating
scattering parameterB;(t) = P; o+ P; ; cos@t+ ¢). There-
fore analyzing the presence/absence of the TRS we have
consider all the phases, namedy, as well asg; .

We have here treated only noninteracting electrons. As
consequence, sums of potentials appear in(E@g). This is - _ s
in contrast with an electrically self-consistent theory Whichcisf'gatmgN parameters {V(1),Pi()} (a=12, ... Nii
permits only the appearance of voltage differences. If inter- """ ° p)- :
actions are switched orthen the(self-consistentpotential . On the other hand _exter_nal voltages cannot be entirely

viewed as mere pumfi.e., internal parameters. External

U#0 .|n5|de the scatterer becomes dependent on egtern\a/. Itages affect the incoming carriers whereas the pump pa-
potentialsV,, and the difference¥ ,—U should appear in- rameters affect only outgoing carriers

stead ofV,. U is in general a function of all the oscillating

parameterd?;(t), all the external potential¥, and also of

the potentials at the gates which influence the electrostatic V. DC CURRENT AT FINITE AC VOLTAGES

potential inside the scatterer. Our expressions do, however, Now we go beyond linear-response theory. We suppose

conserve current. that the potentialy/, can be large compared to the tempera-
We see that the first term on the RHS of E29¢) renor-  tyre. Thus we calculate the currdiitg. (12)] with accuracy

malizes the pumped currenf®"™ and the second one up to the first order inw and with an arbitrary ratio of the

renormalizes the rectification currdft®®” . The latter is due potentialsV,, to the temperature:

to nonadiabatidfirst order inw) corrections to the conduc-

tances arising from the corresponding correctifs. (17)] hw<kgTo, (313
to the scattering matrix. Note that the analogous corrections
are discussed in Refs. 25 and 46 in context of pumping in the eVoa<foa- (31b

pressic-;‘]réceeﬂ?;alcjir(; blgf?féct is the main topic of this work we Since the potentialy/, are not necessarily small com-
pump P pared with the temperaturé we cannot expand the Fermi

consider now the case with/;(t)=V,(t) in more detail. . - .
This case corresponds to an experimental setup in which th%rig'gﬂ cf\?v'g(ﬁs tghscz?ﬂeg\t;;nagn(IjE(tqc.flszi%‘l)\lli?;//eEr;h(ell%s s, Ea.

scatterer and a large portion of the reservoirs to which it is To this end we go from the energy representation over

connected are s_,ul_JJect to Iong-wavelength radlatl_on._The e.ffo the time representation. We express the Fermi
fect of such radiation can be modeled via an oscillating uni-

form potentialV(t) which is the same at different reservoirs: function fo 5(E), Eq. (5), and the Bessel functionk,(x) as

Vi(t)=V,(t)=V(t). In this case the rectification current follows:
[Eq. (29b)] is absent) {*°V=0, and the whole dc curreit w .
can be reduced to the simple form fop(E—nhw)= f_defo,g(T)e'( @)(lh),
e (= &fO(E)) do(Et) V 17T
l,=-—| dE| - : , E=E+eV(t). EVE| . _ —i(n+a)w
1727, ( JE ) "t ® Jn+q<%>e"°ﬁ(n+q)—?JodtW/kJ(t)e e,
(30)

To obtain this result we have used the following identity: n+m(e_\//3)e—i<p5(n+m):1det1W (t)el(Fmoty,
—A(JR/dt)=R(dA/dt) with A=eV(d6/IE). We have also fiw 0 P
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ikgTo to()=pu(t)=puo+eVcoswt+¢), a=1,...N,.  Since

_ —i 7/
fop(7)= e o0, the Fermi functions entering E6B3) become independent of
2h sin){ kaTo% the lead index we can sum up ovgrand using Eq(220
obtain
Wj(t)=e (Vs helsitot ), [ | dI(ED
= Ex] dtfo(E;u(t)—F=.
Substituting these equations into E42) and summing o Tl ° dE
overn we obtain a delta functio@(t;—t— 7) which allows
us to perform one additional integration. A0 (7<0) we di, e . ., e 95,08 98, 98]
integrate ovet; (t). This leads to the substitution=t+ 7 dJE HP{So;So}MEI 57\ 5t 9E 2E 2t

a

(t=ty+[7]). Further we expand sinf+ wt+¢p) to first or- a (34
der in w7. We can do this because for the relevant

