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Cluster dynamical mean-field theories: Causality and classical limit
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Cluster dynamical mean field theories are analyzed in terms of their semiclassical limit and their causality
properties, and a translation invariant formulation of the cellular dynamical mean-field theory, periodized
cluster dynamical mean-field theory~PCDMFT!, is presented. The semiclassical limit of the cluster methods is
analyzed by applying them to the Falikov-Kimball model in the limit of infinite Hubbard interactionU where
they map to different classical cluster schemes for the Ising model. Furthermore, the Cutkosky-t’Hooft-
Veltman cutting equations are generalized and derived for nontranslation invariant systems using the
Schwinger-Keldysh formalism. This provides a general setting to discuss causality properties of cluster meth-
ods. To illustrate the method, we prove that PCDMFT is causal while the nested cluster schemes in general and
the pair scheme in particular are not. Constraints on further extension of these schemes are discussed.
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I. INTRODUCTION

Dynamical mean field theory~DMFT! ~for a review see
Ref. 1! has been very successful in providing a nonpertur
tive approach to strongly correlated Fermi systems. It
scribes both the localized and the itinerant limit and h
yielded nonperturbative insights into the finite-temperat
Mott transition.1 This approach has been combined with
alistic electronic structure methods such as local-density
proximation andGW and has been applied successfully
numerous materials.2 In spite of these successes, seve
limitations of the single-site DMFT approach are now app
ent. For example, the self-energy isk independent by con
struction, so the method cannot describe independent v
tions of the quasiparticle residue, the quasiparticle lifetim
and the effective mass. Furthermore, the single-site natur
the method precludes it from treating more exotic ord
with order parameters involving several sites, such as dim
ization, staggered flux ord-density wave, andd-wave super-
conductivity.

To overcome these limitations, various extensions
DMFT have been proposed. For a disordered system,
can set up a functional integral formulation, with DMFT as
saddle point, leading to a natural loop expansion.3 A formu-
lation of these ideas for a clean system is still lacking.
different extension is the extended DMFT~EDMFT!,4 in
which the DMFT ansatz is applied simultaneously to boso
and fermionic degrees of freedom. This approach does
describe ak-dependent self-energy but incorporates diagra
involving longer-range interactions into the DMFT equ
tions.

A different idea is based on truncations of the Bay
Kadanoff functional. In the full theory, this is a functional o
the full Green functions. DMFT is obtained by restricting
to local Green functions only, setting the nonlocal Gre
functions equal to zero. A natural extension is to restrict
functional to local and nearest-neighbor Green functio
This pair scheme was introduced independently by Inger
and Schiller,5 and by Georges and Kotliar.1 The latter authors
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observed noncausal behavior in an iterated perturba
theory solution of the Hubbard model, but the origin of th
problem was not elucidated. Zarandet al.suggested6 that the
pair cluster approach was causal, and that the difficul
encountered in the solution were related to the impu
solver rather than to the scheme itself, but no conclus
proof of this statement was presented. This pair method
quires a simultaneous solution of multiple-site impur
problems.

A different direction was pursued by Jarrell and collab
rators with the introduction of dynamical cluster approxim
tion ~DCA!,7 whose main idea is to discretize uniformly mo
mentum space. This approach was shown to be manife
causal. It can also be formulated in real space8 ~see also
Appendix A!. A different approach, the cellular DMFT o
CDMFT, motivated by applications to electronic structu
was introduced in Ref. 9. In this approach, the many-bo
problem is truncated by introducing a finite basis set of
bitals to truncate the self-energy. It introduces the clus
self-energy and the lattice self-energy as independent e
ties. This method was tested in a soluble model,8 in the
Falikov-Kimball model,10 and in the one-dimensional Hub
bard model.11 These papers developed the CDMFT ide
from a real-space perspective. In this paper we develop
approach from a momentum-space perspective, to main
periodicity in the self-consistency equation. The importan
of including this periodicity was underlined b
Lichtenstein,12,13 arguing that the lack of periodicity of CD
MFT could unfavor phases, like thed-wave superconductiv-
ity, in which the order parameter lives on links. Even thou
this point has not yet been elucidated, it is certainly desira
to have a generalization of CDMFT that is translation inva
ant and causal in its use of the lattice self-energy in
self-consistency condition.

Cluster DMFT methods have not yet reached the leve
understanding of their single-site counterparts. While
single-site DMFT can be unambiguously formulated, clus
DMFT methods are more diverse and therefore require m
detailed methodological investigation, since the virtues a
©2004 The American Physical Society08-1
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limitations of the various cluster schemes are not appa
yet. This paper is a contribution in this direction.

There are several important principles that a clus
method should satisfy.

~i! Given that cluster DMFT approximations are intrins
cally basis dependent, a cluster method should be formul
in a general basis set. This flexibility is important, becau
for a given problem, one could carry out the cluster DM
study in the basis which is most suitable for the system
question.

~ii ! It should have an effective action formulation, name
it should target the calculation of a specific correlator fun
tion.

~iii ! It should yield causal Green functions.
~iv! It should be able to capture the various orders, incl

ing those which break the translation invariance.
~v! It should converge rapidly as a function of the discre

zation parameter for the observable that one is targeting.
possible that different cluster schemes may converge b
for different observables. A better understanding of these
ements of a cluster method is desirable.

In Sec. II, we present our translation invariant generali
tion of CDMFT where the lattice self-energy participates
the self-consistent equation. This is a different clus
scheme, and we formulate it in a way which allows a co
parison with CDMFT and DCA. We also discuss in Sec. II
a different class of schemes, thenested cluster scheme,
which require the simultaneous consistent solutions of im
rity models of different size.

In Sec. III, in an attempt to clarify the nature of the va
ous cluster approximations, we study their classical limit
the Ising limit of the Falikov-Kimball model. The variou
schemes then reduce to classical cluster approximation
the Ising model. This analysis elucidates their physical c
e

ds
o

d
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tent at the classical level and it allows a simple and cl
comparison. This study complements other comparison
cluster schemes against more exact treatments for spe
models.8,10 The classical limit of EDMFT was discussed
Ref. 14.

In Sec. IV, we analyze the issue of causality of clus
methods from a diagrammatic perspective using
Cutkovsky-t’Hooft-Veltman rules. We rederive them for no
translation invariant cases using the Schwinger-Keldysh
malism. We end up with a general setting to analyze
causality of cluster schemes. Within this framework we sh
that the pair scheme is not causal, and elucidate the origi
the problem. Furthermore, we provide a simple proof of
causality of CDMFT and DCA~which had already been
proved by other methods! and justify the causality of the
periodic generalization of CDMFT. Finally we make a rel
tionship with the earlier paper of Millset al. on disordered
systems:15 in fact, the coherent potential approximatio
~CPA! is a particular case of a DMFT. The origin of viola
tions of causality and their possible cure for the generali
tions of CPA were clarified by Mills.15

II. DESCRIPTION OF THE CLUSTER METHODS

A fairly general model of strongly correlated electro
contains hopping and interaction terms. It is defined on
lattice ofN sites ind dimensions, and we divide the lattice i
(N/L)d cubic clusters ofSc5Ld sites ~more general forms
can also be considered!. We denote withrm the internal clus-
ter position and withRn the cluster position in the lattice
~therefore the position of themth site of thenth cluster is
Rn1r m). The lattice Hamiltonian is expressed in terms
fermionic operatorscRn ,a,s

† and cRm ,b,s and can be written

as
H5 (
n,a,m,b,s

ta,b~Rn2Rm!cRn ,a,s
† cRm ,b,s

1 (
n,a,s1 ,m,b,s2 ,n8,a8,s3 ,m8,b8,s4

Ua,s1 ,b,s2 ,a8,s3 ,b8,s4
~$R%!cRn ,a,s1

† cRm ,b,s2
cRn8 ,a8,s3

† cRm8 ,b8,s4
, ~1!
ns.
d
the

lf-
tion

th
wheres is an internal degree of freedom~i.e., a spin, spin
orbital, or band index!. Note that throughout this paper, w
will denote the position and momentum on the~original!
lattice with lowercase letters (r and k), the position and
momentum of the superlattice with uppercase letters (R and
K), and with greek lettersa, b, g, d, m, n, r, l the posi-
tion within the cluster. Different dynamical cluster metho
for strongly correlated electrons have been introduced in
der to obtain an approximate solution of Eq.~1! able to cap-
ture the effect of short-range~dynamical! correlation and to
describe the self-energyk dependence.

In the following, we introduce a scheme, the periodize
r-

cluster dynamical mean-field theory~PCDMFT!, formulate
CDMFT and DCA in real andk space and thenested cluster
schemes~NCS!, i.e., the pair scheme and its generalizatio
CDMFT ~Ref. 9! is a real-space cluster: the lattice is divide
in a superlattice of cells and the scheme is basically
DMFT equations on the superlattice.1 On the other hand,
DCA ~Ref. 7! is a reciprocal space cluster, where the se
energy in momentum space is approximated by step func
around a few points, which we will denote byKc and are
identified to the momentum of the~periodic! cluster. We will
show that PCDMFT is a natural generalization of bo
schemes, from a real-space and ak-space perspective.
8-2
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CLUSTER DYNAMICAL MEAN-FIELD THEORIES: . . . PHYSICAL REVIEW B 69, 205108 ~2004!
A. Real-space perspective

Cluster methods for strongly correlated electro
~CDMFT, DCA, PCDMFT! can be divided in two steps
~Nested cluster schemes will be considered separately.!

