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Ab initio calculation of band-gap renormalization in highly excited GaAs
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We presentab initio quasiparticle self-energy calculations in crystalline GaAs for cases of intense electronic
excitation (;10% of valence electrons excited into conduction band!, relevant for high-intensity ultrashort
pulsed laser experiments. Calculations are performed using an out-of-equilibrium generalization of theGW
approximation based on the Keldysh Green’s function approach. Our results indicate that while the quasipar-
ticle band gap is a sensitive function of the amount of excitation, it is not possible to induce complete band-gap
closure in this system by purely electronic means.
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I. INTRODUCTION

The ability to optically pump semiconductors with u
trashort pulsed lasers has led to the discovery of a hos
phenomena over the past few decades.1 One of the most
interesting is band-gap renormalization~BGR!, or a change
in the quasiparticle gap of a material which occurs wh
electrons are redistributed in energy. The classic scenar
one in which electrons are excited from the top of the
lence band to the bottom of the conduction band~in a direct-
gap material such as GaAs!, leaving holes behind. Thoug
measurements of this effect are often difficult, reductions
the band gap have been inferred in the;10 meV range for
excited carrier densities of;1015–1016e2/cm3.1,2 Since
these carrier densities are relatively small, the material
mains crystalline during the duration of an optical pumpi
experiment. When the carriers have relaxed to the extrem
the bands, they are amenable to theoretical treatment w
the effective mass approximation. The gap reduction itse
determined by calculating the quasiparticle self-energy i
screened-interaction~e.g., GW approximation3,4! perturba-
tion theoretic treatment.2,5 Extensions of these approach
which utilize ab initio electronic structure techniques ha
been applied to BGR in conditions of high doping levels,
which excess electrons~but no holes! are present.6

In the last few years, optical pump-probe experime
have been performed which reach carrier densities~electrons
1 holes! in excess of;1021e2/cm3.7 In these experiments
intense short-pulsed laser irradiation of GaAs rapidly me
the material and creates a metallic amorphous state.8 Though
the nonthermal melting is a primary goal of the studies, s
nificant amounts of optical data were recorded prior to
time at which melting is thought to occur. For these sh
pump-probe delay times (; few hundred femtoseconds!, de-
viations of the dielectric function from its values in the u
pumped state are expected to be mostly electronic in or
~the heavier ions still being close to their equilibrium latti
positions!. One of us~L.X.B.! has studied the changes
optical properties that result from the blocking of transitio
~Pauli blocking! and the unbinding of exciton states whic
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may occur in such conditions.9 However, in that work, BGR
was neglected.

Calculations of BGR in GaAs for these conditions of e
citation have been performed by Kimet al.10 using an em-
pirical pseudopotential technique together with a quasist
effective mass-derived self-energy contribution. Their co
clusion was that complete band-gap closure would occu
;10% of the electrons are excited from the top of the v
lence band to the bottom of the conduction band. In th
theory, a significant portion of the band-gap reduction is d
to the change in the screened electron-ion potential that
sults from the excitation of free carriers, the rest bei
caused by the changes in the quasiparticle self-energy.
change in Hartree potential~the interaction between elec
trons at the mean-field level! is neglected in their approach

In this work, we calculate BGR for laser-excited GaAs
which electrons have been excited from the top of the
lence band to occupy the lowest energy states of the bot
of the conduction band. Single-particle states are taken f
ab initio pseudopotential local-density-approximation~LDA !
band-structure calculations, and the quasiparticle self-en
is computed in theGW approximation~which includes dy-
namical screening of the electron-electron interaction!.4 The
LDA calculations are done for constrained~excited! occupa-
tion of the electronic states, so the self-consistent contri
tion of the Hartree term~owing to the redistribution of
charge density! is included. We find, contrary to the results
Kim et al.,10 that it is impossible to induce complete ban
gap closure by purely electronic means, assuming that
excitation is of the type described above. The reason is
the change resulting from the electrostatic~electron-ion1
Hartree! terms causes the gap to increase as electrons
moved from the valence band top~near As! to the
conduction-band bottom~near Ga!. While our ab initio cal-
culation of the self-energy contribution yields similar resu
to those of the more approximate theories,2,5 it is the electro-
static contribution which dominates the picture at high c
rier density (.10%). In what follows, we describe the der
vation of the self-energy contribution within theGW
approximation using the Keldysh technique, present the
tails of our computation of BGR, and discuss our results
©2004 The American Physical Society04-1
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II. THEORY AND COMPUTATION

