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Adiabatic quantum pump in the presence of external ac voltages
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1Department of Metal and Semiconductor Physics, National Technical University, ‘‘Kharkov Polytechnical Institute,’’

61002 Kharkov, Ukraine
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We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating
external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents
flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the
adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical
rectification. In addition to two known terms we find a third contribution which arises from the interference of
the ac currents generated by the external potentials and the ac currents generated by the pump. The interference
contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this inter-
ference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based
on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the
current generated by the oscillating potentials, and the ac current due to the variation of the charge of the
frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating
scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous
ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a
nonstationary scattering process.
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I. INTRODUCTION

Dynamical transport in mesoscopic structures attra
presently considerable attention.1–12 In particular, the possi-
bility to vary several parameters at the same frequency
different phases7 of a mesoscopic system opens up new pr
pects for the investigation of quantum transport. Applyi
two slowly oscillating potentials at frequencyv with fixed
phase lagDw to a mesoscopic conductor connected to res
voirs having equal electrochemical potentials one can ge
ate an adiabatic dc current

I dc;v sin~Dw!. ~1!

Such a current was measured experimentally.7 However, the
precise origin of the measured current is still unclear. At le
two mechanisms considered in the literature can contrib
to the experimentally measured current~see Fig. 1!. First,
there exists aquantum pump effect7,13–46 which is due to
quantum-mechanical interference and dynamical breakin
time-reversal invariance. Second, there also exists arectifi-
cation of ac currentsby the oscillating scatterer12,47,48if it is
part of an external circuit with nonzero impedance. Clos
related to this second effect is a pump in the presence
inelastic scattering: in addition to the externally driven pum
parameters, inelastic scattering leads to an effective osc
ing ~electro!chemical potential of the pump which acts lik
an additional pump parameter.49

We stress that from the physical point of view the osc
lating electrochemical potentials~external voltages! differ es-
sentially from the oscillating pump parameters~internal volt-
ages!. If the latter affect only the outgoing carriers the form
affect the incoming carriers. The distinction between exter
voltages and internal potentials is also central in theorie
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ac conductance.1 Here, this distinction helps us to perform
detailed partitioning of the current generated by the pu
@see Eqs.~33! and ~38!#.

The aim of the present paper is to investigate both abo
mentioned mechanisms on the same footing. To this end
consider a phase-coherent oscillating scatterer couple
reservoirs with oscillating potentials~Fig. 1!. We will show
that in general the above-mentioned mechanisms do not
ply add but interfere between themselves. This leads t
renormalization of both the quantum pump effect as well
the rectification effect in the total dc current. To find th
additional interference contribution we go beyond the froz
scattering matrix approximation and take into account

FIG. 1. A mesoscopic pump with scattering matrixS(t) oscil-
lating with frequencyv is coupled toNr reservoirs with electro-
chemical potentialsma(t) oscillating with the same frequencyv. A
quantum pump effect and a classical rectification effect toge
result in dc currentsI a flowing through the scatterer. The full cur
rent is time dependent and is needed to characterize pumps
nonzero impedance external circuit.
©2004 The American Physical Society16-1
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first order in pump frequency corrections to the scatter
matrix. The necessity to include such corrections in a gen
case emphasizes that the quantum adiabatic pump effect
essentially ‘‘nonadiabatic’’ phenomenon.30

Theoretically, quantum pumps have been investiga
mostly under the~implicit! condition that the external circui
exhibits zero impedance. The work of Brouwer,47 Polianski
and Brouwer,48 the work on inelastic scattering49 mentioned
already, and the recent work of Martinez-Mares, Lewenko
and Mucciolo50 represent the few exceptions. In reality th
zero-impedance condition seems never exactly fulfill
Coupling an oscillating gate voltage to a scatterer leads,
to the long-range nature of the Coulomb interaction, eff
tively to oscillating voltages at all terminals.12 In addition, in
experiments, the pump is investigated with an impedanc
series with the oscillating scatterer. Furthermore, a volt
probe, to maintain zero current in the presence of pump
in effect generates an oscillating potential which acts back
the pump.49 Therefore, for theory to make contact with e
periment, it is necessary to consider the effect of oscillat
voltages at the contacts of the conductor.

The paper is organized as follows. In Sec. II we deve
the Floquet scattering matrix approach for ac quant
transport through the nonstationary~oscillating! scatterer in
the presence of oscillating reservoir potentials. A full theo
requires even to first order in frequency an investigat
of nonadiabatic corrections to the adiabatic~frozen! scatter-
ing matrix. These corrections are discussed in Sec.
The current to linear order in the reservoir potentials
calculated in Sec. IV. We illustrate the results for a sim
one-channel scatterer with two contacts. In Sec. V
present a general expression for the current valid for fin
potentials. Section VI gives the expression for the instan
neous current.

II. GENERAL APPROACH

For simplicity we consider here the mesoscopic sam
the pump, connected toNr reservoirs via single channe
leads~Fig. 1!. We are interested in the dc and ac curre
flowing in the system if this system is subject to a cyc
evolution with periodT. The general situation we want t
consider admits the scatterer and the reservoir propertie
be oscillating with frequencyv52p/T.

We use the scattering matrix approach to ac transpor
phase-coherent mesoscopic systems.1 According to this ap-
proach the currents flowing in the system are determined
the scattering of electrons coming from the reservoirs by
mesoscopic sample.51,52 In the present paper we deal wit
noninteracting electrons. A full theory has eventually to tr
the internal potential of the pump in a self-consistent man

The scattering properties of a mesoscopic sample osc
ing with frequencyv can be described via the Floquet sc
tering matrixŜF8 ~see, e.g., Ref. 30!.

The matrix element SF,ab8 (En ,E) is a quantum-
mechanical amplitude for an electron with energyE entering
the scatterer through leadb to leave the scatterer throug
leada having energyEn5E1n\v. We use Greek lettersa,
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b to number the leads connecting the scatterer to the re
voirs: a,b51, . . . ,Nr .

Denoting byâ8 an annihilation operator for incoming pa
ticles we can write down the expression for the annihilat
operatorsb̂8 for outgoing particles,30,26,52

b̂a8 ~E!5(
b

(
En.0

SF,ab8 ~E,En!âb8 ~En!. ~2!

