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Intersubband gain in a biased superlattice
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Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding
approximation. Since the levels are equipopulated, the nonzero response appears beyond the Born approxima-
tion. Calculations are performed in the resonant approximation with scattering processes exactly taken into
account. The absorption coefficient is equal zero for the resonant excitation while a negative ab&ari®on
absence of level repopulatiptakes place below the resonance. A detectable gain in the THz spectral region is
obtained for the low-doped GaAs-based superlattice and spectral dependencies are analyzed taking into ac-
count the interplay between homogeneous and inhomogeneous mechanisms of broadening.

DOI: 10.1103/PhysRevB.69.205309 PACS nunider73.21.Cd, 78.45:h, 78.67—n

[. INTRODUCTION Moreover, the relationy, ,~sgn(Ae) is obtained under the

The examination of stimulated emission due to intersub!€Placements —Ae—e. Taking into account thaf, de-

band transitions of electrorigonopolar laser effegtwhich ~ C'€ases witle, one immediately obtaing,, <0 if Ae<0,

has been carried out during the previous decade, has resultb~ @ 9ain appears in the BSL with disorder described be-
in mid-IR lasers(see reference in Refs. 1 angl Recently, yond the Born approximation. It should_ be stressed that
the THz laser has also been demonstratédihe standard POpulations of levels are the same and gain takes place with-
laser scheme based on vertical transport through the quantu@iit repopulation of levels. In the Born approximation, when
cascade structures, which incorporates the injector and activife spectral function is replaced @yfunction, one obtains
regions, has been used in both cases. Population inversign,=0.

appears in the active regions and leads to stimulated emis- In this paper, we evaluate Ef{l) for the low-doped BSL
sion for the mode propagating along mid-IR or THz wave-taking into account the intrawell scattering processes exactly.
guide. In contrast to this, the vertical current in a biasedConsideration in Sec. Il is based on the tight-binding ap-
superlattice(BSL) with the Wannie-Stark ladder, which ap- proach, which corresponds to the sequential tunneling pic-
pears under the conditionT2<eg’ (hereeg/# is the Bloch  ture, the Green’s function formalism, and the quasiequilib-
frequency andr stands for the tunneling matrix element be- rium distribution of electrons over the levels with finite
tween adjacent QWJs does not change the populations of proadening. Discussion of spectral dependencies and numeri-
the levels. Due to this, the consideration based on the goldegy| estimates are performed in Sec. Ill taking into account
rule approach gives a zero absorption. At the same time, fofe interplay between homogeneous and inhomogeneous
the wide minigap SL, with the width B>¢g, a negative  mechanisms of broadening. The last section includes a dis-

differential con(_juctivity, i._e.., gain due to Bloc_h oscillations, «,ssion of the approximations used and conclusions.
takes placé.This contradiction and the question about THz

gain without inversion are discussed in Ref. 9, which is
based on the simplified approaches; see (#§) below. In
addition, agreement between the numerical results for the
wide-miniband and hopping regimes of high-frequency re-
sponse was noted in Ref. 10.

Since there is no well-defined dispersion relation between
energy and momentung, and p, beyond the Born approxi-
mation, one has to consider the intersubband transitions
based on the spectral density functigk,(p), which is a
finite-width peak!! Let us consider first the two-level model
with an identical distribution function for both levels,. We
take into account the off-resonant transitions in the rotating
wave approximation with a nonzero detuning enetyy
=hw— eg With respect to the level splitting energy , as it
is shown in Fig. 1a). As is clear from the scheme of transi-
tions in Fig. 1b), the intersubband absorption is given by

dp - FIG. 1. Off-resonant intersubband transitiof@® and corre-
aAs“f f deA(P)A, 2. (P)(Foene—F,). sponding spectral density functiorib). The dashed curves show
(271'?’1)2 — o distribution functions and arrows indicate the transitions with posi-
(1) tive and negative detuning energies.
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Il. FORMALISM Note that for the collisionless casg,(.;—p,;)—0, so that

