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Cluster dynamical mean-field theories: Causality and classical limit
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Cluster dynamical mean field theories are analyzed in terms of their semiclassical limit and their causality
properties, and a translation invariant formulation of the cellular dynamical mean-field theory, periodized
cluster dynamical mean-field theofly CDMFT), is presented. The semiclassical limit of the cluster methods is
analyzed by applying them to the Falikov-Kimball model in the limit of infinite Hubbard interatfiovhere
they map to different classical cluster schemes for the Ising model. Furthermore, the Cutkosky-t'Hooft-
Veltman cutting equations are generalized and derived for nontranslation invariant systems using the
Schwinger-Keldysh formalism. This provides a general setting to discuss causality properties of cluster meth-
ods. To illustrate the method, we prove that PCDMFT is causal while the nested cluster schemes in general and
the pair scheme in particular are not. Constraints on further extension of these schemes are discussed.
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[. INTRODUCTION observed noncausal behavior in an iterated perturbation
theory solution of the Hubbard model, but the origin of this
Dynamical mean field theoryDMFT) (for a review see problem was not elucidated. Zaraetlal. suggestetithat the
Ref. 1) has been very successful in providing a nonperturbapair cluster approach was causal, and that the difficulties
tive approach to strongly correlated Fermi systems. It deencountered in the solution were related to the impurity
scribes both the localized and the itinerant limit and hassolver rather than to the scheme itself, but no conclusive
yielded nonperturbative insights into the finite-temperaturegproof of this statement was presented. This pair method re-
Mott transition® This approach has been combined with re-quires a simultaneous solution of multiple-site impurity
alistic electronic structure methods such as local-density agroblems.
proximation andGW and has been applied successfully to A different direction was pursued by Jarrell and collabo-
numerous materiafs.In spite of these successes, severalrators with the introduction of dynamical cluster approxima-
limitations of the single-site DMFT approach are now appar-tion (DCA),” whose main idea is to discretize uniformly mo-
ent. For example, the self-energy ksndependent by con- mentum space. This approach was shown to be manifestly
struction, so the method cannot describe independent varigausal. It can also be formulated in real spateee also
tions of the quasiparticle residue, the quasiparticle lifetimeAppendix A). A different approach, the cellular DMFT or
and the effective mass. Furthermore, the single-site nature @DMFT, motivated by applications to electronic structure,
the method precludes it from treating more exotic ordersvas introduced in Ref. 9. In this approach, the many-body
with order parameters involving several sites, such as dimeproblem is truncated by introducing a finite basis set of or-
ization, staggered flux ai-density wave, and-wave super- bitals to truncate the self-energy. It introduces the cluster
conductivity. self-energy and the lattice self-energy as independent enti-
To overcome these limitations, various extensions ofies. This method was tested in a soluble mddai, the
DMFT have been proposed. For a disordered system, ongalikov-Kimball modefl!® and in the one-dimensional Hub-
can set up a functional integral formulation, with DMFT as abard modef! These papers developed the CDMFT ideas
saddle point, leading to a natural loop expansiénformu-  from a real-space perspective. In this paper we develop this
lation of these ideas for a clean system is still lacking. Aapproach from a momentum-space perspective, to maintain
different extension is the extended DMREDMFT),* in  periodicity in the self-consistency equation. The importance
which the DMFT ansatz is applied simultaneously to bosoniof including this periodicity was underlined by
and fermionic degrees of freedom. This approach does natichtensteint*® arguing that the lack of periodicity of CD-
describe &-dependent self-energy but incorporates diagram$/FT could unfavor phases, like ttlewave superconductiv-
involving longer-range interactions into the DMFT equa-ity, in which the order parameter lives on links. Even though
tions. this point has not yet been elucidated, it is certainly desirable
A different idea is based on truncations of the Baym-to have a generalization of CDMFT that is translation invari-
Kadanoff functional. In the full theory, this is a functional of ant and causal in its use of the lattice self-energy in the
the full Green functions. DMFT is obtained by restricting it self-consistency condition.
to local Green functions only, setting the nonlocal Green Cluster DMFT methods have not yet reached the level of
functions equal to zero. A natural extension is to restrict theunderstanding of their single-site counterparts. While the
functional to local and nearest-neighbor Green functionssingle-site DMFT can be unambiguously formulated, cluster
This pair scheme was introduced independently by Ingerse@MFT methods are more diverse and therefore require more
and Schiller, and by Georges and KotliaThe latter authors  detailed methodological investigation, since the virtues and
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limitations of the various cluster schemes are not apparertent at the classical level and it allows a simple and clear

yet. This paper is a contribution in this direction. comparison. This study complements other comparisons of
There are several important principles that a clustercluster schemes against more exact treatments for specific
method should satisfy. models®° The classical limit of EDMFT was discussed in

(i) Given that cluster DMFT approximations are intrinsi- Ref. 14.
cally basis dependent, a cluster method should be formulated In Sec. IV, we analyze the issue of causality of cluster
in a general basis set. This flexibility is important, becausanethods from a diagrammatic perspective using the
for a given problem, one could carry out the cluster DMFT Cutkovsky-t'Hooft-Veltman rules. We rederive them for non-
study in the basis which is most suitable for the system irtranslation invariant cases using the Schwinger-Keldysh for-
guestion. malism. We end up with a general setting to analyze the

(ii) It should have an effective action formulation, namely, causality of cluster schemes. Within this framework we show
it should target the calculation of a specific correlator func-that the pair scheme is not causal, and elucidate the origin of

tion. the problem. Furthermore, we provide a simple proof of the
(i) It should yield causal Green functions. causality of CDMFT and DCA(which had already been
(iv) It should be able to capture the various orders, includproved by other methodlsand justify the causality of the

ing those which break the translation invariance. periodic generalization of CDMFT. Finally we make a rela-

(v) It should converge rapidly as a function of the discreti-tionship with the earlier paper of Millst al. on disordered
zation parameter for the observable that one is targeting. It isystems?® in fact, the coherent potential approximation
possible that different cluster schemes may converge bett€CPA) is a particular case of a DMFT. The origin of viola-
for different observables. A better understanding of these eltions of causality and their possible cure for the generaliza-

ements of a cluster method is desirable. tions of CPA were clarified by Mill$?
In Sec. I, we present our translation invariant generaliza-
tion of CDMFT where the lattice self-energy participates in Il. DESCRIPTION OF THE CLUSTER METHODS

the self-consistent equation. This is a different cluster )

scheme, and we formulate it in a way which allows a com- A fairly general model of strongly correlated electrons
parison with COMFT and DCA. We also discuss in Sec. I ccontains hopping and interaction terms. It is defined on a
a different class of schemes, tmested cluster schemes lattice of A/ sites ind dimensions, and we divide the lattice in

d H —1d o
which require the simultaneous consistent solutions of impu(V/L)® cubic clusters ofS,;=L¢ sites(more general forms

rity models of different size. can also be considerpdVe denote witlr , the internal clus-

In Sec. Ill, in an attempt to clarify the nature of the vari- €7 Position and withR, the cluster position in the lattice
ous cluster approximations, we study their classical limit in(therefore the position of thath site of thenth cluster is
the Ising limit of the Falikov-Kimball model. The various RntT.). The IattlceT Hamiltonian is expressed in terms of
schemes then reduce to classical cluster approximations fgrmionic operatoreg , , andcg s, and can be written
the Ising model. This analysis elucidates their physical conas

H= Z ta,B(Rn_Rm)cgn,a,(rCRmva‘T

n,a,m,B,o

T )
+ 2 Ua,(rl,ﬁ,rrz,o/,0'3,B’,(r4({R})CRn,a,(rlCRm,B,u’ZCRn, ,a’,(r3CRm' ,ﬁ/,U‘A’ (1)

na,op,mpB,op,n",a’" ,o3,m" B o4

where o is an internal degree of freedofhe., a spin, spin  cluster dynamical mean-field theolPCDMFT), formulate
orbital, or band inde) Note that throughout this paper, we CDMFT and DCA in real and space and thaeested cluster
will denote the position and momentum on theriginal) schemegNCS9), i.e., the pair scheme and its generalizations.
lattice with lowercase lettersr (and k), the position and CDMFT (Ref. 9 is a real-space cluster: the lattice is divided
momentum of the superlattice with uppercase lett&sd in a superlattice of cells and the scheme is basically the
K), and with greek lettera, 8, v, 8, u, v, p, A the posi- DMFT equations on the superlattiteOn the other hand,
tion within the cluster. Different dynamical cluster methodsDCA (Ref. 7 is a reciprocal space cluster, where the self-
for strongly correlated electrons have been introduced in orenergy in momentum space is approximated by step function
der to obtain an approximate solution of Efj) able to cap- around a few points, which we will denote Ii§, and are
ture the effect of short-rang@lynamical correlation and to identified to the momentum of thiperiodig cluster. We will
describe the self-enerdydependence. show that PCDMFT is a natural generalization of both
In the following, we introduce a scheme, the periodized schemes, from a real-space ank-space perspective.
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A. Real-space perspective - 1 c
a = —
Cluster methods for strongly correlated electrons Ei*i(w)_ S M%C EW(‘”)' “)
(CDMFT, DCA, PCDMFT can be divided in two steps. w—v=i=j
(Nested cluster schemes will be considered separptely. . . :
The first step is the computation of the local cluster propa—.o thedr est(ljmatori;/vhlch sl pr)]res_erve causall“IhWa\qe been d
ator G (7) and the cluster self-energyC from an intro uced in Ref. 8. Note that in CDMFT, t e cluster an
9 T Cuoyvoyp o ) ) " the lattice self-energy are two different quantitiesne has
effective action containing a Weiss dynamical field o first solve the cluster problem, and only at the end com-
Gopoyve,(7:7') @nd the intracluster interaction: pute the lattice self-energy'®®. In CDMFT, 3'2 does not
enter the self-consistency condition.
B oy . , ) DCA is more naturally formulated in Fourier space.
Seir= —J J drd7'c, ;. (1) G0 0y ,0,0, (T T )C0,(T) However, it can also be recovered from a real-space
0 Y X i o
perspectiv@ just changing the hopping matrix in E) to
B (see also Appendix A
+ fO dTUa,al,ﬁ,az,y,03,5,04(R:O)

: : A=t (K)exd —iK (= )],
X(Ca,0,Cp,05,Cy,0,C0,0,)(T), (2a)
In this case if the self-energy is a cyclic mat(ixansla-
- t tion invariant within the clustgrthen Eg.(3) reduces to

Gorry (V=T (70 (Osye - (20) (upon diagonalization ° &

EC:Gol—GCl. (20 Gal(KCviwn)

