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Ab initio calculation of band-gap renormalization in highly excited GaAs
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We presenab initio quasiparticle self-energy calculations in crystalline GaAs for cases of intense electronic
excitation (~10% of valence electrons excited into conduction Banelevant for high-intensity ultrashort
pulsed laser experiments. Calculations are performed using an out-of-equilibrium generalizatiorGaf/the
approximation based on the Keldysh Green’s function approach. Our results indicate that while the quasipar-
ticle band gap is a sensitive function of the amount of excitation, it is not possible to induce complete band-gap
closure in this system by purely electronic means.
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[. INTRODUCTION may occur in such conditior’sHowever, in that work, BGR
was neglected.
The ability to optically pump semiconductors with ul-  Calculations of BGR in GaAs for these conditions of ex-

trashort pulsed lasers has led to the discovery of a host dfitation have been performed by Kiet al® using an em-

phenomena over the past few decati@®ne of the most pirical pseudopotential technique together with a quasistatic
interesting is band-gap renormalizati®GR), or a change effe(_:tive mass-derived self-energy contribution. Their con-
in the quasiparticle gap of a material which occurs wherclusion was that complete band-gap closure would occur if
electrons are redistributed in energy. The classic scenario i510% of the electrons are excited from the top of the va-
one in which electrons are excited from the top of the valence band to the bottom of the conduction band. In their
lence band to the bottom of the conduction bginca direct-  theory, a significant portion of the band-gap reduction is due
gap material such as GaAdeaving holes behind. Though © the change in the screened electron-ion potential that re-

measurements of this effect are often difficult, reductions irsults from the excitation of free carriers, the rest being
the band gap have been inferred in thd0 meV range for caused py the changes n the quasmartlcle self-energy. The
excited carrier densities of- 10-10% /cm?. 22 Since change in Hartree potentidthe interaction between elec-

these carrier densities are relatively small, the material ret_rons at the mean-field levels neglected in their approach.
y ' In this work, we calculate BGR for laser-excited GaAs in

mains crystalline during the duration of an optical pumping hich electrons have been excited from the top of the va-

experiment. When the carriers have relax.ed to the extrema f\%nce band to occupy the lowest energy states of the bottom
the bands, they are amenable to theoretical treatment withig ye conduction band. Single-particle states are taken from
the effe_ct|ve mass appr_OX|mat|on. The gap reduction |tse_lf I$ib initio pseudopotential local-density-approximatituDA )
determined by calculating the quasiparticle self-energy in &ang-structure calculations, and the quasiparticle self-energy
screened-interactiotte.g., GW approximatiot) perturba- g computed in theGW approximation(which includes dy-
tion theoretic treatmerft® Extensions of these approaches pnamical screening of the electron-electron interagtfofhe
which utilize ab initio electronic structure techniques have | DA calculations are done for constrainéekcited occupa-
been applied to BGR in conditions of high doping levels, intion of the electronic states, so the self-consistent contribu-
which excess electrorut no holes are presert. tion of the Hartree termowing to the redistribution of

In the last few years, optical pump-probe experimentscharge densityis included. We find, contrary to the results of
have been performed which reach carrier densigésctrons  Kim et al,'? that it is impossible to induce complete band-
+ holes in excess of~10?% /cn.” In these experiments, gap closure by purely electronic means, assuming that the
intense short-pulsed laser irradiation of GaAs rapidly meltsxcitation is of the type described above. The reason is that
the material and creates a metallic amorphous &tlmugh  the change resulting from the electrostatiectron-ion+
the nonthermal melting is a primary goal of the studies, sigHartreg terms causes the gap to increase as electrons are
nificant amounts of optical data were recorded prior to themoved from the valence band toear A3 to the
time at which melting is thought to occur. For these shortconduction-band bottortnear Ga. While our ab initio cal-
pump-probe delay times<{ few hundred femtosecongsle-  culation of the self-energy contribution yields similar results
viations of the dielectric function from its values in the un- to those of the more approximate theori€st is the electro-
pumped state are expected to be mostly electronic in origistatic contribution which dominates the picture at high car-
(the heavier ions still being close to their equilibrium lattice rier density ¢-10%). In what follows, we describe the deri-
positiong. One of us(L.X.B.) has studied the changes in vation of the self-energy contribution within th&W
optical properties that result from the blocking of transitionsapproximation using the Keldysh technique, present the de-
(Pauli blocking and the unbinding of exciton states which tails of our computation of BGR, and discuss our results.
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n=1 C T whereV is the Coulomb potential. The polarization function
- 1\ is calculated within the random-phase approximatilRRA),

