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Spatial dispersion effects on the optical properties of a resonant Bragg reflector
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In the recent literature, aspects of exciton-radiation interaction in multilayers have been discussed from the
viewpoint of microscopic nonlocal optical response. This renewed interest has also revived a long lasting
debate about the problem of additional boundary conditions in dispersive samples. In the present paper, the
semiclassical framework for studying self-consistently the radiation-matter interaction in a dispersive
multilayer medium is briefly reviewed, and applied to the case of a one-dimensional~1D! cluster of quantum
wells under Bragg conditions. The optical response is computed as a function of quantum well numberN from
the super-radiant regime~for rather smallN values! to the 1D Bragg reflector limit (N→`). The different
contributions of the radiation-matter interaction to the optical response are discussed by Feenberg’s decompo-
sition of the polaritonic matrix. The polariton dispersion curves of a quantum well superlattice are computed
and compared with the photonic dispersion curves due to the background dielectric function modulation.
Finally, the modification of the photonic bands close to a resonance of the material system is discussed using
selected numerical examples.
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I. INTRODUCTION

Since the seminal paper of Yablonovich1 a large number
of papers has been devoted to the study of the optical p
erties of photonic crystals, obtained by modulating the s
tial periodicity of materials with strongly different back
ground dielectric values. An interesting property of the
systems is the scalability of the photonic gap effect, which
a rather general property of diffraction in the regime
transparency2 of the system. Nevertheless, this scalability
obtained by introducing a serious inconsistency in the mo
calculation; in fact, if only the dispersive effect of the light
the sample is taken into account, the Kramers-Kronig re
tionships cannot be satisfied by the dielectric function.
the other hand, since the optical properties of photonic c
tals strongly depend on the dielectric contrast value, a h
enhancement of this value can be obtained for photon e
gies close to the resonances of the system, and this gain
some sense’’ can compensate the lost scalability propert

The simplest photonic crystal showing resonant proper
is the resonant Bragg reflector, obtained using multiple qu
tum wells~MQWs! at l/2 separation. In this system the se
consistency between matter polarization and electromagn
field leads to light mediated interactions between the QW
This interaction changes the exciton-polariton self-ene
and leads to a strong modification of the optical respons
the system.

The optical theory for the case of finite quantum w
numberN has been developed, in terms of the super-rad
~SR! mode, in a number of papers.3–9 The main result of
these works is that there exists just one super-radiant m
which has a lifetimeN times that of a single quantum we
G0 , and the reflection coefficient for such a structure h
been given in the form
0163-1829/2004/69~20!/205311~12!/$22.50 69 2053
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~NG0!2

~v2v0!21~g1NG0!2 ,

whereg is the nonradiative decay costant, andv0 the reso-
nance energy.

Moreover, in theN→` limit, the dispersion equation, ob
tained by using the transfer matrix approach, has been g
in the form10,11

cos~Kd!5cos~kd!2G0

sin~kd!

v2v02 ig
.

whered is the periodicity,K the wave vector of the system
andk the background wave vector of the photon.

Notice that both these formulas completely ignore the f
quency dependence of the radiative damping, taking the
laritonic self-energy constant. This approximation is equiv
lent to the use of a local Lorentzian dielectric function whi
leads to the unphysical limit of a linear increase of the rad
tive decay. This effect was criticized by Ikawa and Cho12

who also underlined the importance of a self-consistent
culation in the nonlocal radiation-matter interaction f
reaching the saturation effect of the radiative decay. The
fore, since the interpretation in terms of the SR mode
comes invalid in theN→` limit, it is considered necessar
to establish a consistent picture connecting the two regim
for small and largeN, and to derive the dispersion equatio
in the N→` limit. This transition from the super-radiant t
the photonic crystal regime in a resonant Bragg reflector
been ascribed to the frequency dependence of radiative
and width as a function of quantum well numberN.12

The calculation was performed taking into account the lo
est Wannier exciton state for each quantum well. T
numerical results show the building up of a large energy g
in the photonic crystal limit (N→`), and the presence of
©2004 The American Physical Society11-1
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reflection dip close to the resonant energy. In this paper
propose another picture of the evolution between the
regimes based on a particular decomposition of the po
tonic matrix.

In the optical response formulation described in t
present paper, the driving field of the exciton polarization
the total field of the Maxwell equation, while in the fram
work used in Ref. 12 the transverse electromagnetic fiel
considered. We will point out that the two different choic
give the same results, due to the self-consistency of the
methods. Moreover, the present method, based on the o
normality property of the exciton envelope function in t
‘‘site picture,’’ is well suited also for two-~2D! and three-
dimensional~3D! superlattices, where the transfer matr
method is no longer available, and it is completely equi
lent to the rigorous approaches based on Bloch w
expansion.13

Finally, this renewed interest in the theory of the optic
response in multiple quantum wells has also revived a l
lasting debate about the problem of additional boundary c
ditions in dispersive samples.14,15

In the present work, the general procedure for comput
the optical response in a cluster ofN quantum wells is de-
scribed in the framework of the self-consistent ‘‘addition
boundary condition~ABC! free theory.’’12 The absorbance
of the resonant Bragg system is computed for two differ
regimes, namely,~i! the super-radiance regime~for small
clustersN,80), and~ii ! the 1D resonant photonic crysta
regime~for rather large clustersN.300), and discussed us
ing selected numerical examples.