<(%ilkgTo) Eq. (318 giveswr<1. Next we integrate over The quantitydl,(E,t)/dE is the spectral current density at

= and finally get the dc current as follows: energyE and timet (i.e., the current within the energy inter-
. val dE) produced by the adiabatically evolving scatterer to-
| =SJOCdE£det[ 2 E wards the reservoix. This definition seems reasonable be-
“ hjo  TJo 7 mi= cause of a conservation law,dl,/dE(E,t)=0 which is

valid at any energ¥ and at any time momeiit Note that in
fiw the case of stationary reservoirs the same interpretation was
Xfo( E+(q+m)7;,uﬁ(t)) Fap(E.Eq) given in Ref. 40. g P
These currentsor more precisely, the ability to produce
them) are an intrinsic property of a time-dependent scatterer.
This property differentiates between a nonstationary scatterer
and a “frozen” one. Note that the Fermi distribution function
Here we have introduced the Fermi function with time-in Eq.(34) describes the filling ofpotentially) existing “cur-
dependent chemical potentigk,(t)=uo,T€V,(t) [EQ. rent” states of a nonstationary scatterer.
3] At V=0 Eq. (34) reproduces Brouwer’s result, Eq.
(25b), and agrees with that obtained in Ref. 40. At
1+exr{ E—pq(t) small voltages/— 0 for the scattering matrikEq. (27)] we
kgTo get Eq.(30).
. . ) ) Equation(34) determines the dc current to the first order
Note that Eq.(_32) IS valid both for the ad|apa§|c as well as in  pumped by the slowly oscillating scatterer between the
for the nonadiabatic case. The only restriction is that thereservoirs having equabossibly zerp oscillating potentials
frequency has to be small compared with the temperaturq/a(t)zv(t). Formally, in the adiabatic case under consid-

EqN(Slta). the adiabati imati f Sec. Il eration the effect of oscillating chemical potentials is only
ext we use ne adiabalic approximation of Sec. andthe change of an energy of electrons falling upon the scat-

calculate the currenit, to first order in frequency» under ; Dot :
" @ . . terer. However, in fact, the phageof an oscillating potential
the conditions of Eq(13). To this end we substitute E¢L7) V(1) =V cos@t+¢) is of a great importance because of the

into Eq.(32) and expand the Fermi function in powerscaf following. An adiabatically pumped curreiht,#0 is gener-

Ay use the Inverse Fourle( transformation, Bdtb), ated already if the time-reversal symmetry is broken in the
and after a little manlpulatu_)(wg integrate by parFs_ on €N~ \vhole systenincluding the scatterer and the reservoirs. At
ergy and dropp_ed the c_ont_r|but|on arising frcEFFO,_ in ad- . V#0 analyzing this question we have to take into account a
dition, we expl20|t the unltarlty of the frozen scattering matrix possible phase shift between the potentials of reservoirs and
2o Soap(E,1)["=1) and find the current the oscillating paramete;(t) = P; o+ P; ; cost+ ¢;) of a
scatterer. In particular, even a scatterer witkirggle oscillat-
|SO,aB(E’t)|2 ing parameter can produce an adiabatic dc current if only

P17 .

. (32

X SF,aﬁ(E!Em)ei(m_q)wt_ fO(Evlu’a(t))

-1

fO(Euua(t)):

e

© 1 T
- dE—Tfodt[g folE: ()

1
+2h oRE SF A p] + EP{SO,QB S VI. INSTANTANEOUS CURRENT

In this section we derive an expression for the instanta-
) (33 neous current of an adiabatic quantum pump simultaneously
subject to oscillating external potentials. We first clarify

The above equation generalizes E@$) to the case of finite the physical meaning of thédiagonal elements of the

) i "T_" . . . . . .
voltages. Current conservatiah,l ,=0 can easily be proven quantity P{Sy;So} defining (antisymmetric in lead indicgs
in analogy with Eqs(25). nonadiabatic corrections, EqR1), to the scattering matrix.
Next we concentrate on the pump effect and consider th&rom the geometrical point of vie”\R/P{éo;ég} is a curva-
case with reservoirs having equal oscillating potentialsture in the time-energy plane. The physical interpretation is

- fO(Euu‘a(t))

205316-8
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based on Eq.(34). We can consider the quantity e (= R
dl,/dE(E,t)=(e/h)P{S,;S!} .. as an instantaneospec- 'mlzﬁjo dE{(b.(E)b(E+1%w))
tral current which is pushed by the oscillating scatterer into

the leada. —(al(E)a (E+lfiw))}.