. _/ t P(71.72)=~iG(r3,7)G(75.7y). )
n=2 ™
FIG. 1. Closed time path contoGralong real axis, showing two In order to make the calculations tractable, we replace the
branchesp=1,2. contour integrals by real time integrals. This is achieved us-
ing the Langreth rules for analytic continuatibhywhich we
Il. THEORY AND COMPUTATION present in the Appendix, after introducing some commonly

A. Quasiparticle self-energy operator in theGW used notation for functiong), defined on the contoucalled

o o “lesser,” “greater,” “retarded,” and “advanced,” respec-
approximation: Nonequilibrium case tively):
We are interested in describing the single-particle excita-
tions of a system of interacting electrons out of AS(t,t)=A(t,p=1t",79'=2),
equilibrium! Thus, we appeal to nonequilibrium quantum
many-body theory, in particular, the Keldysh method. Using A (L) =A(L, 7=21" 7' =1),

the Keldysh techniqu¥ Green’s functions, self-energies,
etc., for nonequilibrium problems can be constructed in a
way similar to that for equilibrium problems. The only dif-
ference is the replacement of time-ordered Green’s functions
with contour-ordered Green’s functiofss, A% (t,t)=0(t' =t [A=(t,t") = A~ (t,t)]. (6)

AT(t,t)=0(t—t")[A~(t,t')—A=(t,t)],

. _ ) P Our goal is now to evaluate the retarded quasiparticle self-
Glr1,r2;m1,72) = =Tl Wh(ry; )Wy (r2: 7)), (1) energy operatory', in the GW approximation. From Egs.

where the time labels lie on a contour with two branches: (3. (6), and(A4) (see Appendix X' becomes
=t,7 (n=1,2). (See Fig. 1. The contourC runs along the _
real axis, starting from-o on branchy=1, passing through SN =[G (L)W (t,t") + G (t,t )W (t,t")
7, and 7, once, and returning te-o0 on branchny=2. Such _ +G (Lt )WI(HE)],
a contour allows us to conduct the thought experiment in
which the system begins in some excited state of the noninyhich can be further simplified using Eqé1) and (A2),
teracting system, then the interactions are turned on adiabati-
_call_y,_ Furned slowly fo again, and the system is returned to ST =[G (L)W (L) + G (L)W (t,t)]. (7)
its initial state. This intellectual construct is necessary when
relating expectation values of quantities in an interacting sys- i
tem to the corresponding expectation values of the noninter- 1he Keldysh components of the screened Coulomb inter-
acting systent* In what follows, we omit the spatial vari- action are found using the Langreth ryk3):
ables for simplicity, which are to be used exactly as in the
equilibrium case. We return to the full notation later. e ) % , . ,

The contour-ordered Green's function obeys the same W'(t,t")=Va(t—t )+Vﬁxdt1P (LE)Wi(ty, 1),
Dyson equation as the time-ordered Green'’s function, if one
replaces the real time axis integrals by contour integrals:

[

G(Tl ’7_2) — GO( T 7_2) Wa(t,t’)=V5(t—t’) +Vf_wdtlpa(t,tl)wa(tl ,t,),

+Ld%fcdmeo(7'1,7'3)2(73-7'4)(3(7'4.7'2)-

W<(t,t’)=Vfw dt,[P"(t,ty)W=(t],t")
(2 o

. . + P<(t1tl)Wa(tl7t,)]1
We use theGW approximation for the self-energy,

E(TI!TZ):iG(TlaTZ)W(TlvTZ)! (3) W>(t,t,):ij dtl[Pr(t,tl)W>(t:/L,t/)

where the screened Coulomb potentidlobeys the follow-

ing self-consistent equation: +P7(t,t) WA(t,,t")]. (8
W(ry,75)=V(r— 7 HVJ AraP (71, 75)W( 73, 75) It can be showt?'!’ that the self-consistent equatiof®)
1 v c b 3 tah lead to the following relations for the “greater” and “lesser”