The intersubband response of a biased SL on a highe response vanishes ahglis only nonzero due to differ-
frequency electric field is evaluated below taking into ac-8NCes in scattering processes for adjacent QWs. In addition,
count both homogeneous and inhomogeneous mechanisrffy the resonant approx,|r\'nat|o|'ﬁw—83|<sB, one can ne-
of broadening. Within the framework of the tight-binding glect the contribution oBp{~.
approach we describe the electron states in BSL using the Writing sp ... in Eq. (4) in the coordinate representa-
matrix Hamiltonian: tion, we obtain the current densit#) as|,=(i2ev, /L3
X((Z,Jdx8p!{")(x,x))). Next, we describe the electron
states in thea'th QW by the use of the eigenstate problem
(p%2m+V,,) i =er, 0, Where a quantum numbep

s ) ) o ) marks an in-plane state. Using this basis, we transfbym
wherep“/2m is the in-plane kinetic energy operatatjs the  niq

effective massV,, is a random potential energy in théh

"2

p
_+er+rSB

ﬁrr’: om

5rr’+T(5rr’fl+5rr'+1)- (2)

QW, r=0,%£1, ..., which are statistically independent in 2ep
each QW. The Bloch energyg=|e|FZ, appears in Eq(2) l,=i 3L > 5p§*)(y,v’)J dxyl . kr, (7)
due to the shift of levels in the SL with periad under a L rvy’

homogeneous electric field; see Ref. 12. The perturbation
operator due to a transverse fidl&, exp(—iwt)+c.c] is

written in terms of vector potential aE'é\h”,exp(—iwt)
+H.c.], where the nondiagonal matrish,,, is given by

and the linearized kinetic equation takes the form
(8r+1v_8rvr+SB_fLw_i)\)5p$+)(V,VI)

eUJ_ v v
ev, = o Eilfera, o 1] X0t @®

’5\hrr’= Ei(Srrr—1F S 11) ()

o
) o Here N— +0 and we use the quasiequilibrium distribution
andv, =TZ/%. The high-frequency current density induced ~

. . : . =f , Wheref_ is the Fermi functi ith identical
by the perturbation(3), [1 exp(—iwt)+c.c], is determined P~ P72n+Vi, WNETeT 1S e Fermi funciion wiih Identica
by the standard formula chemical potentialsy, and temperatureg,., for any QW.

We introduce the conductivity,o,, according tol,
2ev, =o0,E, , and Eqs(7) and(8) give us

|w=i E <<Z SR('&\Pr+1r_’5‘pr—lr)>>! (4)

2(ev,)? ey, = Te,, ) QF
where 2 is due to spin, gp.. is the trace over in-plane 0u=l 3 E _ IR '
. . . : ol rvr' Ery1y— Erpr T E—R@—IN
motion, ({ ...)) is the averaging over random potentials ©)

V.4, andL? is the normalization volume.
The hl’g‘h-frequen_cy contrlbu'Flon to the density m_atrlx in Wherequr,zldez,b;’x* l//:’/x|2 is the overlap factor. Thus we
Eq. (4), [dp,r-exp(-iwt)+H.c], is governed by the linear- p4ye evaluated the expression for the resonant response with

ized equation: the scattering processes exactly taken into account.
. Below we consider the absorption coefficient introduced
= [N — A T - — . . . .
—iwdpy 1+ — (N, 8py = Oper Ny )+ —(8pysarr+ Opy—1pr according toe, = (47/c\e)Rea,, , wheree is the dielectric
h h permittivity, which is supposed uniform across the structure.
i In order to perform averaging in E¢P), we use the spectral
— 0Py —1— 0P 41) T %5h,r,(p,,—pr):0, (5)  density function in therth QW determined as4, .(x,X")

=307 g1 d(e,,—€),M so thatay, is written as follows:

Hereh,=p2/2m+V,,+reg describes an in-plane motion in

the rth QW and we use the steady state density matrix _2(27TevL)2
(po)ir1=6.11p: , i.€., we have neglected a weak nondiagonal  *2¢~ cewl 3
term which is responsible for the tunneling current tf(}g)ugh
the BSL. We restrict ourselves to the considerationx , , ,
contributions only, so that we can omiflT addendums in Eq. XJ dxf dx Z ({(Arr 1 (XD Ar o a0(X X))
(5). Thus, an independent equation &y!*)=3p, ., takes (10
the form

| dott, it

with Aw=¢g in the resonant approximation.