By definition the reservoirs are not affected by the co
pling to the scatterer and thus they are in an equilibrium~but
not necessary stationary! state. Therefore the properties o
incoming particles are independent of the scatterer and
determined by the reservoirs. To be definite we suppose
the cyclic evolution of any reservoira is due to solely an
oscillating electrochemical potentialma(t):

ma~ t !5m0,a1eVa~ t !,

Va~ t !5Va cos~vt1wa!, ~3!

eVa!m0,a .

We emphasize that we must keep track of the phase shiftswa
since there are a number of oscillating potentials and
cannot eliminate all the phaseswa simultaneously by merely
shifting the time origin.

It is well known ~see, e.g., Ref. 53! that the wave func-
tions for free electrons in the reservoir~say,a) with an os-
cillating uniform potentialVa(t) are of the Floquet function
type:

ca~E,t,r !5eikr 2 iEt/\ (
n52`

`

JnS eVa

\v De2 in(vt1wa). ~4!

HereJn(x) is the Bessel function of the first kind of thenth
order;E5\2k2/(2me) (me is an electron mass!. The corre-
sponding distribution functionf 0,a5^âa

†(E)âa(E)& ~here
^•••& means quantum-statistical averaging! is independent
of the oscillating potentialVa and is the Fermi distribution
function

f 0,a~E!5
1

11expS E2m0,a

kBTa
D . ~5!

Here Ta is the temperature of the reservoira; kB is the
Boltzman constant.

In general, to find the Floquet scattering matrixŜF8 , we
have to investigate the transmission and reflection am
tudes of electrons with a wave functionc(E,t,r ) given
by Eq. ~4! incident on the oscillating scatterer. Howeve
if the frequencyv is small compared with the energy o
electrons participating in the transport~i.e., with the Fermi
energym)

\v!m, ~6!

we can reduce the problem to scattering of ordinary pla
waves. To this end we use the following trick.53 We imagine
6-2
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that in the leads connecting scatterer to the reservoirs
oscillating potentials tend to zero:Va50. Then in the leads
the electron wave functions are simply plane waves,

c0,a~E,r !5eikr 2 iEt/\. ~7!

In this region we introduce annihilation operatorsâ, b̂ for
incoming and outgoing particles, respectively. In close an
ogy with Eq. ~2! they are related but through the Floqu
scattering matrixSF,ab(En ,E) describing scattering of inci
dent and outgoing plane waves:

b̂a~E!5(
b

(
n

SF,ab~E,En!âb~En!. ~8!

Comparing the wave functions, Eqs.~4! and ~7!, we see
that the annihilation operatorsâ for particles in the leads ca
be expressed in terms of the annihilation operatorsâ8 for
particles in the reservoirs as follows:53

âa~E!5 (
n52`

`

JnS eVa

\v De2 inwaâa8 ~E2n\v!. ~9!

The above representation is valid for small frequencies,
~6!. Thus we can putk(En)'k(E) ignoring the terms of
order \v/m and smaller. In other words we ignore the r
flection at the interface between the region with oscillat
potential and the region without one.

Using Eqs.~8! and~9! we calculate the distribution func
tions f a

(out)(E)5^b̂a
†(E)b̂a(E)& for outgoing and f a

( in)(E)

5^âa
†(E)âa(E)& for incoming electrons in the leads as fo

lows:

f a
( in)~E!5 (

n52`

`

Jn
2S eVa

\v D f 0,a~E2n\v!, ~10a!

f a
(out)~E!5(

b
(

n,m,q52`

`

SF,ab* ~E,Eq!SF,ab~E,Em!

3Jn1qS eVb

\v D Jn1mS eVb

\v Dei (q2m)wb

3 f 0,b~E2n\v!. ~10b!

Now the dc currentI a of spinless electrons, the quanti
of interest here, flowing from the scatterer through the leaa
can be expressed in terms of these distributions,26

I a5
e

hE0

`

dE$ f a
(out)~E!2 f a

( in)~E!%. ~11!

Substituting Eq.~10! into Eq. ~11! we find
20531
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dE(
b

(
n52`

`

f 0,b~E2n\v!

3H (
m,q52`

`

SF,ab* ~E,Eq!SF,ab~E,Em!

3Jn1qS eVb

\v D Jn1mS eVb

\v Dei (q2m)wb2dabJn
2S eVa

\v D J .

~12!

Equation ~12! is the basic result which allows us t
analyze the dc currents flowing in the system under con
eration. So far we put no restrictions on the reservo
Different temperatures of reservoirs as well as different~sta-
tionary! electrochemical potentials can by themselv
give rise to dc currents. We will not consider the mo
general situation here. Pumping in the presence of station
chemical potential differences is investigated by Ent
Wohlman et al.25,46 Here we focus on dynamically
oscillating potentials.

In what follows we assume the reservoirs to have eq
temperatures and equal dc components of electrochem
potentials but the oscillating reservoir potentialsVa can be
different:

Ta5T0 , m0,a5m0 , a51, . . . ,Nr . ~13!

In this case the distribution functions entering Eq.~12! are
independent of the lead index:f 0,a(b)(X)5 f 0(X), where f 0
is the Fermi distribution function with temperatureT0 and
chemical potentialm0.

To calculate the Floquet scattering matrixŜF(E,En) one
needs to solve the time-dependent scattering problem. G
erally this can be done only numerically~see, e.g., Ref. 30!.

Here we are interested in the limit of low frequencies.
this limit we can use the adiabatic approximation as a st
ing point and can express the Floquet scattering matrix
terms of a stationary scattering matrix with time-depend
parameters ~the frozen scattering matrix!: Ŝ0(E,t)
[Ŝ0(E,$P(t)%). Here $P% is a set of parametersPi(t)
5Pi ,01Pi ,1 cos(vt1fi), i51,2, . . . ,Np oscillating with fre-
quencyv. The scattering matrixŜ0(E,$P%) describes reflec-
tion and transmission of particles with energyE at given
frozen parametersPi . This description is valid if the energy
scale\v dictated by the modulation frequency is small com
pared with the energy scaledE over which the scattering
matrix Ŝ(E) changes significantly.30

III. ADIABATIC APPROXIMATION

To zeroth order in frequency the elements of the Floq
scattering matrix can be approximated by the Fourier coe
cientsŜ0,n of the stationary scattering matrixŜ0,

Ŝ0,n~E!5
v

2pE0

T
dteinvtŜ0~E,t !, ~14a!
6-3
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Ŝ0~E,t !5 (
n52`

`

e2 invtŜ0,n~E!, ~14b!

as follows:30

ŜF~En ,E!'ŜF~E,E2n!'Ŝ0,n~E!. ~15!