The total exciton-polariton susceptibility matrix, descri
ing the well-well interaction, is studied by separating t
interacting and noninteracting terms. In addition, the dia
nal and off-diagonal contributions of the interacting part a
singled out by the Feenberg method, which classifies all
irreducible terms of the well-well interaction.

Finally, the polariton dispersion curves for 1D resona
photonic crystals (N→`) are computed, and the competitio
between the gap due to the polariton effect and that du
the normal dielectric background modulation of the multip
quantum well system is briefly discussed.

The paper is organized as follows. In Sec. II the semic
sical microscopic nonlocal self-consistent theory is p
sented, and the problem of the ABC is briefly addressed
Sec. III this framework is adopted to obtain the optical
sponse of a general multiple quantum well cluster of sizeN
and the polariton dispersion curves in the limit ofN→`.
Moreover, in the same section the polariton matrix deco
position is presented. In Sec. IV the optical properties a
the dispersion curves for MQWs under the Bragg condit
are computed and discussed using selected numerica
amples. Section V contains concluding remarks.

II. NONLOCAL OPTICAL RESPONSE THEORY

It is well known that in the radiation-matter interactio
the electromagnetic radiation field and the induced polar
tion of the material system must be determined s
consistently. In fact, the matter system will be dynamica
20531
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polarized by the applied electromagnetic field, and in tu
the induced polarization will determine the magnitude of t
total electromagnetic field. Particular attention must be p
to the separation of the electromagnetic interaction betw
the ‘‘matter’’ and ‘‘radiation’’ Hamiltonians. The choice tha
embodies in the matter Hamiltonian direct and exchange
teractions, and in the Maxwell equations~in their classical or
quantum mechanical formulation16! the transverse radiation
field, makes sense for separate systems. When the two
tems are in interaction in the Coulomb gauge, one sens
choice is to consider the total electromagnetic field of
Maxwell equations as the driving field.

It is well known that for a dielectric tensor with spatia
dispersion the Maxwell equations become integ
differential equations, and additional waves can also pro
gate in the medium in cubic crystals. This phenomenon u
ally requires additional boundary conditions~in addition to
the normal Maxwell boundary conditions! in order to deter-
mine the optical response unambiguously. Three differ
procedures are usually used.~a! Phenomenological ABCs ar
used, based on microscopic consideration at the surf
along the lines of Pekar, Hopfield,17 and many others.18,19~b!
The Maxwell integro-differential equations are changed in
higher~fourth-! order differential equations along the lines
Maradudin and Mills.20,21 In this case, additional constraint
come from the solution of the fourth-order differential equ
tions, and therefore the ABCs are computed self-consiste
from the dispersive dielectric function adopted. Finally,~c!
the so called ABC free theory22–24 is used, based on th
Green function method, where the Maxwell integr
differential equations are trasformed into integral equatio
and in this case the optical problem does not require ABC
all for its solution.25 Notice that the so called ‘‘coheren
theory’’ proposed by Baslevet al.,26 where the polarization
and the Maxwell equations are solved on one footing, a
belongs to this category. In conclusion, all the conditions t
are necessary to unambiguously determine the electrom
netic problem are contained in the nonlocal microsco
theory27 of the Maxwell equations, and in principle there
no reason to resort to additional boundary conditions.

Let us consider a material system composed of a clu
of N sites of nonoverlapping dispersive units, wherew,(rW,Z)
is the eigenfunction obtained by solving the unperturb
Hamiltonian of the ‘‘matter,’’ namely,

Ĥ0w,~rW !5E,w,~rW !, ~1!

where,51,2,...,N is the site index.
In this site picture, the susceptibility is

xab~rW,rW8;v!5(
,

F ^0uP̂a~rW !u,&^,uP̂b~rW8!u0&
E,2\v2 iG

1
^0uP̂a~rW8!u,&^,uP̂b~rW !u0&

E,1\v1 iG
G ~2!

wherea,b5x,y,z are the Cartesian coordinates and
1-2
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P̂~rW !52 i
e

mv (
,

d~rW2rW,!pW n

is the dipole density operator.
The nonlocal induced polarization is

PW ~rW;v!5E drW8xJ~rW,rW8;v!EW ~rW8;v!, ~3!

where EW (rW;v) is the electromagnetic field of the Maxwe
equations. Therefore, eliminating the magnetic field and c
sidering a nonmagnetic material, the Maxwell equation is

¹W 3¹W 3EW ~rW;v!1
v2

c2 EW ~rW;v!5
v2

c2 4pPW ~rW;v!. ~4!