(4) components of the screened interaction:
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% o r _ _ r
W<(t't/):J' dtlJ dtzWr(t,tl)P<(t1,t2)Wa(t2,t/), EG’G'(qiw)_éG,G’ V(q+G)PG,9r(qnw),

€o.6(0,0)= 866 —V(4+G)Pg ¢ (o),
W>(t,t’)=f:dtlf:dtzwr(t,tl)P>(t1,t2)Wa(t2,t’). €5.6(0,0)=—V(q+G)Pg ¢.(q,0),
© EZ,Gf(q,w)= —-V(g+ G)PZVG,(q,w). (13

We construct “noninteracting” Green’s functions within The Fourier components of the polarizability are found via
the quasiparticle approximation from LD@Ref. 18 Bloch  Egs.(5), (A5), and (10):
wave functions/nk), and eigenvalueg,, . Using Egs.(1)

and(6) we flnd P:S,G’(Q!w):nép MtG(nvmlpvq)M—G’(n!m!p!q)
1 _
(k|G (w)|mk’) = =g~ Smdicc x o Empra) = HEnp)
0= EnTI7 Enprq=@—Emp—in
, 1 P2 _(Q,w)= M* ~(n,m,p,q)M _s (n,m,p,
(nk|Ga(w)|mk >:w_E _inénmékk'y G,G (q o) n,zm:,p G( pq) a( pQ)
> f(Enp+q)_f(Emp)
(nk|G<(w)|mk’>= 27if (En) 0(@— Enk) Snmbk » Enp+q_ 0= Emp+ in’
(nk|G~ (w)[mk") = —27i[1—f(En)]18(®—En) Snmbiac » Pg o/ (0, 0)=—2mi n%p M* 5(n,m,p,q)
(10 o
where »=0" and we assume that the “noninteracting” sys- XM_g/(n.m,p,q)f(Enp+q)
tem can be characterized by a distribution function in energy, X[1=f(Emp) |0(Enptq— @ —Emp),
f(E).
In frequency space, the expression for the retarded self- PZ’G,(q,w)= — 2 2 M* 5(n,m,p,q)
energy(7) becomes n.m.p
XM g/ (n,m,p,a)[ 1~ F(Enp: )]
(nk|Z(E)[nk) X f(Emp) (Enprq— @—Emp). (14
Decomposing the self-energy into the screened-exchange and
=i > Mg(nmk,—q)Mg (n,mk,—q) Coulomb-hole part8,
m,q,G,G’
q (nk|Z"(E)|nk)
* w
><J_mg[wre,eiq,w)Gék—q(E—w> = (Nk| S5 E)|nk) + (k| S L (E)|nk),
the final expression for the retarded self-energy is
+W; 6(0,0)Glhy_o(E—w)], (11) P i

(nk|Z5x(E)[nk)
where the matrix elements! are defined byMg(n,m,k,

—q)=(mk—qle '(@"®)"nk). Next we need the Fourier __ ME(n MK — ) Mer(nmk. —
components of the screened Coulomb interaction. Using Egs. m’q’EG’G, c(mmk,~@Me:(n.mk, )

(8) and(9), the Fourier components of the screened Coulomb . . )
interaction can be written X[€(E=Emnk—q) "lo,e'V(A+ G ) F(Emk—q),

(15

We (g, @)=[€'(q,0) g, V(q+G'), (nk|S5(E)|nk)
CH

W?;,G,(q,w)=[ea(q,w)’l]e,er(qu G, == > ME(n,m,k,—g)Mg/(n,m,k,—Qq)
m,q,G,G’
We o/ (a,®)

[~ do 1> 1
><|f >,L€ (Aw) "€ (qw0)eX(q,0) o6
:_[er(qsw)716<(q1w)ea(Q!w)il]G,G’V(q—i_G’)i o