A. Quasiparticle self-energy operator in theGW
approximation: Nonequilibrium case

We are interested in describing the single-particle exc
tions of a system of interacting electrons out
equilibrium.11 Thus, we appeal to nonequilibrium quantu
many-body theory, in particular, the Keldysh method. Us
the Keldysh technique,12 Green’s functions, self-energie
etc., for nonequilibrium problems can be constructed in
way similar to that for equilibrium problems. The only di
ference is the replacement of time-ordered Green’s funct
with contour-ordered Green’s functions,13

G~r1 ,r2 ;t1 ,t2!52 i ^TC@CH~r1 ;t1!CH
1~r2 ;t2!#&, ~1!

where the time labels lie on a contour with two branchest
5t,h (h51,2). ~See Fig. 1.! The contourC runs along the
real axis, starting from2` on branchh51, passing through
t1 andt2 once, and returning to2` on branchh52. Such
a contour allows us to conduct the thought experimen
which the system begins in some excited state of the no
teracting system, then the interactions are turned on adia
cally, turned slowly off again, and the system is returned
its initial state. This intellectual construct is necessary wh
relating expectation values of quantities in an interacting s
tem to the corresponding expectation values of the nonin
acting system.14 In what follows, we omit the spatial vari
ables for simplicity, which are to be used exactly as in
equilibrium case. We return to the full notation later.

The contour-ordered Green’s function obeys the sa
Dyson equation as the time-ordered Green’s function, if o
replaces the real time axis integrals by contour integrals

G~t1 ,t2!5G0~t1 ,t2!

1E
C
dt3E

C
dt4G0~t1 ,t3!S~t3 ,t4!G~t4 ,t2!.

~2!

We use theGW approximation for the self-energy,

S~t1 ,t2!5 iG~t1 ,t2!W~t1 ,t2!, ~3!

where the screened Coulomb potentialW obeys the follow-
ing self-consistent equation:

W~t1 ,t2!5Vd~t12t2!1VE
C
dt3P~t1 ,t3!W~t3 ,t2!,

~4!

FIG. 1. Closed time path contourC along real axis, showing two
branches,h51,2.
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whereV is the Coulomb potential. The polarization functio
is calculated within the random-phase approximation~RPA!,

P~t1 ,t2!52 iG~t1 ,t2!G~t2 ,t1!. ~5!

In order to make the calculations tractable, we replace
contour integrals by real time integrals. This is achieved
ing the Langreth rules for analytic continuation,15 which we
present in the Appendix, after introducing some commo
used notation for functions,A, defined on the contour~called
‘‘lesser,’’ ‘‘greater,’’ ‘‘retarded,’’ and ‘‘advanced,’’ respec-
tively!:

A,~ t,t8![A~ t,h51,t8,h852!,

A.~ t,t8![A~ t,h52,t8,h851!,

Ar~ t,t8![u~ t2t8!@A.~ t,t8!2A,~ t,t8!#,

Aa~ t,t8![u~ t82t !@A,~ t,t8!2A.~ t,t8!#. ~6!

Our goal is now to evaluate the retarded quasiparticle s
energy operator,S r , in the GW approximation. From Eqs
~3!, ~6!, and~A4! ~see Appendix!, S r becomes

S r~ t,t8!5 i @G,~ t,t8!Wr~ t,t8!1Gr~ t,t8!W,~ t,t8!

1Gr~ t,t8!Wr~ t,t8!#,

which can be further simplified using Eqs.~A1! and ~A2!,

S r~ t,t8!5 i @G,~ t,t8!Wr~ t,t8!1Gr~ t,t8!W.~ t,t8!#. ~7!

The Keldysh components of the screened Coulomb in
action are found using the Langreth rule~A3!:

Wr~ t,t8!5Vd~ t2t8!1VE
2`

`

dt1Pr~ t,t1!Wr~ t1 ,t8!,

Wa~ t,t8!5Vd~ t2t8!1VE
2`

`

dt1Pa~ t,t1!Wa~ t1 ,t8!,

W,~ t,t8!5VE
2`

`

dt1@Pr~ t,t1!W,~ t18 ,t8!

1P,~ t,t1!Wa~ t1 ,t8!#,

W.~ t,t8!5VE
2`

`

dt1@Pr~ t,t1!W.~ t18 ,t8!

1P.~ t,t1!Wa~ t1 ,t8!#. ~8!

