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Spatial dispersion effects on the optical properties of a resonant Bragg reflector
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In the recent literature, aspects of exciton-radiation interaction in multilayers have been discussed from the
viewpoint of microscopic nonlocal optical response. This renewed interest has also revived a long lasting
debate about the problem of additional boundary conditions in dispersive samples. In the present paper, the
semiclassical framework for studying self-consistently the radiation-matter interaction in a dispersive
multilayer medium is briefly reviewed, and applied to the case of a one-dimensiddatluster of quantum
wells under Bragg conditions. The optical response is computed as a function of quantum well Kufrdrer
the super-radiant regimg@or rather smallN values to the 1D Bragg reflector limitNl—«). The different
contributions of the radiation-matter interaction to the optical response are discussed by Feenberg’s decompo-
sition of the polaritonic matrix. The polariton dispersion curves of a quantum well superlattice are computed
and compared with the photonic dispersion curves due to the background dielectric function modulation.
Finally, the modification of the photonic bands close to a resonance of the material system is discussed using
selected numerical examples.
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. INTRODUCTION (NFO)Z
R: 3
(0—wg)?+(y+NI)?

Since the seminal paper of Yablonovich large number
of papers has been devoted to the study of the optical propwhere vy is the nonradiative decay costant, angl the reso-
erties of photonic crystals, obtained by modulating the spanance energy.
tial periodicity of materials with strongly different back- ~ Moreover, in theN—oe limit, the dispersion equation, ob-
ground dielectric values. An interesting property of thesetained by using the transfer matrix approach, has been given
systems is the scalability of the photonic gap effect, which ign the formt®**

a rather general property of diffraction in the regime of )
transparencyof the system. Nevertheless, this scalability is cogKd)=cogkd)—T sin(kd)
obtained by introducing a serious inconsistency in the model 0

calculation; in fact, if only the dispersive effect of the light in . o
the sample is taken into account, the Kramers-Kronig relaVnered is the periodicityK the wave vector of the system,
dk the background wave vector of the photon.

tionships cannot be satisfied by the dielectric function. Orf"9X ¢ .
P y Notice that both these formulas completely ignore the fre-

the other hand, since the optical properties of photonic crys- Lency dependence of the radiative damping. taking the bo-
tals strongly depend on the dielectric contrast value, a hugg ". y dep . ping, taking the p
aritonic self-energy constant. This approximation is equiva-

ephancement of this value can be obtained for phgton €Nelant to the use of a local Lorentzian dielectric function which
gies close to the resonances of the system, and this gain

; - 'bads to the unphysical limit of a linear increase of the radia-
some sense” can compensate the Io;t scalability property_. tive decay. This effect was criticized by Ikawa and Gho,
The simplest photonic crystal showing resonant propertie§;o also underlined the importance of a self-consistent cal-

is the resonant Bragg reflector, obtained using multiple quangyjation in the nonlocal radiation-matter interaction for
tum wells(MQWs) at\/2 separation. In this system the self- reaching the saturation effect of the radiative decay. There-
ConSiStenCy between matter pOlarization and eleCtromagnetf@re, since the interpreta‘[ion in terms of the SR mode be-
field leads to light mediated interactions between the QWsgomes invalid in theN—oo limit, it is considered necessary
This interaction changes the exciton-polariton self-energyo establish a consistent picture connecting the two regimes
and leads to a strong modification of the optical response ofor small and largeN, and to derive the dispersion equation
the system. in the N— < limit. This transition from the super-radiant to
The optical theory for the case of finite quantum well the photonic crystal regime in a resonant Bragg reflector has
numberN has been developed, in terms of the super-radianbeen ascribed to the frequency dependence of radiative shift
(SR mode, in a number of papets’ The main result of and width as a function of quantum well numbbk.'?
these works is that there exists just one super-radiant modghe calculation was performed taking into account the low-
which has a lifetimeN times that of a single quantum well est Wannier exciton state for each quantum well. The
I'y, and the reflection coefficient for such a structure haswumerical results show the building up of a large energy gap
been given in the form in the photonic crystal limit l{— ), and the presence of a