X —V(q+G'). 16
WE’G,(q,w) E-w—Em—qtin (g ) (16
= —[er(q,w)*1e>(q,w)ea(q,w)*l]G,G,V(qu G'), The above result represents a general expression for the
(12) self-energy(within the GW approximation of a system char-
acterized by an arbitrary distribution functiof(E). In par-
where the dielectric function is defined by ticular, in the case of a system in equilibrium at some tem-
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peraturef(E) is just the Fermi distribution functiofr and  are empty is then determined by requiring charge neutrality.
the following holds via Eqs(13) and(14): Note that our assumptions imply that the individual excited
electron and hole populatioffsare in quasiequilibrium at
=0. Figure 2 shows the excited carrier occupation in the BZ,
for the various excited carrier densities considered in this
work. Because the effective mass of the conduction band at
I' is very small, thel' valley of the conduction band can
accommodate less than 1% of the total number of valence
electrons ;). It follows that when the excited carrier den-
(K|35 (E)|nk) sity is several percent ofi,;, the excited electrons must
reside in a combination of conductidh L, andX valleys. It
is these high carrier densities that we are concerned with
> ME&nmk,—g)Me (n,mk,—q) here, given the conditions reached in recent pump-probe
mq.G.G’ experiments.

O N Bt RO Y
T) 2i IIl. RESULTS AND DISCUSSION

1
fa(w))’

wherefg denotes the Bose distribution function. Using this
result together with the Keldysh relation E@1) for € , it
can be shown that Eq416) becomes

€6.6/(0,0)=€g 6 (0,0)| 1+

1+fg(w) Before presenting the results of our calculations of the QP

V(q+G'). (170 self-energy operator, we discuss the changes in the band gap
caused by the excitation at the mean-figidthis case, LDA

For systems with inversion symmetry, we can further replacéevel. Figure 3 presents the constrained LDA calculation re-

in Eq. (17) [€'(q,0) '~ €%(q,0) *]/2i by Im[€'(q,@) ']  sults of BGR. We see that the valence-conduction gg*

and thus we recover a previous resdiobtained by applying increases linearly with the excited carrier density, the slope

the finite-temperature Matsubara Green’s function formalismpeing only slightly smaller for the direct gaptthan for the

E—w—Emk_q-l-i n

to a system with inversion symmetry. indirect gaps at andX. In order to understand these results,
we analyze the dependence of the direct gapg’ ain the
B. Computational details: GaAs excited carrier density. We do this by decomposing the

Kohn-Sham Hamiltonian into the kinetic energy pHstthe
ionic potential plus the Hartree potent\l,,+ Vyartree, and
the LDA exchange-correlation potentidd,.. Their indi-
vidual contributions to BGR are presented in Fig. 4, which

We calculate the quasiparticlgP) band structure for
crystalline GaAs in various states of electronic excitation by
first-order perturbation thechfrom the real part of the self-

energy. shows that the dominant term leading to the increase of the
EQP=E +(nk|ReS (EQP) — V| nk) (18  constrained LDA valence-conduction gaplats the Hartree
contribution. Why is the Hartree term in the band gap in-
with ReE=3(3"+39). Using (nk|ReX|nk)  creasing with the excited carrier density? The answer is

=Re(nk|X"|nk), Eq. (18) is solved by evaluating the real straightforward if we take into account thdt) high-lying
part of the retarded self-energy, E¢$5) and(16), for vari-  valence electrons are localized more near As, while low-
ous distribution functions. lying conduction electrons are localized more near @a,
The “noninteracting” mean-field wave functiofsk) and  under excitation the electron charge density goes from As to
eigenvalueg,, as well as the exchange-correlation potentialGa. Then it follows that under excitation, the electrostatic
V,. are obtained within constrained LDA performed at theenergy between one electron and the total charge density
experimental lattice constant. We usle initio pseudopoten- goes down for valence electrons and up for conduction elec-
tials generated with the scheme of Trouiller and Marffhs.  trons, resulting in an increase in the valence-conduction band
plane-wave basis with an energy cutoff of 30 Ry is used tagyap. We note that at the mean-field level, our results are
represent the Bloch states. We use 50 valence plus condudifferent from those obtained by Kirat al1° using a self-
tion bands and discrete Monkhorst-Pack me$hefsg points ~ consistent screened empirical pseudopotential treatment.
(8x8x%8) in the first Brillouin Zone(BZ) in the sums of They found(for 10% excited carrier densitya significant
Egs.(15) and(16), while crystalline local-field effects in the decrease of the indirect gaps L eV for thel'-X gap and
dielectric matrix were included by summing o8t G’ up  no change of the direct gap & We ascribe this to their
to a cutoff of 6 Ry. The integral oves in Eq. (16) is evalu- neglect of the change in the Hartree term. Though some of
ated by setting the integration limits to50 eV. this mean-field effect is undoubtedly included through the
We consider five occupation number distributidngeach  screening of their pseudopotentials by the excited carriers,
corresponding to a different excited carrier density: 0%, 5%we suspect that a large portion of this Hartree interaction is
10%, 15%, and 20% of the total number of valence electrongcorrectly accounted for in their approach.
in the systenithe coarseness of our mesheggioints pre- We now move to results at the QP level, by including the
cludes us from considering excited carrier densities betweeself-energy corrections in th& W approximation. Figure 5
0% and 5%. Each is characterized by a quasi-Fermi level ofpresents the main results of our work, showing that the BGR
the conduction bands: the energy below which all conductiomicture changes dramatically when we go from the mean-
states are filled. The energy above which all valence statefield level (constrained LDA to the QP level: we have a
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FIG. 2. Excited carrier occupation in GaAs; the LDA band  FIG. 4. Different contributions to Kohn-Sham band gap'&or
structure shown here is taken from the unexcited case. GaAs calculated in the constrained LDA.