Notice that due to the earlier choice for the polarization@Eq.
~3!#, the exchange interaction must be subtracted from
matter Hamiltonian@Eq. ~1!#, because it appears also in th
longitudinal part of the electromagnetic field~otherwise this
contribution would be taken into account twice!. Further-
more, in this case the use of a hydrogenic envelope func
model23,28 for describing the Wannier exciton in nanopa
ticles becomes an exact solution. In fact, not only
longitudinal-transverse splitting in a nanoparticle, but a
the residual dipole-dipole interaction between nonoverl
ping adjacent units, will be taken into account se
consistently by solving the Maxwell equation~4!.

The electromagnetic field can be decomposed in two
ferent ways. In the first one the electric field is decompo
into its transverse and longitudinal components:

EW 5EW T1EW L

where EW L is the curl-free nonretarded Coulomb potent
field:

EW L~rW;v!5E drW8
¹W 8¹W 8•PW ~rW8;v!

urW2rW8u
,

while EW T is the solution of the Helmoltz equation, obtaine
by using the relationship

¹W 3¹W 3¯5@2¹W 21¹W ¹W • ¯#.

The second decomposition is obtained by writing the to
electric field as

EW 5EW 01EW s ,

whereEW 0 is the general solution of the homogeneous pr
lem associated with Eq.~4! @for PW (rW;v)50] and EW s is a
special solution of the same equation.

From the knowledge of the homogeneous problem so
tion we can obtain the Green functions that satisfy the
lowing heterogeneous equation:

F¹W 3¹W 31
v2

c2 GGJ ~rW,rW8;v!5d~rW2rW8!, ~5!
20531
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and this allows us to change the integro-differential equat
~4! into the following integral equation:

EW ~rW;v!5EW 0~rW;v!2
v2

c2 E drW8GJ ~rW,rW8;v!

3E drW9xJ~rW8,rW9;v!EW ~rW9;v!, ~6!

which represents the Maxwell solution in implicit form.
In conclusion, the use of the Green function formalis

does not require additional boundary conditions. The ma
Hamiltonian, which takes into account longitudina
transverse~LT! splitting, requires the use of the Maxwe
transverse field for driving the polarization, while, in the ca
of a simple model Hamiltonian~like the hydrogenic one!, it
is simpler to use the total Maxwell electromagnetic field
order to take into account the dipole-dipole interaction al
We will adopt this latter choice in the whole paper.

III. POLARITONS IN MULTIPLE QUANTUM WELLS

The exciton envelope function in a multiple quantum w
system or superlattice requires different descriptions acc
ing to the overlap values between next-neighbor quan
wells. For nonoverlapping excitons in different quantu
wells, the orthogonality between exciton envelope functio
in different sites can be used. In this case two differe
mechanisms can delocalize the exciton-polariton in
whole sample. For a very large distance between the w
and its next neighbors, as for MQWs under the Bragg c
dition, the delocalization is due to the retarded transve
electric field, while for a very small distance, and under no
normal incidence, the nonradiative longitudinal electric fie
can also contribute via the dipole-dipole interaction.

A. Optical response of a cluster ofN quantum wells

Let us consider a cluster ofN semiconductor quantum
wells as shown in Fig. 1. The material system has cu
symmetry, and we can choose Cartesian coordinates with
Z axis along the growth direction, and, by using the cyl
drical symmetry of the quantum wells, we can adopt mix
coordinates (KW i ,Z) for the center-of-mass motion of th
Wannier exciton. In this case the 2D-exciton envelope fu

tions arew,(rW,Z)eiKW i•RW i/AS with variationally determined
eigenvalues

E,~K i!5Egap2E1S~, !1
\2

2M
K i

2 .

The dielectric tensor, composed of local and nonlocal con
butions, is

«a,b~Z,Z8;v!5@«bd~Z2Z8!14pxa~Z,Z8;v!#da,b ,
~7!

where a,b5x,y,z, «b is the bulk dielectric constant, an
taking into account the correspondenceT→X, L→Y, and
Z→Z we obtain the dielectric tensor for the three differe
polarizations.
1-3
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FIG. 1. Material system under study: cluster ofN quantum wells.
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From Eq.~2! the susceptibility is

4pxa~Z,Z8;v!5(
,

S0
a~v!F w,* ~Z!w,~Z8!

E,~K i!2\v2 iG,

1
w,~Z!w,* ~Z8!

E,~K i!1\v1 iG,
G , ~8!

whereS0
a(v)54pga Eke

2\2/(\v)2me , EK52upvcu2/me is
the Kane energy of the interband (valence→condition) tran-
sition, andga is the multiplicity of the state~for the heavy-
hole excitonga51/2 for T andL polarization, while for the
light-hole excitonga51/6 for T and L polarization andga
52/3 for Z polarization!.