In the following, we will often concentrate on square clus- 1 '
ters of linear sizel on a d-dimensional square lattice, al- e ; _ _sC ;
though many of the results can be generalized easily. Hence, KERBZ Tont p =K+ Ke) =2 H(Ke Ton)
w,v will also denote the position of the cluster sites on the +3%K,,iwy), 5)
lattice: u,veC={0,... L—1}9 where the intersite distance
is normalized to 1. We will denote b$. the cluster’s size which is the standard DCA equation introduced in Ref. 7
and byC the set of cluster pointsy is the spin index as wheret(K) is the Fourier transform on the R.B.Z. of the
mentioned earlier. In the following, we will consider only hopping on the original lattice. Note that if the self-energy is
solutions with diagonal propagators in the internal index cyclic then the Weiss field computed by E§) will be cy-
and for simplicity each time quantities are diagonal in theclic, so this property is preserved within the self-consistent
internal indexo we will omit it. loop. In DCA, contrary to CDMFT, there is no distinction

The second step consists in recomputing the Weiss fieldetween the cluster and the lattice self-energy. Because it is
using the value of the self-energy obtained by the first stefiormulated ink space, DCA is also naturally translation in-
and then iterating until convergence is reached. The real difvariant.
ference between cluster schemes is how the second step isWe are now ready to define the scheme PCDMFT for
performed. We first focus on translational invariant casesperiodized CDMFT. The simplest definition is to tak&" in
CDMFT is a direct generalization of DMFT to a cluster  place of 3¢ in the self-consistency condition. This is very
real spaceand consists simply in rewriting the DMFT equa- close to the scheme proposed by Lichtenstein and Katsnelson
tions in a matrix form f,v indices are omittedtaking as  in Ref. 13, with the big difference that PCDMFT is causal, as
elementary degrees of freedom all the cluster fermionic dewill be proved below. Thus the equations relating the self-

grees of freedom: energy to the Weiss field are
1 o : 1 C i -
Go iwn) = . Sian(Kiwn) = o > 30 (lopexd —ik(p—v)],
KERBZ jw,+u—t(K)—3%iw,) e u,vel
(6a)
+3 % wp), ()
e—ik~,u,eik<v
wheret,,(K) is the hopping expressed in the superlattice G,“,=E , (6b)

H latt, H
notations, withK in the reduced Brillouin zonéR.B.Z) of kK lopt p—t(k) — 2= (k,iwp)

the superlatticésee Eq.(Al)]. Note that from now on the

sum overK means always the normalized sum. When con- Ggl=G‘1+EC, (60
vergence is reached and the cluster self-energy has been ob-

tained, the translation invariant lattice self-eneBJ§'[(i,j) wherek is in the Brillouin zone of the original lattice.
denotes a site on the original latticess computed by the The three scheme€CDMFT, DCA, PCDMFT) can be
formula summarized into the same matrix equations: @ and

205108-3



G. BIROLI, O. PARCOLLET, AND G. KOTLIAR PHYSICAL REVIEW B69, 205108 (2004

-1 denotes the modulo reduction hycomponent by component

Golliwg)=| 2 [iwg+u—tsg(K)=SgK,iwy)]? (adding 8 is a circular shift in the clustgr
KeR.B.Z. . . . . .
The idea of the generalization is then simple. In a phase
+3%iw,), (7) that breaks translation invarianéee take antiferromagnet

as an example we have multiple solutiongtwo for AF),

where the difference between the three schemes is enclosednoted by an index (a=1,2 for AF). In order to respect
in the value oftg and ofX g that enter in the self-consistency the order, we need to compensate the shift in the cluster by
condition. the change of solution: in the AF example, use one solution

Let us now turn to translation invariance breaking phaseson one sublattice, another on the other sublattice. The for-
where translation invariance is conserved on the superlattio@ula is then
(e.g., antiferromagnet, charge density, “stripes” if the cluster
is big enough CDMFT can describe such an order by con- gt _ 1 o KU+ LI~ Lo+ AILIL
struction since it does not require the translation invariance. e sefo,L-1)d
When solved numericallye.g., with quantum Monte Carlo
method, the translation invariant solutions are often found to ng%w 5 (99
be instable towards the ordered ofwee have explicitly en- o
countered this phenomenon, for example, for antiferromag- d
netism and charge-density wave 1 if D 8§=0[2]

DCA and PCDMFT require translation invariance, there- =0
fore they need to be generalized to handle such an order. For (d)= d (90)
DCA there are two solutions for this problem, for example, 2 if E 6i=1 [2].
for antiferromagnetic order(i) keep a reciprocal space for- =0
mulation with a reduced Brillouin zone and introduce some
correlation betweef andk+ Q, with Q= (ar,);® (ii) use
thereal-space formulatiomntroduced in Ref. 8, where trans-
lation invariance in the clustezan be broken, and look for
an antiferromagnetic solution. It is shown in Appendix A that
the two approaches are equivalent. Howevgrrequires to
anticipate the appearance of ordered phase, i.e., to adapt t
cluster scheme for the order to be described: one needs to u
a special setup for antiferromagnetic order, another for a
more complicated order, where@y does not require to an- . . o
ticipate the order: it will show up automatically solving the B. Reciprocal space perspectived derivation
real-space DCA equations with no need to generalize the We now explore the relation between PCDMFT, CDMFT,
scheme(provided that the cluster is big enough to containand DCA from the reciprocal space perspective. In order to
the unit cel). The same numerical code will produce a trans-do this, we use the generating functional formulation of
lation invariant solution or an antiferromagnetic one, apMFT.! Let us recall that one can define a functiohigG),
stripelike one. In particular, since translation invariant solu-
tions are often found to be numerically instable, one cannot I'(G)=Trln G—TrGglG+<I>(G), (10)
miss an ordered phase with this approach. Therefore, the
real-space formulatiorof DCA is the best solution from a where Go=(iw,—t+u) ! is the bare propagator and
practical point of view. ®(G), the Baym-Kadanoff functional, is the sum of all the

The PCDMFT is unfortunately more complicated to gen-vacuum two-particle irreducible diagrams constructed with
eralize. In the following, we will focus on square clusters onthe propagato6 and the interaction vertices. The solution of
the square lattice. It is useful to introduce a slightly morethe stationarity equatiofll) is the real propagator of the full
general formula fors'?" for a bipartite lattice. The lattice interacting theory. DMFT, as well as its cluster generaliza-
self-energy is a sum of the cluster self-energy put at all postions, can be seen as an approximation ch{(@). Indeed
sible positions on the lattice. We can rewrite E4) in a  one obtains the DMFT approximation restricti®dG) only
more transparent way, as a sum over all possible shifts of the® single-site propagatdequating to zero all the non-single-
cluster: site propagatobs i.e., ®pyrr(G)=2;®(G;i|G;=0) or,

equivalently, neglecting the momentum conservation at the

o’,p,;o",v( ) S

For the AF phase and when the original model is(3U
invariant, the solutiorx=2 is simply obtain fromn=1 by a
spin flip. This does not need to be true in general, either for
more complicated order or the Falikov-Kimball model that
we will use in Sec. Ill. Let us note, however, that this gen-
ralization is more complex than for the DCA scheme from a
E?actical perspective: the expressiorSoit strongly depends
the order to be described and on the form of the cluster.

latt 1 K (L BYL|~ Lo+ DL vertices. These two procedures, which are equivalent at the
EU,M;UI,V(K): S 2 e K single-site level, represent two different routes in order to
¢ ocf0,... L1y obtain cluster generalization of DMFT.
NS (8) CDMFT can be obtained by a natural real-space extension
o,ut 8o’ vtd

of the DMFT approximation omb:

where|x] is the integer defined byx]=x<|x|+1 (for a

vector it has to be understood component by component o G)1=S PG o |G ono=0 11
is the dimensiong is a d-dimensional shift vector, the bar coweT(G) ; (CprnrlCrrar=0). (11
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It is easy to show that the stationarity equation correspondin®lugging this expression inside the functional leading to
to this choice of® gives back the CDMFT equations. Note CDMFT, we get the PCDMFT functional
that the summation of the infinite series of diagram of

D cpmet(G) is performed by the cluster impurity solver like L(GK)=TrIn(G) + Tr{[i wy—t(k) + u]G}
in the DMFT case. o
DCA is formulated more naturally as an approximation in + NP pcpurr( U, G), (14

Fourier space: instead of neglecting completely the momen- _ _ _
tum vertex conservation one puts a coarse-graifidgaside ~ Where @ is the Baym-Kadanoff functional expressed in
the complete diagrammatic series. terms of G(k) and obtained replacing the original matrix of
interactionsU (kq,k»,k3,k,) with
Dpcal(G) = NP (G(K) Uk, ky ks kp)=Upea(ky ko ks k)

12 - ~ -
(12 U(Ky,Kz,Kz,ky) = ﬁE s U 0a,08,07.0090a(K1) 955 K)
a,p,y,

where
X @o,(k3) ©g5(Ka), (15)

where we made use explicitly of the translation invariance to
Ngs is the number of clusterenumber of sites divided by put R=0.

Upca(ki, Kz, K3, Ka) = Sk (k) +K(ky) K (kg) + K (kg) / Nss:

number of sites per clusteandK (k) is 3function that for Extremizing this functional with respect @®(k) gives the
eachk gives the center of them/L,w/L]" cube to whichk  PCDMFT equations together with the form of the lattice self-
belongs7. energy:

PCDMFT has been introduced previously from the real-
space point of view like a natural generalization of COMFT _ 1 _
in which one puts the lattice self-energy inside the self- Grars(@)= > @ha(k) ——— erp(K),
consistent loop(still i i i k ©=1(K) = 2k, 0)
preserving the causality properties of (168
CDMFT). In the following we shall show that, from the
functional point of view, PCDMFT can also be seen at the
same time as a translation invariant formulation of COMFT - e c =
and as a generalization of DCA. Up to now we restricted the ki) azﬁ:R (pR“(k)E“'B(PRﬁ( k). (16b)
discussion to the standard completely localized basis set for ) ) .
simplicity. However, CDMFT and PCDMFT can be formu- WhereX is the self-energy obtained from a cluster impu-
lated in a general basis set. This flexibility is important, be-fity problem characterized by a propagatf, ;=Ggr, rs
cause for a given problem, one could carry out the analysiand the interaction matrii By
in the basis which is most suitable for the system in question. As discussed before, there is another procedure to get the
As a consequence, in the following we will derive PCDMFT functional formulation of PCDMFT encoded in E@4). As
for a general basis. the DMFT approximation can be obtained just by neglecting
We shall show that there are two different proceduregshe momentum conservation at the vertex, one can interpret
Igading to the same formulation of PCDMFT..Let us focusEg. (15) as an improvement to the DMFT approximation in
first on the one which shows that PCDMFT is the naturalyhich the vertex is replaced  byU (K Ky ,ks k)

translation invariant formulation of CDMFT. Calbg, the ~ ~ ~ ~ ~
basis function used to define the cellular DMfRef. 9 and :E“'ﬁ'%‘sua'ﬁ'%‘s%“(kl) ¢os(k2) o, (Ka) @os(ka) ~ where

~ . , . . U =U .

m m a,B,v,6 0a,08,0y,06
¢ra their Fourier transfo'r ” Note ‘[“"‘t theyzare normalized in At this point a natural question is why we have chosen
such a way that;| ¢r.(i)|*=1.2|¢r.(K)|°=1. The par-