w—wy—iy’
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reflection dip close to the resonant energy. In this paper weolarized by the applied electromagnetic field, and in turn
propose another picture of the evolution between the twdhe induced polarization will determine the magnitude of the
regimes based on a particular decomposition of the polaritotal electromagnetic field. Particular attention must be paid
tonic matrix. to the separation of the electromagnetic interaction between
In the optical response formulation described in thethe “matter” and “radiation” Hamiltonians. The choice that
present paper, the driving field of the exciton polarization isembodies in the matter Hamiltonian direct and exchange in-
the total field of the Maxwell equation, while in the frame- teractions, and in the Maxwell equatiofis their classical or
work used in Ref. 12 the transverse electromagnetic field isuantum mechanical formulatith the transverse radiation
considered. We will point out that the two different choicesfield, makes sense for separate systems. When the two sys-
give the same results, due to the self-consistency of the twtems are in interaction in the Coulomb gauge, one sensible
methods. Moreover, the present method, based on the orthohoice is to consider the total electromagnetic field of the
normality property of the exciton envelope function in the Maxwell equations as the driving field.
“site picture,” is well suited also for two<{2D) and three- It is well known that for a dielectric tensor with spatial
dimensional (3D) superlattices, where the transfer matrix dispersion the Maxwell equations become integro-
method is no longer available, and it is completely equiva-differential equations, and additional waves can also propa-
lent to the rigorous approaches based on Bloch wavegate in the medium in cubic crystals. This phenomenon usu-
expansiort3 ally requires additional boundary conditiofis addition to
Finally, this renewed interest in the theory of the opticalthe normal Maxwell boundary conditions order to deter-
response in multiple quantum wells has also revived a longnine the optical response unambiguously. Three different
lasting debate about the problem of additional boundary conprocedures are usually uséd) Phenomenological ABCs are
ditions in dispersive sampléé1® used, based on microscopic consideration at the surface,
In the present work, the general procedure for computinglong the lines of Pekar, Hopfietd and many other&°(b)
the optical response in a cluster Mfquantum wells is de- The Maxwell integro-differential equations are changed into
scribed in the framework of the self-consistent “additional higher(fourth-) order differential equations along the lines of
boundary condition(ABC) free theory.”*? The absorbance Maradudin and Mill$>?!In this case, additional constraints
of the resonant Bragg system is computed for two differentome from the solution of the fourth-order differential equa-
regimes, namely(i) the super-radiance regim@or small tions, and therefore the ABCs are computed self-consistently
clustersN<80), and(ii) the 1D resonant photonic crystal from the dispersive dielectric function adopted. Finally),
regime (for rather large clusteri>300), and discussed us- the so called ABC free theof§>* is used, based on the
ing selected numerical examples. Green function method, where the Maxwell integro-
The total exciton-polariton susceptibility matrix, describ- differential equations are trasformed into integral equations,
ing the well-well interaction, is studied by separating theand in this case the optical problem does not require ABCs at
interacting and noninteracting terms. In addition, the diagoall for its solution®® Notice that the so called “coherent
nal and off-diagonal contributions of the interacting part aretheory” proposed by Basleet al,?® where the polarization
singled out by the Feenberg method, which classifies all thand the Maxwell equations are solved on one footing, also
irreducible terms of the well-well interaction. belongs to this category. In conclusion, all the conditions that
Finally, the polariton dispersion curves for 1D resonantare necessary to unambiguously determine the electromag-
photonic crystalsi|— =) are computed, and the competition netic problem are contained in the nonlocal microscopic
between the gap due to the polariton effect and that due ttheory’ of the Maxwell equations, and in principle there is
the normal dielectric background modulation of the multipleno reason to resort to additional boundary conditions.
guantum well system is briefly discussed. Let us consider a material system composed of a cluster
The paper is organized as follows. In Sec. Il the semiclasef N sites of nonoverlapping dispersive units, whegr,Z)
sical microscopic nonlocal self-consistent theory is pre-s the eigenfunction obtained by solving the unperturbed
sented, and the problem of the ABC is briefly addressed. Itdamiltonian of the “matter,” namely,
Sec. Ill this framework is adopted to obtain the optical re-
sponse of a general multiple quantum well cluster of dize - S S
and the polariton dispersion curves in the limit lf—oo. Ho@ (N =E¢p(r), (1)
Moreover, in the same section the polariton matrix decom-
position is presented. In Sec. IV the optical properties andvhere¢=1,2,...N is the site index.
the dispersion curves for MQWSs under the Bragg condition [N this site picture, the susceptibility is
are computed and discussed using selected numerical ex-
amples. Section V contains concluding remarks. NG Pp(F')|0>

> >y

Xap(T:T ""):; E(—fho—ill

Il. NONLOCAL OPTICAL RESPONSE THEORY

. .
It is well known that in the radiation-matter interaction + (OP4(F )|€><€|I_Dﬁ(r)|0>

the electromagnetic radiation field and the induced polariza- Ecthotil

tion of the material system must be determined self-

consistently. In fact, the matter system will be dynamicallywhere«, 3=X,y,z are the Cartesian coordinates and

@
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and this allows us to change the integro-differential equation

R e A
P(F)=—i m_w; O(F—=T¢)Pn (4) into the following integral equation:
is the dipole density operator. . . w? e
The nonlocal induced polarization is E(fw)=Eq(F o)~ Ezf dr'G(r,r";w)
IS(F;w)=f di’ Y(F,F; 0)E(F'; o), ©) xfdf"y(r',r";w)é(r";w), (6)

where E(F; w) is the electromagnetic field of the Maxwell which represents the Maxwell solution in implicit form.

equations. Therefore, eliminating the magnetic field and con- N conclusion, the use of the Green function formalism
sidering a nonmagnetic material, the Maxwell equation is does_ not.requwe gddltlonal bogndary conditions. T_he r_natter
Hamiltonian, which takes into account longitudinal-