Let us consider the heavy-hole exciton, where theZ com-
ponent of the electric dipole moment is zero@S0

a(v)50#. If
we take the same values for the dielectric constant of
background in quantum wells and in barriers («b), the Max-
well equations are greatly simplified. In fact, fora5x,y and
KW i[kxî , the integro-differential Maxwell equation becom

F d2

dZ2 1Kz
2GEa~Z;v!52

v2

c2 E x̃a~Z,Z8;v!Ea~Z8;v!dZ8,

~9!

whereKz5@K22K i
2#1/2 andK5 (v/c)A«b. For L polariza-

tion the electric fieldZ component isEz(Z;v)5 i (K i /Kz
2)

3(dEx(Z;v)/dZ) and the susceptibilities in Eq.~9! are
x̃y(Z,Z8;v)[xy(Z,Z8;v) and x̃x(Z,Z8;v)
[ (Kz

2/K2) xx(Z,Z8;v) for T and L polarizations, respec
tively.

The solution proceeds by computing the Green functio

F d2

dZ2 1Kz
2GG~Z,Z8;v!5d~Z2Z8!, ~10!

where the ‘‘bulk’’ Green function is G(Z,Z8;v)
5eiK zuZ2Z8u/(2iK z).

The formal solution of Eq.~9! is given in the integral
form
20531
e

Ea~Z;v!5Ea
0~Z;v!2

v2

c2 E dZ8G~Z,Z8;v!

3E dZ9x~Z8,Z9;v!Ea~Z9;v!,

and a great simplification of the problem comes from the f
that the kernel of this equation is separable with respec
the spatial coordinates~degenerate kernel!, and in the
rotating-wave approximation~RWA! can be written

xa~Z,Z8;v!5(
,

x,
a~v!w,* ~Z!w,~Z8!.

This property allows us to rewrite the solution as

Ea~Z;v!5Ea
0~Z;v!2

v2

c2 (
,

x,
a~v!I ,

a~v!G,~Z;v!,

~11!

where G,(Z;v)5*dZ8G(Z,Z8;v)w,(Z8) and I ,
a(v)

5*dZ8w,(Z8)Ea(Z8;v), which changes the Maxwell inte
gral equation into a system of coupled linear algebraic eq
tions.

In fact, by applying the operator*dZw,(Z) to Eq. ~11!,
we recover a self-consistent solution of the electromagn
field,

I ,
a~v!5(

,8
~DJ a

21!,,,8I ,8
0

~v!, ~12!

where the polariton matrixDJ a(v) is

~DJ a!,,8~v!5d,,,81
v2

c2 x,
a~v!M ,,8

a
~v! ~13!

and M ,,8
a (v)5*dZdZ8w,* (Z)G(Z,Z8;v)w,8(Z8) while

I ,
0,a(v)5*dZw,* (Z)Ea

0(Z;v) are the known quantities.

The matrixDJ a(v) is N3N, and the diagonal element
embody the self-energy of the exciton located in the quan
well of the ,th site of the sample, while the off-diagona
elements contain the interaction between wells in differ
sites (,Þ,8).

The homogeneous solution forZ→2` is
1-4
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Ea
0~Z;v!5AaeiK zZ1Bae2 iK zZ5AaeiK zZ ~14!

with Aa51, due to the normalization, andBa50 if we con-
sider the same background dielectric constant in the wh
space. Notice that in our procedure calculation we have u
the ‘‘bulk’’ Green function solution for each zone of th
sample with the same background dielectric constant; a
ward we impose the Maxwell boundary condition at the s
faces. A different procedure requires the use of the Gr
function available for the whole range ofZ values;22 in this
second case the optical response is computed as the lim
value (Z→6`) of the electric field. The first option is mor
flexible than the second one, because it separates the M
well solution in each slab from the matching between diff
ent slabs of the layered system, and it will be adopted in
present calculation.

If we taked, as the distance of the, site from theZ50
surface, andw,

0(Kz) is the Fourier transform of the excito
envelope function evaluated forrW50 and computed with re
spect to the center of symmetry of the,th quantum well, the
quantityG, for Z→2` is

G,~Z→2`;v!5 lim
Z→2`

@e2 iK zZw,
0~Kz!e

iK zd,/~2iK z!#.

~15!

Therefore, the total electric field is

Ea~Z→2`;v!5 lim
Z→2`

@eiK zZ2e2 iK zZDa~Z;v!#,

~16!

where the quantity

Da~Z→2`;v!5
v2

c2 (
,,8

x,
a~v!

2iK Z
eiK Z(d,81d,)w

,

0~KZ!

3~DJ a
21!,,8~v!w,8

0
~KZ! ~17!

is the field polarization on the surface, and in this case is a
the reflection amplitude of the system.

For Z→1`,

G,~Z→`;v!5 lim
Z→`

@eiK zZw,
0~2Kz!e

2 iK zd,/~2iK z!#

and

Da~Z→`;v!5
v2

c2 (
,,8

x,
a~v!

2iK Z
eiK Z(d,82d,)w,

0~2KZ!

3~DJ a
21!,,8~v!w,8

0
~KZ! ~18!
20531
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and the electric field is

Ea~Z→`;v!5 lim
Z→`

eiK zZ@12Da~Z→`;v!#, ~19!

where the quantity in the square brackets is the transmis
amplitude of the system.