We turn now to averaging over short-range and large-
scale potentials taking into account that we are considering
SL under a homogeneous bias voltage. Due to this the aver-
eU_LE (Prat—pr) ©6) aged characteristics of scattering processes, both for homo-
ho L\Pr=1T Pl geneous and inhomogeneous mechanisms, do not depend on

S N
—iwdp{™)+ (21 8p(7) = 3p{*hy)
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FIG. 2. Transformation of the line shape A{E) depending on 1.0
the contributions of different broadening mechanisms: (1) homoge- R
neous broadening, with'=0 and AE=1v, (2) inhomogeneous \c“ E. -
broadening, withy=0 and AE=T", and (3) both contributions, B‘,ﬁ 0.5- , T
with y=T andAE=y+T. i i S
the QW number. It is convenient to use the Wigner repre 08 10 15 20 25 30 a5 20

sentation and the average of the spectral functions ir{ E. (b) ~As/2y
takes the form
FIG. 3. Dimensionless gair- a,,/a, versus detuning energy
—Aely for the homogeneous broadening cabe=(Q). Panelqa)
dxdx’
f f 2 (A1 (XD Ar oo ae (X X)) and (b) correspond to degenerateu/(y=3) and nondegenerate
L3 = rrLelt Lemaetty (u/y=—1) electrons. Solid, dashed, and dotted curves correspond
to T./y=0.3, 1, and 3, respectively.

1 dp

:ZJ (2 ﬁ)z<<Ar+l,£(p1X)Ar,szg(pvx)>>- (11) . "

i aAEZOtOJ dsJ déA(E—e+Ael2)A(éE—e—Acel2)
— 0

Here we took into account thé{ . . .)) does not depend on

x andL~12,=Z"1. Performing the averaging over short- X(fo-rer2™ foracr2)

range potential, we obtain the spectral functiofy ,(p,x)) ) o ) .
=ImGR_(p,x)/m through the retarded Green's written in With the characteristic absorptioa,, introduced as follows:

the W|gher representation as aOZ(EZ/ﬁC)mvf/\/EsBZ. NOte, that for the collisionless
case the product of spectral functions under the integrals is

R . transformed into8(é—e+Ael2)6(é—e—Ael2) and one
Gro(PX)=(gp—Wrx—e—%) " (12 obtainsa,,=0.

14

Herew,, is a large-scale part of potential in thth QW and
S is the self-energy function arising from the short-range IIl. RESULTS
scattering(see similar calculations in Ref. 13Below we In this section, we discuss the spectral dependencies
consider the case of scattering by zero-radius centers WhecpA la, given by Eq.(14). Sincea,,=—a_,,, we con-
Im2 does not depend om, p or x. ReX, which is logarith-  gjger only the gain regiomye<0. It should be noted that the
mically divergent without a small-distance cutoff, is included gxact description of scattering prosesses distinguishes the
into the detuning energiie, so that the only homogeneous cjcylations performed from Ref. 9. Moreover, the spectral
broadening contribution-iy, appears in the denominator dependencies of Eq14) for the homogeneous broadening
of Eq. (12. Performing the averaging over large-scale55¢ {=0) given by
potentials we write the spectral densityh(e,—¢)
=((A; +(p,x))), in the integral form:

o4 0 ]

aAS:—Zf dsf dé
7o)~ 0
2 _
Y (fe—ASIZ fs+As/2)

8 [(é—e+Ael2)?+y?[(é—e—Ael2)?+ ?]

o dt . _ .
A(E):f_ 57 el(E—ly)t/he—(Ft/ﬁ)2/2+C.C.' (13)

wherel'= \/(w?) is the inhomogeneous broadening energy.
Figure 2 shows how the symmetric spectral density peak (19
[i.e., A(E)=A(—E)] changes transforming from a Loren-

zian towards a Gaussian lineshape upon an increase in tlte not coincide with Eq919) and(24) in Ref. 9. The double

contribution of the inhomogeneous broadening. integral over the total and kinetic energiesand ¢, remains
Using the in-plane isotropy of the problem, we finally in Egs. (14) and (15) while the only summation over mo-
transform Eq.(10) into menta was carried out in Ref. 9 because the approach used
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FIG. 4. The same as in Fig. 3 for the inhomogeneous broadening

case ¢/=0) depending on parametergT’ and T, /T. FIG. 5. Dimensionless gaif- a,,/a, versus—Ae/2(y+T)

for the casey=TI". Panels(a) and (b) correspond to degenerate

does not take into account the absence of the fixed relatioff/2y=3) and nondegeneraten(2y=—1) electrons. Solid,
between energy and momentum beyond the Borrgashgd, and dotted curves correspond #2y=0.3, 1, and 3, re-
approximation:t# spectively.