L w2 0’ transverse(LT) splitting, requires the use of the Maxwell
VXVXE(F,w)+ C—E(F;w) = ?477P(F;w). (4) transverse field for driving the polarization, while, in the case
of a simple model Hamiltoniaflike the hydrogenic one it
Notice that due to the earlier choice for the po|ariza‘[|5q_ is Simpler to use the total Maxwell eIeCtromagnetiC field in
(3)], the exchange interaction must be subtracted from therder to take into account the dipole-dipole interaction also.
matter Hamiltoniar{Eq. (1)], because it appears also in the We will adopt this latter choice in the whole paper.
longitudinal part of the electromagnetic figldtherwise this
contribution would be taken into account twjcd-urther- Ill. POLARITONS IN MULTIPLE QUANTUM WELLS

more, in this case the use of a hydrogenic envelope function . L .
yerog b The exciton envelope function in a multiple quantum well

modef>?8 for describing the Wannier exciton in nanopar- i . ) e

ticles becomes an exact solution. In fact, not only theSystem or superlattice requires different desc_:rlptlons accord-
longitudinal-transverse splitting in a nanoparticle, but alsomg”to che overlap \I/alu_es betw_?en n_ext(-jr)f(?lghb?r qua?tum
the residual dipole-dipole interaction between nonoverlapWe S. FOr nonoverlapping excitons in difflerent guantum
ping adjacent units, will be taken into account self_weIIs, the orthogonality between exciton envelope functions

consistently by solving the Maxwell equatic4). in different sites can be used. In this case two different

The electromagnetic field can be decomposed in two ditmechanisms can delocalize the exciton-polariton in the

ferent ways. In the first one the electric field is decomposeéf"hOI_e sample. _For a very large distance between the well
into its transverse and longitudinal components: a!"_d Its next ne|ghpor§, as for MQWSs under the Bragg con-
dition, the delocalization is due to the retarded transverse

N

= = electric field, while for a very small distance, and under non-

E=ErtE normal incidence, the nonradiative longitudinal electric field
where E_ is the curl-free nonretarded Coulomb potential " @lS0 contribute via the dipole-dipole interaction.
field:
A. Optical response of a cluster ofN quantum wells
N . V'V P 0) Let us consider a cluster df semiconductor quantum
E(Mw)= | df |F—F'| ' wells as shown in Fig. 1. The material system has cubic

symmetry, and we can choose Cartesian coordinates with the
while E is the solution of the Helmoltz equation, obtained Z axis along the growth direction, and, by using the cylin-

by using the relationship drical symmetry of the quantum wells, we can adopt mixed
coordinates K,,Z) for the center-of-mass motion of the
VXVX--=[-V24+VV.--]. Wannier exciton. In this case the 2D-exciton envelope func-
The second decomposition is obtained by writing the totafipns are ¢,(r,2)e""M/\'S with variationally determined
electric field as eigenvalues
hZ
E:Eo+ Es, EK(KH)zEgap_Els(g)"' mKﬁ

where EO is the general solution of the homogeneous prob-The dielectric tensor, composed of local and nonlocal contri-

lem associated with Eq4) [for P(F;w)=0] andE¢ is a  butions, is

special solution of the same equation. 8 ) , ,
From the knowledge of the homogeneous problem solu- e"(Z2,2"0)=[e,8(Z=2")+4mx*(Z,2";0)]84,p,

tion we can obtain the Green functions that satisfy the fol- ()

lowing heterogeneous equation: where a,8=x,y,z, &, is the bulk dielectric constant, and

taking into account the correspondente:X, L—Y, and

Z—Z we obtain the dielectric tensor for the three different

polarizations.

2

N N w P
V><V><+? G(F,F";w)=8(F—F"), 5
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FIG. 1. Material system under study: clusterdfquantum wells.

From Eq.(2) the susceptibility is w?
Ea(z;w)=E3(z;w)—?f dZ'G(Z,2";w)

¢ (2)ee(Z")
E¢(K)—ho—ily XfdZ"X(Z',Z";w)Ea(Z”;w),

e(2) @i (Z')
E{/(K\\)+ﬁw+|re

4wxa<z,2';w>=§ St(w)

) and a great simplification of the problem comes from the fact
' that the kernel of this equation is separable with respect to
the spatial coordinategdegenerate kernel and in the

where S§(w) =4mg, Ee’h? (hw)’m,, Ex=2|p,*/meis  rotating-wave approximatiofRWA) can be written
the Kane energy of the interband (valereeondition) tran-
sition, andg,, is the multiplicity of the statéfor the heavy- ) = a * /
hole excitong, = 1/2 for T andL polarization, while for the XolZ.Z530) 261 Xe(@) 9y (2)odZ").
light-hole excitong,=1/6 for T andL polarization andy,,
=2/3 for Z polarization).

Let us consider the heavy-hole exciton, whereZheom- o w?
ponent of the electric dipole moment is z¢%f(w)=0]. If Eu(Z;0)=E(Z0)— ?; Xi (@) {(0)G(Z;0),
we take the same values for the dielectric constant of the (11)
background in quantum wells and in barrieeg), the Max-
well equations are greatly simplified. In fact, for=x,y and ~ Where  G((Z;w)=JdZ'G(Z,Z";w)¢((Z") and ()
IZuEkxf, the integro-differential Maxwell equation becomes :de,W(.Z,).Ea(Z,;“’)' which change§ the Maxwell_lnte—
gral equation into a system of coupled linear algebraic equa-
tions.