The first step is the computation of the local cluster pro
gator Gcms1ns2

(t) and the cluster self-energySC from an
effective action containing a Weiss dynamical fie
G0,ms1ns2

21 (t,t8) and the intracluster interaction:

Seff52E E
0

b

dtdt8cm,s1

† ~t!G0,m,s1 ,n,s2

21 ~t,t8!cn,s2
~t8!

1E
0

b

dtUa,s1 ,b,s2 ,g,s3 ,d,s4
~R50!

3~ca,s1

† cb,s2
cg,s3

† cd,s4
!~t!, ~2a!

Gcm,s1 ,n,s2
~t!52^Tcm,s1

~t!cn,s2

† ~0!&Seff
, ~2b!

SC5G0
212Gc

21 . ~2c!

In the following, we will often concentrate on square clu
ters of linear sizeL on a d-dimensional square lattice, a
though many of the results can be generalized easily. He
m,n will also denote the position of the cluster sites on t
lattice: m,nPC5$0, ... ,L21%d where the intersite distanc
is normalized to 1. We will denote bySc the cluster’s size
and by C the set of cluster points;s is the spin index as
mentioned earlier. In the following, we will consider on
solutions with diagonal propagators in the internal indexs
and for simplicity each time quantities are diagonal in t
internal indexs we will omit it.

The second step consists in recomputing the Weiss fi
using the value of the self-energy obtained by the first s
and then iterating until convergence is reached. The real
ference between cluster schemes is how the second st
performed. We first focus on translational invariant cas
CDMFT is a direct generalization of DMFT to a clusterin
real spaceand consists simply in rewriting the DMFT equ
tions in a matrix form (m,n indices are omitted! taking as
elementary degrees of freedom all the cluster fermionic
grees of freedom:

G0
21~ ivn!5S (

KPR.B.Z.

1

ivn1m2 t̂~K !2SC~ ivn!
D 21

1SC~ ivn!, ~3!

where t̂mn(K) is the hopping expressed in the superlatt
notations, withK in the reduced Brillouin zone~R.B.Z.! of
the superlattice@see Eq.~A1!#. Note that from now on the
sum overK means always the normalized sum. When co
vergence is reached and the cluster self-energy has bee
tained, the translation invariant lattice self-energyS latt @( i , j )
denotes a site on the original lattice# is computed by the
formula
20510
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S i 2 j
latt ~v!5

1

Sc
(

m,nPC
m2n5 i 2 j

Smn
C ~v!. ~4!

Other estimators~which still preserve causality! have been
introduced in Ref. 8. Note that in CDMFT, the cluster a
the lattice self-energy are two different quantities:9 one has
to first solve the cluster problem, and only at the end co
pute the lattice self-energyS latt. In CDMFT, S latt does not
enter the self-consistency condition.

DCA is more naturally formulated in Fourier space7

However, it can also be recovered from a real-spa
perspective8 just changing the hopping matrix in Eq.~3! to
~see also Appendix A!:

t̂mn
DCA~K ![tmn~K !exp@2 iK ~m2n!#.

In this case if the self-energy is a cyclic matrix~transla-
tion invariant within the cluster! then Eq. ~3! reduces to
~upon diagonalization!

G0
21~Kc ,ivn!

5S (
KPR.B.Z.

1

ivn1m2t~K1Kc!2SC~Kc ,ivn!
D 21

1SC~Kc ,ivn!, ~5!

which is the standard DCA equation introduced in Ref.
where t(K) is the Fourier transform on the R.B.Z. of th
hopping on the original lattice. Note that if the self-energy
cyclic then the Weiss field computed by Eq.~5! will be cy-
clic, so this property is preserved within the self-consist
loop. In DCA, contrary to CDMFT, there is no distinctio
between the cluster and the lattice self-energy. Because
formulated ink space, DCA is also naturally translation in
variant.

We are now ready to define the scheme PCDMFT
periodized CDMFT. The simplest definition is to takeS latt in
place ofSC in the self-consistency condition. This is ver
close to the scheme proposed by Lichtenstein and Katsne
in Ref. 13, with the big difference that PCDMFT is causal,
will be proved below. Thus the equations relating the se
energy to the Weiss field are

S latt~k,ivn!5
1

Sc
(

m,nPC
Smn

C ~ ivn!exp@2 ik~m2n!#,

~6a!

Gmn5(
k

e2 ik•meik•n

ivn1m2t~k!2S latt~k,ivn!
, ~6b!

G0
215G211SC, ~6c!

wherek is in the Brillouin zone of the original lattice.
The three schemes~CDMFT, DCA, PCDMFT! can be

summarized into the same matrix equations: Eq.~2a! and
8-3
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G. BIROLI, O. PARCOLLET, AND G. KOTLIAR PHYSICAL REVIEW B69, 205108 ~2004!
G0
21~ ivn!5S (

KPR.B.Z.
@ ivn1m2 t̂ S~K !2SS~K,ivn!#21D 21

1SC~ ivn!, ~7!

where the difference between the three schemes is encl
in the value oftS and ofSS that enter in the self-consistenc
condition.

Let us now turn to translation invariance breaking phas
where translation invariance is conserved on the superla
~e.g., antiferromagnet, charge density, ‘‘stripes’’ if the clus
is big enough!. CDMFT can describe such an order by co
struction since it does not require the translation invarian
When solved numerically~e.g., with quantum Monte Carlo
method!, the translation invariant solutions are often found
be instable towards the ordered one~we have explicitly en-
countered this phenomenon, for example, for antiferrom
netism and charge-density wave!.

DCA and PCDMFT require translation invariance, the
fore they need to be generalized to handle such an order
DCA there are two solutions for this problem, for examp
for antiferromagnetic order:~i! keep a reciprocal space fo
mulation with a reduced Brillouin zone and introduce so
correlation betweenk andk1Q, with Q5(p,p);16 ~ii ! use
the real-space formulationintroduced in Ref. 8, where trans
lation invariance in the clustercan be broken, and look for
an antiferromagnetic solution. It is shown in Appendix A th
the two approaches are equivalent. However,~i! requires to
anticipate the appearance of ordered phase, i.e., to adap
cluster scheme for the order to be described: one needs to
a special setup for antiferromagnetic order, another fo
more complicated order, whereas~ii ! does not require to an
ticipate the order: it will show up automatically solving th
real-space DCA equations with no need to generalize
scheme~provided that the cluster is big enough to conta
the unit cell!. The same numerical code will produce a tran
lation invariant solution or an antiferromagnetic one,
stripelike one. In particular, since translation invariant so
tions are often found to be numerically instable, one can
miss an ordered phase with this approach. Therefore,
real-space formulationof DCA is the best solution from a
practical point of view.

The PCDMFT is unfortunately more complicated to ge
eralize. In the following, we will focus on square clusters
the square lattice. It is useful to introduce a slightly mo
general formula forS latt for a bipartite lattice. The lattice
self-energy is a sum of the cluster self-energy put at all p
sible positions on the lattice. We can rewrite Eq.~4! in a
more transparent way, as a sum over all possible shifts of
cluster:

Ss,m;s8,n
latt

~K !5
1

Sc
(

dP$0, . . . ,L21%d
e2 iK ( b(m1d)/L c2 b(n1d)/L c)L

3Ss,m1d;s8,n1d
C , ~8!

where bxc is the integer defined bybxc<x, bxc11 ~for a
vector it has to be understood component by componen!, d
is the dimension,d is a d-dimensional shift vector, the ba
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denotes the modulo reduction byL component by componen
~addingd is a circular shift in the cluster!.

The idea of the generalization is then simple. In a ph
that breaks translation invariance~we take antiferromagne
as an example!, we have multiple solutions~two for AF!,
denoted by an indexa (a51,2 for AF!. In order to respect
the order, we need to compensate the shift in the cluste
the change of solution: in the AF example, use one solut
on one sublattice, another on the other sublattice. The
mula is then

Ss,m;s8,n
latt

~K !5
1
Sc

(
dP$0, ... ,L21%d

e2 iK ( b(m1d)/L c2 b(n1d)/L c)L

3Ss,m1d;s8,n1d
Ca(d) , ~9a!

a~d!55 1 if (
i 50

d

d i50 @2#

2 if (
i 50

d

d i51 @2#.

~9b!

For the AF phase and when the original model is SU~2!
invariant, the solutiona52 is simply obtain froma51 by a
spin flip. This does not need to be true in general, either
more complicated order or the Falikov-Kimball model th
we will use in Sec. III. Let us note, however, that this ge
eralization is more complex than for the DCA scheme from
practical perspective: the expression ofS latt strongly depends
on the order to be described and on the form of the clus

B. Reciprocal space perspective:F derivation

We now explore the relation between PCDMFT, CDMF
and DCA from the reciprocal space perspective. In orde
do this, we use the generating functional formulation
DMFT.1 Let us recall that one can define a functionalG(G),

G~G!5Tr ln G2Tr G0
21G1F~G!, ~10!

where G05( ivn2t1m)21 is the bare propagator an
F(G), the Baym-Kadanoff functional, is the sum of all th
vacuum two-particle irreducible diagrams constructed w
the propagatorG and the interaction vertices. The solution
the stationarity equation~11! is the real propagator of the ful
interacting theory. DMFT, as well as its cluster generaliz
tions, can be seen as an approximation ontoF(G). Indeed
one obtains the DMFT approximation restrictingF(G) only
to single-site propagator~equating to zero all the non-single
site propagators!, i.e., FDMFT(G)5( iF(Gii uGi j 50) or,
equivalently, neglecting the momentum conservation at
vertices. These two procedures, which are equivalent at
single-site level, represent two different routes in order
obtain cluster generalization of DMFT.

