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Intersubband gain in a biased superlattice
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~Received 3 July 2003; revised manscript received 2 September 2003; published 13 May 2004!

Intersubband transitions in a superlattice under homogeneous electric field is studied within the tight-binding
approximation. Since the levels are equipopulated, the nonzero response appears beyond the Born approxima-
tion. Calculations are performed in the resonant approximation with scattering processes exactly taken into
account. The absorption coefficient is equal zero for the resonant excitation while a negative absorption~in the
absence of level repopulation! takes place below the resonance. A detectable gain in the THz spectral region is
obtained for the low-doped GaAs-based superlattice and spectral dependencies are analyzed taking into ac-
count the interplay between homogeneous and inhomogeneous mechanisms of broadening.
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I. INTRODUCTION

The examination of stimulated emission due to inters
band transitions of electrons~monopolar laser effect!, which
has been carried out during the previous decade, has res
in mid-IR lasers~see reference in Refs. 1 and 2!. Recently,
the THz laser has also been demonstrated.3–6 The standard
laser scheme based on vertical transport through the qua
cascade structures, which incorporates the injector and a
regions, has been used in both cases. Population inve
appears in the active regions and leads to stimulated e
sion for the mode propagating along mid-IR or THz wav
guide. In contrast to this, the vertical current in a bias
superlattice~BSL! with the Wannie-Stark ladder, which ap
pears under the condition 2T!«B

7 ~here«B /\ is the Bloch
frequency andT stands for the tunneling matrix element b
tween adjacent QW’s!, does not change the populations
the levels. Due to this, the consideration based on the go
rule approach gives a zero absorption. At the same time
the wide minigap SL, with the width 2T@«B , a negative
differential conductivity, i.e., gain due to Bloch oscillation
takes place.8 This contradiction and the question about TH
gain without inversion are discussed in Ref. 9, which
based on the simplified approaches; see Eq.~15! below. In
addition, agreement between the numerical results for
wide-miniband and hopping regimes of high-frequency
sponse was noted in Ref. 10.

Since there is no well-defined dispersion relation betw
energy and momentum,« andp, beyond the Born approxi
mation, one has to consider the intersubband transit
based on the spectral density function,A«(p), which is a
finite-width peak.11 Let us consider first the two-level mode
with an identical distribution function for both levels,f « . We
take into account the off-resonant transitions in the rotat
wave approximation with a nonzero detuning energyD«
5\v2«B with respect to the level splitting energy,«B , as it
is shown in Fig. 1~a!. As is clear from the scheme of trans
tions in Fig. 1~b!, the intersubband absorption is given by

aD«}E dp

~2p\!2E2`

`

d«A«~p!A«2D«~p!~ f «2D«2 f «!.

~1!
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Moreover, the relationaD«}sgn(D«) is obtained under the
replacement«2D«→«. Taking into account thatf « de-
creases with«, one immediately obtainsaD«,0 if D«,0,
i.e., a gain appears in the BSL with disorder described
yond the Born approximation. It should be stressed t
populations of levels are the same and gain takes place w
out repopulation of levels. In the Born approximation, wh
the spectral function is replaced byd function, one obtains
aD«50.

In this paper, we evaluate Eq.~1! for the low-doped BSL
taking into account the intrawell scattering processes exa
Consideration in Sec. II is based on the tight-binding a
proach, which corresponds to the sequential tunneling
ture, the Green’s function formalism, and the quasiequi
rium distribution of electrons over the levels with finit
broadening. Discussion of spectral dependencies and num
cal estimates are performed in Sec. III taking into acco
the interplay between homogeneous and inhomogene
mechanisms of broadening. The last section includes a
cussion of the approximations used and conclusions.

FIG. 1. Off-resonant intersubband transitions~a! and corre-
sponding spectral density functions~b!. The dashed curves show
distribution functions and arrows indicate the transitions with po
tive and negative detuning energies.
©2004 The American Physical Society09-1
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II. FORMALISM

The intersubband response of a biased SL on a h
frequency electric field is evaluated below taking into a
count both homogeneous and inhomogeneous mechan
of broadening. Within the framework of the tight-bindin
approach we describe the electron states in BSL using
matrix Hamiltonian:

ĥrr 85S p̂2

2m
1Vrx1r«BD d rr 81T~d rr 8211d rr 811!, ~2!