A more detailed partitioning of the current follows from
Eq. (33). We can say that the scatterer drives the followingThe operatord, and a, are defined in Eqgs(8) and (9),
spectral currents from the legglinto the leada: respectively. The calculations analogous to those leading to
Eq. (33) give usl,, . Performing the inverse Fourier trans-

dl,s e . 1 . formation[Eq. (14b)] we finally get the time-dependent cur-
dE ~ n| 2R S pAaplt 5P S0ap i Soapt |- rentl ,(t) flowing in the system as follows:
(35
o e .
The above spectral currents are subject to the following con- la() = fo dEZﬂ [HUO(E’“B(U)
servation Iaw:EZ';ldl(E,t)aB/dE=O. This property sup- )
ports the point of view that these currents arise “inside” the ~fo(E; 1a(t)][Soap(E )|
scatterenthey are generated by the nonstationary scafterer 9 dN4(E,b)
without any external current source. Thus we can consider —eﬁ fO(E;’uﬁ(t))d—E}
the pump as a source of currents rather then a source of
voltages®* dl4(E,t)
In a general case to calculad¢, ;/dE one needs to know + fO(E;/"B(t))T] ' (39

the matrix A which can be found from the solution of a
non-stationary problem. However, if the stationary scatteringlere we have introduced the partial density of states a
matrix S, is a symmetric in lead indicesX22 matrix then we ~ frozen scatterer,

can expressll,z/dE solely in terms of the frozen scattering

- a : . dN i ([0S Sy
matrix Sy(t). Using Eq.(22a we obtain(for N,=2). ap_ @B _a* ap
So(t) g Eq r=2) TE " a-l e Seas~Sap g |-
& .ah  _pre .ot .ok
dlag _€ P{So0; Sotaa— P1S0: S0t pst 2P{Soas 'Soyaﬁ} _ These density of states define the chagge) of a frozen
dE h 4 scatterer as follows:
In particular, for a scatterer with scattering mafizg. (27)], » dN,(E )
we obtain the spectral currents as follows: Q)=e, % jo dEfo(Bimp()—4g— (39
dig(E) e ( dy=0) IR d(y—6) E) The quantities! ,(t) [Eq. (38)] and Q(t) [Eq. (39)] do
dE 41 gt JE JE  at)’ satisfy the continuity equatio(87).
(363 The three terms in the curly brackets on the RHS of
Eq. (38) can be interpreted as follows. The first term defines
dl,o(E,t) e [d(y+80) IR d(y+6) R the currents flowing under the action of external voltages
“dE _  an» gt JE  9E ot} through a frozen scatterer. The second one defines currents

(36h) attributed to the oscillating charge of a frozen scatterer.
The third term can neither be entirely viewed just as a

The other currents ardl,,/dE=—dl,,/dE anddl,;/dE  Nonadiabatic correction of either the frozen conductance,
=—dly;/dE. Note that all above currents depend on thenor of the frozen density of states. It is more natural to
phasey related to the charge of a scatterer. consider it as the ac currents generated by the oscillating

Strictly speaking, if we are dealing with time-dependentScatterer. The ability to generate these ac currents differenti-
currents(instead of only the time-averaged currériten we ~ at€S @ nonstationary dynamical scatterer from a merely
need to show that these currents satisfy the continuity equil0Zen scatterer.
tion for the charge currents:

VII. DISCUSSION

S+ &(t):o_ (37) We have investigated the nonstationary adiabatic charge

a ot transport through a time-dependent mesoscopic scatterer

coupled to reservoirs subject to oscillating voltages. The ex-

Herel ,(t) is the full ime-dependent current flowing through ternal voltages applied to the reservoirs induce ac currents
the scatterer to the lead, Q(t) is the charge of a scatterer. flowing through the scatterer. In addition, the oscillating
To calculate 1,(t) we first calculate the Fourier scatterer itself is a source of ac currents flowing between the
transformed currentIa,|:(w/277)fgdte"“’tla(t), which  reservoirs. In general these two types of currents interfere
reads? with themselves. This gives rise to a renormalization of the
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rectification (i.e., proportional to the potential difference *
contribution to the dc current and gives rise to a renormal- Z E SE apEn E)Sg o (En Em)
ization of the quantum pump current. @ n=o