CDMFT can be obtained by a natural real-space extens
of the DMFT approximation onF:

FCDMFT~G!5(
R

F~Gm,R;n,RuGr,R;lR850!. ~11!
8-4
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It is easy to show that the stationarity equation correspond
to this choice ofF gives back the CDMFT equations. No
that the summation of the infinite series of diagram
FCDMFT(G) is performed by the cluster impurity solver lik
in the DMFT case.

DCA is formulated more naturally as an approximation
Fourier space: instead of neglecting completely the mom
tum vertex conservation one puts a coarse-grainedd inside
the complete diagrammatic series.

FDCA~G!5NssF„G~k!…uU(k1 ,k2 ,k3 ,k4)5UDCA(k1 ,k2 ,k3 ,k4) ,
~12!

where

UDCA~k1 ,k2 ,k3 ,k4!5dKc(k1)1Kc(k2),Kc(k3)1Kc(k4) /Nss,

Nss is the number of clusters~number of sites divided by
number of sites per cluster! andKc(k) is a function that for
eachk gives the center of the@p/L,p/L#d cube to whichk
belongs.7

PCDMFT has been introduced previously from the re
space point of view like a natural generalization of CDMF
in which one puts the lattice self-energy inside the se
consistent loop~still preserving the causality properties
CDMFT!. In the following we shall show that, from th
functional point of view, PCDMFT can also be seen at t
same time as a translation invariant formulation of CDM
and as a generalization of DCA. Up to now we restricted
discussion to the standard completely localized basis se
simplicity. However, CDMFT and PCDMFT can be formu
lated in a general basis set. This flexibility is important, b
cause for a given problem, one could carry out the anal
in the basis which is most suitable for the system in quest
As a consequence, in the following we will derive PCDMF
for a general basis.

We shall show that there are two different procedu
leading to the same formulation of PCDMFT. Let us foc
first on the one which shows that PCDMFT is the natu
translation invariant formulation of CDMFT. CallwRa the
basis function used to define the cellular DMFT~Ref. 9! and
w̃Ra their Fourier transform. Note that they are normalized
such a way that( i uwRa( i )u251,(kuw̃Ra(k)u251. The par-
ticular case of the standard completely localized basis
corresponds tow̃Ra(k)5exp(2ikxRa)/AN (N is the total
number of sites! wherexRa5R1r a . CDMFT in a general
basis is obtained~i! keeping only the intracluster interaction
UR1a,R2b,R3g,R4d→URa,Rb,Rg,Rd , and ~ii ! making the ap-
proximation ~11! discussed above to the Baym-Kadano
functional.

PCDMFT can be obtained making the approximations~i!,
~ii ! and imposingthe translational invariance of the origin
problem. This is performed expressing the propagator in
new basis set in terms of the translational invariant propa
tor in the original basis set:

GRa,R8b~v!5(
k

w̃Ra~k!* Ĝ~k,v!w̃R8b~k!. ~13!
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Plugging this expression inside the functional leading
CDMFT, we get the PCDMFT functional

G„Ĝ~k!…5Tr ln~Ĝ!1Tr$@ ivn2t~k!1m#Ĝ%

1NssFPCDMFT~Ũ,Ĝ!, ~14!

where F is the Baym-Kadanoff functional expressed
terms ofĜ(k) and obtained replacing the original matrix o
interactionsU(k1 ,k2 ,k3 ,k4) with

Ũ~k1 ,k2 ,k3 ,k4!5 (
a,b,g,d

U0a,0b,0g,0dw̃0a~k1!w̃0b* ~k2!

3w̃0g~k3!w̃0d* ~k4!, ~15!

where we made use explicitly of the translation invariance
put R50.

Extremizing this functional with respect toĜ(k) gives the
PCDMFT equations together with the form of the lattice se
energy:

GRa,Rb~v!5(
k

w̃Ra* ~k!
1

v2t~k!2S latt~k,v!
w̃Rb~k!,

~16a!

S latt~k,v!5 (
abR

w̃Ra* ~k!Sab
c w̃Rb~k!, ~16b!

whereSab
c is the self-energy obtained from a cluster imp

rity problem characterized by a propagatorGa,b
c 5GRa,Rb

and the interaction matrixŨabgd .
As discussed before, there is another procedure to ge

functional formulation of PCDMFT encoded in Eq.~14!. As
the DMFT approximation can be obtained just by neglect
the momentum conservation at the vertex, one can inter
Eq. ~15! as an improvement to the DMFT approximation
which the vertex is replaced byŨ(k1 ,k2 ,k3 ,k4)
5(a,b,g,dŨa,b,g,dw̃0a(k1)w̃0b(k2)w̃0g(k3)w̃0d(k4) where
Ũa,b,g,d5U0a,0b,0g,0d .

At this point a natural question is why we have chos
this particularŨ and, more interestingly, could other choic
lead to a better approximation and what is the procedure
find the ‘‘best’’ Ũ? Unfortunately we do not have clear a
swers to these questions. A partial answer to the first on
that the choice ofŨ leading to PCDMFT is the one that w
obtain applying the least square minimization
U(k1 ,k2 ,k3 ,k4)2Ũ(k1 ,k2 ,k3 ,k4). So in a certain sense i
provides the best approximation toU within the chosen basis
set. It is, however, important to notice that it is far from cle
that this is a good criterion to select the ‘‘best’’Ũ. With
respect to these remarks, it is particularly interesting to n
that DCA can be obtained taking Ũa,b,g,d
5U0a,0a,0a,0ada,bdg,ddd,g ~in the case of a complete diago
nal interaction on the original lattice! and w̃Rb(k)
5exp@2iKc(k)xRb#/AN.7
8-5
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This suggests interesting interpolation between DCA a
PCDMFT. A particularly simple one consists in dividing th
Brillouin zone in l d squares~like in DCA for a cluster of
linear size l ) and taking w̃Rm(k)5exp@2iFl(k)xRm#/AN
whereFl(k) is a function giving, for eachk, the center of the
@p/ l ,p/ l #d cube to which k belongs ~note that m
51, ... ,Lc). When l 5Lc one gets DCA, whereas whenl
5` one gets PCDMFT.

Let us finally note that this functional derivation o
PCDMFT is crucial to prove simply its causality propertie
Indeed this scheme is causal because it is a compositio
two causal steps. Clearly, starting from a causal cluster s
energy, one obtains a causal cluster propagator through
~16a! and ~16b!. Furthermore, we will show in Sec. IV tha
plugging the causal cluster propagator inside the diagr
matic series corresponding to the PCDMFT functional giv
a causal cluster self-energy.

C. Nested cluster schemes

Another natural generalization of DMFT to the clust
setting is to apply the ideas connected to the cluster varia
method ~CVM! of classical statistical mechanics to th
Baym-Kadanoff functional.17,18These schemes are also na
ral generalizations of then site CPA~Ref. 19! to interacting
electrons. The approach is defined by selecting a set of m
mal ~namely, they are not included in each other! clusters of
sites. We denote byG the set of maximal clusters togeth
with all its subclustersa, and byFa the restriction of the
Baym-Kadanoff functional to Ga( i , j ), with Ga( i , j )
5G( i , j ) if i and j belong toa and Ga( i , j )50 otherwise.
F̃a is defined recursively in terms of theFa by Fa

5(b#aF̃b which can be inverted by the Moebius formu
F̃a5(b#a(21)nb2naFb with na the number of sites o
clustera. An approximation scheme is uniquely fixed once
set of maximal clusters is chosen. If the chosen set is inv
ant under translations, e.g., the set of all plaquettes, we
struct a cluster scheme which is manifestly translation inv
ant by truncating the full Baym-Kadanoff functional

F'(
aeG

F̃a . ~17!

Differentiation of F yields a translational invariant self
energy, which requires the solution of several impurity pro
lems. The subclusters of a maximal cluster are generally
lated among each other by the operations of the cry
group, and fall into different equivalence classes. To co
pute the lattice self-energy, one needs to solve several im
rity models—one for each representative of inequivalent s
clusters of the maximal cluster.

When we take as a set of maximal subclusters the se
all nearest-neighbor pairs of the lattice, we obtain the p
scheme~or two-impurity scheme!1,5 which we discuss in
more detail for completeness. It is convenient to go back
lattice notation where lattice sites are denoted byi and j and
not by Rm. The approximation to theF functional can be
written in terms ofF1 andF2 which are the Baym-Kadanof
functionals of a one- and a two-impurity problem.
20510
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Fpair5~12z!(
i

F1@Gii #1(̂
i j &

F2@Gii ,Gj j ,Gi j #. ~18!

Differentiating this functional gives an equation for the loc
self-energy and the nearest-neighbor self-energy:

S loc5
dF

dGii
5

dF1

dGii
1zS dF2

dGii
2

dF1

dGii
D , ~19a!

Snn5
dF2

dGi j
. ~19b!