; : i< odpis particulartU and, more interestingly, could other choices
ticular case of ~the standard completely localized basis S9ead to a better approximation and what is the procedure to
corresponds topg,(K)=exp(—ikxg,)/VN (N is the total “ " i )
number of siteswherexg.~R-+1 .. COMET in a general find the “best” U? Unfortunately we do not have clear an

basis is obtainedi) keeping only the intracluster interaction, swers to thgse qgesnon_s. A partial ansvyer o the first one is
UR a.RopReyR,0— URaRE.RyRss N (i) making the ap- that the choice otJ leading to PCDMFT is the one that we
1%, RoP:R3Y: Ry @, Rp, Ry, Ro»

proximation (11) discussed above to the Baym-Kadanoff obtain applylng~ the least squgre mlnlmlzatlon .to
functional. U(ky,kz,ks,ks) —U(ky ko k3,kg). So in a certain sense it
PCDMFT can be obtained making the approximatitiis provides the best approximationtbwithin the chosen basis
(i) andimposingthe translational invariance of the original S€t It is, however, important to notice that it is faNr from clear
problem. This is performed expressing the propagator in théhat this is a good criterion to select the “best. With
new basis set in terms of the translational invariant propagaespect to these remarks, it is particularly interesting to note
tor in the original basis set: that DCA can be obtained taking U,z s
=U04,00,00,0090, 594,605, (in the case of a complete diago-

Go. o = e (K)*G(K, ) o 4(K). 13 nal interaction on the original lattice and Z}Rﬁ(k)
rar (@)= 2 Pra(K* Gk @)orpk). (13 T K (kg N
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This suggests interesting interpolation between DCA and
PCDMFT. A particularly simple one consists in dividing the D= (1-2) 2 ©4[G;]+ X, ,[G;i,Gjj,Gl. (18)
Brillouin zone in19 squares(like in DCA for a cluster of ' iy
linear size |) and taking ;Ru(k)ZeXF[—iFKk)XRM]/\/N Differentiating this functional gives an equation for the local
whereF (k) is a function giving, for eack, the center of the ~self-energy and the nearest-neighbor self-energy:
[w/l,7/I1]% cube to which k belongs (note that u

=1,...L.). Whenl=L. one gets DCA, whereas when S o= o - 5(I)1+Z( o0, 5(1)1) (193
= one gets PCDMFT. °8G; 4G oG 8Gji)’
Let us finally note that this functional derivation of
PCDMFT is crucial to prove simply its causality properties. s oD, (19b)
nn

Indeed this scheme is causal because it is a composition of

two causal steps. Clearly, starting from a causal cluster sel[—gh di . . fthe fi Lo
energy, one obtains a causal cluster propagator through Eq5He iagrammatic interpretation of the first equation is trans-

(168 and (16h). Furthermore, we will show in Sec. IV that | arent: each diagram tha_t invo_lves alink is properly counted
plugging the causal cluster propagator inside the diagraMn the solution of a two-impurity model. The diagrams for

matic series corresponding to the PCDMFT functional givestfhe Itc_)cal stelft-gnergybat Sl')tf _vvhg:? involve Only ththreeg |
a causal cluster self-energy. unction at sitei, can be obtained from a one-impurity mode

with the correct counting. The contribution of the diagrams
for the local self-energy, which involve the Green functions
of a pair of sites, can be obtained by subtracting the contri-
Another natural generalization of DMFT to the cluster butions from the one- and the two-impurity self-energy and
setting is to apply the ideas connected to the cluster variatiomultiplying by z, which results in Eq(198. From,,. and
method (CVM) of classical statistical mechanics to the 3, we can construct the lattice self-energy.
Baym-Kadanoff functionat’*®These schemes are also natu-
ral generalizations of tha site CPA(Ref. 19 to interacting 3= (i @p) F(K)Z (i p) (20
electrons. The approach is defined by selecting a set of ma
mal (namely, they are not included in each ojheusters of
sites. We denote by the set of maximal clusters together
with all its subclustersy, and by®, the restriction of the 2 1
Baym-Kadanoff functional to G,(i,j), with G,(i,]) Gloe= 2 7—— — - — —,
=G(i,j) if i andj belong toa and G,,(i.j)=0 otherwise. K 100 = 1K) = 2ocli @n) = 1K) 2 pn(i )

5Gy;

C. Nested cluster schemes

Xjind close the equations by requiring the self-consistency
condition imposed by the Dyson equatibn.

21
®, is defined recursively in terms of thé, by &, (213
=2 pcPp Which can be inverted by the Moebius formula 2 eik.S
®,=34,(—1)"6 "ad , with n, the number of sites of Ghn=2 = - —.
a BCa B a — — —
clustere.. An approximation scheme is uniquely fixed once a K ioq=t(K) = Zjodi @n) —t(K)Zpn(iwn) o1

set of maximal clusters is chosen. If the chosen set is invari-
ant under translations, e.g., the set of all plaquettes, we corfhis can be expressed in the matrix notation, with2 ma-
struct a cluster scheme which is manifestly translation invaritrices

ant by truncating the full Baym-Kadanoff functional

_ ( GIoc G‘nn)

- Gnn GIoc

andK in the reduced Brillouin zone:

Differentiation of @ yields a translational invariant self-
energy, which requires the solution of several impurity prob- G= 2 [l w,—t(K)—3hat(K)]-1. (22)
lems. The subclusters of a maximal cluster are generally re- KeRB.Z.

lated among each ther by the. operations of the crysta+he generalization of this scheme to antiferromagnetic order
group, and fall into different equivalence classes. To com-

pute the lattice self-energy, one needs to solve several imp's-' presented in Appendix D. An important feature of this

rity models—one for each representative of inequivalent sub-Cheme 's that the Green function of the one-site problem
y L . P q coincides with the diagonal part of the Green function of the
clusters of the maximal cluster.

wh tak t of imal subclusters th i two-site problem. This is a general “nested” structure for
en we take as a set ol maximal Subclusters the set qf 5o schemes, hence the name “nested cluster schemes.”
all nearest-neighbor pairs of the lattice, we obtain the pai

: . . ) Payve will see in Sec. Il that this property leads to a quantita-
scheme(or two-impurity schemg® which we discuss in property q

. ; : tively good classical cluster scheme.
more detail for completeness. It is convenient to go back to a Y9

lattice notation where lattice sites are denoted apdj and
not by Ru. The approximation to th@ functional can be
written in terms of®, and®, which are the Baym-Kadanoff Another important issue is the treatment of longer-range
functionals of a one- and a two-impurity problem. interactions within CDMFT and PCDMFT. In this context it

d~> P,,. (17)

ael’

D. Hartree-Fock terms
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is worth noticing that the Hartree-Fock contribution to thetain classical cluster approximations of the Ising model. For
Baym-Kadanoff functiona(10), the reader not interested in the derivation, we summarize our
findings in Sec. Il B.

(I)HF[G]:Z Uaﬁyﬁ(Rl'RZ’RS'RU A. Derivation of the classical limit
X[G ga(RaR1) G 4, (R4Rs) We first present the derivation of the classical I|m|t_ of
CDMFT, DCA, and PCDMFT. Our results on the classical
—Gsa(R4R1)Gp,(R3R3) ], (23 limit of the pair scheme are presented, but derived in Appen-
dix D.

induces a self-energy which is frequency independent and |n the following, we will concentrate on square clusters
therefore does not cause problems with causality and can kg the square lattice. For clusters with an odd size it is nec-
evaluated with little computational cost. So it is convenientessary to slightly generalize the CDMFT equations to get
to separateP =+ Pqyn, and apply the cluster DMFT  antiferromagnetism in the usual way, distinguishing two
truncation only to®q,,, and to the self-energy it generates sublattices. To avoid cumbersome notations, we will discuss
while treating the Hartree contributions exactly. More pre-that point later. The key point is of course that =0 makes
cisely, one can treat with Hartree-Fock terms that connect thghe model partially solvable in the various schemes.
cluster to the exterior only, to avoid a double counting prob- A priori, we have an effective action given by E@a).
lem. Sincet; =0, we can show self-consistently th@g, is diag-
This observation is particularly relevant in the treatmentonal. Indeed, ifGy, is diagonal, because of the form of the
of brokg_n symmetries induced by n_onlocal interactions a.n, vertex, G, is diagonal(at all orders inU), and so is
exemplified in the study of the transition to a charge—densn;gl_ In all SChemesE'f‘“ is then diagonal and independent of

wave in the extended Hubbard model in one dimensiork Therefore from Eq(2a), we get for COMFT, DCA, and
which was studied in Ref. 11. PCDMFET:

IIl. CLASSICAL LIMIT (Goy) Miwp) =iwa+ 3 (iwn) =S iwn) =iw,.

In this section, in an attempt to clarify the nature of the (FOr the pair scheme, see Appendix) Dherefore we can

various cluster approximations, we investigate analyticallyconsidern; as a classical variable and compute the Green
the larged limit of the Falikov-Kimball model, which re- function for the up electrons, solving the effective action:

duces to the classical Ising model in that case. The Falikov-

Kimbal model is defined by the Hamiltonian Ser= _J' fﬁdeT'CLT(T)Gaiv( 7,7)C, (')
0 ,
H=> t;,c c,+U S| (24) B 4 1
& ijo“io~io i 9 il o) +J'O dTC/.LJ,(T)aTC,U.l(T)J'—U nMT(T)—E
where(i,j) denotes nearest neighbotg, =t andt;;;=0. 1
We consider the particle-hole symmetric cage<0). This X nm(T)_E)' (26)

model has been studied a Idor a review, see Ref. 20but
we will use it here as a tool to derive a classical limit for thewhere u,v are intracluster indices. For fixed , the action
various cluster methods. This completes the quantum Mont®r the up electrons is Gaussian, which leads to
Carlo study of this model with CMDFT and DCR.Indeed,

— r -1
in the limit U— with B—, B=Bt/U fixed, it reduceson g _ 2, D o _<n _Yus
. . - 1224 — 7 Ouv ml 2 mv '
the lattice to the Ising model at temperaturg:1/ {n, =0.1 ' 273
= jlatgrer [ 1 '
H=2, JES's, (253 Z({npi})zexp{ Trin Ggl}v—(nm—i)ufsw ]
Latt__
Jifj=t;;/2 (250 xexp( BuURY npl), (27b)
p

with §/=(cl,c;;—cl/c;)) (Ising sping. Note that a factor
t/U has been absorbed in the definition,Ezf The proof is _
analogous to the standard reduction of the Hubbard model to Z_{nmz:o,l} Z(inp1h)- 279

the Heisenberg model: since down electrons are quenched,

there is no possible exchange between two spins at different The computation of the large- limit is organized in two
sites, which implies that the interaction is Ising-like. We will steps. First, we find the expansion @f, and second we
now take the classical limit of the various cluster schemesshow that in this limit the effective actiof27b) becomes the
using their common expressiofa) and(7) in order to ob-  action for a classical Ising cluster with mean-field-like terms.
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Moreover, the study of the lardg-limit requires an expan-
sion in the limitU—« and w—«, with x=2w,/U fixed.
Indeed there is a strong dependence at the scdle as seen

PHYSICAL REVIEW B69, 205108 (2004
Cdiag

ES(K):EMV

where 52 g is a matrix of ordelO(1) in the 1U expansion.