Finally, the absorption is given by

Aa~v!512uDa~Z→2`;v!u22u12Da~Z→`;v!u2.
~20!

Now, if we consider the vacuum-bulk dielectric discontinui
on the surface atZ50, the homogeneous solution on th
surface is the same as Eq.~14!, but with BaÞ0.

Therefore

G,~Z50;v!5 lim
Z→01

@e2 iK zZw,
0~Kz!e

iK zd,/~2iK z!#

and, the total electric field on the surface is

Ea~Z→01;v!5 lim
Z→01

Aa$eiK zZ2e2 iK zZDa~Z;v!%,

~21!

where the polarization field on the surface is the quan
given in Eq.~17!.

The electric field in the vacuum side (Z,0) is

Ea~Z;v!5eiqzZ1r ae2 iqzZ

whereqz5@v2/c2 2K i
2#1/2 and, by imposing the Maxwell’s

boundary conditions at the surface (Z50), we obtain the
reflectivity for a5y⇒S anda5x⇒P:

r a~v!5
r a

02Da~v!

12r a
0Da~v!

~22!

where r a
0 is the unperturbed reflectivity at the surface, a

the amplitudesAa(v) are

Ay~v!5
2qz

qz1Kz
@12r S

0Dy~v!#21,

Ax~v!5
2«bKz

«bqz1Kz
@12r p

0Dx~v!#21. ~23!

The diagonal elements of the polariton matrix have
simple form~in the RWA!
D,,,
a ~v!511

v2

c2 x,
a~v!M ,,,

a ~v!

5
Egap2Eex~, !1 ~\2/2M !K i

22\v2 iG,1 ~v2/c2!S0
aM ,,,~v!

Egap2Eex~, !1 ~\2/2M ! K i
22\v2 iG,

~24!
1-5
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and Spol(v)5S8(v)1 iS9(v)5 (v2/c2)S0
aM ,,,(v) is the

polariton self-energy for the single quantum well. For the
exciton envelope function

w,~Z!5N,FcosS p

L
~Z2d,! D G2

the diagonal elements are

M ,,,~v!5Re@M ,,,~v!#1
1

2iK z
@w,

0~Kz!#
2

while the off-diagonal ones, embodying the interaction b
tween different quantum wells are M ,Þ,8(v)
5 (1/2iK z)w,

0(Kz)w,8
0 (Kz)e

iK zud,2d,8u.

The quantity of Eq.~17! is

Da~v!5
v2

c2 (
,

x,
a~v!

@w,
0~Kz!#

2

2iK z

3(
,8

@DJ a
21~v!#,,,8e

iK z(d,1d,8). ~25!

In order to disentangle in this quantity the single quant
well contribution from the total interaction, let us decompo
the matrix of Eq.~24! as a sum of its diagonal and of
diagonal elements:

D,,,8~v!5D,,,~v!d,,,81D
,,,8

~v!~12d,,,8!

5A,,,81B,,,8 ;

therefore,DJ5AJ1BJ5AJ@ IJ1AJ21BJ #5AJCJ , where theAJ ma-
trix is diagonal, and its nonzero elements are the single qu
tum well contribution to the surface electric field; theCJ ma-
trix has one along the diagonal, while its off-diagon
elements are the polariton well-well interactions. Sin
DJ215CJ21AJ21 and the matrix elements are

~DJ21!,,,85(
,9

~CJ21!,,,9~AJ21!,9,,8

5(
,9

~CJ21!,,,9~D,8,,8!
21d,9,,8

from Eq. ~25! we obtain

Da~v!5
v2

c2 (
,,,8

x,
a~v!

@w,
0~Kz!#

2

2iK z
~CJ21!,,,8~D,8,,8!

21

3eiK z(d,1d,8). ~26!

For ,5,8 the matrix elements (CJ21),,,8 can be decom-
posed into irreducible contributions by Feenber
expansion,29

~CJ21!,,,5
C,

C
5

1

c,,,
F12

F,

C G ,
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whereci j are the elements of theCJ matrix, C is its determi-
nant, andC, is the determinant of the minor ofCJ obtained
by suppressing the,th row and column;F, is the Feenberg
irreducible decomposition of the matrix, namely,

C5c,,,C,2(
j Þ,

c,, j cj ,,C,, j1(
j Þ,

(
iÞ,
iÞ j

c,, j cj ,ici ,,C,, j ,i2¯

5c,,,C,1F,,

where in our casec,,,51, andC,,i , j ,... is the determinant of
the minor of CJ obtained by suppressing the (,,i , j ,...)th
rows and columns.

Finally, the quantityDa(v) can be decomposed into d
agonal and off-diagonal components, and, moreover, in
diagonal component we can single out the contribution of
noninteracting quantum wells, namely,

Da~v!5
v2

c2 (
,

(
,8Þ,

x,
a~v!

@w,
0~Kz!#

2

2iK z
~CJ21!,,,8

3~D,8,,8
a

!21eiK z(d,1d,8)

2
v2

c2 (
,

x,
a~v!