This property allows us to rewrite the solution as

2 2
[d_2+K§ E (Z:w)=— w—zf}}a(Z,Z’;w)Ea(Z’;w)dZ’, In fact, by applying the operatgrdZ¢,(Z) to Eq. (11),
dz c we recover a self-consistent solution of the electromagnetic
9 field,
whereK,=[K2—K?]¥2 andK = (w/c)ey,. ForL polariza- . o 1. 0
tion the electric fieldZ component isE,(Z; w)=i (K, /K2) 'f(“’)_; (Do eerlp(o), (12
X(dE,(Z;w)/dZ) and the susceptibilities in Eq9) are _ . _
W(Z.Z 5 0)=xy(Z,2";w) and Y (Z,Z2"; ) where the polariton matrip ,(w) is
= (K§/K2) xx(Z,Z2";w) for T and L polarizations, respec- 2
tively. (Da)ee(@)=80+ Zxi(@Mip(0) (13

The solution proceeds by computing the Green function
and My, (w)=JdZdZ ¢7(Z)G(Z,Z";w) @, (Z") while
0, _ * 0 . e
G(Z,2" w)=8(Z-2"), (10) I (w)—de¢£(Z)Ea(Z,w) are the known quantities.
The matrixD () is NXN, and the diagonal elements

) ) ) embody the self-energy of the exciton located in the quantum
where the “bulk® Green function is G(Z,Z';w)  well of the ¢th site of the sample, while the off-diagonal

2
2
d—Zz+KZ

=eKdZ=2'l/(2iK ). elements contain the interaction between wells in different
The formal solution of Eq(9) is given in the integral sites ¢ #¢').
form The homogeneous solution f@r— —« is
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E%(Z;w)=A,eKZ+ B, e KZ=A eKZ (14)  and the electric field is
with A,=1, due to the normalization, ar®,=0 if we con- E (Z—o;w)=limeKZ1-A%Z—»0)], (19
sider the same background dielectric constant in the whole Z—o

space. Notice that in our procedure calculation we have used

the “bulk” Green function solution for each zone of the Where the quantity in the square brackets is the transmission
sample with the same background dielectric constant; afte@mPplitude of the system.

ward we impose the Maxwell boundary condition at the sur-  Finally, the absorption is given by

faces. A different procedure requires the use of the Green ) )

function available for the whole range @fvalues?? in this Al @)=1=|ANZ— =2 0)*~[1-A%Z—=0)|".

second case the optical response is computed as the limiting (20

value (Z— =) of the electric field. The first option is more N if we consider the vacuum-bulk dielectric discontinuity
flexible than the second one, because it separates the Mays, the surface aZ=0. the homogeneous solution on the
well solution in each slab from the matching between differ-g,tace is the same aé Ed4), but with B, #0.

ent slabs of the _Iayered system, and it will be adopted in the 1 orefore
present calculation.

If we takedoe as the distancg of thé site from theZ=Q Gy(Z=0;w)= lim [efiKZZ(Pg(KZ)eiKZd(/(ZiKZ)]
surface, andp,/(K,) is the Fourier transform of the exciton
envelope function evaluated for= 0 and computed with re- o )
spect to the center of symmetry of thth quantum well, the and, the total electric field on the surface is
quantityG, for Z— —o is

z—ot

_ _ E.(Z—0%;0)= lim A [eXZ—e KZAYZ;w)},
Gy(Z——»;w)= lim [e *ZpY(K,)e/(2iK,)]. 70"
Z——® (21)
(15 o . .
S where the polarization field on the surface is the quantity
Therefore, the total electric field is given in Eq.(17).
E.(Z——wiw)= lim [eKZ— e KZA0(Z: )], The electric field in the vacuum sid&€0) is

Z——oo

(16) E (Z;w)=g%%+r e 197
where the quantity whereq,=[w?c? —K?]Y2 and, by imposing the Maxwell's
w2 x4 w) boundary conditions at the surfacg=0), we obtain the
AN Z——»;0)= — >, ———e/Kzlde 40 0K ) reflectivity for «=y=S and a=x=P:
ce i 2Kz ¢
0
<« r _AO(
(5, 0 ()02 (K7) (17) (@)= 10—A((‘”)) 22
-1, A% w
is the field polarization on the surface, and in this case is also “
the reflection amplitude of the system. whererg is the unperturbed reflectivity at the surface, and
ForZ— + o, the amplitudedA ,(w) are
Ge(Z—o2iw)= lim [y —K,)e N /(2iK )] 2q,
Z— = —rOAY -1
Afo)= i [1red ()] ™
and
2epK
w2 “(w) . = # _O0AX -1
Aa(z_ﬂ)c;w):_zE X{'] eIKZ(d(f—dg)(P?(_KZ) AX((O) 8qu+ Kz[l rpA ((1))] . (23)
ce i 2iKz
o 0 The diagonal elements of the polariton matrix have the
X(Dy M eer(@) @y (Kz) (18 simple form(in the RWA)