+ 6% 4(K), (32

already in the atomic limit. We will see that the final result is Denoting with a bar the normalized sum of the reduced Bril-

not determined by th&—0 limit.
First, we use an ansatz f@&;,, which we will prove to be
consistent

L. v

Gy (iwy) =i §X—A(X) (29
with A of the order 1 in 1) (plus subdominant termsUs-
ing the expansion

(A=A) 1=A" T+ ATIAA T+
with A ,,=(S,+ix)(U/2)s S,=1-2n,, we expand

N

G, in Eq. (2739 and obtain from Eq(2c) the following ex-
pansion for the cluster self-energy of the up electrdfts

3C,=36"+ 635, (299
Cdiag__ U5/“, L
772 2 (<h”> |X)+O(1), (29b)
h.ho)e 1
52,CWE(1—5W)A,W<<hIST>V>+O U)’ (290
h, = ! 2
LTS +ix’ (299

w

where 3¢ (52;%) is the diagonaloff-diagona) part of
the matrix, the brackets denote the average owgror S,
with the weights defined in Eq273. The averages and cor-
relations ofh, are computed usin§,= *1 and solving for
the probability of the spin to be-1 as a function of the
correlations:

(h.)=

(S.S,)—ix((S,) +(S,) —x*
(1+x3)?

(h,h,)= (30b)

louin zone,

> AK)
— KeR.B.Z.
AK)=——"—,

1
KeR.B.Z.

we obtain R is on the superlattige

., (339

~ 2t
8,00 =T, 00+ I 00(h,) +0| =5

T(x)=tg+ 63— 536, (33b)

1
I (x)= ?[(ts"‘ 029 up(tst 0%g),,

- (tS+ 528);/.p(t5+ 525)p1/]

—~|

go (ts+ 839 4p(R)(tst 829) ., (—R).

(330

Note thatt is purely off-diagonal. In the expression df
82 5 has to be expanded to ord®(1) only. Moreover, only
the off-diagonal pariin site index is important since the
on-site part is restricted B=0. 625 andA are determined
by Egs.(29) and(33) and the relation betweehg and3.€.

At this stage, it is useful to distinguish two cases depend-
ing on the validity of the cancellation

3¢ =3C (34)

In CDMFT and DCA,s=3 is K independent, therefore

Eq. (34) holds ands3 5 drops out of Eq(33¢). t andJ do not
depend orx, although(h,,) does. In PCDMFT, however, Eq.
(34) does not hold and we have to solve &% s andA (see
below) to complete the computation &,,.

The second step of the computation is to take the large-

For (u,v) nearest neighbors in an antiferromagnetic phase;mit of the effective action(26) using the value o5, (33).

as well as in the paramagnetic phase, we hegg +(S,)
=0 and thus

<h//.h1/>c _ <S,usv>c
<h/.LhV> _<SMSV>—X2 '

We now take the limit in the self-consistency conditiah.

(31

We keepX s to derive a general formula, and we will spe-

In that limit, we expect that the problem becomes classical,
and more precisely fod — o:
(¢l cp)—0 for u#w,

(353

(35b)
Indeed this can be shown explicitly using Eg87a and tak-

cialize to various schemes later. We only use the fact that thing the U—< limit in the Fermi factors,after doing the

diagonal part of2 g is independent oK and equal to the
cluster seIf—energyESMM=22M . This is true for the schemes
studied in this paragraph: PCDMFT, CDMFT, and DQ#ér
the pair scheme, see Appendi¥.Oherefore, the dominant
part of orderU in X ¢ is diagonal and we have

summation over frequencies. However, due to the frequency
dependent nature dBg in all cases, we need to use the

functional formalism and not the Hamiltonian formalism as

in the derivation of the Ising limit on the lattice. This is
presented in detail in Appendix B. In the limit—o with
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B—, EE Bt/U fixed, the effective action reduces to the

classical action for the clustet temperaturel/g and we
obtain aclassical cluster schenfer the Ising model with an
interactionJ;ging inside the cluster and an additional mean-

o=u—v[2L]

t ts w8\ 12
A —qj -
Jeing 2{ Ea tSInC(ZLC)] , (383

field termJg: , b tst_s . [7(5—6") ,
‘]g _E 5’25, tz °nC< 2LC _‘]Ilging'
v v o=p—v[2L ]
Heff:<2> Jll;ingsusv_i_(E) ‘]g S,u<SV>Heﬁ! (368) &' =p—v[2L]
o e (38h)
= dx T2 (%) Jg is the same for all links as required by translation invari-
JfgingEJ — (36b) ance in the cluster. For the first-neighbor hopping, denoting
—= Tl (1+x%)? by J“2 the value ofJ}2] for i,j nearest neighbors, the for-
mula reduces to
JEY fw dx 3,700 (360 16 16
= _——, 0
)T (1+x?)2 J,’;i”ng=¥.l'-a“, JgV:(z—;)JLa‘t for L.=1,
where (u,v) and (u,v) correspond to a general and a (393

nearest-neighbor couple of sites, respectively. One has to 5
solve a classical Ising cluster, with self-consistent “bound- e =(si T JLatt
ary” condition represented bylz, which generalizes the Ising n°2LC '
usual Weiss field. Of course, tf does not depend ox we
find the same result as in the Iattidgﬁ19=\];a_“,, for nearest
neighbors.

Let us now specialize our computations to the three ) o )
schemes presented in Sec. Il and compute the valdg,qf Note that in the X 2 cluster, 'the hopplng is dqubled since
andJg for CDMFT, DCA, and PCDMFT for square clusters e!ectrons can hop from one site to ?he neighboring one, either
of linear sizeL on a two-dimensional square lattice and for a(.1|rectly or using the cyclicity condition. In the large cluster

mV _
\]B -

T 2
1—(sincx> }JLa“ for L.>1. (39b
C

general hoppind s where § is a lattice vector. limit Lc—o, we recover the lattice problendf,—J,™,
CDMFT. In this caseS¢(K)=3C is K independent and andJg=O(1/L¢).
ts=t, which leads td (x) =t and PCDMFT. This case is more complicated sinkg= """
’ is now K dependent, henceg# 3¢, except for diagonal el-
Jer — jlat (373 ements. Thereforé and J now depend orx. In order to
Ising™ Yu—v?

determine them, we have to solve E¢), (29), and (33).
This is done in Appendix C and we obtain

mv_ ¢ __q\L Latt
B=CDE2 I e S t et hany os
HETTRAX)Ch )

The interaction inside the cluster is the same as in the lattice
problem and thdg term is of orderO(1) and is confined to t2 R
the boundary of the cluster. The boundary term couples a I (x)=(—1)"A72(x) >, = t” , (40b)
spin to the average value of its “ghost” neighbor in the R#0
neighboring cells, this average value being computed in the
cluster itself using the translation invariance on the superlat- AX)=1— i E (hohps o) (400
tice. We added a * " sign for odd cluster size, since in this Sc pec (h,h,is)’
case the CDMFT has to be generalized like DMFT with two procc

sublattices in order to capture antiferromagnetism: this isvhere § is one of the basis vectors of the square lattice.

equivalent to reversing the sign of the ghost neighbor. Inthe |n d=1 for first-neighbor hopping, the last term reduces

large cluster limitL—co, the boundary terms play no role to

and we therefore recover the lattice Ising problem. Notice,

however, that the one-dimensional case is pathological since 18 (hihi _1)¢

the two boundary terms communicate with each other, result- A(X)=1— L m

ing in a finite T, in the limit of infinite size. This pathology o AL

disappears in higher dimensions and explains the results gfhe boundary terms are located as in CDMFT. In the large

Ref. 10. cluster limitL—oe, in Eq. (40) the boundary terms are sub-
DCA.In d=2, we use a square cluster of linear slze dominant in the denominator and the terms involving the

=2L, corresponding ta K points(cf. Appendix A. With  averages o8 cancel, restoring the corred;,q on the lattice.

the definition si@(i)zl'lf’:lsin(xi)/xi: The Jg term cancels since it is restricted to the boundary.
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Pair schemeThe computation of the classical limit of the one (and between themselyes-inally, the pair scheme re-
pair scheme is a little more involved but similar. We show induces to the classical cluster variation method for two sites.
Appendix D that if a magnetic solution exists, it satisfies the The self-consistent equations corresponding to these clas-
equation of the classical variation method. Let us take twasical cluster schemes can be solved analytically for small
cluster problems, the first one with one ditkenoted with an  clusters and using a classical Monte Carlo method to solve
index (1)] in a field —zh, the second one with two sites the impurity problem for larger size. With the exception of
[denoted with an inde#?)], interacting antiferromagnetically the cluster variational method, the classical limits of these
with J-3 and in a field— (z—1)h, wherez=4 is the con-  extensions of DMFT do not result in drastic improvements in
nectivity: the estimation ofl . for small cluster sizes. The value ®f

predicted by DMFT is the standard mean-field oné:(the
HM=zhgb), (418 connectivity of the lattice is fouy which is far from the exact
value of 2.23. The value obtained using the NCS scheme
H®=(z—1)h(SP - sy + 3Lt - (41b)  with two sites, i.e., the pair scheme, leads to a good improve-
_ , , . _ ment: T.=2.88]. Instead the results for DCA and CDMFT
wher.e. th? fieldh is determined by the “nested consistency oy en for larger sizes (44, 6x6, and 8<8 clusters do not
condition improve the estimate of . very much. In fact, within error
bars of 0.1 we geT{**¥=3.23, T®*®)=3J, and TE*®

I\ — /(@) 2
(SH)=(sP)=~(s). 42 _ses (within the error bars the estimates fof are the
Solving the classical equations, the critical temperature i§ame for the two schempesNote that the value obtained with
given by a cluster of 16 sites with DCA and CDMFT reaches the
estimate obtained with a cluster of two sites using NCS! The
(z— 1)tanr(EJLatt):1, (43) results of PCDMFT are clearly worse than the ones of the
two previous methods for the numerical valueTaf, which
which givesT,/J""~2.88. is quite larger than what is obtained by CDMFT and DCA.