wherep̂2/2m is the in-plane kinetic energy operator,m is the
effective mass,Vrx is a random potential energy in ther th
QW, r 50,61, . . . , which are statistically independent i
each QW. The Bloch energy,«B.ueuFZ, appears in Eq.~2!
due to the shift of levels in the SL with periodZ under a
homogeneous electric fieldF; see Ref. 12. The perturbatio
operator due to a transverse field@E'exp(2ivt)1c.c.# is
written in terms of vector potential as@dĥrr 8exp(2ivt)
1H.c.#, where the nondiagonal matrixdĥrr 8 is given by

dĥrr 85
ev'

v
E'~d rr 8211d rr 811! ~3!

andv'5TZ/\. The high-frequency current density induce
by the perturbation~3!, @ I vexp(2ivt)1c.c.#, is determined
by the standard formula

I v5 i
2ev'

L3 K K (
r

spi~dr̂ r 11r2dr̂ r 21r !L L , ~4!

where 2 is due to spin, spi . . . is the trace over in-plane
motion, ^^ . . . && is the averaging over random potentia
Vrx , andL3 is the normalization volume.

The high-frequency contribution to the density matrix
Eq. ~4!, @dr̂ rr 8exp(2ivt)1H.c.#, is governed by the linear
ized equation:

2 ivdr̂ rr 81
i

\
~ ĥrdr̂ rr 82dr̂ rr 8ĥr 8!1

T

\
~dr̂ r 11r 81dr̂ r 21r 8

2dr̂ rr 8212dr̂ rr 811!1
i

\
dĥrr 8~ r̂ r 82 r̂ r !50. ~5!

Here ĥr5 p̂2/2m1Vrx1r«B describes an in-plane motion i
the r th QW and we use the steady state density ma
( r̂o) rr 8.d rr 8r̂ r , i.e., we have neglected a weak nondiago
term which is responsible for the tunneling current throu
the BSL. We restrict ourselves to the consideration of}T2

contributions only, so that we can omit}T addendums in Eq
~5!. Thus, an independent equation fordr̂ r

(6)[dr̂ r 61r takes
the form

2 ivdr̂ r
(6)1

i

\
~ ĥr 61dr̂ r

(6)2dr̂ r
(6)ĥr !

.2 i
ev'

\v
E'~ r̂ r 612 r̂ r !. ~6!
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Note that for the collisionless case (r̂ r 612 r̂ r)→0, so that
the response vanishes andI v is only nonzero due to differ-
ences in scattering processes for adjacent QW’s. In addit
for the resonant approximation,u\v2«Bu!«B , one can ne-
glect the contribution ofdr̂ r

(2) .
Writing spi . . . in Eq. ~4! in the coordinate representa

tion, we obtain the current density~4! as I v5( i2ev' /L3)
3^^( r*dxdr r

(1)(x,x)&&. Next, we describe the electro
states in ther th QW by the use of the eigenstate proble
( p̂2/2m1Vrx)c rx

n 5« rnc rx
n , where a quantum numbern

marks an in-plane state. Using this basis, we transformI v

into

I v. i
2ev'

L3 K K (
rnn8

dr r
(1)~n,n8!E dxc r 11x

rn * c rx
n8L L ~7!

and the linearized kinetic equation takes the form

~« r 11n2« rn81«B2\v2 il!dr r
(1)~n,n8!

5
ev'

\v
E'@ f «r 11n

2 f «rn8
#E dxc r 11x

n c rx
n8* . ~8!

Here l→10 and we use the quasiequilibrium distributio
r̂ r5 f p̂2/2m1Vrx

, wheref « is the Fermi function with identica

chemical potentials,m, and temperatures,Te , for any QW.
We introduce the conductivity,sv , according to I v

5svE' , and Eqs.~7! and ~8! give us

sv5 i
2~ev'!2

vL3 K K (
rnn8

~ f «r 11n
2 f «rn8

!Qr 11,r
nn8

« r 11n2« rn81«B2\v2 il
L L ,

~9!

whereQr ,r 8
nn85u*dxc rx

n * c r 8x
n8 u2 is the overlap factor. Thus we

have evaluated the expression for the resonant response
the scattering processes exactly taken into account.

Below we consider the absorption coefficient introduc
according toav5(4p/cAe)Resv , wheree is the dielectric
permittivity, which is supposed uniform across the structu
In order to perform averaging in Eq.~9!, we use the spectra
density function in ther th QW determined asAr ,«(x,x8)
5(nc rx8

n * c rx
n d(« rn2«),11 so thataD« is written as follows:

aD«5
2~2pev'!2

cAevL3 E
2`

`

d«~ f «2D«2 f «!