2
w
D ((w)=1+ ?X?(w)M?,e(w)

_ Egap EelO)F (h22M )K= hw—iT + (0?/c?)SEM ¢ (@) 24
Egap— Eex(€) + (722M) K —fiw—il,
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and 3 (@) =3 (0) +iY"(0) = (0?/c?)SEM () is the
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wherec;; are the elements of th@ matrix, C is its determi-

polariton self-energy for the single quantum well. For the 2Dnant andc? is the determinant of the minor @& obtained

exciton envelope function

T 2
cos{r(z—de)”

the diagonal elements are

®e(Z)=Ny

M =R4M ! O(K,)]?
¢ o(0)=Rq e,e(w)]*‘m[w( 2]

by suppressing théth row and columnfF* is the Feenberg
irreducible decomposition of the matrix, namely,

0_ 0
C=c,C — 2 C,iCj¢C’ I+ C¢,iCj,iCi (C™)'—
J#EC1#L
|¢J

= C€’€C€+ Ff,

where in our case, (=1, andC%!: is the determinant of

while the off-diagonal ones, embodying the interaction ben€ minor of C obtained by suppressing the,(,j,...)th

tween different quantum  wells
= (/2K ) 9K @7, (KelKdddel,

The quantity of Eq(17) is

[e2(K)T?

A(w)= 22 Xe(0) =5

1((1))]( g/eiKZ(d€+d€').

x>, [D,
€!

are Me#g/(w)

(29

rows and columns.

Finally, the quantityA“(w) can be decomposed into di-
agonal and off-diagonal components, and, moreover, in the
diagonal component we can single out the contribution of the
noninteracting quantum wells, namely,

[¢2<Kz)12
2iK,

222

'+

X(Dy 1)

AYw)= (€ Yo

~1aiK(dg+der)

In order to disentangle in this quantity the single quantum
well contribution from the total interaction, let us decompose
the matrix of EQ.(24) as a sum of its diagonal and off-

[e2(K)]?

oK, LFa(@)/C(e)]

w2
_gz’; X¢(w)

diagonal elements:

D¢ ¢ (w)=Dy(w)dp¢+D (0)(1—6;¢r)

0

:Agvgr‘l'Bg'fr X

therefore,D=A+B=A[ | + A~ !B]=AC, where theA ma-

tum well contribution to the surface electric field; tGema-
while its off-diagonal

trix has one along the diagonal,

X[Dzz,e(w)]—leiZsz(

[e2(K)]?

2
w .
2 2 Xi(@) e [Df (w)]te e,

(27)

Notice that the third term on the right side is the interaction
'between the electromagnetic field amdl noninteracting
guantum wells located dt sites of the sample, namely,

elements are the polariton well-well interactions. Since

D 1=C 1A~ and the matrix elements are
(6_1)6,(?’22 (6_1)6,6”(K_1)€”,€’
e”
=> (éfl)e,gf/(De',e')715e//,e'

o

from Eq. (25 we obtain

(KT .
A(0)= 2(26/ @) i (€ (D)
 elK(dg+dgr)

For €=¢' the matrix elementsﬁfl)mr can be decom-
by Feenberg’s

posed into irreducible contributions
expansiorf®
& ct 1 Ff
( )f( C C€€ C y

(26)

Aé<w>=§ Af(w)

[(P€( z)]z

- E Xf(w) 2K,

[Df ()] a2,

(28)

This contribution is essentially a “scale factor” of the clus-
ter; in fact, its value scales as the sum of the single-well
contributions.

The second term of Eq27) embodies diagonal polariton
effects not reducible to the noninteracting contribution of Eq.
(28). Finally, the first term is an off-diagonal term connecting
a well with a different well of the system. In conclusion, the
decomposition oA “(w) is

A%w)=Agp(w)+AR(w)+Ag(w). (29

The analysis of the evolution witN of the square modulus

of the quantities quoted in E@29) for a cluster ofN iden-
tical quantum wells under the Bragg conditisee Fig. 1is
shown in Fig. 2. The physical parameter values used in the

205311-6
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‘ ‘ ' ‘ ' ' ‘ ' B. Polariton dispersion curves for 1D resonant photonic
1.0 Foom—o o crystal

Let us consider a 1D lattice as shown in Fig. 1 fér

08 - : —oo where the dielectric function modulation is due to the
L ] qguantum wells and barriers.

—D—AZ/NZ The polariton dispersion curve is computed by imposing
—O—AYN the boundary conditions at the quantum well surfaces located
] at the site 1, and the periodicity condition as for the normal
04 - . photonic Kronig and Penney model. We observe that the
electric field[see, for instance, Eq14)] computed at the
well surfaces in the site 1 and that in the ditdiffer only by

a phase translation due to the Fourier transform of the exci-
ton envelope function; all the other quantities depending on
00 B o n—1 o o the spatial dispersion effedfpamely, the self-energy and the

! ‘ ! : ! - ] ‘ ! z-dependent functios,(Z,w)] are site independent due to
the|Z—2Z’| difference present in the “bulk” Green function.
After some algebra, the polariton dispersion curves are given
‘ ' ' ‘ ' ' ‘ by the real part of the following complex equation:

0.6

]

02+ .