This can be traced to the lack of cancellation of off-diagonal
elements in Eq.(34) which implies that the cavity field
A(iw,) in PCDMFT is not proportional to the square of the

Let us recapitulate our results. We applied the cluster dyhopping matrix element which is an undesirable feature.
namical mean-field theories to the Falikov-Kimball model

taking U—o~ with B—o, B=pgt/U fixed. In this case the IV. CAUSALITY

quantum model reduces to the Ising model and the cluster ) ]

dynamical mean-field approximation to classical cluster In this section, we present a general method to prove the
methods. CDMFT corresponds to a simple mean-field theorgausality of cluster approximations and apply it to various
generalized to clusters: each spin on the boundary is suichemes, including PCDMFT. As mentioned in Sec. I, there
jected to a mean field representing the interaction with théire two equivalent presentations for the equations of DMFT
neighboring spins that do not belong to the cluster. The fornfnd its extensions: a first one using the Weiss functen

of the mean field is the standard one: the antiferromagneti@nd another one using the Luttinger-Ward functiobalLet
coupling times the magnetization of the spins. Note that, irS €xamine the causality question in both.

principle, the antiferromagnetic coupling is generated via [In the formulation withG,, one has to prove tha) if G,
quantum fluctuations and its value is approximation depenis causalG. andX are causalthis is automatic as long as
dent. In the case of CDMFT one gets the same coupling agne uses a causal impurity solyefii) if X is causal,G,

B. Discussion

the one obtained for the lattice. computed from the self-consistency condition is causal. This
The classical limit of DCA is different mainly for two is the difficult part. It was carried out explicitly for COMFT
reasons: in Ref. 9 and for DCA in Ref. 7.

(i) The mean field is not just on the boundary but it acts In the formulation withd®, one has to prove thé) given
on all sites and is equal on sites belonging to the same sulg causalG, (G)=Jd®/5G is causalyii) given a causal
lattice. This is natural in DCA because it is an approximation>, the self-consistency condition produces a ca@aHere
that preserves the translation invarian@ the reduced (i) is obvious, because of the simple form of the bare propa-
translation invariance for the AF phasén the propagator gator.(i) is the difficult part and this section is devoted to a
and in the Weiss field: general method to prove it.

(ii) The form of the mean field is the standard one butthe To show that the self-energy is causal we have to
values of the antiferromagnetic coupling in the mean fieldprove that the retarded self-energy has a negative imaginary
and for spins inside the cluster are different from the latticepart for all o, ie., IMIg(X, X", 0)=[Zr(X,X",0)
one (and between themselyesOf course, in the limit of —2k(x',X,0)]/2i is negative. We use the Cutkovsky-
infinite cluster they reduce to the lattice value. t'Hooft-Veltman equation(also known in the literature as

PCDMFT is similar to CDMFT to the extent that the “cutting equations’) which is extremely useful to discuss
mean field acts only on the boundary. However, as for DCAcausality properties in terms of a diagrammatic expansion. It
the value of the antiferromagnetic coupling in the mean fieldelates the imaginary part of the self-energy to a sum of cut
and for spins inside the cluster are different from the latticediagrams. A standard derivation can be found in Ref. 21 and
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Im2g(X, X", w)

O O , - S f .
L R = -l T I o ry Gy ) QDO
{Xir}
* X[Dyr, (X" 0. {X} {o})]*
— =\ P,_(9)8() nL*NR
0N — L0, — lp @)@ x IT p(x X o) 6(w). (44)
L MR - . B
~— e P, (90 Remark If the system is translation invariant then we can
) ~— | P, (@)0C®) Fourier transform also with respect to space and get
I Kw)=—2, = i
FIG. 1. Definition of cut diagrams. m2rk,) n;z 2n! p -G, Ry &} jdw'
{Xil}
it is proposed by t'Hooft and Veltman. However, we present XD, (Ko, Ik {o))
in Appendix E a simpler and self-contained derivation, based Lot T LR
on the Keldysh method. Contrary to the previous derivation, X[Dyr (k,0,{ki}, {wi})]*

it does not assume translation invariance, which is important
to discuss cluster schemes that break translation invariance.
Note, however, that this method is limited to zero- x 1 (ki) 6(ew). (49)
temperature formalism. =t

This section is organized as follows. In Sec. IV A, we Note that there are no terms with<2, otherwise the origi-
present the Cutkovsky-t'Hooft-Veltman equation and shownal closed diagram would not be two-particle irreducible

how it can used to prove causality. In Sec. IV B, we apply it(2P).
to various cluster schemes. Let us now see how to use E@4) to prove causality of
the self-energy. We want to show that

n_+ng

-t . i 1
A. The Cutkovsky-t'Hooft-Veltman equation A= = 2 WX[ER(X,X’,w)—EE(X’,X,w)]W:,$O Viw,)

The Cutkovsky-t'Hooft-Veltman equation gives the 21 %
imaginary part of the retarded self-energy as a sum of cut (46)
diagrams. Let us consider the set of all perturbative confor all complex vectorsv, . Using Eq.(44) we find that we

nected diagram¢D} for the self-energy at zero temperature can write the previous quantity as a sum over cut diagrams:
(for a given approximationand all possible cuts of these

diagrams into two connected paitsand R containing, re- 1
spectively, the left and the right external poiritisthey are A= _nEBO 2n! o TRy & do
the same, we drop the diagrarThere aren cut propagators np=0 nonen e

going from left to right anch—1 from right to left, at fre- bt

guencyw; and indices; . We denote byM R the mirror ofR
defined as the left diagram obtained fréRrby reversing all X
arrows(cf. Fig. 1 for an illustration To each left diagram,

S w0, (ko xh (o)

we associate the valugy of correspondingr=0 diagram, . ) ,

using theT=0 Feynman propagato* * in Keldysh nota- X 2 W, D (X', 0. {x/} {wi})

tion: See Appendix E Note that for each given half left X

diagram, one has to put ith_ all the half left diagrams ob- nL+ng

tained by_permuting the cut_lines in all the possibl_e ways aqd X H p(% X! wp) 0(€w;). 47)
then multiply by an appropriate symmetry factor discussed in i=1

Appendix E. We then writeD (X, ,{Xi} {w;})=d, 8(®) At this stage, we can use the causality @f i.e., the

+d¥ 6(— ), whered is the Heaviside function. We denote positivity of p(x,x"). It implies the positivity of the tensor

all cut propagators with an indeix To each we associate productHi”iI”Rp(xi X{ ,w;) considered as a matrix of indi-
p(Xi,X{ ,w;) (€ w;) with €;=sgnw for a propagator going ces ... ,anMR). Hence, positivity of—Im 2 would re-

to the right and—sgnw for a propagator going to the left. gyt if the summation over diagrams could be recast as a

The summation over diagrams can be expressed as a sudquare. More precisely, a simple property that implies cau-
mation ovem and a sum over diagrani®, = (L,,R,) witha  sality is that for anyn

given number of cut propagators going to the right. The
Cutkovsky-t'Hooft-Veltman equation is then {(Ln,R)}={Lo} x{Rp}. (48
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{L,} ({R.}) is the set of left(right) parts of diagrams with ~viously, DCA is equivalent to replacing the Kronecker delta
fixed n. Equation(48) says that all diagrams can be obtained d, +k, ,+k, With a Kronecker deltaic. s e+ k¢ wherek? is

once and only once using a left part and a right part, which ishe cluster momentum related to the hypercube containing
equivalent to two properties: _ ki . Formallyk{=k; mod(w/L, ... ,m/L). Hence, DCA sat-
Closure property With any left part and any right part isfies Eq.(48): the proof is the same that for the complete
(which have the same), gluing them constructs a diagram geries of diagrams for the self-energy. The fact that khe
present in the expansion. structure of the vertices is different does not change any-

Exact counting propertyAll diagrams are obtained that thing. Hence, we see that DCA is automatically causal.
way (by definition of left/right partsbut only once: there is

no overcounting problem. 2. PCDMFT

If the property(49) holds, then using the notation . . . . N
property(49) Hsing I The causality of PCDMFT is easily established using its

real-space formulatio(®). The causality for COMFT implies
Yn({Xi}i{wi}'w)Esz WD (X, @, {Xi}.{wi}), the causality o C. We just have to show tha"! is causal.
on For any complex vectox,, , we have from Eq(9),

we have "
2 Xﬁ XU’VEI:n o’ V(K)
A= _f doi 2, 2 yaxi}i{e} o)y (X} o) oolur -
=2 fxihix} 1
Nt e -5, OEL_ld 2 7,09
< I1 pO X @) 6 eiey). (49) S0 oo

i=1 X Zyr 5)25'%‘2,; (503
Note that the sum ovefx;},{x; } inside the integral can be o
interpreted as the product of the two vectpmndy* with a Zyr5( 8) =X, e AL (50b)
positive definite matrix. Thus the positivity @f implies the . o )
negativity of Ims.. The negativity of>,™ implies that we have a sum of negative

The efficiency of this method is that one can prove cauylérms. This shows that causality of PCMDFT is guaranteed

sality, just by examining the combinatoric structure of thet®rm by term in thes sum. o
diagrams present in the approximation, with no further com- Note that another way to reach the same conclusion is
putation. A few remarks are important at this stage. base_d on the fact that P_CDMFT can be mtgrpreted as the
(i) This method can prove the causality of a scheme, but ifolution of ~a real lattice system replacing the real
cannot prove that a scheme will violate causality. In particu-Y (K1,K2,Ks,ks) with its PCDMFT counterpart. Thus, the
lar, it proves the positivity of-Im 'S, for all causal propaga- statem.ent of causr_:\h.ty of PCDMFT_|S a particular case of the
tors G. In the following, we will refer to this as the strong causality of the original problem with a genetal
causality property. It is a logical possibility that this property _ _
does not hold, while the actual solution of the sche®nis 3. Noncausality of the pair scheme
indeed causal for all parameters. However, we know no ex- The pair scheme, described in Sec. Il C, has been origi-
ample of this, and the strong property is interesting since w@ally introduced in Refs. 1 and 5. It seems a very natural way
use an iterative algorithm to solve the self-consistent imputo introduce systematically & dependence for the self-
rity problem. energy. Unfortunately, as we will show in the following, this
(i) Equation (48) is sufficient but not necessary: one scheme is not causal for two reasons that we shall discuss in
could also have form squares in a more complicated mannegetail.
(i) As a remark, we see that the full perturbation theory  First, let us apply the Cutkovsky rule. We see that the pair
on the lattice satisfies the propert48): the full diagram-  scheme does not satisfy the prope) or more precisely
matic expansion obviously leads to a causal self-energy. the closure property. Indeed, when cutting a diagranfor
we only have two site indicelsandj. Let us consider a cut
B. Applications diagram (1,R1) where we have along the cut, and the

similar diagram [2,R2) wherej is replaced byk#i,j. A
priori, we could glue the parts intd_(L,R2), but that dia-

CDMFT can be obtained from the Baym-Kadanoff func- gram would involve, j, andk, and thus is not present in the
tional taking® =Xg®(G, z.rr), WhereR s the cluster in-  diagrammatic expansion generated by the pair scheme. This
dex anda is the internal cluster index. As a consequencejs the first reason for lack of causality. We stress that this is
20 pRR=2a,p=0P/6G, 5. Since®(G, ) is the sum of not a proof, but a quick and strong indication that the scheme
all the 2PI diagrams of &9 lattice, COMFT does satisfy is not strongly causal. It is interesting to point out that this
Eq. (48) and therefore is a causal scheme. problem was already encountered in the case of disordered

In DCA, one writes the self-energy in terms of the com- electron systems when people tried to generalize CPA to
plete series of diagrams and tiefunctions at the vertices clusters. In that case Mills and collaborafdmsoticed that a
are replaced by a coarse-grained function. As discussed prgeneralization of CPA similar to the pair scheme has this