However, in general this approximation is not sufficient
calculate the current to orderv. In particular, if the oscillat-
ing potentialsVaÞ0 are applied to the reservoirs then
calculate the dc current to first order in frequencyv one
needs to know the Floquet scattering matrix with the sa
accuracy.

Note that fortunately in the case of stationary reservo
(Va50) there exists a representation@see Eq.~8! in Ref. 30#
which allows to calculate the dc current~with accuracy of
orderv) using only the zero-order approximation, Eq.~15!.
In contrast, another representation@see Eq.~9! in Ref. 30# for
the same dc current requires the knowledge of the Floq
scattering matrix with higher accuracy~i.e., to the first order
in frequency!.

Note that the nonadiabatic corrections to the scatte
states and the corresponding corrections to the pum
current were considered in Refs. 25 and 46 in the lim
of a small modulating potential. Our approach is valid f
an arbitrary oscillating potential since we take in
account the effect of all the harmonics of the pump f
quencyv.

To calculate the Floquet scattering matrix with an ac
racy of orderv we generalize the approach used in Ref
and start from the unitarity conditions for the Floquet sc
tering matrix:30

(
a

(
n52`

`

SF,ab* ~En ,E!SF,ag~En ,Em!5dm0dbg ,

~16a!

(
b

(
n52`

`

SF,ab* ~E,En!SF,gb~Em ,En!5dm0dag .

~16b!

Taking into account that Eq.~15! is a zeroth-order approxi
mation we will seek the first-order approximation in the fo
lowing form:

ŜF~En ,E!5Ŝ0,nS En1E

2 D1\vÂn~E!1O~v2!, ~17a!

ŜF~E,E2n!5Ŝ0,nS E1E2n

2 D1\vÂn~E!1O~v2!.

~17b!

Here Ân(E) is a matrix of the Fourier coefficients fo
some matrix Â(E,t)[Â(E,$P(t)%) which is treated as
independent of energy on the scale of the order
n\v; O(v2) denotes the rest which is at least of seco
order in frequencyv and which we neglect. Note that th
first terms in Eqs.~17! should be expanded to the fir
order inv:
20531
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Ŝ0,nS E1E6n

2 D'Ŝ0,n~E!6\v
n

2

]Ŝ0,n~E!

]E
,

and other terms~of higher order inv) should be ignored.
Based on Eq.~21! we will show that Eq.~17! is, in fact,

an expansion in powers of\v/dE. Substituting Eqs.~17!
into Eqs.~16! and keeping the terms of orderv0 andv1 we
get the required relations which can be used to calculate
current, Eq.~12!.

In particular the diagonal part (m50,b5g) of Eqs.~16!
gives

(
a(b)

(
n52`

`

S0,ab,n* ~E!Aab,n~E!1c.c.

57
1

2

]

]E (
a(b)

(
n52`

`

nuS0,ab,n~E!u2. ~18!

Here c.c. denotes complex-conjugate terms. The sign2
(1) corresponds to the summation overa(b).

In what follows, we mainly concentrate on the case wi
out magnetic fields and suppose that the stationary scatte
matrix is symmetric in lead indices:

S0,ab5S0,ba . ~19!

It follows from Eq. ~18! that in this case the matrixÂ is
antisymmetric:

Aab52Aba . ~20!

SinceAaa50, we can immediately conclude that the refle
tion (a5b) coefficients are with accuracy of orderv de-
fined by the first terms on the right-hand side~RHS! of Eqs.
~17!. This fact justifies our representation for the elements
the Floquet scattering matrix in Eqs.~17!.

We next need to determine the off-diagonal elements
Â. The detailed calculation is given in the Appendix. T
central result is the relation~valid to first order inv)

\v@Ŝ0
†~E,t !Â~E,t !1Â†~E,t !Ŝ0~E,t !#5

1

2
P$Ŝ0

† ;Ŝ0%,

~21a!

P$Ŝ0
† ;Ŝ0%5 i\S ]Ŝ0

†

]t

]Ŝ0

]E
2

]Ŝ0
†

]E

]Ŝ0

]t
D . ~21b!

Here i is the imaginary unit. Since the scattering matrix
unitary Ŝ0

†Ŝ05 Î ~where Î is a unit matrix! the matrix

P$Ŝ0
† ;Ŝ0% is traceless:(a51

Nr P$Ŝ0
† ;Ŝ0%aa50 ~see the Appen-

dix for the detailed proof!.
Note Avron et al.40 consider a closely related matrixV̂

5P$Ŝ0 ;Ŝ0
†%. This matrix is the commutatorV̂5 i /\@ T̂,Ê# of

the Wigner time-delay matrix:54,55 T̂52 i\(]Ŝ0 /]E)Ŝ0
† , and

the matrix of the energy shift:22,40 Ê5 i\(]Ŝ0 /]t)Ŝ0
† . Note,

however, that on the RHS of Eq.~21a! the commutator ap-
pears with a different sequence ofŜ0

† andŜ0 as compared to
V. For this reason~and other reasons to become clear la
6-4
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on, we have introduced a separate notation, the Pois
bracketP. As we will show@see Eq.~34!# the diagonal ele-
ments (e/h)P$Ŝ0 ;Ŝ0

†%aa are just spectral current densitie
~current per energy!.

If the matrix Ŝ0 is a symmetric 232 matrix (Nr52) then
from Eq. ~21a! we can find an expression for the product
the frozen scattering matrix with elements ofÂ,

4\vRe@S0,ab* Aab#5
1

2
@P$Ŝ0

† ;Ŝ0%bb2P$Ŝ0
† ;Ŝ0%aa#.

~22a!