It can be shown16,17 that the self-consistent equations~8!
lead to the following relations for the ‘‘greater’’ and ‘‘lesser
components of the screened interaction:
4-2
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W,~ t,t8!5E
2`

`

dt1E
2`

`

dt2Wr~ t,t1!P,~ t1 ,t2!Wa~ t2 ,t8!,

W.~ t,t8!5E
2`

`

dt1E
2`

`

dt2Wr~ t,t1!P.~ t1 ,t2!Wa~ t2 ,t8!.

~9!

We construct ‘‘noninteracting’’ Green’s functions withi
the quasiparticle approximation from LDA~Ref. 18! Bloch
wave functionsunk&, and eigenvaluesEnk . Using Eqs.~1!
and ~6! we find

^nkuGr~v!umk8&5
1

v2Enk1 ih
dnmdkk8 ,

^nkuGa~v!umk8&5
1

v2Enk2 ih
dnmdkk8 ,

^nkuG,~v!umk8&52p i f ~Enk!d~v2Enk!dnmdkk8 ,

^nkuG.~v!umk8&522p i @12 f ~Enk!#d~v2Enk!dnmdkk8 ,

~10!

whereh501 and we assume that the ‘‘noninteracting’’ sy
tem can be characterized by a distribution function in ene
f (E).

In frequency space, the expression for the retarded s
energy~7! becomes

^nkuS r~E!unk&

5 i (
m,q,G,G8

MG* ~n,m,k,2q!MG8~n,m,k,2q!

3E
2`

` dv

2p
@WG,G8

r
~q,v!Gmk2q

, ~E2v!

1WG,G8
.

~q,v!Gmk2q
r ~E2v!#, ~11!

where the matrix elementsM are defined by:MG(n,m,k,
2q)5^mk2que2 i (q1G)runk&. Next we need the Fourie
components of the screened Coulomb interaction. Using E
~8! and~9!, the Fourier components of the screened Coulo
interaction can be written

WG,G8
r

~q,v!5@e r~q,v!21#G,G8V~q1G8!,

WG,G8
a

~q,v!5@ea~q,v!21#G,G8V~q1G8!,

WG,G8
,

~q,v!

52@e r~q,v!21e,~q,v!ea~q,v!21#G,G8V~q1G8!,

WG,G8
.

~q,v!

52@e r~q,v!21e.~q,v!ea~q,v!21#G,G8V~q1G8!,

~12!

where the dielectric function is defined by
20520
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~q,v!5dG,G82V~q1G!PG,G8
r

~q,v!,

eG,G8
a

~q,v!5dG,G82V~q1G!PG,G8
a

~q,v!,

eG,G8
,

~q,v!52V~q1G!PG,G8
,

~q,v!,

eG,G8
.

~q,v!52V~q1G!PG,G8
.

~q,v!. ~13!

The Fourier components of the polarizability are found v
Eqs.~5!, ~A5!, and~10!:

PG,G8
r

~q,v!5 (
n,m,p

M 2G* ~n,m,p,q!M 2G8~n,m,p,q!

3
f ~Enp1q!2 f ~Emp!

Enp1q2v2Emp2 ih
,

PG,G8
a

~q,v!5 (
n,m,p

M 2G* ~n,m,p,q!M 2G8~n,m,p,q!

3
f ~Enp1q!2 f ~Emp!

Enp1q2v2Emp1 ih
,

PG,G8
,

~q,v!522p i (
n,m,p

M 2G* ~n,m,p,q!

3M 2G8~n,m,p,q! f ~Enp1q!

3@12 f ~Emp!#d~Enp1q2v2Emp!,

PG,G8
.

~q,v!522p i (
n,m,p

M 2G* ~n,m,p,q!

3M 2G8~n,m,p,q!@12 f ~Enp1q!#

3 f ~Emp!d~Enp1q2v2Emp!. ~14!

Decomposing the self-energy into the screened-exchange
Coulomb-hole parts,4

^nkuS r~E!unk&

5^nkuSSX
r ~E!unk&1^nkuSCH

r ~E!unk&,

the final expression for the retarded self-energy is

^nkuSSX
r ~E!unk&

52 (
m,q,G,G8

MG* ~n,m,k,2q!MG8~n,m,k,2q!

3@e r~q,E2Emk2q!21#G,G8V~q1G8! f ~Emk2q!,

~15!

^nkuSCH
r ~E!unk&

52 (
m,q,G,G8

MG* ~n,m,k,2q!MG8~n,m,k,2q!

3 i E
2`

` dv

2p
@e r~q,v!21e.~q,v!ea~q,v!21#G,G8

3
1

E2v2Emk2q1 ih
V~q1G8!. ~16!