1. CDMFT and DCA

205108-12



CLUSTER DYNAMICAL MEAN-FIELD THEORIES. . .. PHYSICAL REVIEW B 69, 205108 (2004

of each Fourier elemenp,(w)=0. However, even if
T TN pr(®)=0, py,(w) with x,x" nearest neighbors can be
— 1 ’ ! % negative and as close as possiljie absolute value to
—.Zx,x’wx W, = pyx(w) for any w. Consider, for example, the example in
21 | E which p(w) is strongly peaked and has an important weight
: only near the pointstar, ..., =. In this casep, (o)
>0, pyx (w) with x,x" nearest neighbors is negative and

*
— - P (®)6(w)
! ! P (®,)0(-0)

s : , . ,
ToWwr ()= [ w0
xl X ex((’)3)e((o3) dk
=- jBZ (27T)d pr(w)= _Px,x(w)-

FIG. 2. Example of a cut diagram. MR means mirror image

of R In this case the contribution of E@51), for example, for
) ) w,=1, is negative and approximatively two times larger in
type of nonclosure problem. For this reason they introducedsojyte value than the contribution from the term. Since
the traveling cluster method wh|c.h_|.s fully causal. We will 5, eachx,x term there are (z is the connectivityterms like
comment afterward on the possibility to do the same forEq_ (51), the global sum is negative far>2, i.e., in any
strongly correlated electrons. _ _ dimension large than 1if one takes a square or cubic or
Let us now really show that the pair scheme is not causal, nercupic latticg Thus in this case, the self-energy is not
In fact, the violation of the closure property is just a hint that 5,55 So we have found a second reason for noncausality:
there could be some problem with causality but it does noLyen if the closure property is verified and in the cutting-
preclude the.p033|b|llty that e\_/entually the s_,cheme is Cau,sablding procedure no new diagrams are credtetlich is the
In the following we will consider the solution of the pair 56 for the pair scheme at second ordeldjrthis does not
scheme wheit) —0 for an arbitrary bare spectral density or o arantee that there is a way to write all the cut diagrams as

hopping on the original lattice. Wg wiII. shovy that a particular 5 sum of squares. One can have an overcounting problem as
choice of the bare spectral density gives rise to a noncausgle pave just shown for the pair scheme.

self-energy, thus proving in an explicit example the noncau- | ot us now comment on the possibility to cure the pair
sality of the scheme. o scheme as Mills and collaborators did in the case of disor-
~ To study the sign of the imaginary part of the self-energyqereq electrons defining the traveling cluster scheme. What
in the limit U—0 one can focus just on the second-orderiney did is to solve the violation of the closure property
term because the_ first order gives no contribution. Mor_eoveranowing an arbitrary self-energy diagram to have only
one can replace in the diagram the fljlll propagator with th&ingle-site and nearest-neighbor propagators. So in this case
bare or lattice on¢Gpae=(iwn—t—u) "], the error lead- 5 gelf.energy diagram can connect two arbitrary points but
ing to a term of an order larger thad(U?). If one applies just through a sequence of nearest-neighbor propagalarts

the Cutkovsky equations to obtain the imaginary part of thgs yhy the scheme is called “traveling’ This clearly solves
self-energy for the second-order diagrams of the pair schemgie first problem—the nonclosure—but, in principle, it does
then one has to restrict the sum in the first line of Fig. 2 tonot guarantee that the second one is also solved. And indeed
single sites X,x) and links(x,x"). The sum over the single it js not for strongly correlated electrons. A simple way to see
sites §,x) is just the same that one obtains for usual DMFTit js that even with a generalization of this type in the limit
and is clearly positive. The link terfx,x") with x,x" near- .0, the causality counterexample exhibited for the pair
est neighbors equalgw is the (positive) self-energy fre-  scheme is still valid. Instead, the case of disordered electrons

quencyl has a simpler diagrammati¢there are no loops in the self-
e 0 energy diagrgr_ns due to the use of the replica metlaod
sz dw, dw, >, [WyW, p(X,X', @) one can epr|C|t!y rewrite everything as asum of squares. In
0 e ) particular, the diagram discussed before is simply not there.
, , N A way to circumvent these two difficulties is to write the
Xp(XX",@2) p(X, X', 0= w3~ wg) + Wy Wy self-energy as the sum of all diagrams and then replace the

original propagator with a simplified restricted version that is
guaranteed to be causal. For example, in order to have a
(51) causal generalization of the pair scheme, close in spirit to the

The spectral density in the previous equations is just the bar&aveling cluster, one can write
spectral density obtained by . For the pair scheme, one can

XP(X’1X1w1)p(X,!Xin)p(erxiw_wZ_w3)]'

find a spectral density matrix that, injected into the previous 5P 5 d
equations, does not lead to a causal self-energy. The causality = 3G . G(k,w)=Gg(w)+ Gl(w)E [2 cogk;)],
of the spectral density matrix is equivalent to the positivity G=G i=1
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where Gy, G; are fixed imposing the conditions defined by a translational invariant restriction of the Baym-
G(0,...,00)=G(0,...,0w) and G(m, ... mw) Kadanoff functional, is not causal: the diagrammatic reason
=G(m, ... mw), and Gz(Gal_z)fll This guarantees for the failure of th_ls method was clarified. Thlrd, we also
~ . ) showed formally, in the context of the Falikov-Kimball

'ﬁ}atG is a causal propagator as long@ss causal. So when model, how the semiclassical limit of the different cluster
G is inserted in the complete series, it will give rise to amethods reduces to classical spin cluster methods. Both DCA
causal self-energy. The problems with this scheme are thgnd CDMFT give comparable answers, even though their
following Weiss fields have a very different forfin DCA the Weiss

(1) It seems that itis nob derivable. The reasonis thatin field is uniformly distributed inside the cluster while in
all the diagrams there are only nearest-neighbor propagatorsDMFT it is focused on the boundaryOn the other hand,
However, since the diagrams connect, in general, two sitteCDMFT has an unphysical feature in the classical limit
that are not nearest neighbors, it is difficult to think how onewhich results from a Weiss field which does not vanish as the
can obtain it using a restricted set of diagramsdorNote,  square of the hopping matrix elements. The nested cluster
however, that this is also the case of the traveling clusteschemes are clearly superior and provide a quantum gener-

scheme for disordered electrons. _ alization of the cluster variation method which gives critical
(2) Itis not clear what type of impurity solver, if any, can temperatures that converge rapidly with cluster size. We
be used to sum the series of diagrams. showed that the nested cluster schemes violate causality. Our

In the case of the traveling cluster many simplificationsproof suggests that this violation is going to be more severe
arise that allow one to solvé) but not(1). Let us finally  when a substantial part of the lattice self-energy has a range
remark that the two mechanisms behind the noncausality ghat exceeds the size of the maximal cluster used in the NCS.
the pair scheme apply also to the general NCS schemes, evesh the contrary, when the range of the self-energy is con-
though we expect smaller violations of causality for largertained in the maximal cluster, the diagrams generated by the
clusters. Cutkovsky procedure which are not contained in the NCS are

small, which is consistent with the early numerical studies
which indicated no violation of causality in the pair scheme
V. CONCLUSION at high temperature. This observation is in the same spirit as
recent study of a newnon-nestefl scheme, the “fictive

Cluster schemes are a promising method for studyin ) del hod.” which 4 violati p
strongly correlated electrons. Compared to the study of sma [npurity model method,” which connected violation of cau-
ality with peaks in momentum space in the lattice

finite-size systems, they offer the advantage that the thermo® i 72
dynamical limit is taken from the outset, and hence one cart®'-€nergy.

hope for smaller finite-size effects. As a prime example, we An importan_t lesson that_ can be learned from our results
now know that even a one-site cluster captures many no s that the choice of an optimal cluster scheme may depend

trivial features of the Mott transition of the property studied and the physical system at hand. In-

On the other hand, there is no unique generalization of thgeed' our se.m|'cIaSS|c_aI ana!y5|s revealed. that PCDMFT is
single-site dynamical mean-field approximation. Some gen[1ot accurate in insulating regimes, at least in the one that we

eralizations view the DMFT and its resulting impuritgr focused on doing the semic_lassical limit. Insteaq, CDMFT
multiple impurity models in the case of the NC&s a trick performs rather well. We conjecture that CDMFT is accurate

for summming selected classes of diagrams. An alternativg! msglitmg cases anc(ij P.CDMFL.'n m;téilllc cases, as sug-
view is provided by the cavity construction and by functional 9€St€d Dy & recent study in one dimension.

methods, where an effective action is constructed to compute Another important result concerns the remarkable accu-
acy of the NCS scheme compared to the other ones. Even if

of boundary condition for finite-size studies of a small set of i ) . .
ary interesting to try to cure the causality problem keeping

degrees of freedom, where the boundary condition reco% ting idea inh t 1o the NCS sch Anoth ;
nizes that those degrees of freedom are periodically repeat Be nesting idea inherent to the scheme. Another route
to follow is to try to incorporate the cellular dynamical

in a medium. While all those points of view lead to the same A ok i . :
set of DMFT equations in the single site case, they lead t(gnean-ﬂeld ideas of defining impurity models in adaptive ba-

different constructions for cluster extensions, and the>'S Sets into a NCS scheme. In this way one COUI.d try to
strengths and limitations of these extensions need to be e)@dapt the basis to the problem so _that the resultmg.self—
plored. This paper contributed in this direction by clarifying energy |s_short range and the causality problem, even if not
two important aspects of these extensions, namely, the co voided, is sensibly reduced.

ditions on the cluster scheme needed for the scheme to sat- Fm_ally, while the paper focuse_d on a few schemes, the
isfy causality, and the reduction of the cluster schemes t6echn|ques dev_eloped h_ere are qum_a g_e_neral and may play an
spin cluster methods in the classical limit important role in selecting and optimizing cluster methods

First, we introduced PCDMFT which is a causal generali—for specific applications.
zation of the scheme proposed by Lichtenstein and
Katsnelsort® Second, we provided a general way to prove
causality of cluster scheme and showed that the pair scheme, We thank A. Lichtenstein, A. Georges, S. Florens, and S.
which is the most natural extension in the sense that it iBiermann for useful discussions, and M. Jarrell for pointing
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Zone of the superlattice of the big clusters. Finally, the re-
do—eolo—olo—olle—o oo oo ciprocal lattice of the small cluster iK.=2wn/L,n
=0,...L—1; the same for the big cluster considered as a
cluster ofL. small clusters, in units of the original lattice, is
FIG. 3. Definitions of big and small clusters t=1. L=2, EC=(1/L)(27Tp/LC), p=0,...L.—1. Hence the recipro-
Lc=3. cal lattice points of the big cluster considered as a cluster of

to us Ref. 16. This work was supported by NSF Grant NO'Iv_vli_t(r:\ fﬁénkt)? acrli};tcet };E .Si;/iel_sglve the DCA in real space
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KITP program on Realistic Studies of Correlated Electrons,
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an “ACI” grant of the French Minister of Research.