The diagrammatic interpretation of the first equation is tra
parent: each diagram that involves a link is properly coun
in the solution of a two-impurity model. The diagrams f
the local self-energy at sitei, which involve only the Green
function at sitei, can be obtained from a one-impurity mod
with the correct counting. The contribution of the diagram
for the local self-energy, which involve the Green functio
of a pair of sites, can be obtained by subtracting the con
butions from the one- and the two-impurity self-energy a
multiplying by z, which results in Eq.~19a!. From S loc and
Snn we can construct the lattice self-energy.

S latt5S loc~ ivn!1t~k!Snn~ ivn! ~20!

and close the equations by requiring the self-consiste
condition imposed by the Dyson equation.1

Gloc5(
k

1

ivn2t~k!2S loc~ ivn!2t~k!Snn~ ivn!
,

~21a!

Gnn5(
k

eik.dW

ivn2t~k!2S loc~ ivn!2t~k!Snn~ ivn!
.

~21b!

This can be expressed in the matrix notation, with 232 ma-
trices

G5S Gloc Gnn

Gnn Gloc
D

andK in the reduced Brillouin zone:

G5 (
KPR.B.Z.

@ ivn2t~K !2S latt~K !#21. ~22!

The generalization of this scheme to antiferromagnetic or
is presented in Appendix D. An important feature of th
scheme is that the Green function of the one-site prob
coincides with the diagonal part of the Green function of t
two-site problem. This is a general ‘‘nested’’ structure f
these schemes, hence the name ‘‘nested cluster schem
We will see in Sec. III that this property leads to a quanti
tively good classical cluster scheme.

D. Hartree-Fock terms

Another important issue is the treatment of longer-ran
interactions within CDMFT and PCDMFT. In this context
8-6
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is worth noticing that the Hartree-Fock contribution to t
Baym-Kadanoff functional~10!,

FHF@G#5( Uabgd~R1 ,R2 ,R3 ,R4!

3@Gba~R2R1!Gdg~R4R3!

2Gda~R4R1!Gbg~R2R3!#, ~23!

induces a self-energy which is frequency independent
therefore does not cause problems with causality and ca
evaluated with little computational cost. So it is convenie
to separateF5FHF1Fdyn, and apply the cluster DMFT
truncation only toFdyn, and to the self-energy it generate
while treating the Hartree contributions exactly. More p
cisely, one can treat with Hartree-Fock terms that connect
cluster to the exterior only, to avoid a double counting pro
lem.

This observation is particularly relevant in the treatme
of broken symmetries induced by nonlocal interactions
exemplified in the study of the transition to a charge-den
wave in the extended Hubbard model in one dimens
which was studied in Ref. 11.

III. CLASSICAL LIMIT

In this section, in an attempt to clarify the nature of t
various cluster approximations, we investigate analytica
the large-U limit of the Falikov-Kimball model, which re-
duces to the classical Ising model in that case. The Falik
Kimbal model is defined by the Hamiltonian

H5(
^ i , j &

t i j scis
† cis1US ni↑2

1

2D S ni↓2
1

2D , ~24!

where ^ i , j & denotes nearest neighbors,t i j ↑5t and t i j ↓50.
We consider the particle-hole symmetric case (m50). This
model has been studied a lot~for a review, see Ref. 20!, but
we will use it here as a tool to derive a classical limit for t
various cluster methods. This completes the quantum Mo
Carlo study of this model with CMDFT and DCA.10 Indeed,
in the limit U→` with b→`, b̄5bt/U fixed, it reduces on
the lattice to the Ising model at temperature 1/b̄:

H5(
^ i , j &

Ji 2 j
LattSi

zSj
z , ~25a!

Ji 2 j
Latt5t i j /2 ~25b!

with Si
z[(ci↑

† ci↑2ci↓
† ci↓) ~Ising spins!. Note that a factor

t/U has been absorbed in the definition ofb̄. The proof is
analogous to the standard reduction of the Hubbard mod
the Heisenberg model: since down electrons are quenc
there is no possible exchange between two spins at diffe
sites, which implies that the interaction is Ising-like. We w
now take the classical limit of the various cluster schem
using their common expressions~2a! and~7! in order to ob-
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tain classical cluster approximations of the Ising model. F
the reader not interested in the derivation, we summarize
findings in Sec. III B.

A. Derivation of the classical limit

We first present the derivation of the classical limit
CDMFT, DCA, and PCDMFT. Our results on the classic
limit of the pair scheme are presented, but derived in App
dix D.

In the following, we will concentrate on square cluste
on the square lattice. For clusters with an odd size it is n
essary to slightly generalize the CDMFT equations to
antiferromagnetism in the usual way, distinguishing tw
sublattices.1 To avoid cumbersome notations, we will discu
that point later. The key point is of course thatt i j ↓50 makes
the model partially solvable in the various schemes.

A priori, we have an effective action given by Eq.~3a!.
Sincet↓50, we can show self-consistently thatG0↓ is diag-
onal. Indeed, ifG0↓ is diagonal, because of the form of th
n↑n↓ vertex,G↓ is diagonal~at all orders inU), and so is
S↓ . In all schemes,S↓

latt is then diagonal and independent
K. Therefore from Eq.~2a!, we get for CDMFT, DCA, and
PCDMFT:

~G0↓!21~ ivn!5 ivn1S↓
C~ ivn!2S↓

latt~ ivn!5 ivn .

~For the pair scheme, see Appendix D.! Therefore we can
considern↓ as a classical variable and compute the Gre
function for the up electrons, solving the effective action:

Seff52E E
0

b

dtdt8cm↑
† ~t!G0,mn

21 ~t,t8!cn↑~t8!

1E
0

b

dtcm↓
† ~t!]tcm↓~t!1US nm↑~t!2

1

2D
3S nm↓~t!2

1

2D , ~26!

wherem,n are intracluster indices. For fixedn↓ , the action
for the up electrons is Gaussian, which leads to

Gmn5 (
$nr↓50,1%

Z~$nr↓%!

Z FG0mn
21 2S nm↓2

1

2DUdmnG21

,

~27a!

Z~$nr↓%![expH Tr lnFG0mn
21 2S nm↓2

1

2DUdmnG J
3expS bU/2(

r
nr↓D , ~27b!

Z[ (
$nr↓50,1%

Z~$nr↓%!. ~27c!

The computation of the large-U limit is organized in two
steps. First, we find the expansion ofG0, and second we
show that in this limit the effective action~27b! becomes the
action for a classical Ising cluster with mean-field-like term
8-7
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Moreover, the study of the large-U limit requires an expan-
sion in the limit U→` and v→`, with x52vn /U fixed.
Indeed there is a strongv dependence at the scaleU, as seen
already in the atomic limit. We will see that the final result
not determined by thex→0 limit.

First, we use an ansatz forG0, which we will prove to be
consistent

G0
21~ ivn!5 i

U

2
x2D~x! ~28!

with D of the order 1 in 1/U ~plus subdominant terms!. Us-
ing the expansion

~L2D!215L211L21DL211•••

with Lmn5(Sm1 ix)(U/2)dmn , Sm[122nm↓ , we expand
G↑ in Eq. ~27a! and obtain from Eq.~2c! the following ex-
pansion for the cluster self-energy of the up electronsSC:

Smn
C [Smn

C diag
1dSmn

C , ~29a!

Smn
C diag

52
Udmn

2 S 1

^hm&
2 ix D1O~1!, ~29b!

dSmn
C [~12dmn!Dmn

^hmhn&c

^hm&^hn&
1OS 1

U D , ~29c!

hm[
1

Sm1 ix
, ~29d!

where SC diag
(dSmn

C ) is the diagonal~off-diagonal! part of
the matrix, the brackets denote the average overnm↓ or Sm
with the weights defined in Eq.~27a!. The averages and co
relations ofhm are computed usingSm561 and solving for
the probability of the spin to be61 as a function of the
correlations:

^hm&5
^Sm&2 ix

11x2
, ~30a!

^hmhn&5
^SmSn&2 ix~^Sm&1^Sn&!2x2

~11x2!2
. ~30b!

For (m,n) nearest neighbors in an antiferromagnetic pha
as well as in the paramagnetic phase, we have^Sm&1^Sn&
50 and thus

^hmhn&c

^hmhn&
5

^SmSn&c

^SmSn&2x2
. ~31!

We now take the limit in the self-consistency condition~7!.
We keepSS to derive a general formula, and we will sp
cialize to various schemes later. We only use the fact that
diagonal part ofSS is independent ofK and equal to the
cluster self-energy:SSmm5Smm

C . This is true for the scheme
studied in this paragraph: PCDMFT, CDMFT, and DCA~for
the pair scheme, see Appendix D!. Therefore, the dominan
part of orderU in SS is diagonal and we have
20510
e,

e

SS~K !5Smn
C diag

1dSS~K !, ~32!

wheredSS is a matrix of orderO(1) in the 1/U expansion.
Denoting with a bar the normalized sum of the reduced B
louin zone,

A~K ![

(
KPR.B.Z.

A~K !

(
KPR.B.Z.

1

,

we obtain (R is on the superlattice!

Dmn~x!5 t̃ mn~x!1
2t

U
Jr

mn~x!^hr&1OS 1

U2D , ~33a!

t̃ ~x![tS1dSS2dSC, ~33b!

Jr
mn~x![

1

t
@~ tS1dSS!mr~ tS1dSS!rn

2~ tS1dSS!mr~ tS1dSS!rn#

5
1

t (
RÞ0

~ tS1dSS!mr~R!~ tS1dSS!rn~2R!.