The above result represents a general expression for
self-energy~within theGW approximation! of a system char-
acterized by an arbitrary distribution function,f (E). In par-
ticular, in the case of a system in equilibrium at some te
4-3
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perature,f (E) is just the Fermi distribution functionf F and
the following holds via Eqs.~13! and ~14!:

eG,G8
.

~q,v!5eG,G8
,

~q,v!F11
1

f B~v!G ,
where f B denotes the Bose distribution function. Using th
result together with the Keldysh relation Eq.~A1! for e , it
can be shown that Eq.~16! becomes

^nkuSCH
r ~E!unk&

52 (
m,q,G,G8

MG* ~n,m,k,2q!MG8~n,m,k,2q!

3
1

pE2`

`

dv
@e r~q,v!212ea~q,v!21#G,G8

2i

3
11 f B~v!

E2v2Emk2q1 ih
V~q1G8!. ~17!

For systems with inversion symmetry, we can further repl
in Eq. ~17! @e r(q,v)212ea(q,v)21#/2i by Im@e r(q,v)21#
and thus we recover a previous result,19 obtained by applying
the finite-temperature Matsubara Green’s function formal
to a system with inversion symmetry.

B. Computational details: GaAs

We calculate the quasiparticle~QP! band structure for
crystalline GaAs in various states of electronic excitation
first-order perturbation theory4 from the real part of the self
energy,

Enk
QP5Enk1^nkuReS~Enk

QP!2Vxcunk& ~18!

with ReS[ 1
2 (S r1Sa). Using ^nkuReSunk&

5Rê nkuS r unk&, Eq. ~18! is solved by evaluating the rea
part of the retarded self-energy, Eqs.~15! and~16!, for vari-
ous distribution functionsf.

The ‘‘noninteracting’’ mean-field wave functionsunk& and
eigenvaluesEnk as well as the exchange-correlation poten
Vxc are obtained within constrained LDA performed at t
experimental lattice constant. We useab initio pseudopoten-
tials generated with the scheme of Trouiller and Martins.20 A
plane-wave basis with an energy cutoff of 30 Ry is used
represent the Bloch states. We use 50 valence plus con
tion bands and discrete Monkhorst-Pack meshes21 of q points
(83838) in the first Brillouin Zone~BZ! in the sums of
Eqs.~15! and~16!, while crystalline local-field effects in the
dielectric matrix were included by summing overG, G8 up
to a cutoff of 6 Ry. The integral overv in Eq. ~16! is evalu-
ated by setting the integration limits to650 eV.

We consider five occupation number distributionsf, each
corresponding to a different excited carrier density: 0%, 5
10%, 15%, and 20% of the total number of valence electr
in the system~the coarseness of our meshes ofq points pre-
cludes us from considering excited carrier densities betw
0% and 5%!. Each is characterized by a quasi-Fermi level
the conduction bands: the energy below which all conduc
states are filled. The energy above which all valence st
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are empty is then determined by requiring charge neutra
Note that our assumptions imply that the individual excit
electron and hole populations22 are in quasiequilibrium atT
50. Figure 2 shows the excited carrier occupation in the B
for the various excited carrier densities considered in t
work. Because the effective mass of the conduction ban
G is very small, theG valley of the conduction band ca
accommodate less than 1% of the total number of vale
electrons (ntot). It follows that when the excited carrier den
sity is several percent ofntot , the excited electrons mus
reside in a combination of conductionG, L, andX valleys. It
is these high carrier densities that we are concerned w
here, given the conditions reached in recent pump-pr
experiments.7

III. RESULTS AND DISCUSSION

Before presenting the results of our calculations of the
self-energy operator, we discuss the changes in the band
caused by the excitation at the mean-field~in this case, LDA!
level. Figure 3 presents the constrained LDA calculation
sults of BGR. We see that the valence-conduction gapEg