First, we examinex,,/«, for the cases of homogenous
(I'=0) and inhomogeneousy& 0) broadening. The dimen- NM. For the level splitting energyg=10 meV, which is
sionless gain is plotted for the cases of degendFaites. 3a) correspondent to the transverse fi€le 6.7 kV/cm, one ob-
and 4a)] and nondegeneraf€igs. 3b) and 4b)] electrons  tainsa,=6.6 cn !, so that the peak gain appears to be be-
with the concentrations given in Table I. In such calculationgween 5 and 20 cm' for different parameters used in Figs.
we have used the parameters of GaAg/Sla, As-based 3—5. Note, thatr, T2 in the framework of the tight-binding
BSL with the periodZ=15 nm. The broadening energy, approximation and gain increases rapidly for the narrow bar-
or/andT is chosen to be 0.5 meV, so that the electron temlier case, for example gain exceeds the experimentafdata,
peratureT, appears to be 1.5-15 K. According to these data] =1 meV. The density of steady-state tunneling current
concentration increases wiff, for all cases but the peak through the BSL with the above used parameters does not
gain varies in a different manner: quenching or enhancemer@xceed 0.1 kA/crh
of gain occurs for degenerate or non-degenerate electrons
respectively. High-energy tails of gain and lower peak values
take place for the homogeneous broadening case, when Eg.

(13) has a Lorentzian shape. For the inhomogeneous broad- In summary, we have considered the resonant intersub-
ening caseA(E) has a Gaussian shape amg, appears to band response of a biased SL and have described gain be-
be a sharper function, with a greater maximal value. yond the Born approximation. Taking into account the inter-

In Fig. 5 we present the case=I", plotting the dimen- play between homogeneous and inhomogeneous broadening
sionless gain versude/2(y+T), where 2¢+1I') corre- we have analyzed the spectral and temperature dependencies
sponds to the total width of the spectral functid8). One  for the low-doped BSL. The absorption coefficient is equal to
can see both the same style of spectral dependencies and #eyo for the resonant excitation while a detectable gain in the
same temperature/concentration dependencies. MaximadHz spectral region is obtained below the resonance.
value of gain is founded to be greater for the cases of inho- Let us discuss the main assumptions used. The tight-
mogeneous or combined broadening. binding approach is valid under the conditieg=>2T which

Next we turn to estimates of the maximal gain for BSL is satisfied for the numerical estimates performed; note that
with T=0.5 meV, corresponding to the barrier width of 6 beyond the Born approximation the broadening can be com-

IV. CONCLUSIONS

TABLE I. 3D concentrations, measured in cfy versus dimensionlegs and T, for the cases plotted in
Figs. 3 [=0), 4 (y=0), and 5 '=1v).

Tel/(y,I) uly=3, uly=-—1, ull=3, ull=-1, ul2y=3, ul2y=-1,
r=o0 =0 y=0 v=0 '=y I'=y
0.3 3.3x10'° 8.8x 10 4x10' 1.6X 10 4x 10 8.2x 1015
1 3.4x 10 1.1x 10 4.1x 106 5.4x 101 4.1x10' 1.3x 106
3 4.2 10 1.5x 10 5.2x 106 2.2x10'° 5% 106 3.4x10'
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parable with the electron energy determined thropghnd  increases, are not taken into account here. This contribution,
T.. We restrict ourselves to the case of homogeneous fields well as consideration of intermediate-scale potential, re-
and concentration distributions neglecting a possible domainquire a special consideration in analogy with the case of a
formation due to the negative differential conductivity at low single QW6

frequencies® One can avoid instabilities in a short enough  To conclude, the simplifications listed do not change ei-
BSL because the THz modes propagate in the in-plane direther the character of the THz response or the numerical esti-
tions. In spite of the general expressidif)—(12) are writ-  mates for the gain. It seems likely that this contribution can
ten through an arbitrary self-energy functid@h the final  be found experimentally and more detailed numerical calcu-
calculations were performed for the model included scattertations are necessary in order to estimate a potential for ap-
ing by zero-radius centers and large-scale potential. Such plications.
model describes the interplay between homogeneous and in-
homogeneous broadening with the use of statistically inde-

pendent random potentials in each QW. The Coulomb corre-

lations, which modify the response as the concentration This work was supported by Science Foundation Ireland.
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