Otherwise we can only conclude that

4\v (
a51

Nr

Re@S0,ab* Aab#5P$Ŝ0
† ;Ŝ0%bb , ~22b!

4\v (
b51

Nr

Re@S0,ab* Aab#5P$Ŝ0 ;Ŝ0
†%aa . ~22c!

Here Re@X# is a real part ofX. To get Eq.~22c! we multi-
plied Eq.~21a! from the left byŜ0, and from the right byŜ0

† ,

and used the unitarity conditionŜ0Ŝ0
†5Ŝ0

†Ŝ05 Î .
Below we use Eqs.~17! and ~22! to evaluate the curren

Eq. ~12! with an accuracy of orderv.

IV. LINEAR-RESPONSE ADIABATIC CURRENT

Now we use the adiabatic approximation introduced in
preceding section and calculate the zero-frequency, dc
rent @Eq. ~12!# to linear order in the oscillating potentia
Va→0 of the reservoirs at finite temperatureT0. We assume
that the following conditions hold:

\v!kBT0 , ~23a!

eVa!kBT0 . ~23b!

The first inequality (\v!kBT0) is relevant for experiments
on adiabatic (v→0) quantum transport. The second inequ
ity defines nothing but the linear-response regime.

In Eq. ~12! the sum overn contains approximatelynmax
;(eV/\v) terms. Therefore,\vn<eV and because of Eq
~23b! we have\vn!kBT. Hence we can expand the Ferm
function entering Eq.~12!. Taking into account Eq.~13! this
expansion ~up to second order inv) is f 0,b(E2n\v)

' f 0(E) 2 n\v@] f 0(E) / ]E# 1 1
2 n2 \2v2 @]2 f 0(E) / ]E2#.

Substituting this distribution into Eq.~12!, take the sum over
n. We use the summation formulas for the Bessel function56

(
n52`

`

Jn1m~X!Jn1q~X!5dmq ,

(
n52`

`

nJn1m~X!Jn1q~X!

52mdmq1
X

2
~dm(q11)1dm(q21)!,
20531
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(
n52`

`

n2Jn1m~X!Jn1q~X!

5S m21
X2

2 D dmq2X~@m20.5#dm(q11)

1@m10.5#dm(q21)!1
X2

4
~dm(q12)1dm(q22)!.

~24!

After that, substituting Eq.~17! and applying the inverse
Fourier transformation, Eq.~14b!, we sum overq and m.
Finally, we represent the dc currentI a flowing in lead a
under the action of an oscillating scatterer and oscillat
reservoir potentials in the following way:

I a5E
0

`

dES 2
] f 0~E!

]E D $I a
(pump)1I a

(rect)1I a
( int)%,

~25a!

I a
(pump)~E!5 i

e

2p
S ]Ŝ0~E,t !

]t
Ŝ0

†~E,t ! D
aa

, ~25b!

I a
(rect)~E!5G0(

b
@Vb~ t !2Va~ t !#uS0,ab~E,t !u2,

~25c!

I a
( int)~E!

5
G0

2 (
b

Vb~ t !~4\vRe@S0,ab* Aab#1P$S0,ab ;S0,ab* %!.

~25d!

Here the bar denotes the time averageX̄5(1/T)*0
TdtX(t)

over a time periodT52p/v; G05e2/h is the spinless con-
ductance quantum; the functionP$X;Y% is defined in Eq.
~21b!. To arrive at Eq.~25c! we used the unitarity condition
(buS0,abu251 and the fact that the average potential is ze
Va(t)50.

We emphasize that in the above expressions we omi
all the terms which are of the second~and higher! order in
frequencyv and/or in potentialsVa . Next we characterize
briefly the three contributions to the currentI a .

The current I a
(pump) is due to solely the oscillating

scatterer. It determines the quantum pump effect when
reservoirs are stationary. It is the formula obtained
Brouwer.13

The currentI a
(rect) is a consequence of the rectification

ac currents flowing in the system under the influence of
potentialsVa applied to the reservoirs. In context of pum
ing this effect was considered by Brouwer in Ref. 47. No
that this rectified current depends on the conductancesGab
52G0uSabu2 and the corresponding potential differenc
DVab(t)5Vb(t)2Va(t) in close analogy with the dc cur
rent flowing in response to a dc voltage. We stress that h
DVab(t) depends not only on the amplitudes of the cor
sponding potentials but also on the phase lagDwab5wa
6-5
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2wb as well. In particular, if the amplitudes of two oscilla
ing potentials are equal (Va5Vb5V0) then the potential dif-
ference reads

DVab~ t !52V0 sinS wa2wb

2 D sinS vt1
wa1wb

2 D . ~26!

This equation@together with Eq.~25c!# shows clearly that
the rectification of ac currents can depend on the phase
between the applied ac potentials and, hence, it can mim
quantum pump effect.47

The third termI a
( int) is novel. Interestingly, as we will see

this current renormalizes bothI a
(pump) and I a

(rect) . The cur-
rent I a

( int) is a consequence of theinterferencebetween the ac
currents produced by the external voltages and the ac
rents produced by the nonstationary scatterer. An ‘‘oscil
ing’’ scatterer is much richer in physics than expressed
Eq. ~25c!. The expression forI (rect) is widely used but this is
only a part of a correct answer. The part (I (rect)) is due to a
rectification of external currents caused by the time dep
dence of the conductances. The oscillating scatterer is m
richer. It generates its own ac currents which can interf
with the external ac currents. This interference effect lead
I ( int).

Note that one can extract the contributionI ( int) from the
experimentally measured current by using its linear dep
dence in both the pump frequencyv and the amplitude of the
external voltagesVb , assuming that the latter can be exte
nally controlled. On the other hand if the voltagesVb are
io

n
ch

t

b

th
ge

t
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induced by the time-dependent pump current flowi
through an external circuit, then the magnitude of t
interference currentI ( int) is determined not only by the in
trinsic properties of the pump but also by the circui
impedance and its frequency dependence. In this case i
tifaction of the different contributions to the pump curre
might be difficult unless the external impedance is w
charaterized.

Before proceeding we check the current conservation.
this end we sumI a over the lead indexa. Note that each of
the currentsI a

(pump) , I a
(rect) , and I a

( int) is separately con-
served. This fact supports the current decomposition in
duced above.