Pn)

(k,+0,)?

cogKd)= 8a.k,e
yARYA

(eiqz(d*LW){eikZLW[8 _ IE"(w)]

2 P 1 —ri[e+i3"(w)]e Ktw—2i3"(w)r}
—v— A /N 7 +e—iqz(d—LW){[8+iz//(w)]e—ikZLW
| —r2eika s —3"()]+2i3"(0)ro}) (30)

with, ro=(k,—q,)/(k,+q,) and Awy—fw—iT;+3(w)
=e+id"(w), where3(w)=%'(w)+i%"(w) is the polar-
iton self-energy of a single quantum well.

Finally, for the special casq,=k, the system is greatly
5 simplified:

I : ] ; 1 ) ! . !
0 50 100 150 200

() N e cogKd)=¢e cogq,d) + 3] (w)sin(q,d), (31

FIG. 2. Square modulus of polarization field on the surface,and, if we neglect the exciton contribution to the dielectric
performed at the energy of exciton resonance as a function of theusceptibility, we recover the photonic Kroening and Penney
quantum well numbeN and normalized to the square of the quan- result for dielectric constant modulation, namely,
tum well number itself(a) Circles, single quantum well contribu-
tion AZ/N?; squares, total term?/N?=(Ag+Ap+ Aop)?/N2. (b) cogKd)=cogk,L,,)co§g,(d—L,,)]

Diagonal and off-diagonal terms3,o/N?.

k2+ 2

calculation are given in Table |. These values are chosen very - %sin( k,L,)sinNqg,(d—L,)]. (32
close to those of the AlIGaAs/Ga&01) system. Moreover, Az,
for describing the radiation-matter interaction of the systeMihe polariton dispersion curves are computed by taking the
a very 5”2?2” nonradiative homogenous broadening is takeBame dielectric constant value for wells and barri@iable
(I'ng=10 "“eV). . 1); the numerical results are given in Fig. 3, where the dis-

The calculation is performed at the energy of the excitoergjon curve behavior at the band edges is also shown in an
resonance and the valqes are no.rmahzed to the square th Qpanded scale in Figs(i® and 3c). The contribution due
quantum well number itself. Notice that the noninteractingy, the exciton-polariton is the appearance of a third curve at
quantum well termAg(w) [Eq. (28)] is constant since it 7, 4 57(4) where3'(w) is the radiative shift due to the
scales withN as discussed befofeircles in Fig. 2a)]. Un-  exciton-polariton self-energy of a single well. This curve

der resonance condition, the diagonal tefxfi(w), sub-  drops in the middle of the two dispersion curves present also
tracted from the noninteracting well contribution, has the

same value as the off-diagonal term as is shown in Kig), 2 TABLE |. Physical parameter values.

and these two quantities reach their asymptotic values very

fast, underlining that the Bragg phase conditions are reachede,=12.6 Lw=8nm

for a rather small number of quantum we(EboutN=20). fwg=1.5152 eV der1—de=N(wg)/2
Finally, the electric field at the surface decreases WitiNg 1/ 5"(w) =0.033 meV di=\(wg)/2

behavior as expectda@quares in Fig. @)].
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in the dielectric photonic Kronig-Penney model. In Figd3 three different behaviors, namel§i) the super-radiant re-

the disappearance of the exciton-polariton radiative shift agime for 2<N<80, (ii) the 1D resonant Bragg reflector for

the band edgén/d) is also shown. 80<N<500, and(iii ) the 1D resonant photonic crystal limit
In the present case, where the background dielectric confor N— o).

stants are the same for wells and barriers, all the dispersion

curves are due to the interplay between the background di- A. Super-radiant regime vs 1D Bragg reflector

electric constant and the dispersive part of the nonlocal ex- ¢ refiectivity spectra, computed self-consistently, for
citon dielectric function. This dispersive component is large,

: . X 2~different quantum well numbers from the super-radiant to the
at the exciton resonant energy, while for the higher energiesy Bragg reflector behavior are shown in Figay The
we observe the appearance of higher energy harrow gaps.dgﬁaracteristic line shape modification from Lorentzian- to
to the small value of the real part of the exciton dielectric

function, and obviously the disappearance of the central disl?ragg-reflector-llke, due to the increase of the quantum well

. . oy number, is clearly observed.
persion curve. Notice that for the condition of E§0) the The half widthyat half maximunHWHM) of the reflec-
dispersion curves of a 1D resonant photonic crystal look th%vit as a function of quantum well numbeNE 1—500) is
same as those of the photon bulk dispergisee Fig. 8], y q

except for the appearance of the central curve; in realit iven in Fig. 4b). The behavior of the curve is usually ex-
P PP ' ained by taking into account that three different zones are