@w,
0~Kz!#

2

2iK z
@Fa

, ~v!/C~v!#

3@D,,,
a ~v!#21ei2Kzd,

1
v2

c2 (
,

x,
a~v!

@w,
0~Kz!#

2

2iK z
@D,,,

a ~v!#21ei2Kzd,.

~27!

Notice that the third term on the right side is the interacti
between the electromagnetic field andN noninteracting
quantum wells located at, sites of the sample, namely,

DS
a~v!5(

,
D,

a~v!

5
v2

c2 (
,

x,
a~v!

@w,
0~Kz!#

2

2iK z
@D,,,

a ~v!#21ei2Kzd,.

~28!

This contribution is essentially a ‘‘scale factor’’ of the clu
ter; in fact, its value scales as the sum of the single-w
contributions.

The second term of Eq.~27! embodies diagonal polariton
effects not reducible to the noninteracting contribution of E
~28!. Finally, the first term is an off-diagonal term connectin
a well with a different well of the system. In conclusion, th
decomposition ofDa(v) is

Da~v!5DOD
a ~v!1DD

a ~v!1DS
a~v!. ~29!

The analysis of the evolution withN of the square modulus
of the quantities quoted in Eq.~29! for a cluster ofN iden-
tical quantum wells under the Bragg condition~see Fig. 1! is
shown in Fig. 2. The physical parameter values used in
1-6
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SPATIAL DISPERSION EFFECTS ON THE OPTICAL . . . PHYSICAL REVIEW B 69, 205311 ~2004!
calculation are given in Table I. These values are chosen
close to those of the AlGaAs/GaAs~001! system. Moreover,
for describing the radiation-matter interaction of the syste
a very small nonradiative homogenous broadening is ta
(GNR510212 eV).

The calculation is performed at the energy of the exci
resonance and the values are normalized to the square o
quantum well number itself. Notice that the noninteracti
quantum well termDS

a(v) @Eq. ~28!# is constant since it
scales withN as discussed before@circles in Fig. 2~a!#. Un-
der resonance condition, the diagonal termDD

a (v), sub-
tracted from the noninteracting well contribution, has t
same value as the off-diagonal term as is shown in Fig. 2~b!,
and these two quantities reach their asymptotic values v
fast, underlining that the Bragg phase conditions are reac
for a rather small number of quantum wells~aboutN520).
Finally, the electric field at the surface decreases with a 1N2

behavior as expected@squares in Fig. 2~a!#.

FIG. 2. Square modulus of polarization field on the surfa
performed at the energy of exciton resonance as a function of
quantum well numberN and normalized to the square of the qua
tum well number itself.~a! Circles, single quantum well contribu
tion DS

2/N2; squares, total termD2/N25(DS1DD1DOD)2/N2. ~b!
Diagonal and off-diagonal termsDD/OD

2 /N2.
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B. Polariton dispersion curves for 1D resonant photonic
crystal

Let us consider a 1D lattice as shown in Fig. 1 forN
→` where the dielectric function modulation is due to t
quantum wells and barriers.

The polariton dispersion curve is computed by impos
the boundary conditions at the quantum well surfaces loca
at the site 1, and the periodicity condition as for the norm
photonic Kronig and Penney model. We observe that
electric field @see, for instance, Eq.~14!# computed at the
well surfaces in the site 1 and that in the site, differ only by
a phase translation due to the Fourier transform of the e
ton envelope function; all the other quantities depending
the spatial dispersion effect,@namely, the self-energy and th
z-dependent functionG,(Z,v)] are site independent due t
the uZ2Z8u difference present in the ‘‘bulk’’ Green function
After some algebra, the polariton dispersion curves are gi
by the real part of the following complex equation:

cos~Kd!5
~kz1qz!

2

8qzkz«
„eiqz(d2Lw)$eikzLw@«2 iS9~v!#

2r 0
2@«1 iS9~v!#e2 ikzLw22iS9~v!r 0%

1e2 iqz(d2Lw)$@«1 iS9~v!#e2 ikzLw

2r 0
2eikzLw@«2 iS9~v!#12iS9~v!r 0%… ~30!

with, r 05(kz2qz)/(kz1qz) and \v02\v2 iG11S(v)
5«1 iS9(v), whereS(v)5S8(v)1 iS9(v) is the polar-
iton self-energy of a single quantum well.

Finally, for the special caseqz5kz the system is greatly
simplified:

« cos~Kd!5« cos~qzd!1S19~v!sin~qzd!, ~31!

and, if we neglect the exciton contribution to the dielect
susceptibility, we recover the photonic Kroening and Penn
result for dielectric constant modulation, namely,

cos~Kd!5cos~kzLw!cos@qz~d2Lw!#

2
~kz

21qz
2!

2qzkz
sin~kzLw!sin@qz~d2Lw!#. ~32!