~33c!

Note that t̃ is purely off-diagonal. In the expression ofJ,
dSS has to be expanded to orderO(1) only. Moreover, only
the off-diagonal part~in site index! is important since the
on-site part is restricted toR50. dSS andD are determined
by Eqs.~29! and ~33! and the relation betweenSS andSC.

At this stage, it is useful to distinguish two cases depe
ing on the validity of the cancellation

SS 5SC. ~34!

In CDMFT and DCA,SS5SC is K independent, therefore
Eq. ~34! holds anddSS drops out of Eq.~33c!. t̃ andJ do not
depend onx, althougĥ hm& does. In PCDMFT, however, Eq
~34! does not hold and we have to solve fordSS andD ~see
below! to complete the computation ofG0.

The second step of the computation is to take the largeU
limit of the effective action~26! using the value ofG0 ~33!.
In that limit, we expect that the problem becomes classi
and more precisely forU→`:

^csm
† csn&→0 for mÞn, ~35a!

nm↑1nm↓→1 ;m. ~35b!

Indeed this can be shown explicitly using Eq.~27a! and tak-
ing the U→` limit in the Fermi factors,after doing the
summation over frequencies. However, due to the freque
dependent nature ofG0 in all cases, we need to use th
functional formalism and not the Hamiltonian formalism
in the derivation of the Ising limit on the lattice. This i
presented in detail in Appendix B. In the limitU→` with
8-8
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b→`, b̄[bt/U fixed, the effective action reduces to th
classical action for the clusterat temperature1/b̄ and we
obtain aclassical cluster schemefor the Ising model with an
interactionJIsing inside the cluster and an additional mea
field termJB :

Heff5 (
^m,n&

JIsing
mn SmSn1 (

(m,n)
JB

mnSm^Sn&Heff
, ~36a!

JIsing
mn [E

2`

` dx

pt

t̃ mn
2 ~x!

~11x2!2
, ~36b!

JB
mn[E

2`

` dx

p

Jn
mm~x!

~11x2!2
, ~36c!

where (m,n) and ^m,n& correspond to a general and
nearest-neighbor couple of sites, respectively. One ha
solve a classical Ising cluster, with self-consistent ‘‘boun
ary’’ condition represented byJB , which generalizes the
usual Weiss field. Of course, ift̃ does not depend onx, we
find the same result as in the latticeJIsing

mn 5Jm2n
Latt for nearest

neighbors.
Let us now specialize our computations to the th

schemes presented in Sec. II and compute the value ofJIsing
andJB for CDMFT, DCA, and PCDMFT for square cluste
of linear sizeL on a two-dimensional square lattice and fo
general hoppingtd whered is a lattice vector.

CDMFT. In this case,SS(K)5SC is K independent and
tS5t, which leads tot̃ (x)5t and

JIsing
mn 5Jm2n

Latt , ~37a!

JB
mn5~21!L (

RÞ0
Jm2n1R

Latt . ~37b!

The interaction inside the cluster is the same as in the la
problem and theJB term is of orderO(1) and is confined to
the boundary of the cluster. The boundary term couple
spin to the average value of its ‘‘ghost’’ neighbor in th
neighboring cells, this average value being computed in
cluster itself using the translation invariance on the super
tice. We added a ‘‘2 ’’ sign for odd cluster size, since in thi
case the CDMFT has to be generalized like DMFT with tw
sublattices in order to capture antiferromagnetism: this
equivalent to reversing the sign of the ghost neighbor. In
large cluster limitL→`, the boundary terms play no rol
and we therefore recover the lattice Ising problem. Noti
however, that the one-dimensional case is pathological s
the two boundary terms communicate with each other, res
ing in a finiteTc in the limit of infinite size. This pathology
disappears in higher dimensions and explains the result
Ref. 10.

DCA. In d52, we use a square cluster of linear sizeL
52Lc , corresponding toLcKc points~cf. Appendix A!. With
the definition sinc(xW)[)i51

d sin(xi)/xi :
20510
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JIsing
mn 5

t

2 F (
d

d5m2n[2Lc]

td

t
sincS pd

2Lc
D G 2

, ~38a!

JB
mn5

t

2 (
d,d8

d5m2n[2Lc]

d85m2n[2Lc]

tdt2d8

t2
sincS p~d2d8!

2Lc
D2JIsing

mn .

~38b!

JB is the same for all links as required by translation inva
ance in the cluster. For the first-neighbor hopping, denot
by JLatt the value ofJi 2 j

Latt for i , j nearest neighbors, the for
mula reduces to

JIsing
mn 5

16

p2
JLatt, JB

mn5S 22
16

p2D JLatt for Lc51,

~39a!

JIsing
mn 5S sinc

p

2Lc
D 2

JLatt,

JB
mn5F12S sinc

p

2Lc
D 2GJLatt for Lc.1. ~39b!

Note that in the 232 cluster, the hopping is doubled sinc
electrons can hop from one site to the neighboring one, ei
directly or using the cyclicity condition. In the large clust
limit Lc→`, we recover the lattice problem:JIsing

mn →Jm2n
Latt

andJB5O(1/Lc
2).10

PCDMFT.This case is more complicated sinceSS5S latt

is now K dependent, henceSSÞSC, except for diagonal el-
ements. Thereforet and J now depend onx. In order to
determine them, we have to solve Eqs.~9!, ~29!, and ~33!.
This is done in Appendix C and we obtain

t̃ mn~x!5tmn

^hm&^hn&
A~x!^hmhn&

, ~40a!

Jn
mm~x!5~21!LA22~x! (

RÞ0

tm2n1R
2

t
, ~40b!

A~x![12
1

Sc
(
rPC

r1dPC

^hrhr1d&c

^hrhr1d&
, ~40c!

whered is one of the basis vectors of the square lattice.
In d51 for first-neighbor hopping, the last term reduc

to

A~x!512
1

L (
i 51

L21
^hihi 21&c

^hihi 21&
.

The boundary terms are located as in CDMFT. In the la
cluster limit L→`, in Eq. ~40! the boundary terms are sub
dominant in the denominator and the terms involving t
averages ofScancel, restoring the correctJIsing on the lattice.
The JB term cancels since it is restricted to the boundary
8-9
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Pair scheme.The computation of the classical limit of th
pair scheme is a little more involved but similar. We show
Appendix D that if a magnetic solution exists, it satisfies t
equation of the classical variation method. Let us take t
cluster problems, the first one with one site@denoted with an
index ~1!# in a field 2zh, the second one with two site
@denoted with an index~2!#, interacting antiferromagnetically
with JLatt and in a field2(z21)h, wherez54 is the con-
nectivity:

H (1)5zhS(1), ~41a!

H (2)5~z21!h~S1
(2)2S2

(2)!1JLattS1
(2)S2

(2) , ~41b!

where the fieldh is determined by the ‘‘nested consisten
condition’’

^S(1)&5^S1
(2)&52^S2

(2)&. ~42!

Solving the classical equations, the critical temperature
given by

~z21!tanh~ b̄JLatt!51, ~43!

which givesT̄c /JLatt'2.88.

B. Discussion

Let us recapitulate our results. We applied the cluster
namical mean-field theories to the Falikov-Kimball mod
taking U→` with b→`, b̄5bt/U fixed. In this case the
quantum model reduces to the Ising model and the clu
dynamical mean-field approximation to classical clus
methods. CDMFT corresponds to a simple mean-field the
generalized to clusters: each spin on the boundary is
jected to a mean field representing the interaction with
neighboring spins that do not belong to the cluster. The fo
of the mean field is the standard one: the antiferromagn
coupling times the magnetization of the spins. Note that
principle, the antiferromagnetic coupling is generated
quantum fluctuations and its value is approximation dep
dent. In the case of CDMFT one gets the same coupling
the one obtained for the lattice.

The classical limit of DCA is different mainly for two
reasons:

~i! The mean field is not just on the boundary but it a
on all sites and is equal on sites belonging to the same
lattice. This is natural in DCA because it is an approximat
that preserves the translation invariance~or the reduced
translation invariance for the AF phase!, in the propagator
and in the Weiss field;

~ii ! The form of the mean field is the standard one but
values of the antiferromagnetic coupling in the mean fi
and for spins inside the cluster are different from the latt
one ~and between themselves!. Of course, in the limit of
infinite cluster they reduce to the lattice value.

PCDMFT is similar to CDMFT to the extent that th
mean field acts only on the boundary. However, as for DC
the value of the antiferromagnetic coupling in the mean fi
and for spins inside the cluster are different from the latt
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one ~and between themselves!. Finally, the pair scheme re
duces to the classical cluster variation method for two si

The self-consistent equations corresponding to these c
sical cluster schemes can be solved analytically for sm
clusters and using a classical Monte Carlo method to so
the impurity problem for larger size. With the exception
the cluster variational method, the classical limits of the
extensions of DMFT do not result in drastic improvements
the estimation ofTc for small cluster sizes. The value ofTc
predicted by DMFT is the standard mean-field one: 4J ~the
connectivity of the lattice is four!, which is far from the exact
value of 2.27J. The value obtained using the NCS schem
with two sites, i.e., the pair scheme, leads to a good impro
ment: Tc52.88J. Instead the results for DCA and CDMF
even for larger sizes (434, 636, and 838 clusters! do not
improve the estimate ofTc very much. In fact, within error
bars of 0.1 we getTc

(434)53.2J, Tc
(636)53.J, and Tc

(838)

52.85J ~within the error bars the estimates forTc are the
same for the two schemes!. Note that the value obtained wit
a cluster of 16 sites with DCA and CDMFT reaches t
estimate obtained with a cluster of two sites using NCS! T
results of PCDMFT are clearly worse than the ones of
two previous methods for the numerical value ofTc , which
is quite larger than what is obtained by CDMFT and DC
This can be traced to the lack of cancellation of off-diago
elements in Eq.~34! which implies that the cavity field
D( ivn) in PCDMFT is not proportional to the square of th
hopping matrix element which is an undesirable feature.