substantial decrease of all band gaps for relatively low exrather independent of density. It is worth noting that Kim
cited carrier densityless than 5% then the band gaps are et al. found a similar self-energy contribution for an excited
rather constant for excited carrier densities between 5% ancarrier density of 10%:524(10%)~—0.9 eV (an average
10%, while for relatively high excited carrier densities along the entird’-X direction), with the largest value aX.
(larger than 10%the band gaps increase linearly. We note There are two main sources for the self-energy contribu-
that the lowest value for the renormalized gap is about 0.8ion to BGR. One comes from the change in the Fermion
eV, which results from roughly a 10% excited carrier densityoccupation numbers, appearing explicitly in Eq(15). The
and is still a direct gap df. other comes from the change in the electronic screening
We analyze the results of Fig. 5 by separating out thewvhich manifests in both Eq$15) and (16) through the di-
contribution from the exchange-correlation self-energy partelectric functione (of course,e depends implicitly orf). By
We do that by introducings 4(n%)=24(n%)—24(0%) increasing the excited carrier density, the screening acquires
(with 3 =(ck|ReX|ck)—(vk|ReX|vk), v and c denoting a metallic character due to the increased number of “free”
the valence and conduction bands near the Fermi ldvel, electrons in the conduction band and “free” holes in the
being thel’, L, or X) and we interpre 4 as the self-energy valence band. We find that the change in the electronic
contribution to BGR. Figure 6 shows the dependencéXf  screening(affecting both the screened-exchange and the
on the excited carrier density. We see ti#at, is negative ~Coulomb-hole termsaccounts only for a small fraction of
and roughly independent of the gap we are lookingitais ~ the BGR. For the excited carrier densities considered in this
largest for the indirect gap frofi-X), and that it decreases work (in excess of 3.8 10°%e~/cn?) the major source for
rapidly with the excited carrier density for relatively low the self-energy contribution to BGR was found to be the
densities. For higher excited carrier densities, it becomeshange in the Fermion occupation numbers which enter the

2.2 22
2_ 1—">X ”’—3—6 2
1.8F ——* s 1.8
”*’
S\ 16_ ’//——*' I S\ 16
D r->L ! D 1.4
< PSS Lt a
9 12r T . o 12
o PR
L 19:” — Ll 1+
0.8 r->r 4 0.8
0.6—_/,__./ 06 .
| | | | | |
0-45 5 10 15 20 0.45 5 10 15 20
0O, Q,
Yo Of n,[ot Yo Of ntot