The polariton dispersion curves are computed by taking
same dielectric constant value for wells and barriers~Table
I!; the numerical results are given in Fig. 3, where the d
persion curve behavior at the band edges is also shown i
expanded scale in Figs. 3~b! and 3~c!. The contribution due
to the exciton-polariton is the appearance of a third curve
\v01S8(v), whereS8(v) is the radiative shift due to the
exciton-polariton self-energy of a single well. This curv
drops in the middle of the two dispersion curves present a

,
he

TABLE I. Physical parameter values.

«b512.6 LW58 nm
\v051.5152 eV d,112d,5l(v0)/2
S9(v0)50.033 meV d15l(v0)/2
1-7
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L. PILOZZI, A. D’ANDREA, AND K. CHO PHYSICAL REVIEW B 69, 205311 ~2004!
in the dielectric photonic Kronig-Penney model. In Fig. 3~d!
the disappearance of the exciton-polariton radiative shif
the band edge~p/d! is also shown.

In the present case, where the background dielectric c
stants are the same for wells and barriers, all the disper
curves are due to the interplay between the background
electric constant and the dispersive part of the nonlocal
citon dielectric function. This dispersive component is lar
at the exciton resonant energy, while for the higher energ
we observe the appearance of higher energy narrow gaps
to the small value of the real part of the exciton dielect
function, and obviously the disappearance of the central
persion curve. Notice that for the condition of Eq.~30! the
dispersion curves of a 1D resonant photonic crystal look
same as those of the photon bulk dispersion@see Fig. 3~a!#,
except for the appearance of the central curve; in rea
great differences appear in an expanded scale at the
symmetry points, as shown in Figs. 3~b! and 3~c! for the
resonant and the off-resonant energy, respectively. The
ton bulk dispersion curves cross the boundary of the B
louin zone atn\v0 due to the Bragg condition as expect
@see Figs. 3~b! and 3~c!#.

These results underline the importance of the use of a
behaved dielectric function also for photon energy very
from the resonance energies of the system.

IV. RESULTS AND DISCUSSION

The reflectivity and absorbance spectra as a function
the QW numberN, for the system given in Fig. 1, show
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three different behaviors, namely,~i! the super-radiant re
gime for 2,N,80, ~ii ! the 1D resonant Bragg reflector fo
80,N,500, and~iii ! the 1D resonant photonic crystal lim
~for N→`).

A. Super-radiant regime vs 1D Bragg reflector

The reflectivity spectra, computed self-consistently,
different quantum well numbers from the super-radiant to
1D Bragg reflector behavior are shown in Fig. 4~a!. The
characteristic line shape modification from Lorentzian-
Bragg-reflector-like, due to the increase of the quantum w
number, is clearly observed.

The half width at half maximum~HWHM! of the reflec-
tivity as a function of quantum well number (N51 – 500) is
given in Fig. 4~b!. The behavior of the curve is usually ex
plained by taking into account that three different zones
observed, namely,~i! in zone I the linear behavior is con
nected with the super-radiant regime, while~ii ! zone II is the
transition zone, where the super-radiant mode redistribu
its radiative interaction among all the levels of the syste
and, finally, ~iii ! zone III is the saturation zone, where th
reflectivity shows the Bragg reflector behavior@see Fig.
4~a!#. Notice that this interpretation is not exaustive of all t
phenomena involved in the optical response of these
tems, as we will point out in the present work.

In order to go a bit deeper into understanding the excit
polariton behavior in Bragg MQWs, let us consider the a
sorbance of the system, given in Eq.~20!, as a function of
well number.
-

n
-
g

FIG. 3. ~a! Polariton disper-
sion curves of a 1D resonant pho
tonic crystal.~b!, ~c!, ~d! polariton
curves in expanded scales. I
~b!,~c! the dashed line is the pho
tonic curve obtained by neglectin
the exciton contribution.
1-8
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SPATIAL DISPERSION EFFECTS ON THE OPTICAL . . . PHYSICAL REVIEW B 69, 205311 ~2004!
In Fig. 5 the absorbance forN51 – 80 is shown. We ob-
serve the presence of only one absorbance peak whose
~total absorbance! remains constant on increasing theN

FIG. 4. ~a! Reflectivity spectrum for a 1D array ofN identical
quantum wells for 1,N,400. ~b! Half width at half maximum of
the reflectivity as a function of quantum well number.

FIG. 5. Absorbance as a function of quantum well number in
super-radiant regime: 1,N,80.
20531
rea

value, and this assures us that it is the only bright mode
the system. Furthermore, the linear behavior of the broad
ing of the absorbance peaks@see Fig. 6~a!# is usually inter-
preted as a fingerprint of super-radiant manifestation.