IV. CAUSALITY

In this section, we present a general method to prove
causality of cluster approximations and apply it to vario
schemes, including PCDMFT. As mentioned in Sec. II, th
are two equivalent presentations for the equations of DM
and its extensions: a first one using the Weiss functionG0,
and another one using the Luttinger-Ward functionalF. Let
us examine the causality question in both.

In the formulation withG0, one has to prove that~i! if G0
is causal,Gc andS are causal~this is automatic as long a
one uses a causal impurity solver!, ~ii ! if S is causal,G0
computed from the self-consistency condition is causal. T
is the difficult part. It was carried out explicitly for CDMFT
in Ref. 9 and for DCA in Ref. 7.

In the formulation withF, one has to prove that~i! given
a causalG, Sskel(G)5dF/dG is causal;~ii ! given a causal
S, the self-consistency condition produces a causalG. Here
~ii ! is obvious, because of the simple form of the bare pro
gator.~i! is the difficult part and this section is devoted to
general method to prove it.

To show that the self-energy is causal we have
prove that the retarded self-energy has a negative imagi
part for all v, i.e., ImSR(x,x8,v)[@SR(x,x8,v)
2SR* (x8,x,v)#/2i is negative. We use the Cutkovsky
t’Hooft-Veltman equation~also known in the literature a
‘‘cutting equations’’! which is extremely useful to discus
causality properties in terms of a diagrammatic expansion
relates the imaginary part of the self-energy to a sum of
diagrams. A standard derivation can be found in Ref. 21
8-10
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it is proposed by t’Hooft and Veltman. However, we prese
in Appendix E a simpler and self-contained derivation, ba
on the Keldysh method. Contrary to the previous derivati
it does not assume translation invariance, which is impor
to discuss cluster schemes that break translation invaria
Note, however, that this method is limited to zer
temperature formalism.

This section is organized as follows. In Sec. IV A, w
present the Cutkovsky-t’Hooft-Veltman equation and sh
how it can used to prove causality. In Sec. IV B, we apply
to various cluster schemes.

A. The Cutkovsky-t’Hooft-Veltman equation

The Cutkovsky-t’Hooft-Veltman equation gives th
imaginary part of the retarded self-energy as a sum of
diagrams. Let us consider the set of all perturbative c
nected diagrams$D% for the self-energy at zero temperatu
~for a given approximation! and all possible cuts of thes
diagrams into two connected partsL and R containing, re-
spectively, the left and the right external points~if they are
the same, we drop the diagram!. There aren cut propagators
going from left to right andn21 from right to left, at fre-
quencyv i and indicesxi . We denote byMR the mirror ofR
defined as the left diagram obtained fromR by reversing all
arrows~cf. Fig. 1 for an illustration!. To each left diagram
we associate the valuedL of correspondingT50 diagram,
using theT50 Feynman propagator (G11 in Keldysh nota-
tion: See Appendix E!. Note that for each given half lef
diagram, one has to put indL all the half left diagrams ob-
tained by permuting the cut lines in all the possible ways a
then multiply by an appropriate symmetry factor discussed
Appendix E. We then writeDL(x,v,$xi%,$v i%)[dLu(v)
1dL* u(2v), whereu is the Heaviside function. We denot
all cut propagators with an indexi. To each we associat
r(xi ,xi8 ,v i)u(e iv i) with e i5sgnv for a propagator going
to the right and2sgnv for a propagator going to the left
The summation over diagrams can be expressed as a
mation overn and a sum over diagramsDn5(Ln ,Rn) with a
given number of cut propagators going to the right. T
Cutkovsky-t’Hooft-Veltman equation is then

FIG. 1. Definition of cut diagrams.
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Im SR~x,x8,v!

52 (
n>2

1

2n! (
Dn5(Ln ,Rn)

(
$xi %

$xi8%

E dv iDLn
~x,v,$xi%,$v i%!

3@DMRn
~x8,v,$xi8%,$v i%!#*

3 )
i 51

nL1nR

r~xi ,xi8 ,v i !u~e iv i !. ~44!

Remark. If the system is translation invariant then we c
Fourier transform also with respect to space and get

Im SR~k,v!52 (
n>2

1

2n! (
Dn5(Ln ,Rn)

(
$xi %

$xi8%

E dv i

3DLn
~k,v,$ki%,$v i%!

3@DMRn
~k,v,$ki%,$v i%!#*

3 )
i 51

nL1nR

r~ki ,v i !u~e iv i !. ~45!

Note that there are no terms withn<2, otherwise the origi-
nal closed diagram would not be two-particle irreducib
~2PI!.

Let us now see how to use Eq.~44! to prove causality of
the self-energy. We want to show that

A5
1

2i (
x,x8

wx@SR~x,x8,v!2SR* ~x8,x,v!#wx8
* <0 ;$wx%

~46!

for all complex vectorswx . Using Eq.~44! we find that we
can write the previous quantity as a sum over cut diagra

A52 (
nL>0
nR>0

1

2n! (
Dn5(Ln ,Rn)

(
$xi %

$xi8%

E dv i

3S (
x

wxDLn
~x,v,$xi%,$v i%! D

3S (
x8

wx8
* DMRn

* ~x8,v,$xi8%,$v i%!D
3 )

i 51

nL1nR

r~xi ,xi8 ,v i !u~e iv i !. ~47!

At this stage, we can use the causality ofG, i.e., the
positivity of r(x,x8). It implies the positivity of the tensor
product) i 51

nL1nRr(xi ,xi8 ,v i) considered as a matrix of indi
ces (x1 , ... ,xnL1nR

). Hence, positivity of2Im S would re-
sult if the summation over diagrams could be recast a
square. More precisely, a simple property that implies c
sality is that for anyn

$~Ln ,Rn!%5$Ln%3$Rn%. ~48!
8-11
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$Ln% ($Rn%) is the set of left~right! parts of diagrams with
fixed n. Equation~48! says that all diagrams can be obtain
once and only once using a left part and a right part, whic
equivalent to two properties:

Closure property. With any left part and any right par
~which have the samen), gluing them constructs a diagram
present in the expansion.

Exact counting property. All diagrams are obtained tha
way ~by definition of left/right parts! but only once: there is
no overcounting problem.

If the property~49! holds, then using the notation

yn~$xi%;$v i%,v![(
x,Ln

wxDLn
~x,v,$xi%,$v i%!,

we have

A52E dv i (
n>2

(
$xi %,$xi8%

yn~$xi%;$v i%,v!yn* ~$xi8%;$v i%,v!

3 )
i 51

nL1nR

r~xi ,xi8 ,v i !u~e iv i !. ~49!

Note that the sum over$xi%,$xi8% inside the integral can be
interpreted as the product of the two vectorsy andy* with a
positive definite matrix. Thus the positivity ofr implies the
negativity of ImS.

The efficiency of this method is that one can prove c
sality, just by examining the combinatoric structure of t
diagrams present in the approximation, with no further co
putation. A few remarks are important at this stage.

~i! This method can prove the causality of a scheme, b
cannot prove that a scheme will violate causality. In parti
lar, it proves the positivity of2Im S for all causal propaga
tors G. In the following, we will refer to this as the stron
causality property. It is a logical possibility that this proper
does not hold, while the actual solution of the schemeG is
indeed causal for all parameters. However, we know no
ample of this, and the strong property is interesting since
use an iterative algorithm to solve the self-consistent im
rity problem.

~ii ! Equation ~48! is sufficient but not necessary: on
could also have form squares in a more complicated man

~iii ! As a remark, we see that the full perturbation theo
on the lattice satisfies the property~48!: the full diagram-
matic expansion obviously leads to a causal self-energy.

B. Applications

1. CDMFT and DCA

CDMFT can be obtained from the Baym-Kadanoff fun
tional takingF5(RF(Ga,b;R,R), whereR is the cluster in-
dex anda is the internal cluster index. As a consequen
Sa,b;R,R5Sa,b5dF/dGa,b . SinceF(Ga,b) is the sum of
all the 2PI diagrams of aLd lattice, CDMFT does satisfy
Eq. ~48! and therefore is a causal scheme.

In DCA, one writes the self-energy in terms of the com
plete series of diagrams and thed functions at the vertices
are replaced by a coarse-grained function. As discussed
20510
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viously, DCA is equivalent to replacing the Kronecker de
dk11k2 ,k31k4

with a Kronecker deltadk
1
c1k

2
c ,k

3
c1k

4
c whereki

c is

the cluster momentum related to the hypercube contain
ki . Formallyki

c5ki mod(p/L, . . . ,p/L). Hence, DCA sat-
isfies Eq.~48!: the proof is the same that for the comple
series of diagrams for the self-energy. The fact that thk
structure of the vertices is different does not change a
thing. Hence, we see that DCA is automatically causal.