For the pump currentsI a
(pump) , using the Birman-Krein

formula57 we find

(
a

I a
(pump);TrS ]Ŝ0

]t
Ŝ0

†D 5
]

]t
ln~detŜ0!50.

Here we take into account that the average of a time der
tive is identically zero:]X(t)/]t[0; Tr denotes the trace o
a matrix: TrŜ5(aSaa .

The conservation of the rectification currents(aI a
(rect)

5G0(a,b@Vb(t)2Va(t)#uS0,abu250 follows from the uni-
tarity condition(auS0,abu25(buS0,abu251.

The currentI a
( int) is conserved as well. Since the matr

P$Ŝ0
† ;Ŝ0% @Eq. ~21b!#, is traceless, we get from Eqs.~25d!

and ~22b! the following:
(
a51

Nr

I a
( int)5

G0

2 (
b

Vb~ t ! (
a51

Nr

~4\vRe@S0,ab* Aab#1P$S0,ab ;S0,ab* %!5
G0

2 (
b

Vb~ t !~P$Ŝ0
† ;Ŝ0%bb2P$Ŝ0

† ;Ŝ0%bb!50.
in-
To shed more insight onto the nature of the new contribut
I ( int) we consider a simple but a quite generic example.

A. Two terminal single-channel scatterer

Consider a nonstationary scatterer connected to o
two reservoirsa51,2 via single-channel leads. For su
a scatterer, assuming there are no magnetic fields,
stationary scattering matrixŜ0 is a symmetric 232 unitary
matrix.

Ŝ05eigS ARe2 iu iAT

iAT AReiuD . ~27!

Here R and T are the reflection and the transmission pro
ability, respectively (R1T51). The phaseu characterizes
the asymmetry between the reflection to the left and to
right. The phaseg relates to the change of the overall char
dQ on the scatterer~for instance, a dot! via the Friedel sum
rule:58 dg5pdQ/e ~wheree is the electron charge!, or in
different notationdQ5e/(2p i )d@ ln detŜ#. We assume tha
n

ly

he

-

e

R,T512R,u,g are functions of the electron energyE
and the external parametersPi(t) varying with frequency
v. Before proceeding we remark that for the symmetric-
lead indices case withNr52 the currentI a

( int) @Eq. ~25d!#
can be simplified. Substituting Eq.~22a! in Eq. ~25d!
we get

I a
( int)5

G0

2
~Vb~ t !P$S0,bb* ;S0,bb%

2Va~ t !P$S0,aa* ;S0,aa%!, aÞb. ~28!

Substituting the scattering matrix@Eq. ~27!# into Eqs. ~25!
and ~28! we find the currentsI 152I 2 flowing between the
scatterer and the reservoirs:

I 1
(pump)~E!5

e

2p
R~E,t !

]u~E,t !

]t
, ~29a!

I 1
(rect)~E!5G0 T~E,t !@V2~ t !2V1~ t !#, ~29b!
6-6
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I 1
( int)~E!5

e2

4p S ]u

]t

]R

]E
2

]u

]E

]R

]t D @V2~ t !1V1~ t !#

1
e2

4p S ]g

]t

]R

]E
2

]g

]E

]R

]t D @V2~ t !2V1~ t !#.

~29c!

These expressions demonstrate that the currentI ( int) has
common features with both the rectification currentI (rect)

and the pumped currentI (pump). Like the former, the curren
I ( int) depends on the potential differenceDV12. Like the lat-
ter, the currentI ( int) can exist even at equal reservoir pote
tials V1(t)5V2(t). In this case, the conditions necessary
the existence ofI ( int) and I (pump) are the same:30 First, the
scatterer has to be asymmetric, i.e.,uÞ0, and, second, the
time-reversal symmetry~TRS! has to be broken. We not
that the currentI ( int) depends on both the oscillating rese
voir potentials Va(t)5Vacos(vt1wa) and the oscillating
scattering parametersPi(t)5Pi ,01Pi ,1 cos(vt1fi). There-
fore analyzing the presence/absence of the TRS we hav
consider all the phases, namelywa as well asf i .

We have here treated only noninteracting electrons. A
consequence, sums of potentials appear in Eq.~29c!. This is
in contrast with an electrically self-consistent theory whi
permits only the appearance of voltage differences. If in
actions are switched on1 then the~self-consistent! potential
UÞ0 inside the scatterer becomes dependent on exte
potentialsVa , and the differencesVa2U should appear in-
stead ofVa . U is in general a function of all the oscillatin
parametersPi(t), all the external potentialsVa and also of
the potentials at the gates which influence the electros
potential inside the scatterer. Our expressions do, howe
conserve current.

We see that the first term on the RHS of Eq.~29c! renor-
malizes the pumped currentI 1

(pump) and the second on
renormalizes the rectification currentI 1

(rect) . The latter is due
to nonadiabatic~first order inv) corrections to the conduc
tances arising from the corresponding corrections@Eq. ~17!#
to the scattering matrix. Note that the analogous correcti
are discussed in Refs. 25 and 46 in context of pumping in
presence of a dc bias.

Since the pump effect is the main topic of this work w
consider now the case withV1(t)5V2(t) in more detail.
This case corresponds to an experimental setup in which
scatterer and a large portion of the reservoirs to which i
connected are subject to long-wavelength radiation. The
fect of such radiation can be modeled via an oscillating u
form potentialV(t) which is the same at different reservoir
V1(t)5V2(t)[V(t). In this case the rectification curren
@Eq. ~29b!# is absent,I 1

(rect)50, and the whole dc currentI 1

can be reduced to the simple form

I 15
e

2pE0

`

dES 2
] f 0~E!

]E DR~E,t !
du~E,t !

dt
, E5E1eV~ t !.

~30!

To obtain this result we have used the following identi
2A(]R/]t)5R(]A/]t) with A5eV(]u/]E). We have also
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introduced the full time derivative: d/dt5(]/]t)
1e(dV/dt)(]/]E).