3E dxE dx8(
r

^^Ar 11,«~x,x8!Ar ,«2D«~x8,x!&&

~10!

with \v.«B in the resonant approximation.
We turn now to averaging over short-range and lar

scale potentials taking into account that we are conside
SL under a homogeneous bias voltage. Due to this the a
aged characteristics of scattering processes, both for ho
geneous and inhomogeneous mechanisms, do not depen
9-2
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the QW numberr. It is convenient to use the Wigner repr
sentation and the average of the spectral functions in Eq.~10!
takes the form

E E dxdx8

L3 (
r

^^Ar 11,«~x,x8!Ar ,«2D«~x8,x!&&

5
1

ZE dp

~2p\!2
^^Ar 11,«~p,x!Ar ,«2D«~p,x!&&. ~11!

Here we took into account that^^ . . . && does not depend on
x and L21( r5Z21. Performing the averaging over shor
range potential, we obtain the spectral function^Ar ,«(p,x)&
5Im Gr ,«

R (p,x)/p through the retarded Green’s written
the Wigner representation as

Gr ,«
R ~p,x!5~«p2wrx2«2S!21. ~12!

Herewrx is a large-scale part of potential in ther th QW and
S is the self-energy function arising from the short-ran
scattering~see similar calculations in Ref. 13!. Below we
consider the case of scattering by zero-radius centers w
Im S does not depend on«, p or x. ReS, which is logarith-
mically divergent without a small-distance cutoff, is includ
into the detuning energyD«, so that the only homogeneou
broadening contribution,2 ig, appears in the denominato
of Eq. ~12!. Performing the averaging over large-sca
potentials we write the spectral density,A(«p2«)
5^^Ar ,«(p,x)&&, in the integral form:

A~E!5E
2`

0 dt

2p\
ei (E2 ig)t/\e2(Gt/\)2/21c.c., ~13!

whereG5A^wrx
2 & is the inhomogeneous broadening ener

Figure 2 shows how the symmetric spectral density p
@i.e., A(E)5A(2E)] changes transforming from a Loren
zian towards a Gaussian lineshape upon an increase in
contribution of the inhomogeneous broadening.

Using the in-plane isotropy of the problem, we final
transform Eq.~10! into

FIG. 2. Transformation of the line shape ofA(E) depending on
the contributions of different broadening mechanisms: (1) homo
neous broadening, withG50 and DE5g, (2) inhomogeneous
broadening, withg50 and DE5G, and (3) both contributions
with g5G andDE5g1G.
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aD«.aoE
2`

`

d«E
0

`

djA~j2«1D«/2!A~j2«2D«/2!

3~ f «2D«/22 f «1D«/2! ~14!

with the characteristic absorption,ao , introduced as follows:
ao5(e2/\c)mv'

2 /Ae«BZ. Note, that for the collisionless
case the product of spectral functions under the integral
transformed intod(j2«1D«/2)d(j2«2D«/2) and one
obtainsaD«50.

III. RESULTS

In this section, we discuss the spectral dependen
aD« /ao given by Eq.~14!. SinceaD«52a2D« , we con-
sider only the gain region,D«,0. It should be noted that the
exact description of scattering prosesses distinguishes
calculations performed from Ref. 9. Moreover, the spec
dependencies of Eq.~14! for the homogeneous broadenin
case (G50) given by

aD«.
ao

p2E2`

`

d«E
0

`

dj

3
g2~ f «2D«/22 f «1D«/2!

@~j2«1D«/2!21g2#@~j2«2D«/2!21g2#

~15!

do not coincide with Eqs.~19! and~24! in Ref. 9. The double
integral over the total and kinetic energies,« andj, remains
in Eqs. ~14! and ~15! while the only summation over mo
menta was carried out in Ref. 9 because the approach

e-

FIG. 3. Dimensionless gain2aD« /ao versus detuning energy
2D«/g for the homogeneous broadening case (G50). Panels~a!
and ~b! correspond to degenerate (m/g53) and nondegenerat
(m/g521) electrons. Solid, dashed, and dotted curves corresp
to Te /g50.3, 1, and 3, respectively.
9-3



tio
or

s
-

n

m
ta

k
e

ro
e
E

oa

d
im
ho

L
6

e-
s.

ar-
,
nt
not

ub-
be-

er-
ning
ncies
l to
the

ht-

that
om-

nin

e

F. T. VASKO PHYSICAL REVIEW B 69, 205309 ~2004!
does not take into account the absence of the fixed rela
between energy and momentum beyond the B
approximation.11,14