2 ei(KC+EC)(a+A—ﬁ—B)
(LLc)d Ke ,RC

APPENDIX A: REAL-SPACE FORMULATION OF DCA o) ap)(K) =

In this appendix, we present a real-space formulation of

DCA.8 which is useful for orders that break translation in- XU(K+Ke+Ke) (A4)
variance. Let us consider first the translation invariant case.
The hopping of the full lattice can be written using the re- 1

ciprocal superlattice and the cluster indidasreal spack Ld Z eiK°(“+AfﬁfB)tf¥y§(K+ Ke),
Cc Kc
(A5)

where we used A=0 [27] in the last equation. Because

of the reduced invariance, we can diagonalize uﬁagind
obtain

1 .

t,,(K)= o > KKy K +K,.), (Al
KC

wheret(k) is the Fourier transform of the hopping on the

original lattice andu,v as in Sec. Il. Here(in d=1),

—7mlL<=K=mw/L, K.;=2#7n/L, n=0,...L—1 is on the

reciprocal lattice of théfinite) cluster. Usings=t in Eq.(7), Gap(Ke, )
we get CDMFT. Usingg=t%° with 1
1o K 0 tYKFKERLTA-S (K )
(K== 3 eI (KK (A2a) s ree
L™ K¢ Using theunitary transformation,
:e—iKMt#V(K)eiKV (A2b) 'éaﬁ(ic'w)Ee—iK_c(a—ﬁ)Gaﬁ(Ec’w),

we get DCA. Indeedt®°is cyclic in the cluster indicetby
definition of K;), and provided that we obtain a translation
invariant(cyclic) solution we can diagonalize all matrices in

we obtain

the cluster to get Eq5). éaﬂ(ic,w)Iz _ _1 _ )

Let us now consider the case where the solution of the K o—tZh(K+K) =3, s(K, o)
real-space formulation of DCA breaks the translation invari- (A6)
ance in the cluster into a smaller invariance: thig) cluster
is divided intoL¢ small clusters of linear size, and we have Let us now concentrate on the AF ordér=2 and for

translation invariance in the big cluster when the small clusSimplicity in dimension 1. In this cas&.=0,7. We will
ters are thought as collapsed into one point. For example, fgtowW show that Eq(A6) is equivalent to the&-space formu-
AF order ind=1, L=2 (see Fig. 3. We will then denote by lation presented in Ref. 1@enoted by a superscrip). In
a, 8 the positions in the small cluster, ;B the positions the AF phase, correlations appear betw&eandk+ 7 and

of the small clusters in the big clusters, and AyB the the self-consistency condition reads
positions of the big clusters on the full lattiexpressed in

units of the original latticeAny point on the big cluster can
be described with a couplex(A) and any point on the lattice
by a triplet (@,A,A) (a, A, A designate both the position of
the points, i.e., vectors, and a label for those p@irsmi- Mo
larly, we denote by— w<k=<m an element of the original —2M(Ke, )
lattice’s Brillouin zone, by— #/L<K<=/L an element of

the Brillouin zone o_f the superlattice of the small clusters,whereGM and3>M are 2x 2 matrices, which are nondiagonal
and by—m/(LL.)<K==/(LL.) an element of the Brillouin in the AF phase:

_ —t(K+K, 0
GM(Ky,0)= 3, (“’ (KK o
K 0 o—t(K+K + )

-1
, (A7)
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(Teee)) <TCkCl+7> is independent 0§, (sinceS,= *+ 1) and therefore it will be
dropped in the following. Using the relations

M_ _
<Tck+7rcl> <Tck+ #Cl+w>

. T s .

Using the transformatidfi (Coliwn)c, (iwg))=—G, (iwn)d, ) (B5a)
_CktCkin k= Cktn GS (iwy)= Spp’ :% 1-S, " 1+S,
ClK_—\/E ; CZK_—\/E ppr 100 =" U 2 | U U
lw,+ 28” Iwn—E Iwn-i-E

Eq. (A7) is equivalent to Eq(A6). Therefore the two formu- (B5h)

lations of DCA are equivalent in the antiferromagnetic phase.
The real-space formulation of DCA shares with COMFT aand the fact that in the AF phad¢—z)=1(z) since(S;)
property which is useful in practice: one does not have to+(S;)=0, we can reduce the expressitB3), extract the
anticipatethe appearance of an ordered phase, i.e., to adams term, and obtain finally
the cluster scheme for the order to be described. The order
IN(Z[{S,}])=— BHer+ O(t3,3%) (B6)

will show up automatically solving the real-space DCA
v¥th Her given by Egs.(36). The additional termd/’” does

equations. Moreover, it can be more complex than an AF
order, as long as the cluster is big enough to contain at Iea§10t contribute to thel,g, since it would give aO(1/U )

one unit cell.

APPENDIX B: LARGE- U LIMIT OF THE EFFECTIVE
ACTION [PROOF OF EQS. (36)]

contribution. Moreover, sinc&j,q~ t?/U we do not need to
compute the 1 term of 3C.

Finally, higher orders in the expansion do not contribute.
Indeed, sinceZ[{S,}] is a Gaussianaction and since we

Here, we present some details of the derivation of thecompute IiZ[{S }]/ZO we only getconnected diagramshus

largeU limit of Eq. (26), in the limit whereU—« with 8
—oo, B/U fixed. The effective action is

8 C 8
Seﬁ:_ff deT'CMT(T)GO’MVT(T,T')CVT(T')'Ff dr
0 0

1 1
E (nﬂl(/r)_z)l

(B1)

X ¢l (79,6, () +U| N (1)~

~ 2t 1
t/.LV(X)_ Ung(X)<hp>+o F
(B2)

S1 XU
GO,uVT(Iwn):|75MV_

We are going to compute the expression of partial partition

functionZ[{n, }] (also denoted a&[{S,}]) as a function of

the spins and recover Eg®86). We first compute the expan-

sion of InZ[{n, }] at second order ihand first order in). We
obtain

INZL{S,} 1/ Zol{S,}])
=2 2

Tij(ion)tji(iw))
((B) iw, ,iwr’]

x(cl(iop)ci(iwp)cf (iw))cii(io)))s

+220 X 300¢hy) (el (o) (iwn)s O(t%,F%),

(B3)

where (,j) denotes the sum over couples affs is an
average of the Gaussian action at fix@dNe see that

U
Zo[{S1=Zia-l (S]] cosr(BTsp) (84)

we have one sum over Matsubara frequencies. Each Matsub-
ara sum gives a factggU [in the larget limit Ewn is re-

placed byg/4w[d(xU)] and eachG a factorU 1. There-
fore higher-order terms are subdominant.

APPENDIX C: CLASSICAL LIMIT OF PCDMFT

In this appendix, we present the solution of E®3, (29),
and (33) for completeness. We restrict ourselves to nearest-
neighbor hopping. We start by solving at order 1 in thg 1/
expansion. From EQs(29) and (33), we have foru#v
(A,,=0),

+52|atta _ < >C

o <h;‘i><hi‘>
wherea=1,2 is an index for the twAF) solutions as in Eq.
(9). Dividing the cluster into its two sublatticésandB with
C=CaUCg and using Eq(9), we have(for all ueC)

AS=t, (CD

latta
2 p,,u-%—zs S 2 52 pp+5+_ 2 52 p,ptd
c pelCa c peCp
p+deC p+deC

(C2

where B=a if ueCa, B=; otherwise, since ip+ 6« C,
the exponential depends dd and averages to zero. For
u,u+6eC, Eq.(C1) leads to

1 hPh?
Az'#Jra a,u ,U,+5> —t§+§ 2 Ag’p+5<'£ p;5>c
<h,u,><h,u,+5> ¢ pﬂ-eﬁceAC <hp><hp+ 5>
B <hfh5+6>c
P+ ’
NN, )

(C3

1

4+ —
Sc p<Cs
pt+éeC
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for all u,8. The left-hand side depends only on whetler
e Cp or not. Therefore, for als, we can define fop e Cp

andg“eCB, A. B. Ao Ba
apa B A B A
FIXA <h h +5> (C4a [ 4 [ ] [ ] L]
HM+5<ha><h +5> A. B. A. B.
B. A. BO A.
h?h?
T
) ] FIG. 4. Notations and reduced Brillouin zone for the pair
(they are independent @f and{). Equation(C3) then leads  scheme(shaded area
to
oA A - however, that+ 63" is not the effective hopping defined
Fs =tstAsaFs TBsaFs™, (C5a as the order 1 term ). In particular, thelg terms have the
— same range as the original lattice hopping. Reporting Eq.
FOB=t,+AsF 4+ By F5°, (C5b  (C8) into Eq. (330 leads to Eq(40a), which completes the
derivation.
A =£ <hgh§+§>c
da™ Se pela (hah“ ) ! APPENDIX D: CLASSICAL LIMIT OF THE PAIR
ptoeC o SCHEME
1 (h > The first task is to generalize the pair scheme in the pres-
Bsa=o _ﬁﬁ (c5¢  ence of antiferromagnetic order. Denoting the two sublattices
Sc pety (hohy, 5) by A andB, we have the approximation fab,
pt+deC

which can be rewritten as

Ppair=(1-2)| 2, P1[Gi]+ 2, @[Gy]

(1-As)F 3~ By Fo=t;, (Cé6a
- A + > DG ,Gjj .Gl (D1)
(1-Bs)F5 —AsaF5 =15, (C6b) (i
jeB

The determinant of the equations fBris given bylII (1 _ _
—As,—Bjs,), which does not vanish for a genenic For ~We denote by (1) and (2) the one-site and the two-site
|8]>1, t;=0 by assumption hende~E=0. In the classi- model, respectively. We group the two one-site models into
cal limit, the two solutions are related by a spin flip, so2*2 diagonal matrices, and denote with an indkag the
(h%h2)./(hehe) does not depend om for u,v nearest diagonal part of a matrix. To write the self-consistency con-
M

nelghbor according to Eq31). For |8|=1, the unique so- dition, we take_ as unit cell one s!te @y one site c_)rB _K is
lution is obtained for equaF ;=F2~'B | which is given by now a vector in the corresponding reduced Brillouin zone,
=F9VB,

presented in Fig. 4. The hopping and the lattice self-energy

ts are given by
Bl R s A AT taa(K)=tgp(K)=0, (D23
c pEC <hphp+5>
proce tas(K)=tC(K), (D2b)
Using the square symmetry, one can pick up éne com- _ ‘ _
pute the denominator. Hence, we obtain H¢48 and (410 C(K)=1+e (Ki7Ka) 4 gi(K1=K2) 4 @=i(Ky¥K),
(the hopping is nearest neighboNote that the hopping is (D2c)
renormalized at order {in 1/U), but it is still restricted to
nearest neighbors. In order to compute gheerm, we now SanK)=3c=(1-2)3P +z5§) . (D2d)
focus ont+ 63" which satisfies
s latt (2)
AB(K)=239C(K) (D2¢)
(t+0o%1Y . 5=Fs. (C8)

and the Green function by the usual formulaith 2Xx2

It is a translation invariant quantity, which is also reSt”Ctedmatrice$

to nearest neighbors. It has a formula analogous to£&%).

for the hopping, and its value inside the cluster is given by its T S latt e -1

K average. Using Eq330) to compute the mean-field terms G=[iw,—t(K) =X (K,iwy)] .