FIG. 3. Theoretical Kohn-Sham band gaps of GaAs calculated FIG. 5. The quasiparticle band gaps of GaAs as a function of
within the constrained LDA. excited carrier density calculated within t&W approximation.
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0.0 T exchange QP self-energy expression, while for higher ex-
T ->T cited densities the gap reaches a minimum value and under-
*=%T -> L _ goes an upturn with increasing density. The increase is
*=*T -> X mainly due to the change in the electrostatic energy at the
04L \\ i mean-field level described by the Hartree term. Our predic-
' W tion that there is no band-gap closure due to theséence
band top — (conduction band bottomexcitations agrees
with the measurements of Huaergal.” in which the dielec-
tric function of GaAs was measured at shortX00 fs) time
< e . delays of a pump-probe experiment and no signature of me-
~~ tallicity was found® We also mention that the approximéte
1.0+ ——lIT~eq independence of the BGR that we predict suggests that the
% overall shape of the dielectric functidne., the distribution
| | | of oscillator strength in the optical absorption spectrim
0 5 10 15 20 these excited configurations will be similar to that predicted
tot by one of u$ using an approach in which BGR was ne-
glected. Finally, we add that our computations of the imagi-
FIG. 6. Self-energy contribution to the band gap of GaAs as anary part of the QP self-energy for the cases considered
function of excited carrier density. above yield values small enough for us to conclude that life-
time broadening due to the scattering of excited carriers
screened-exchange self-energy expresgsme thef in Eq. should be of little importance in determining the shape of the
(15)]. This picture may not hold for excited carrier densitiesoptical spectra.
lower than 18%~/cn.® We illustrate this observation in
Fig. 7 where we show the screened-exchange self-energy
contribution to the direct gap dt calculated in two ways:
the solid line represents self-consistent calculations based on We have studied band-gap renormalization in laser-
Eg. (15), while the dotted line represents calculations base@xcited GaAs. The cases we considered were those of intense
also on Eq(15), but in which the dielectric functioe” was  excitation (~10%) in which excited electrons occupy the
computed for the unexcited case. Finally, we note that oulowest-lying conduction states and the excited holes occupy
results forazgx follow an approximateés power law behav- the highest-lying valence states. The quasiparticle self-
ior in the excited carrier density; the same power law behavenergy was computed with a nonequilibrium variant of the
ior for 535 can be obtained employing a very simple modelGW approximation using the Keldysh technique. Our study
based on the parabolic band approximation and replaging indicates that it is not possible to induce complete band gap
with a simple dielectric constant° closure by purely electronic means. In reaching this conclu-
Summarizing our results for BGR’ we conclude that forsion, we found that the contribution of the Hartree term to
relatively low excited carrier densiti¢ap to 10% of the total BGR, describing the mean-field interaction between an ex-
valence electron densitythe QP valence-conduction band Cited electror(or holg and the charge density of the remain-
gap decreasedut never closesprimarily due to the change ing electrons, is important and cannot be neglected. Our find-
in the Fermion occupation numbers entering the screeneddds seem to support experimental observatiamsvhich no
evidence of electronically induced band-gap closure was

S
\*]
I

5%, (eV)

S
o
|
/

IV. CONCLUSIONS
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APPENDIX o
) . F>=J A'B”+A~BA (A3)
In this appendix, we present the Langreth tolier ana- —
lytic continuation ofproductsof functions integrated over ]
contourC. This is necessary when evaluating B8V self- It can also be shown that if
energy expression. The functions introduced in &j.sat- " , ,
isfy the Keldysh relation, F(r.r)=Alr,7)B(7.7),
Ar(t,t,)_Aa(t,t,):A>(t,t,)_A<(t,t,), (Al) D(T,T'):A(T,T,)B(TI,T),
and also that for any functions andB, then
AT(t,t')BA(t,t/) = A3(t,t")B'(t,t')=0. (A2) Fr(t,t’")=A<(t,t")B"(t,t")+A'(t,t")B=(t,t")
r ! r !
The Langreth rule for analytic continuation states that if FA(LT)BI(LY) (A4)
on the contour and:
F:J AB D'(t,t")=A~(t,t")B3(t’,t) + A'(t,t")B=(t,1),
© DA(t,t') = A(Lt)BI(t',1) + AXL,t)B=(t' 1),
then on the real time axi€or a concise derivation see Ref.
16) D=<(t,t")=A<(t,t")B~(t',1),
Fr:f” ATBT Fae F ASgR D~ (t,t")=A7(tt)B=(t",1). (A5)
- - This result can be directly applied to the evaluation of the

GW self-energy expression, whe@andW replaceA andB,

e}

F<=f A'B=+AB?,

respectively(as well as to the polarizability, replacingA
andB by G).
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