2. PCDMFT

The causality of PCDMFT is easily established using
real-space formulation~9!. The causality for CDMFT implies
the causality ofSC. We just have to show thatS latt is causal.
For any complex vectorxsm , we have from Eq.~9!,

(
ss8mn

xsm* xs8nSs,m;s8,n
latt

~K !

5
1

Sc
(

dP$0, . . . ,L21%d
(

ss8m̄n̄

zs;m̄
* ~d!

3zs8; n̄~d!Ss,m̄;s8n̄
Ca~d!

~50a!

zs;m1d~d![xsmeiK b(m1d)/L cL. ~50b!

The negativity ofSC implies that we have a sum of negativ
terms. This shows that causality of PCMDFT is guarante
term by term in thed sum.

Note that another way to reach the same conclusion
based on the fact that PCDMFT can be interpreted as
solution of a real lattice system replacing the re
U(k1 ,k2 ,k3 ,k4) with its PCDMFT counterpart. Thus, th
statement of causality of PCDMFT is a particular case of
causality of the original problem with a generalU.

3. Noncausality of the pair scheme

The pair scheme, described in Sec. II C, has been or
nally introduced in Refs. 1 and 5. It seems a very natural w
to introduce systematically ak dependence for the self
energy. Unfortunately, as we will show in the following, th
scheme is not causal for two reasons that we shall discus
detail.

First, let us apply the Cutkovsky rule. We see that the p
scheme does not satisfy the property~48! or more precisely
the closure property. Indeed, when cutting a diagram forS,
we only have two site indicesi and j. Let us consider a cu
diagram (L1,R1) where we havei along the cut, and the
similar diagram (L2,R2) where j is replaced bykÞ i , j . A
priori , we could glue the parts into (L1,R2), but that dia-
gram would involvei, j, andk, and thus is not present in th
diagrammatic expansion generated by the pair scheme.
is the first reason for lack of causality. We stress that this
not a proof, but a quick and strong indication that the sche
is not strongly causal. It is interesting to point out that th
problem was already encountered in the case of disord
electron systems when people tried to generalize CPA
clusters. In that case Mills and collaborators15 noticed that a
generalization of CPA similar to the pair scheme has t
8-12
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type of nonclosure problem. For this reason they introdu
the traveling cluster method which is fully causal. We w
comment afterward on the possibility to do the same
strongly correlated electrons.

Let us now really show that the pair scheme is not cau
In fact, the violation of the closure property is just a hint th
there could be some problem with causality but it does
preclude the possibility that eventually the scheme is cau
In the following we will consider the solution of the pa
scheme whenU→0 for an arbitrary bare spectral density
hopping on the original lattice. We will show that a particul
choice of the bare spectral density gives rise to a nonca
self-energy, thus proving in an explicit example the nonc
sality of the scheme.

To study the sign of the imaginary part of the self-ener
in the limit U→0 one can focus just on the second-ord
term because the first order gives no contribution. Moreo
one can replace in the diagram the full propagator with
bare or lattice one@Gbare5( ivn2t2m)21#, the error lead-
ing to a term of an order larger thanO(U2). If one applies
the Cutkovsky equations to obtain the imaginary part of
self-energy for the second-order diagrams of the pair sch
then one has to restrict the sum in the first line of Fig. 2
single sites (x,x) and links^x,x8&. The sum over the single
sites (x,x) is just the same that one obtains for usual DM
and is clearly positive. The link term̂x,x8& with x,x8 near-
est neighbors equals@v is the ~positive! self-energy fre-
quency#

U2E
0

1`

dv1E
2`

0

dv2 (
^x,x8&

@wxwx8
* r~x,x8,v1!

3r~x,x8,v2!r~x,x8,v2v22v3!1wx8wx*

3r~x8,x,v1!r~x8,x,v2!r~x8,x,v2v22v3!#.

~51!

The spectral density in the previous equations is just the b
spectral density obtained byt i j . For the pair scheme, one ca
find a spectral density matrix that, injected into the previo
equations, does not lead to a causal self-energy. The caus
of the spectral density matrix is equivalent to the positiv

FIG. 2. Example of a cut diagram. MR means mirror ima
of R.
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of each Fourier elementrk(v)>0. However, even if
rk(v)>0, rx,x8(v) with x,x8 nearest neighbors can b
negative and as close as possible~in absolute value! to
rx,x(v) for any v. Consider, for example, the example
which rk(v) is strongly peaked and has an important weig
only near the points6p, . . . ,6p. In this caserx,x(v)
.0, rx,x8(v) with x,x8 nearest neighbors is negative and

rx,x8~v!5E
BZ

dk

~2p!d
rk~v!exp@2 ik~x2x8!#

.2E
BZ

dk

~2p!d
rk~v!52rx,x~v!.

In this case the contribution of Eq.~51!, for example, for
wx51, is negative and approximatively two times larger
absolute value than the contribution from thex,x term. Since
for eachx,x term there arez (z is the connectivity! terms like
Eq. ~51!, the global sum is negative forz.2, i.e., in any
dimension large than 1~if one takes a square or cubic o
hypercubic lattice!. Thus in this case, the self-energy is n
causal. So we have found a second reason for noncaus
even if the closure property is verified and in the cuttin
folding procedure no new diagrams are created~which is the
case for the pair scheme at second order inU) this does not
guarantee that there is a way to write all the cut diagrams
a sum of squares. One can have an overcounting proble
we have just shown for the pair scheme.

Let us now comment on the possibility to cure the p
scheme as Mills and collaborators did in the case of dis
dered electrons defining the traveling cluster scheme. W
they did is to solve the violation of the closure proper
allowing an arbitrary self-energy diagram to have on
single-site and nearest-neighbor propagators. So in this
a self-energy diagram can connect two arbitrary points
just through a sequence of nearest-neighbor propagators~that
is why the scheme is called ‘‘traveling’’!. This clearly solves
the first problem—the nonclosure—but, in principle, it do
not guarantee that the second one is also solved. And ind
it is not for strongly correlated electrons. A simple way to s
it is that even with a generalization of this type in the lim
U→0, the causality counterexample exhibited for the p
scheme is still valid. Instead, the case of disordered elect
has a simpler diagrammatics~there are no loops in the self
energy diagrams due to the use of the replica method! and
one can explicitly rewrite everything as a sum of squares
particular, the diagram discussed before is simply not the

A way to circumvent these two difficulties is to write th
self-energy as the sum of all diagrams and then replace
original propagator with a simplified restricted version that
guaranteed to be causal. For example, in order to hav
causal generalization of the pair scheme, close in spirit to
traveling cluster, one can write

S5
dF

dG U
G5G̃

, G̃~k,v!5G0~v!1G1~v!(
i 51

d

@2 cos~ki !#,
8-13
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where G0 , G1 are fixed imposing the condition
G̃(0, . . . ,0,v)5G(0, . . . ,0,v) and G̃(p, . . . ,p,v)
5G(p, . . . ,p,v), and G5(G0

212S)21. This guarantees

thatG̃ is a causal propagator as long asG is causal. So when
G̃ is inserted in the complete series, it will give rise to
causal self-energy. The problems with this scheme are
following

~1! It seems that it is notF derivable. The reason is that i
all the diagrams there are only nearest-neighbor propaga
However, since the diagrams connect, in general, two s
that are not nearest neighbors, it is difficult to think how o
can obtain it using a restricted set of diagrams forF. Note,
however, that this is also the case of the traveling clus
scheme for disordered electrons.

~2! It is not clear what type of impurity solver, if any, ca
be used to sum the series of diagrams.

In the case of the traveling cluster many simplificatio
arise that allow one to solve~2! but not ~1!. Let us finally
remark that the two mechanisms behind the noncausalit
the pair scheme apply also to the general NCS schemes,
though we expect smaller violations of causality for larg
clusters.

V. CONCLUSION

Cluster schemes are a promising method for study
strongly correlated electrons. Compared to the study of sm
finite-size systems, they offer the advantage that the ther
dynamical limit is taken from the outset, and hence one
hope for smaller finite-size effects. As a prime example,
now know that even a one-site cluster captures many n
trivial features of the Mott transition.

On the other hand, there is no unique generalization of
single-site dynamical mean-field approximation. Some g
eralizations view the DMFT and its resulting impurity~or
multiple impurity models in the case of the NCS! as a trick
for summming selected classes of diagrams. An alterna
view is provided by the cavity construction and by function
methods, where an effective action is constructed to comp
the correlation functions of selected coarse grained or clu
degrees of freedom. Finally, one can view DMFT as a cho
of boundary condition for finite-size studies of a small set
degrees of freedom, where the boundary condition rec
nizes that those degrees of freedom are periodically repe
in a medium. While all those points of view lead to the sa
set of DMFT equations in the single site case, they lead
different constructions for cluster extensions, and
strengths and limitations of these extensions need to be
plored. This paper contributed in this direction by clarifyin
two important aspects of these extensions, namely, the
ditions on the cluster scheme needed for the scheme to
isfy causality, and the reduction of the cluster schemes
spin cluster methods in the classical limit.