JO#, we see that the computation is similar than forThe scheme implies consistency equations for the Green
CDMFT, with just a renormalization of the hoppirigote, functions:

205108-17



G. BIROLI, O. PARCOLLET, AND G. KOTLIAR

G@=G, GW=D(G),

where we denote by the linear operator that restricts a

matrix to its diagonal.
First Gy, is diagonal(with same proof as for the other
schemegbut here it is not trivial:

(GF) Hiwp) =iwy+ 3w, =3 w,)
=i, —Z 3P (iw) 3wy,
(D3)
(G Hiwy) =iw,+2P (1w, -2 w,)
=i, (2= D[2P(iw) 2P (iwy)].

(D4)
Using previous notations, we have
ABX) oz
1
=—. (D5)
APy z-1

PHYSICAL REVIEW B69, 205108 (2004

1.« -~ ~
@—_ _
IB=2 F;O t,,(RT,(—R), (D10b
which implies
IM=2z3,, (D11a
J@=(z—-1)J,. (D11b)
Therefore the equations fdr simplify into
AD=23@ -3M)+223(h*), (D122
AR =(z-1)(S@ -3 M) +2(z- 1)35(hP).
(D12b)

Using thatm®=m(®, we have(h*)=(ht")) at dominant
order and therefore
A%ﬂ) z—1

1
A%II) z

(D13

Let us turn now to the up electrons. Introducing the notaf=rom Egs.(D5) and (D13), using the computation of the

tions

AP=A  A=p(A)

and, using that, fod a diagonal matrix independent &,
Ad@=Ald (for a=1,2), we can expand the self-
consistency conditions

(Ggl))*lz(G(l))*H_z(l), (D6)
(GE) " =(G?) 1+ (D7)
with the expansiorni33), to get
(@) t(@) loc (@) 2t (@) (@)
AR =t + P -2+ — an(x)<h )
+0 o3 (a,i=1,2), (D8a)
3@ _1 I @ 7 @F @ D8b
MVP(X) f wolov Lup ™ L™, (D8b)
TK,X)=t(K)+ 33K x). (D80
Clearly,p=i with the notation 2=1,1=2. Moreover,
SRR W=2(2 -3, (D93
SFR =D (ER-3Y) 0o
and theJ terms are given by
J<1>—1§‘,” R)t,,(—R D10
_? = t/,Lp( )tpv(_ )1 ( a

classical field fromA presented in Appendix B, we obtain
the classical variation method defined in EGEL) and (42).

Strictly speaking, we only prove here that, in the latge-
limit, if there is a magnetic solution, it obeys the CVM equa-
tions. We have not shown that such nonzero solution exists.
A priori, one could wish to push the semiclassical computa-
tion further andcomputethe classical field explicitly to
check that it gives the values prescribed by the consistency
of the classical equations. However, this is much harder to do
than in previous schemes for the following reason. Contrary
to all other schemes studied in this paper, there is no cancel-
lation between the diagonal part Bf2" and of €. There-
fore, we have to compute correction(to) to order 102, in
order to computeA to order 1U [the relation(313 is a
priori valid only at dominant ordgr BecauseB~U, we
needA up to order W3 to get such a correctiotlike we
needA at order 1U to get a classical field of order).1All
these difficulties are hidden in the{) -5 term in Eq.
(D12).

APPENDIX E: PROOF OF THE CUTKOVSKY-t'HOOFT-
VELTMAN EQUATION

In this appendix, we prove the Cutkovsky-t'Hooft-
Veltman formula using the Keldysh meth&t.We first
briefly present our conventions.

1. Notations

We denote with a %" the upper contour(going from
—o to ) and a “—"” the lower contour. The definition of
the Keldysh propagator$or fermionsg is

—i(Top(x,1)pT(x' ,"))=G" T (x,x",t—t"), (E

—i(Top(x, )T (X' ,t"))=G" ~(x,x',t—t"), (E2
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*@" *&
Xm,,t’ + ' _

5 5 ; . ; . FIG. 5. A self-energy diagram
and its Keldysh counterparts, with
the Keldysh indices and the over-

T " all factor?l
_ 1 3 + H H
x.t xr i ’ i
i<¢T(X’,t’)¢(x,t)>=G*’(X,X’,t—t’), (E3) ST T+ 437 T=0 (E7)

H Fy\W\N—r— Tt ’ ’
—iBOD AT )) =G (XX = t), (E4) is verified for each diagram individually. A way to prove that,
After Fourier transformatioff ()= fdte/“'f(t)], we have, which is act.ually in Veltman’s book! consists jn noticing
in particular, the following useful relations: that each diagram with a+" at the largest time vertex
cancels against the same diagram with-a"at this largest

1 time vertex. This happens becaus’ *(t—t')=G~ "(t
p(X. X", w) == —Im Gg(X,x", w), (E58 ) andG~~(t—t')=G* (t—t’) for t>t' so the only
thing that changes between one diagram and the other is a
G (x,x,w)=2i mp(X,X", ) O — w), (E5h  Minus sign(associated with the =" vertex and not with the
“+” vertex). This is called by Veltmarthe largest time
G (XX, 0)=—2imp(x,X",0)0(w), (E5¢  equation To unveil this relationship we use the following
notation: circle a vertex if it corresponds o and do not
[GTT(x,X",w)]*=—G (X' ,X,). (E50) circle it if it corresponds tap*. Then the relationship with

) , . . Veltman rules to obtain the largest time equation will become
To illustrate the diagrammatics, consider, for example, &qgr.

second-order self-energy diagram in Fig. 5. It corresponds to 14 gbtain the Keldysh expansion of By, we can thus

take the expansion af (as defined with any perturbation
theory and put Keldysh indices on fias explained in the
The Keldysh counterparts of the diagram are obtained byreceding section First, we will focus onw>0. Then
replacing each vertex by his corresponding Keldysh counter®, . _(w)=0, we only need to comput&_, , i.e., the dia-

Gx,x’,tft’Gx,x’,tft'Gx’,x,t’7t :

part (see Fig. 5 They correspond to gram with a “+" at the incoming vertex, and a=" at the
. . . L L L outgoing vertex. The crucial properties of zero-temperature
Gy t—t/Cxxr -G xtr =t~ Gxxr t—t/Cxxr -t Oxr ot/ —t diagrams are the following. Due to the presenceldtinc-
ot o+ o+ t@ons in frequency foG*~ andG~ " (cf. the preceding sec-
XX =t 2xx! t=t X b -t tion), the frequency always flows from thet*” vertex to the
e G- G- “ —"vertex. This implies that a diagram is zero if it contains
XXXt X G a “—"vertex to which no external line is connected and that
whereG™*'* are the Keldysh propagators. is surrounded by " vertices because of frequency conser-
vation (the same is true if one replacest” with “ —").
> Proof This cancellation generalizes to a connected set, or region, of

“ —"to which no external line is connected and that is sur-
The first point is to write the imaginary part of the zero- roynded by “+” vertices. Since we only have two external

temperature retarded self-energy in terms of the KeldysRertices, the nonvanishing diagrams are those with a line that
components: cuts propagators, dividing them into a+* region L on the
s s left (connected to the incoming verteand a “—" region R
IS (w)= +*(“’)__ *+(’”). (E6  On the right(connected to the outgoing vereXThis line is

2i the cut of the diagram and the sum over Keldysh indices
i reduces to the sum over all possible clgse Fig. 1 In the

An important point is that this relation must hold for eac . s -2 .
diagram individually, in order to be compatible with any ap- L (R) region, we have to useG (G7). Since

- = ! _ + + ! H *
proximation considered as a diagram summation. Indeed & (%X "r:’u)m_berOgﬁerna$ffnés)('w)]*’ the R part givesDyr
T=0 for 0>0, times (—1) SwhereMR is the(left) diagram

part obtained fronR by inverting all the arrows. Finally, to
1 each cut line going from right to lefteft to right) is associ-
2r(0)=5[24 (@) +24 (0)] ated aG*~ (G~ ") propagator. Hence we obtain the third
rule of the text: each cut line going from left to riglight to
and using Eqs(E5b) and(E50), it is sufficient to prove that left) is replaced by (x,x",w) 0(w) [p(X,X",w) 6(— w)].
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So there are two last things that remain to be clarified in  Finally, let us focus on the phase between the right part of
order to get Eq(44): (1) that the symmetry factors are taking the diagram and®y)s,
into account correctly an@®) that the phase between the half ; v e
left and right diagram is the one leading to E44). Con- a= (= 1)!R(—1)"er(—1)"eratD(—1)Moop(—i)"(i)""*.
cerning the symmetry factors, one has to be sure that all the (E8)
counting is done correctly. In order to do this, it is useful to The first term comes from the sign @ ~=—G* **, with
replace each halfor left) diagram with the sum of all half |r the number of internal lines inside the right p&tThe
diagrams obtained from the original one permuting the cusecond term comes from the—" Keldysh vertices, with
lines in all the possible ways. The symmetry factor that onev «r the number of vertices of type in the right part. The
has to attach to them is exactly the one needed to get badRird term comes from the<i)"="* factor of each vertice at
the right symmetry factor for the original diagram by gluing T =0 with n, the number of outgoing lines in the vertices of
together the half-right and the half-left diagrams. The “glu- tyPe a: this factor changes under conjugation. The fourth
ing” operations means attaching to eddime (see Fig. 2of  term comes from theq,, broken loops in the cut diagrams
the half diagram the correspondintine of the left diagrams. ~(We restrict ourselves for fermions hgr&he fifth and sixth
Indeed, to get the symmetry factor of a given diagram, ond€rms come from th_e difference betwg@n_ andp (in the
has to write all the topologically equivalent ways to obtain CUt Propagators going from left to ”ght_ anq right to left,
the same diagram. This can be done starting from the left anfFSPECtively. The number of cut loops is given byoop
from the right, i.e., writing all the different ways to get the — N~ 1. Moreover, summing all lines ending at a vertex in
same topologically equivalent left and right diagrams and"€ right part, we have
then attaching them in all the possible ways that give rise to
the original diagram. Thus, the symmetry factors related to D varN=lrtn [2], (E9
half or left diagrams are just all the different waftontrac- “
tiong) that can be used to create them. In this way the operawhere[2] is the reduction modulo 2. Finally we gat=i,
tion of “gluing” together a half and left diagram in which all which, combined with Eq(E6), leads to Eq(44). Similarly,
the cut lines have been permuted produtks$n is the num-  for w<<0, we have In®g=3_,_/2i. The left part has "~
ber of cut lineg times the original uncut diagrams. Thenll/  vertices, the right part 4" vertices. Using a similar analy-
in Eq. (47) is there exactly to balance this redundahterm.  sis, we geta=—i, which leads to Eq(44).
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