LDA

increases linearly with the excited carrier density, the slo
being only slightly smaller for the direct gap atG than for the
indirect gaps atL andX. In order to understand these resul
we analyze the dependence of the direct gap atG on the
excited carrier density. We do this by decomposing
Kohn-Sham Hamiltonian into the kinetic energy partK, the
ionic potential plus the Hartree potentialVion1VHartree , and
the LDA exchange-correlation potentialVxc . Their indi-
vidual contributions to BGR are presented in Fig. 4, whi
shows that the dominant term leading to the increase of
constrained LDA valence-conduction gap atG is the Hartree
contribution. Why is the Hartree term in the band gap
creasing with the excited carrier density? The answer
straightforward if we take into account that:~1! high-lying
valence electrons are localized more near As, while lo
lying conduction electrons are localized more near Ga,~2!
under excitation the electron charge density goes from A
Ga. Then it follows that under excitation, the electrosta
energy between one electron and the total charge den
goes down for valence electrons and up for conduction e
trons, resulting in an increase in the valence-conduction b
gap. We note that at the mean-field level, our results
different from those obtained by Kimet al.10 using a self-
consistent screened empirical pseudopotential treatm
They found~for 10% excited carrier density! a significant
decrease of the indirect gaps (;1 eV for theG-X gap! and
no change of the direct gap atG. We ascribe this to their
neglect of the change in the Hartree term. Though some
this mean-field effect is undoubtedly included through t
screening of their pseudopotentials by the excited carri
we suspect that a large portion of this Hartree interaction
incorrectly accounted for in their approach.

We now move to results at the QP level, by including t
self-energy corrections in theGW approximation. Figure 5
presents the main results of our work, showing that the B
picture changes dramatically when we go from the me
field level ~constrained LDA! to the QP level: we have a
4-4
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substantial decrease of all band gaps for relatively low
cited carrier density~less than 5%!, then the band gaps ar
rather constant for excited carrier densities between 5%
10%, while for relatively high excited carrier densitie
~larger than 10%! the band gaps increase linearly. We no
that the lowest value for the renormalized gap is about
eV, which results from roughly a 10% excited carrier dens
and is still a direct gap atG.

We analyze the results of Fig. 5 by separating out
contribution from the exchange-correlation self-energy p
We do that by introducingdSg(n%)[Sg(n%)2Sg(0%)
~with Sg[^ckuReSuck&2^vkuReSuvk&, v and c denoting
the valence and conduction bands near the Fermi levek
being theG, L, or X) and we interpretdSg as the self-energy
contribution to BGR. Figure 6 shows the dependence ofdSg
on the excited carrier density. We see thatdSg is negative
and roughly independent of the gap we are looking at~it is
largest for the indirect gap fromG-X), and that it decrease
rapidly with the excited carrier density for relatively lo
densities. For higher excited carrier densities, it becom

FIG. 2. Excited carrier occupation in GaAs; the LDA ban
structure shown here is taken from the unexcited case.

FIG. 3. Theoretical Kohn-Sham band gaps of GaAs calcula
within the constrained LDA.
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rather independent of density. It is worth noting that Ki
et al. found a similar self-energy contribution for an excite
carrier density of 10%:dSg(10%)'20.9 eV ~an average
along the entireG-X direction!, with the largest value atX.

There are two main sources for the self-energy contri
tion to BGR. One comes from the change in the Ferm
occupation numbers,f, appearing explicitly in Eq.~15!. The
other comes from the change in the electronic screen
which manifests in both Eqs.~15! and ~16! through the di-
electric functione ~of course,e depends implicitly onf ). By
increasing the excited carrier density, the screening acqu
a metallic character due to the increased number of ‘‘fre
electrons in the conduction band and ‘‘free’’ holes in t
valence band. We find that the change in the electro
screening ~affecting both the screened-exchange and
Coulomb-hole terms! accounts only for a small fraction o
the BGR. For the excited carrier densities considered in
work ~in excess of 3.631021e2/cm3) the major source for
the self-energy contribution to BGR was found to be t
change in the Fermion occupation numbers which enter

d

FIG. 4. Different contributions to Kohn-Sham band gap atG for
GaAs calculated in the constrained LDA.

FIG. 5. The quasiparticle band gaps of GaAs as a function
excited carrier density calculated within theGW approximation.
4-5



es

er

d
se

ou

av
e

g

fo

d

e

ex-
der-

is
the
ic-

me-

the

ed
e-
gi-
red

ife-
ers
the

er-
ense
e
upy
elf-
he
dy
gap
lu-
to
ex-
n-
nd-

as

-
ns.
he
the
n-
ials

me
nal
k
sity
y
ns
s

s

a

SPATARU, BENEDICT, AND LOUIE PHYSICAL REVIEW B69, 205204 ~2004!
screened-exchange self-energy expression@see thef in Eq.
~15!#. This picture may not hold for excited carrier densiti
lower than 1021e2/cm3.6 We illustrate this observation in
Fig. 7 where we show the screened-exchange self-en
contribution to the direct gap atG calculated in two ways:
the solid line represents self-consistent calculations base
Eq. ~15!, while the dotted line represents calculations ba
also on Eq.~15!, but in which the dielectric functione r was
computed for the unexcited case. Finally, we note that
results fordSg