This result can be understood in the following way: F
stationary reservoirs@V(t)50# the pumped current is de
scribed by Eqs.~25a! and ~29a! with the quantitiesR andu
taken at the energyE of incident electrons. However, if the
chemical potential m(t)5m01eV(t), V(t)Þ0 oscillates
slowly (v→0), then we can consider incident electrons ha
ing energyE5E1eV(t) following adiabatically the reser
voir’s potentialV(t). Substituting in Eq.~29a! E instead ofE
and replacing a partial time derivative by a full time deriv
tive we get Eq.~30!.

It should be noted that the above substitutionE5E
1eV(t) implies that the potential inside the scatterer (U
50) is independent of the external potentialsVa . This is
correct for noninteracting electrons but it should be modifi
if the interactions are present.1

From Eq.~30! we can conclude that the effect of an o
cillating external potentialV(t) is like the effect generated
by an oscillating parameter of the scatterer~i.e., an oscillat-
ing internal potential!. Therefore to analyze the ability o
an open system~the scatterer plus reservoirs! to generate
adiabatic dc currents we have to consider the full set
oscillating parameters $Va(t),Pi(t)% (a51,2, . . . ,Nr ; i
51,2, . . . ,Np).

On the other hand external voltages cannot be enti
viewed as mere pump~i.e., internal! parameters. Externa
voltages affect the incoming carriers whereas the pump
rameters affect only outgoing carriers.

V. DC CURRENT AT FINITE AC VOLTAGES

Now we go beyond linear-response theory. We supp
that the potentialsVa can be large compared to the tempe
ture. Thus we calculate the current@Eq. ~12!# with accuracy
up to the first order inv and with an arbitrary ratio of the
potentialsVa to the temperature:

\v!kBT0 , ~31a!

eVa!m0,a . ~31b!

Since the potentialsVa are not necessarily small com
pared with the temperatureT we cannot expand the Ferm
function f 0,b(E2n\v) entering Eq.~12!. Nevertheless, Eq
~31a! allows us to sum overn and to simplify Eq.~12!.

To this end we go from the energy representation o
to the time representation. We express the Fe
function f 0,b(E), Eq. ~5!, and the Bessel functionsJn(x) as
follows:

f 0,b~E2n\v!5E
2`

`

dt f 0,b~t!ei (E2n\v)(t/\),

Jn1qS eVb

\v Deiwb(n1q)5
1

TE0

T
dtWb* ~ t !e2 i (n1q)vt,

Jn1mS eVb

\v De2 iwb(n1m)5
1

TE0

T
dt1Wb~ t1!ei (n1m)vt1,
6-7
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f 0,b~t!5
ikBT0

2\ sinhS pkBT0

t

\ D e2 im0,b(t/\),

Wb~ t !5e2 i (eVb /\v)sin(vt1wb).

Substituting these equations into Eq.~12! and summing
over n we obtain a delta functiond(t12t2t) which allows
us to perform one additional integration. Att.0 (t,0) we
integrate overt1 (t). This leads to the substitutiont15t1t
(t5t11utu). Further we expand sin(vt1vt1wb) to first or-
der in vt. We can do this because for the relevantt
<(\/kBT0) Eq. ~31a! givesvt!1. Next we integrate ove
t and finally get the dc current as follows:

I a5
e

hE0

`

dE
1

TE0

T
dtH(

b
(

m,q52`

`

3 f 0S E1~q1m!
\v

2
;mb~ t ! DSF,ab* ~E,Eq!

3SF,ab~E,Em!ei (m2q)vt2 f 0„E;ma~ t !…J . ~32!

Here we have introduced the Fermi function with tim
dependent chemical potentialma(t)5m0,a1eVa(t) @Eq.
~3!#:

f 0„E;ma~ t !…5F11expS E2ma~ t !

kBT0
D G21

.

Note that Eq.~32! is valid both for the adiabatic as well a
for the nonadiabatic case. The only restriction is that
frequency has to be small compared with the temperat
Eq. ~31a!.

Next we use the adiabatic approximation of Sec. III a
calculate the currentI a to first order in frequencyv under
the conditions of Eq.~13!. To this end we substitute Eq.~17!
into Eq.~32! and expand the Fermi function in powers ofv.
Next we use the inverse Fourier transformation, Eq.~14b!,
and after a little manipulation~we integrate by parts on en
ergy and dropped the contribution arising fromE50; in ad-
dition, we exploit the unitarity of the frozen scattering matr
(auS0,ab(E,t)u251) and find the current

I a5
e

hE0

`

dE
1

TE0

T
dtH(

b
f 0„E;mb~ t !…F uS0,ab~E,t !u2

12\vRe@S0,ab* Aab#1
1

2
P$S0,ab ;S0,ab* %G

2 f 0„E;ma~ t !…J . ~33!

The above equation generalizes Eqs.~25! to the case of finite
voltages. Current conservation(aI a50 can easily be proven
in analogy with Eqs.~25!.

Next we concentrate on the pump effect and consider
case with reservoirs having equal oscillating potentia
20531
e
e,

d

e
:

ma(t)[m(t)5m01eVcos(vt1w), a51, . . . ,Nr . Since
the Fermi functions entering Eq.~33! become independent o
the lead index we can sum up overb and using Eq.~22c!
obtain

I a5E
0

`

dE
1

TE0

T
dt f0~E;m~ t !!

dIa~E,t !

dE
,

dIa

dE
5

e

h
P$Ŝ0 ;Ŝ0

†%aa[ i
e

2p
S ]Ŝ0

]t

]Ŝ0
†

]E
2

]Ŝ0

]E

]Ŝ0
†

]t
D

aa

.

~34!

The quantitydIa(E,t)/dE is the spectral current density a
energyE and timet ~i.e., the current within the energy inte
val dE) produced by the adiabatically evolving scatterer
wards the reservoira. This definition seems reasonable b
cause of a conservation law(adIa /dE(E,t)50 which is
valid at any energyE and at any time momentt. Note that in
the case of stationary reservoirs the same interpretation
given in Ref. 40.

These currents~or more precisely, the ability to produc
them! are an intrinsic property of a time-dependent scatte
This property differentiates between a nonstationary scatt
and a ‘‘frozen’’ one. Note that the Fermi distribution functio
in Eq. ~34! describes the filling of~potentially! existing ‘‘cur-
rent’’ states of a nonstationary scatterer.