To analyze this interference effect we calculated the Flo- nast, s (E)
guet scattering matrix beyond the adiabatic approximation. ~E E ( So.apn(E)+ w5 %
We investigated the first order i corrections to théadia-
batic) scattering matrix and found that the dc currents of both
the zeroth and the first order in can be expressed in terms +hoAl, n(E)>
of a stationary scattering matrix with time-dependent param-
eters. Within this approximation, within a noninteracting
theory, the oscillating potentialg (t) of reservoirs can be
accounted for by allowing the energyof incident particles
to follow adiabatically the reservoir potentiaE—E=E
+eV,(t).

We emphasize the importance of the phases of all the
cyclically evolving quantities(the potenna}s of reservoirs ~2 2 S5 apn(E)So.ayn—m(E) +2 2 Sé,aﬁ,n(E)
and the parameters of a scatterfer generating a dc current. a n
In particular, even when all the reservoirs have the same
oscillating potentiaV ,(t) =V(t) and the rectification effect X
is ineffective, the dc currents &t=0 and atV#0 can nev-
ertheless differ significantly.

The analysis allows us to perform a current partition that +2 E (ﬁwn M

. . . . = 4 2 JE
clarifies the physical meaning of tieiagonal elements of
the) quantity P{éo;ég} and shows that they correspond to .
spectral current densities generated by a dynamic scatterer. thoAy n(E)>SO,ay,n—m(E)
The instantaneous current contains a contribution from such

M Sp,ay,n-m(E)
JE

n-+
X SO,ay,n—m(E)+ﬁw 2

+hwAyyn-m(E)

N+m 9S4y n-m(E)
2 JE

o +hoA,yn-m(E)

self-generated ac currents in addition to the currents fromthe = mo9g, -
frozen charge and the ac currents generated by the external
potentials. Applying the inverse Fourier transformatiogq. (14b)] and

We emphasize that the results presented in this work, thiatroducing corresponding matrixes we rewrite above equa-
effect of external ac potentials on a quantum pump, are ofion as follows:
importance whenever the pump is not part of an ideal zero-
impedance external circuit. In particular, if the pump is in
series with a resistance used to measure the voltage gener-
ated by the pump, or if the circuit is a multiterminal circuit
with probes used to measure voltages, the results presented R
here will be needed. %Sy al..95)| it S,

_ P I
SO&E&I ﬁo?t{so&E 2 &E&tso)
By,—m
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APPENDIX
A 2 _
1. The matrix A (|SO(E!t)| )E'y,—m_ 5m05‘[3.},. (AZ)

The matrixA defines the first order in frequency correc- And second, we can writedt/dEat)[ S}S,]=0 and, corre-
tions to the adiabatic Floquet scattering matrix, E43) and  spondingly,

(20). If the matrixéo is symmetric in lead indices then the

matrix A is antisymmetric in lead indices. 7S 7S ‘950 0S 98} 0%

To obtain Eq.(21) we substitute the adiabatic expansion, "~ JEat JEdt  JE ot T gt 9E " (A3)
Eq. (179, in the current conservation condition, Eq.
(16a. Keeping terms of ordew® and w!, we get the Substituting Eqs(A2) and(A3) in Eg. (A1) we arrive at Eq.

following: (22).
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Note that if we use Eq16b) instead of Eq(16g then we To demonstrate the latter property we use the equality
get the condition which is a linear transformation of Eq.d[S]S= —Sd[S'] following from the unitarity of the scat-
(213 (the LHS and the RHS of E¢218 are multiplied from  taring matrix33=1 and the invariance of trace to the cyclic
the left by Sy and from the right beS). rearrangements of the matrices. As a result, from (Bdjb)

we get
2. The commutator matrix P

The matrix P{S);S,} defined in Eg.(21b) is self- T P]=iAaTr
adjoint,

08} 08, 98] 9%
Gt E ES
AP BT Y
P{S: S} =P S S} (Ad) :mTrFE_STEWs
e o8 a8, 98 65,
THP{S): 8o} 1=0. (A5) =T 50 98 T ot 9B

and traceless,
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