SX follow an approximate1
3 power law behav-

ior in the excited carrier density; the same power law beh
ior for dSg

SX can be obtained employing a very simple mod
based on the parabolic band approximation and replacine r

with a simple dielectric constant.5,10

Summarizing our results for BGR, we conclude that
relatively low excited carrier densities~up to 10% of the total
valence electron density! the QP valence-conduction ban
gap decreases~but never closes! primarily due to the change
in the Fermion occupation numbers entering the screen

FIG. 6. Self-energy contribution to the band gap of GaAs a
function of excited carrier density.

FIG. 7. Screened-exchange self-energy contribution to the b
gap of GaAs atG as a function of excited carrier density.
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exchange QP self-energy expression, while for higher
cited densities the gap reaches a minimum value and un
goes an upturn with increasing density. The increase
mainly due to the change in the electrostatic energy at
mean-field level described by the Hartree term. Our pred
tion that there is no band-gap closure due to these~valence
band top! → ~conduction band bottom! excitations agrees
with the measurements of Huanget al.,7 in which the dielec-
tric function of GaAs was measured at short (;100 fs) time
delays of a pump-probe experiment and no signature of
tallicity was found.23 We also mention that the approximatek
independence of the BGR that we predict suggests that
overall shape of the dielectric function~i.e., the distribution
of oscillator strength in the optical absorption spectrum! in
these excited configurations will be similar to that predict
by one of us9 using an approach in which BGR was n
glected. Finally, we add that our computations of the ima
nary part of the QP self-energy for the cases conside
above yield values small enough for us to conclude that l
time broadening due to the scattering of excited carri
should be of little importance in determining the shape of
optical spectra.

IV. CONCLUSIONS

We have studied band-gap renormalization in las
excited GaAs. The cases we considered were those of int
excitation (;10%) in which excited electrons occupy th
lowest-lying conduction states and the excited holes occ
the highest-lying valence states. The quasiparticle s
energy was computed with a nonequilibrium variant of t
GW approximation using the Keldysh technique. Our stu
indicates that it is not possible to induce complete band
closure by purely electronic means. In reaching this conc
sion, we found that the contribution of the Hartree term
BGR, describing the mean-field interaction between an
cited electron~or hole! and the charge density of the remai
ing electrons, is important and cannot be neglected. Our fi
ings seem to support experimental observations7 in which no
evidence of electronically induced band-gap closure w
seen.
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APPENDIX

In this appendix, we present the Langreth rule15 for ana-
lytic continuation ofproductsof functions integrated ove
contourC. This is necessary when evaluating theGW self-
energy expression. The functions introduced in Eq.~6! sat-
isfy the Keldysh relation,

Ar~ t,t8!2Aa~ t,t8!5A.~ t,t8!2A,~ t,t8!, ~A1!

and also that for any functionsA andB,

Ar~ t,t8!Ba~ t,t8!5Aa~ t,t8!Br~ t,t8!50. ~A2!

The Langreth rule for analytic continuation states tha
on the contour

F5E
C
AB

then on the real time axis~for a concise derivation see Re
16!

Fr5E
2`

`

ArBr , Fa5E
2`

`

AaBa.

F,5E
2`

`

ArB,1A,Ba,
e
-
r,

at
ee
ly

m
he

lib
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F.5E
2`

`

ArB.1A.Ba. ~A3!

It can also be shown that if

F~t,t8!5A~t,t8!B~t,t8!,

D~t,t8!5A~t,t8!B~t8,t!,

then

Fr~ t,t8!5A,~ t,t8!Br~ t,t8!1Ar~ t,t8!B,~ t,t8!

1Ar~ t,t8!Br~ t,t8! ~A4!

and:

Dr~ t,t8!5A,~ t,t8!Ba~ t8,t !1Ar~ t,t8!B,~ t8,t !,

Da~ t,t8!5A,~ t,t8!Br~ t8,t !1Aa~ t,t8!B,~ t8,t !,

D,~ t,t8!5A,~ t,t8!B.~ t8,t !,

D.~ t,t8!5A.~ t,t8!B,~ t8,t !. ~A5!

This result can be directly applied to the evaluation of t
GW self-energy expression, whereG andW replaceA andB,
respectively~as well as to the polarizabilityP, replacingA
andB by G).
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