At V50 Eq. ~34! reproduces Brouwer’s result, Eq
~25b!, and agrees with that obtained in Ref. 40.
small voltagesV→0 for the scattering matrix@Eq. ~27!# we
get Eq.~30!.

Equation~34! determines the dc current to the first ord
in v pumped by the slowly oscillating scatterer between
reservoirs having equal~possibly zero! oscillating potentials
Va(t)5V(t). Formally, in the adiabatic case under cons
eration the effect of oscillating chemical potentials is on
the change of an energy of electrons falling upon the s
terer. However, in fact, the phasew of an oscillating potential
V(t)5V cos(vt1w) is of a great importance because of t
following. An adiabatically pumped currentI aÞ0 is gener-
ated already if the time-reversal symmetry is broken in
whole systemincluding the scatterer and the reservoirs.
VÞ0 analyzing this question we have to take into accoun
possible phase shift between the potentials of reservoirs
the oscillating parametersPi(t)5Pi ,01Pi ,1 cos(vt1fi) of a
scatterer. In particular, even a scatterer with asingleoscillat-
ing parameter can produce an adiabatic dc current if o
f1Þw.

VI. INSTANTANEOUS CURRENT

In this section we derive an expression for the instan
neous current of an adiabatic quantum pump simultaneo
subject to oscillating external potentials. We first clari
the physical meaning of the~diagonal elements of the!

quantity P$Ŝ0
† ;Ŝ0% defining ~antisymmetric in lead indices!

nonadiabatic corrections, Eqs.~21!, to the scattering matrix
From the geometrical point of view40 P$Ŝ0 ;Ŝ0

†% is a curva-
ture in the time-energy plane. The physical interpretation
6-8
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based on Eq. ~34!. We can consider the quantit
dIa /dE(E,t)5(e/h)P$Ŝ0 ;Ŝ0

†%aa as an instantaneousspec-
tral current which is pushed by the oscillating scatterer in
the leada.

A more detailed partitioning of the current follows from
Eq. ~33!. We can say that the scatterer drives the followi
spectral currents from the leadb into the leada:

dIab

dE
5

e

h S 2\vRe@S0,ab* Aab#1
1

2
P$S0,ab ;S0,ab* % D .

~35!

The above spectral currents are subject to the following c
servation law:(a51

Nr dI(E,t)ab /dE50. This property sup-
ports the point of view that these currents arise ‘‘inside’’ t
scatterer~they are generated by the nonstationary scatte!
without any external current source. Thus we can cons
the pump as a source of currents rather then a sourc
voltages.44

In a general case to calculatedIab /dE one needs to know
the matrix Â which can be found from the solution of
non-stationary problem. However, if the stationary scatter
matrix Ŝ0 is a symmetric in lead indices 232 matrix then we
can expressdIab /dE solely in terms of the frozen scatterin
matrix Ŝ0(t). Using Eq.~22a! we obtain~for Nr52).

dIab

dE
5

e

h

P$Ŝ0 ;Ŝ0
†%aa2P$Ŝ0 ;Ŝ0

†%bb12P$S0,ab ;S0,ab* %

4
.

In particular, for a scatterer with scattering matrix@Eq. ~27!#,
we obtain the spectral currents as follows:

dI11~E,t !

dE
52

e

4p S ]~g2u!

]t

]R

]E
2

]~g2u!

]E

]R

]t D ,

~36a!

dI22~E,t !

dE
52

e

4p S ]~g1u!

]t

]R

]E
2

]~g1u!

]E

]R

]t D .

~36b!

The other currents aredI12/dE52dI22/dE and dI21/dE
52dI11/dE. Note that all above currents depend on t
phaseg related to the charge of a scatterer.

Strictly speaking, if we are dealing with time-depende
currents~instead of only the time-averaged currents! then we
need to show that these currents satisfy the continuity eq
tion for the charge currents:

(
a

I a~ t !1
]Q~ t !

]t
50. ~37!

HereI a(t) is the full time-dependent current flowing throug
the scatterer to the leada; Q(t) is the charge of a scattere

To calculate I a(t) we first calculate the Fourie
transformed current I a,l5(v/2p)*0

T dteil vtI a(t), which
reads52
20531
n-

r
er
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a-

I a,l5
e

hE0

`

dE$^b̂a
†~E!b̂a~E1 l\v!&

2^âa
†~E!âa~E1 l\v!&%.

The operatorsb̂a and âa are defined in Eqs.~8! and ~9!,
respectively. The calculations analogous to those leadin
Eq. ~33! give usI a,l . Performing the inverse Fourier trans
formation@Eq. ~14b!# we finally get the time-dependent cu
rent I a(t) flowing in the system as follows:

I a~ t !5E
0

`

dE(
b

H e

h
@ f 0„E;mb~ t !…

2 f 0„E;ma~ t !…#uS0,ab~E,t !u2

2e
]

]t F f 0„E;mb~ t !…
dNab~E,t !

dE G
1 f 0„E;mb~ t !…

dIab~E,t !

dE J . ~38!

Here we have introduced the partial density of states1 for a
frozen scatterer,

dNab

dE
5

i

4p S ]S0,ab*

]E
S0,ab2S0,ab*

]S0,ab

]E D .

These density of states define the chargeQ(t) of a frozen
scatterer as follows:

Q~ t !5e(
a

(
b

E
0

`

dE f0„E;mb~ t !…
dNab~E,t !

dE
. ~39!

The quantitiesI a(t) @Eq. ~38!# and Q(t) @Eq. ~39!# do
satisfy the continuity equation~37!.

The three terms in the curly brackets on the RHS
Eq. ~38! can be interpreted as follows. The first term defin
the currents flowing under the action of external voltag
through a frozen scatterer. The second one defines curr
attributed to the oscillating charge of a frozen scatte
The third term can neither be entirely viewed just as
nonadiabatic correction of either the frozen conductan
nor of the frozen density of states. It is more natural
consider it as the ac currents generated by the oscilla
scatterer. The ability to generate these ac currents differe
ates a nonstationary dynamical scatterer from a me
frozen scatterer.