Above this limit value (N.80), the absorbance pea
splits into two sidebands appearing at the border of the
flectivity ‘‘stop band’’ of the system@see Fig. 6~b!#. Since the
so called ‘‘dark modes’’ become bright,12 in coincidence with
their energies the optical spectrum shows additional d
which strongly modify the ‘‘stop band’’ for energy value
close to the resonance energy. In Fig. 7 the energy positio
the reflectance dips, computed in the transition region@zone
II of Fig.4 ~b!# as a function of quantum well number,
reported, and by increasing the well numberN, the energy
spreading of the curves clearly underlines the switching
of the radiation–dark mode interaction. In principle, this e
ergy spreading should be as large as the radiative shift
single quantum well, and the modes are localized betw
\v01S8(v0) and \v0 , as will be discussed in the nex
section.

In Fig. 8 some of the absorbance peaks are shown for
case N5200, and also the reflectivity and transmittivit
curves are reported in the same pictures. The half width

e

FIG. 6. ~a! Broadening of the absorbance peaksGA for 1,N
,80. ~b! Absorbance of the system for 80,N,300.
1-9
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L. PILOZZI, A. D’ANDREA, AND K. CHO PHYSICAL REVIEW B 69, 205311 ~2004!
half maximum of the absorbance peaks decreases from a
25 times the nonradiative broadening to the nonradia
broadening value for a photon energy that ranges from\v0 ,
to \v01S8(v0). This effect is connected with the conve
sion of the polariton self-energy of the system from real
imaginary character on approaching the resonance en
Therefore, a large part of the (N21) electromagnetic mode
of the system are embodied in the peaks close to this ene
The same behavior is also observed for reflectance and tr
mittance peaks.

These results clearly underline that, for a large 1D clus
of quantum wells, the exciton-photon interaction redistr
utes its intensity among all theN states of the system, an

FIG. 7. Energy position of the reflectance dips computed in
transition region.
20531
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the exciton-polariton self-energy, due to the well-well inte
action, changes from a purely imaginary contribution for t
super-radiant regime to a real contribution for a 1D reson
photonic crystal.

Finally, in the next section the optical properties of
MQWs under Bragg conditions will be discussed for the 1
resonant photonic crystal limit (N→`).

B. 1D resonant photonic crystals

Let us consider a 1D resonant photonic crystal w
different background dielectric constant in the we
(«b512.6) and in the barriers («053.0). In this case two
different situations can be considered, namely,~i! the lattice
periodicity d5l/2 is under the Bragg condition for the ex
citon energy, and~ii ! it is out of resonance. In Fig. 9 th
photonic bands~dashed line!, due to the modulation of the
background dielectric constant, are shown together with
polariton curves~solid line!. In an expanded scale of th
dispersion curves at the boundary of the Brillouin zone~not
reported here! the central and upper dispersion curves a
seen not to touch. Furthermore, the photonic and polarito
gaps do not coincide due to the contribution of the real p
of the exciton susceptibility as discussed in Sec. III B.

In Fig. 10 the calculation is performed by taking the p
riodicity different from the Bragg condition. In this case, th
normal exciton-polariton splitting is observed close to t
exciton energy, but the photonic gap is moved toward
low energy side with respect to the case of backgrou
modulation due to the exciton contribution.

V. CONCLUSIONS

The self-consistent theory of the optical response fo
nonlocal dispersive medium in the semiclassical framewo

e

FIG. 8. Intensity of the reflectivity~straight line!, transmittivity ~dotted line!, and absorbance~filled area! for the N5200 case.
1-10
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and the additional boundary conditions are briefly review
in the present paper.

The optical response of a cluster of quantum wells un
the Bragg condition is studied as a function of quantum w
numberN from the super-radiant regime, for rather smallN
values, to the 1D resonant photonic crystal limit (N→`).

The absorbance computed for a MQW system of AlGa
GaAs ~001! shows three different behaviors, namely,~i! the
super-radiant regime for a 1D cluster as large asN<80, ~ii !
the 1D Bragg reflector behavior forN.80, where the
radiation-matter interaction redistributes its intensity amo
different modes of the system; and, finally,~iii ! the limit of a
1D resonant photonic system (N→`) or very large cluster
size (N.400), where the absorbance value becomes van
ingly small. For a deeper understanding of the light media
interactions among the wells, we performed a decomposi
of the polaritonic matrix. It has allowed us to separate in
optical response the term due toN noninteracting QWs from
the interaction terms. In addition, in the interaction term t
contributions has been singled out: one describing the s
interaction of the well and the other the residual interactio
among different wells. Notice that the latter two contrib
tions give the same values close to the exciton resonanc
the computed system.

Finally, the polariton dispersion curves for a 1D reson
photonic crystal (N→`) are computed, and the effects of th
polariton and of the dielectric background modulation on

FIG. 9. Polariton dispersion curves of a 1D resonant photo
crystal of periodicityd5 (v0 /c)A«0. The dashed line is the pho
tonic curve obtained by neglecting the exciton contribution.
at
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dispersion curves are discussed. The importance of the u
a well behaved microscopic nonlocal dielectric function f
photon energy far from the resonance is pointed out us
selected numerical examples.
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FIG. 10. ~a! Polariton dispersion curves of a 1D resonant ph
tonic crystal of periodicityd5 (v0 /c)A«b. ~b! Polariton curves in
an expanded scale.
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