; . ol
grerzﬁrtnglifferegi(r:]f; ?S)pgﬁgv:::] ?r? lfixz?t?;sdzg dsgil)efgrt ttrTg hm@hserved, namelyi) in zone | the linear behavior is con-
y Yy p ' 9 nected with the super-radiant regime, whilg¢ zone Il is the

trgiotr)]l?lrllt (;Zd;Ps?o?]ﬁérfs/c;gag:oigetrﬁg’ tr)(ca)i;r)]((ajgt;vecl)y;. t-lr_]zeBprir;?r_ansition zone, where the super-radiant mode redistributes
louin zone aﬁ)nﬁ due to the Braaa condition Z\s expected its radiative interaction among all the levels of the system,

) “o 99 P and, finally, (iii) zone Il is the saturation zone, where the
[see Figs. &) and 30)].

eflectivity shows the Bragg reflector behavifsee Fig.

These rgsults !J”de”'f?e the importance of the use of a Weﬂ(a)]. Notice that this interpretation is not exaustive of all the
behaved dielectric function also for photon energy very far

from the resonance energies of the system phenomena inyolvgd in the optical response of these sys-
' tems, as we will point out in the present work.
IV. RESULTS AND DISCUSSION In order to go a bit deeper into understanding the exciton-
polariton behavior in Bragg MQWs, let us consider the ab-
The reflectivity and absorbance spectra as a function oforbance of the system, given in EQ), as a function of
the QW numbem, for the system given in Fig. 1, show well number.

3
3.03044
25
_ ~ 3.03042
> 2 >
2 L
E,; L5 55 3.0304
g &
o ® 3.03038
0.5 3.03036
0 FIG. 3. (@) Polariton disper-
0 0.050.10.150.20.250.30.35 sion curves of a 1D resonant pho-
0 0.2 0.4 0.6 0.8 1 K(10_47T/d) i .
(a) Kir/d) (©) tonic cry;tal.(b), (c), (d) polariton
5 curves in expanded scales. In
1.53 (b),(c) the dashed line is the pho-
tonic curve obtained by neglecting
1.525 15 the exciton contribution.
< 1.52 - %
O ~ 3,
1515 = = 1
3 - 3
5 151 -7 3
0.5
0
0.99 0.992 0.994 0.996 0.998 1 0.8 0.85 0.9 0.95 1
(b) Kialdy (d) K(r/d)
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0.8 -

g
o
T

=
S
T

reflectivity

IS
T
|

HWHM of reflectivity (meV)
absorbance (10°)
= B
T T

O-\- T
.
]

P \ 1 , I , 1 . 1 0.0 . . . . -
100 200 300 400 500 -0.015 -0.010 -0.005 0.005 0.010 0.015

(b) N (b) oo (eV)

o

FIG. 4. (a) Reflectivity spectrum for a 1D array & identical FIG. 6. () Broadening of the absorbance pedkg for 1<N
quantum wells for &£ N<400. (b) Half width at half maximum of ~ <80. (b) Absorbance of the system for 8&N<300.

the reflectivity as a function of quantum well number. ) o )
value, and this assures us that it is the only bright mode of

In Fig. 5 the absorbance foi=1-80 is shown. We ob- the system. Furthermore, the linear behavior of the broaden-
serve the presence of only one absorbance peak whose a8 of the absorbance peafksee Fig. €a)] is usually inter-
(total absorbanderemains constant on increasing tie  Preted as a fingerprint of super-radiant manifestation.

Above this limit value N>80), the absorbance peak
16 _ - splits into two sidebands appearing at the border of the re-
L i flectivity “stop band” of the systenfisee Fig. b)]. Since the
15 B so called “dark modes” become brightjn coincidence with
their energies the optical spectrum shows additional dips,
which strongly modify the “stop band” for energy values
close to the resonance energy. In Fig. 7 the energy position of
the reflectance dips, computed in the transition redjmmme
Il of Fig.4 (b)] as a function of quantum well number, is
5 1 reported, and by increasing the well numidér the energy
00 — spreading of the curves clearly underlines the switching on
2 of the radiation—dark mode interaction. In principle, this en-
0 N ergy spreading should be as large as the radiative shift of a
oY single quantum well, and the modes are localized between
80 fiwg+2'(wg) and fiwg, as will be discussed in the next
-0.004 -0.002 00?3)_ © (V) 0.002 0.004 Section'
° In Fig. 8 some of the absorbance peaks are shown for the

FIG. 5. Absorbance as a function of quantum well number in thecase N=200, and also the reflectivity and transmittivity

super-radiant regime: <N<80. curves are reported in the same pictures. The half width at

08 — —

absorbance (1 0“")

04 |
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the exciton-polariton self-energy, due to the well-well inter-

action, changes from a purely imaginary contribution for the

super-radiant regime to a real contribution for a 1D resonant

) photonic crystal.