VII. DISCUSSION

We have investigated the nonstationary adiabatic cha
transport through a time-dependent mesoscopic scat
coupled to reservoirs subject to oscillating voltages. The
ternal voltages applied to the reservoirs induce ac curre
flowing through the scatterer. In addition, the oscillati
scatterer itself is a source of ac currents flowing between
reservoirs. In general these two types of currents interf
with themselves. This gives rise to a renormalization of
6-9
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rectification ~i.e., proportional to the potential difference!
contribution to the dc current and gives rise to a renorm
ization of the quantum pump current.

To analyze this interference effect we calculated the F
quet scattering matrix beyond the adiabatic approximat
We investigated the first order inv corrections to the~adia-
batic! scattering matrix and found that the dc currents of b
the zeroth and the first order inv can be expressed in term
of a stationary scattering matrix with time-dependent para
eters. Within this approximation, within a noninteractin
theory, the oscillating potentialsVa(t) of reservoirs can be
accounted for by allowing the energyE of incident particles
to follow adiabatically the reservoir potential:E→E5E
1eVa(t).

We emphasize the importance of the phases of all
cyclically evolving quantities~the potentials of reservoir
and the parameters of a scatterer! for generating a dc current
In particular, even when all the reservoirs have the sa
oscillating potentialVa(t)5V(t) and the rectification effec
is ineffective, the dc currents atV50 and atVÞ0 can nev-
ertheless differ significantly.

The analysis allows us to perform a current partition t
clarifies the physical meaning of the~diagonal elements o

the! quantity P$Ŝ0 ;Ŝ0
†% and shows that they correspond

spectral current densities generated by a dynamic scatt
The instantaneous current contains a contribution from s
self-generated ac currents in addition to the currents from
frozen charge and the ac currents generated by the ext
potentials.

We emphasize that the results presented in this work,
effect of external ac potentials on a quantum pump, are
importance whenever the pump is not part of an ideal ze
impedance external circuit. In particular, if the pump is
series with a resistance used to measure the voltage g
ated by the pump, or if the circuit is a multiterminal circu
with probes used to measure voltages, the results prese
here will be needed.
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APPENDIX

1. The matrix Â

The matrixÂ defines the first order in frequency corre
tions to the adiabatic Floquet scattering matrix, Eqs.~17! and
~20!. If the matrix Ŝ0 is symmetric in lead indices then th
matrix Â is antisymmetric in lead indices.

To obtain Eq.~21! we substitute the adiabatic expansio
Eq. ~17a!, in the current conservation condition, E
~16a!. Keeping terms of orderv0 and v1, we get the
following:
20531
l-

-
n.

h

-

e

e

t

er.
h
e

nal

e
of
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er-

ted

e

,

(
a

(
n52`

`

SF,ab* ~En ,E!SF,ag~En ,Em!

'(
a

(
n

S S0,ab,n* ~E!1\v
n

2

]S0,ab,n* ~E!

]E

1\vAab,n* ~E! D
3S S0,ag,n2m~E!1\v

n1m

2

]S0,ag,n2m~E!

]E

1\vAag,n2m~E! D
'(

a
(

n
S0,ab,n* ~E!S0,ag,n2m~E!1(

a
(

n
S0,ab,n* ~E!

3S \v
n1m

2

]S0,ag,n2m~E!

]E
1\vAag,n2m~E! D

1(
a

(
n

S \v
n

2

]S0,ab,n* ~E!

]E

1\vAab,n* ~E! DS0,ag,n2m~E!

5dm0dbg .

Applying the inverse Fourier transformation@Eq. ~14b!# and
introducing corresponding matrixes we rewrite above eq
tion as follows:

S uŜ0~E,t !u21\vŜ0
†~E,t !Â~E,t !1\vÂ†~E,t !Ŝ0~E,t !

1
i\

2
Ŝ0

† ]2Ŝ0

]E]t
2 i\

]

]t
F Ŝ0

† ]Ŝ0

]E
G2

i\

2

]2Ŝ0
†

]E]t
Ŝ0D

bg,2m

5dm0dbg . ~A1!

To simplify this equation further we use the unitarity cond
tion for the frozen scattering matrix:Ŝ0(E,t)Ŝ0

†(E,t)5 Î .
First, from this condition it follows that

~ uŜ0~E,t !u2!bg,2m5dm0dbg . ~A2!

And second, we can write (]2/]E]t)@Ŝ0
†Ŝ0#50 and, corre-

spondingly,

2
]2Ŝ0

†

]E]t
Ŝ02Ŝ0

†]2Ŝ0

]E]t
5

]Ŝ0
†

]E

]Ŝ0

]t
1

]Ŝ0
†

]t

]Ŝ0

]E
. ~A3!

Substituting Eqs.~A2! and~A3! in Eq. ~A1! we arrive at Eq.
~21!.
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Note that if we use Eq.~16b! instead of Eq.~16a! then we
get the condition which is a linear transformation of E
~21a! ~the LHS and the RHS of Eq.~21a! are multiplied from
the left by Ŝ0 and from the right byŜ0

†).

2. The commutator matrix P
The matrix P$Ŝ0

† ;Ŝ0% defined in Eq. ~21b! is self-
adjoint,

P$Ŝ0
† ;Ŝ0%5P †$Ŝ0

† ;Ŝ0%, ~A4!

and traceless,

Tr@P$Ŝ0
† ;Ŝ0%#50. ~A5!
.

N

d

c

.

v.

in

ys

tt

20531
.
To demonstrate the latter property we use the equa
d@Ŝ#Ŝ†52Ŝd@Ŝ†# following from the unitarity of the scat-
tering matrixŜŜ†5 Î and the invariance of trace to the cycl
rearrangements of the matrices. As a result, from Eq.~21b!
we get

Tr@P#5 i\TrF ]Ŝ0
†

]t

]Ŝ0

]E
2

]Ŝ0
†

]E
ŜŜ†

]Ŝ0

]t
G

5 i\TrF ]Ŝ0
†

]t

]Ŝ0

]E
2S†

]Ŝ0

]E

]Ŝ0
†

]t
ŜG

5 i\TrF ]Ŝ0
†

]t

]Ŝ0

]E
2

]Ŝ0
†

]t

]Ŝ0

]E
G50.
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