First, we examineaD« /ao for the cases of homogenou
(G50) and inhomogeneous (g50) broadening. The dimen
sionless gain is plotted for the cases of degenerate@Figs. 3~a!
and 4~a!# and nondegenerate@Figs. 3~b! and 4~b!# electrons
with the concentrations given in Table I. In such calculatio
we have used the parameters of GaAs/Al0.3Ga0.7As-based
BSL with the periodZ515 nm. The broadening energy,g
or/andG is chosen to be 0.5 meV, so that the electron te
peratureTe appears to be 1.5–15 K. According to these da
concentration increases withTe for all cases but the pea
gain varies in a different manner: quenching or enhancem
of gain occurs for degenerate or non-degenerate elect
respectively. High-energy tails of gain and lower peak valu
take place for the homogeneous broadening case, when
~13! has a Lorentzian shape. For the inhomogeneous br
ening case,A(E) has a Gaussian shape andaD« appears to
be a sharper function, with a greater maximal value.

In Fig. 5 we present the caseg5G, plotting the dimen-
sionless gain versusD«/2(g1G), where 2(g1G) corre-
sponds to the total width of the spectral function~13!. One
can see both the same style of spectral dependencies an
same temperature/concentration dependencies. Max
value of gain is founded to be greater for the cases of in
mogeneous or combined broadening.

Next we turn to estimates of the maximal gain for BS
with T50.5 meV, corresponding to the barrier width of

FIG. 4. The same as in Fig. 3 for the inhomogeneous broade
case (g50) depending on parametersm/G andTe /G.
20530
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nm. For the level splitting energy«B510 meV, which is
correspondent to the transverse fieldF56.7 kV/cm, one ob-
tainsao.6.6 cm21, so that the peak gain appears to be b
tween 5 and 20 cm21 for different parameters used in Fig
3–5. Note, thatao}T2 in the framework of the tight-binding
approximation and gain increases rapidly for the narrow b
rier case, for example gain exceeds the experimental data3 if
T51 meV. The density of steady-state tunneling curre
through the BSL with the above used parameters does
exceed 0.1 kA/cm2.

IV. CONCLUSIONS

In summary, we have considered the resonant inters
band response of a biased SL and have described gain
yond the Born approximation. Taking into account the int
play between homogeneous and inhomogeneous broade
we have analyzed the spectral and temperature depende
for the low-doped BSL. The absorption coefficient is equa
zero for the resonant excitation while a detectable gain in
THz spectral region is obtained below the resonance.

Let us discuss the main assumptions used. The tig
binding approach is valid under the condition«B@2T which
is satisfied for the numerical estimates performed; note
beyond the Born approximation the broadening can be c

g
FIG. 5. Dimensionless gain2aD« /ao versus2D«/2(g1G)

for the caseg5G. Panels~a! and ~b! correspond to degenerat
(m/2g53) and nondegenerate (m/2g521) electrons. Solid,
dashed, and dotted curves correspond toTe/2g50.3, 1, and 3, re-
spectively.
TABLE I. 3D concentrations, measured in cm23, versus dimensionlessm andTe for the cases plotted in
Figs. 3 (G50), 4 (g50), and 5 (G5g).

Te /(g,G) m/g53,
G50

m/g521,
G50

m/G53,
g50

m/G521,
g50

m/2g53,
G5g

m/2g521,
G5g

0.3 3.331016 8.831015 431016 1.631015 431016 8.231015

1 3.431016 1.131016 4.131016 5.431015 4.131016 1.331016

3 4.231016 1.531016 5.231016 2.231016 531016 3.431016
9-4
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parable with the electron energy determined throughm and
Te . We restrict ourselves to the case of homogeneous fi
and concentration distributions neglecting a possible dom
formation due to the negative differential conductivity at lo
frequencies.15 One can avoid instabilities in a short enou
BSL because the THz modes propagate in the in-plane d
tions. In spite of the general expressions~10!–~12! are writ-
ten through an arbitrary self-energy functionS, the final
calculations were performed for the model included scat
ing by zero-radius centers and large-scale potential. Su
model describes the interplay between homogeneous an
homogeneous broadening with the use of statistically in
pendent random potentials in each QW. The Coulomb co
lations, which modify the response as the concentra
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increases, are not taken into account here. This contribut
as well as consideration of intermediate-scale potential,
quire a special consideration in analogy with the case o
single QW.16

To conclude, the simplifications listed do not change
ther the character of the THz response or the numerical e
mates for the gain. It seems likely that this contribution c
be found experimentally and more detailed numerical cal
lations are necessary in order to estimate a potential for
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