13 | AA Finally, in the next section the optical properties of a
. MQWs under Bragg conditions will be discussed for the 1D

o 12p B resonant photonic crystal limitN— ).

o L

\; ) _\ B. 1D resonant photonic crystals
& |

o Let us consider a 1D resonant photonic crystal with
L0 - © different background dielectric constant in the wells
. \O (ep=12.6) and in the barrierse(=23.0). In this case two

09 1 different situations can be considered, namélythe lattice
. periodicity d=\/2 is under the Bragg condition for the ex-
S T S R citon energy, andii) it is out of resonance. In Fig. 9 the
160 180 200 20 240 260 280 300 photonic bandgdashed ling due to the modulation of the
N background dielectric constant, are shown together with the

FIG. 7. Energy position of the reflectance dips computed in thep.OI"jmto.n curves(solid ling). In an expande(_j sc.ale of the
transition region. dispersion curves at the boundary of the Brillouin zénet

reported herethe central and upper dispersion curves are

half maximum of the absorbance peaks decreases from abogff€n Not to touch. Furthermore, the photonic and polaritonic
25 times the nonradiative broadening to the nonradiativé@PS do not coincide due to the contribution of the real part
broadening value for a photon energy that ranges ftios, of the _excnon suscept|b|l_|ty as discussed in Sec: I B.
to hwp+2'(wg). This effect is connected with the conver- In Fig. 10 the calculation Is performfed by taIgmg the pe-
sion of the polariton self-energy of the system from real tofiodicity different from the Bragg condition. In this case, the
imaginary character on approaching the resonance ener _rmal exciton-polariton sphttmg is opserved close to the
Therefore, a large part of thé&l(- 1) electromagnetic modes Xciton energy, but_the photonic gap is moved toward the
of the system are embodied in the peaks close to this energgW energy side with respect to the case of background
The same behavior is also observed for reflectance and tran@iodulation due to the exciton contribution.
mittance peaks.

These results clearly underline that, for a large 1D cluster
of quantum wells, the exciton-photon interaction redistrib- The self-consistent theory of the optical response for a
utes its intensity among all thi states of the system, and nonlocal dispersive medium in the semiclassical framework,

-Q
.
e
g

V. CONCLUSIONS

1.0 -Y -\/’
0.8F
z,. 0.6
B
a
5] N=200
-~
=)
. -
0.4+
0.2+
0.0 g S — s L e - e beocper™ —
1.06515 1.06530 1.343575 1.343600 1.419036  1.419048 1.448100 1.448105 1.462070 1.462075 1.469802 1.469805

o-o_ (1eV)
FIG. 8. Intensity of the reflectivitystraight ling, transmittivity (dotted ling, and absorbancéilled area for the N=200 case.
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\
3 3
25 2.5
e 2 z 2
E e
?1,5 %0 1.5
s 8
1 1
05 0.5
0 O
. . . 0 02 04 06 08 1
Kin/d) @ K(r/d)
FIG. 9. Polariton dispersion curves of a 1D resonant photonic 1.55
crystal of periodicityd= (wq/c)ye,. The dashed line is the pho-
tonic curve obtained by neglecting the exciton contribution. 1.54
1.53
and the additional boundary conditions are briefly reviewed % 152
in the present paper. =
The optical response of a cluster of quantum wells under 5151
the Bragg condition is studied as a function of quantum well 3
numberN from the super-radiant regime, for rather smsll 15
values, to the 1D resonant photonic crystal linit-¢ «). 1.49
The absorbance computed for a MQW system of AlGaAs/
GaAs (001) shows three different behaviors, naméeiy, the 1.48
super-radiant regime for a 1D cluster as largeNas80, (i) 05 052 054 056 058 06
the 1D Bragg reflector behavior foN>80, where the (b) K(x/d)

radiation-matter interaction redistributes its intensity among
different modes of th_e system; and, finallji) the limit of a tonic crystal of periodicityd= (wq/c) \/s—b (b) Polariton curves in
1.D resonant photonic systenN{-) or very large cluster. an expanded scale.
size (N>400), where the absorbance value becomes vanish-
ingly small. For a deeper understanding of the light mediatedlispersion curves are discussed. The importance of the use of
interactions among the wells, we performed a decompositiod well behaved microscopic nonlocal dielectric function for
of the polaritonic matrix. It has allowed us to separate in thePhoton energy far from the resonance is pointed out using
optical response the term dueNononinteracting QWs from selected numerical examples.
the interaction terms. In addition, in the interaction term two
contributions has been singled out: one describing the self-
interaction of the well and the other the residual interactions Two of the authorsL.P. and A.D) are indebted to the
among different wells. Notice that the latter two contribu- Italian MIUR FIRB Project “Nanotecnologie e nanodisposi-
tions give the same values close to the exciton resonance favi per la societadell'informazione” for financial support.
the computed system. One of the author$K.C.) acknowledges the partial support
Finally, the polariton dispersion curves for a 1D resonantby Grant-in-Aid for Scientific ResearctNo. 15540311 of
photonic crystal N— ) are computed, and the effects of the the Ministry of Education, Culture, Sports, Science, and
polariton and of the dielectric background modulation on theTechnology of Japan.

FIG. 10. (a) Polariton dispersion curves of a 1D resonant pho-
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