First, we introduced PCDMFT which is a causal genera
zation of the scheme proposed by Lichtenstein a
Katsnelson.13 Second, we provided a general way to pro
causality of cluster scheme and showed that the pair sche
which is the most natural extension in the sense that i
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defined by a translational invariant restriction of the Bay
Kadanoff functional, is not causal: the diagrammatic reas
for the failure of this method was clarified. Third, we als
showed formally, in the context of the Falikov-Kimba
model, how the semiclassical limit of the different clust
methods reduces to classical spin cluster methods. Both D
and CDMFT give comparable answers, even though th
Weiss fields have a very different form~in DCA the Weiss
field is uniformly distributed inside the cluster while i
CDMFT it is focused on the boundary!. On the other hand
PCDMFT has an unphysical feature in the classical lim
which results from a Weiss field which does not vanish as
square of the hopping matrix elements. The nested clu
schemes are clearly superior and provide a quantum ge
alization of the cluster variation method which gives critic
temperatures that converge rapidly with cluster size.
showed that the nested cluster schemes violate causality.
proof suggests that this violation is going to be more sev
when a substantial part of the lattice self-energy has a ra
that exceeds the size of the maximal cluster used in the N
On the contrary, when the range of the self-energy is c
tained in the maximal cluster, the diagrams generated by
Cutkovsky procedure which are not contained in the NCS
small, which is consistent with the early numerical stud
which indicated no violation of causality in the pair schem
at high temperature. This observation is in the same spiri
a recent study of a new~non-nested! scheme, the ‘‘fictive
impurity model method,’’ which connected violation of cau
sality with peaks in momentum space in the latti
self-energy.22

An important lesson that can be learned from our res
is that the choice of an optimal cluster scheme may dep
of the property studied and the physical system at hand.
deed, our semiclassical analysis revealed that PCDMF
not accurate in insulating regimes, at least in the one that
focused on doing the semiclassical limit. Instead, CDM
performs rather well. We conjecture that CDMFT is accur
in insulating cases and PCDMFT in metallic cases, as s
gested by a recent study in one dimension.23

Another important result concerns the remarkable ac
racy of the NCS scheme compared to the other ones. Eve
its performance in a case with stronger quantum fluctuati
remains an open question, we think that it would be parti
lary interesting to try to cure the causality problem keep
the nesting idea inherent to the NCS scheme. Another ro
to follow is to try to incorporate the cellular dynamica
mean-field ideas of defining impurity models in adaptive b
sis sets into a NCS scheme. In this way one could try
adapt the basis to the problem so that the resulting s
energy is short range and the causality problem, even if
avoided, is sensibly reduced.

Finally, while the paper focused on a few schemes,
techniques developed here are quite general and may pla
important role in selecting and optimizing cluster metho
for specific applications.
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APPENDIX A: REAL-SPACE FORMULATION OF DCA

In this appendix, we present a real-space formulation
DCA,8 which is useful for orders that break translation i
variance. Let us consider first the translation invariant ca
The hopping of the full lattice can be written using the r
ciprocal superlattice and the cluster indices~in real space!:

tmn~K !5
1

Ld (
Kc

ei (K1Kc)(m2n)t~K1Kc!, ~A1!

where t(k) is the Fourier transform of the hopping on th
original lattice andm,n as in Sec. II. Here~in d51),
2p/L<K<p/L, Kc52pn/L, n50, . . . ,L21 is on the
reciprocal lattice of the~finite! cluster. UsingtS5t in Eq. ~7!,
we get CDMFT. UsingtS5tcyc with

tmn
cyc~K ![

1

Ld (
Kc

eiK c(m2n)t~K1Kc! ~A2a!

5e2 iKmtmn~K !eiKn ~A2b!

we get DCA. Indeed,tcyc is cyclic in the cluster indices~by
definition of Kc), and provided that we obtain a translatio
invariant~cyclic! solution we can diagonalize all matrices
the cluster to get Eq.~5!.

Let us now consider the case where the solution of
real-space formulation of DCA breaks the translation inva
ance in the cluster into a smaller invariance: the~big! cluster
is divided intoLc

d small clusters of linear sizeL, and we have
translation invariance in the big cluster when the small cl
ters are thought as collapsed into one point. For example
AF order ind51, L52 ~see Fig. 3!. We will then denote by
a,b the positions in the small cluster, byA,B the positions
of the small clusters in the big clusters, and byĀ,B̄ the
positions of the big clusters on the full latticeexpressed in
units of the original lattice. Any point on the big cluster can
be described with a couple (a,A) and any point on the lattice
by a triplet (a,A,Ā) (a, A, Ā designate both the position o
the points, i.e., vectors, and a label for those points!. Simi-
larly, we denote by2p<k<p an element of the origina
lattice’s Brillouin zone, by2p/L<K<p/L an element of
the Brillouin zone of the superlattice of the small cluste
and by2p/(LLc)<K̄<p/(LLc) an element of the Brillouin

FIG. 3. Definitions of big and small clusters ind51. L52,
Lc53.
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Zone of the superlattice of the big clusters. Finally, the
ciprocal lattice of the small cluster isKc52pn/L,n
50, . . . ,L21; the same for the big cluster considered a
cluster ofLc small clusters, in units of the original lattice,
K̄c5(1/L)(2pp/Lc), p50, . . . ,Lc21. Hence the recipro-
cal lattice points of the big cluster considered as a cluste
LLc points areKc1K̄c . We solve the DCA in real spac
with the big cluster of sizeLLc :

GaA,bB~v!5(
K̄

1

v2t (a,A),(b,B)
cyc ~K̄ !2SaA,bB~v!

,

~A3!

t (a,A),(b,B)
cyc ~K̄ !5

1

~LLc!
d (

Kc ,K̄c

ei (Kc1K̄c)(a1A2b2B)

3t~K̄1Kc1K̄c! ~A4!

5
1

Lc
d (

K̄c

eiK̄ c(a1A2b2B)tab
cyc~K̄1K̄c!,

~A5!

where we usedKcA50 @2p# in the last equation. Becaus
of the reduced invariance, we can diagonalize usingK̄c and
obtain

Gab~K̄c ,v!

5(
K̄

1

v2ta,b
cyc ~K̄1K̄c!e

iK̄ c(a2b)2Sa,b~K̄c ,v!
.

Using theunitary transformation,

G̃ab~K̄c ,v![e2 iK̄ c(a2b)Gab~K̄c ,v!,

we obtain

G̃ab~K̄c ,v!5(
K̄

1

v2ta,b
cyc ~K̄1K̄c!2S̃a,b~K̄c ,v!

.

~A6!

Let us now concentrate on the AF order:L52 and for
simplicity in dimension 1. In this case,Kc50,p. We will
now show that Eq.~A6! is equivalent to thek-space formu-
lation presented in Ref. 16~denoted by a superscriptM ). In
the AF phase, correlations appear betweenk and k1p and
the self-consistency condition reads

GM~K̄c ,v!5(
K̄

F S v2t~K̄1K̄c! 0

0 v2t~K̄1K̄c1p!
D

2SM~K̄c ,v!G21

, ~A7!

whereGM andSM are 232 matrices, which are nondiagona
in the AF phase:
8-15
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GM[2S ^Tckck
†& ^Tckck1p

† &

^Tck1pck
†& ^Tck1pck1p

† &
D .

Using the transformation16

c1K5
cK1cK1p

A2
, c2K5

cK2cK1p

A2

Eq. ~A7! is equivalent to Eq.~A6!. Therefore the two formu-
lations of DCA are equivalent in the antiferromagnetic pha

The real-space formulation of DCA shares with CDMFT
property which is useful in practice: one does not have
anticipatethe appearance of an ordered phase, i.e., to a
the cluster scheme for the order to be described. The o
will show up automatically solving the real-space DC
equations. Moreover, it can be more complex than an
order, as long as the cluster is big enough to contain at l
one unit cell.

APPENDIX B: LARGE- U LIMIT OF THE EFFECTIVE
ACTION †PROOF OF EQS. „36…‡

Here, we present some details of the derivation of
large-U limit of Eq. ~26!, in the limit whereU→` with b
→`, b/U fixed. The effective action is

Seff52E E
0

b

dtdt8cm↑
† ~t!G0,mn↑

21 ~t,t8!cn↑~t8!1E
0

b

dt

3cm↓
† ~t!]tcm↓~t!1US nm↑~t!2

1

2D S nm↓~t!2
1

2D ,

~B1!

G0mn↑
21 ~ ivn!5 i

xU

2
dmn2 t̃ mn~x!2

2t

U
Jr

mn~x!^hr&1OS 1

U2D .

~B2!

We are going to compute the expression of partial partit
functionZ@$nr↓%# ~also denoted asZ@$Sr%#) as a function of
the spins and recover Eqs.~36!. We first compute the expan
sion of lnZ@$nr↓%# at second order int and first order inJ. We
obtain

ln~Z@$Sr%#/Z0@$Sr%#!

5(
( i , j )

(
ivn ,ivn8

t̃ i j ~ ivn! t̃ j i ~ ivn8!

3^ci↑
† ~ ivn!cj↑~ ivn!cj↑

† ~ ivn8!ci↑~ ivn8!&S

12(
i

(
ivn

Jr
i i ~x!^hr&^ci↑

† ~ ivn!ci↑~ ivn!&S_O~ t3,J2!,

~B3!

where (i , j ) denotes the sum over couples and^ &S is an
average of the Gaussian action at fixedS. We see that

Z0@$Sr%#[Zt5J50@$Sr%#})
r

coshS bU

4
SrD ~B4!
20510
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is independent ofSr ~sinceSr561) and therefore it will be
dropped in the following. Using the relations

^cr~ ivn!cr8
†

~ ivn8!&52Grr8
S

~ ivn!dvn ,v
n8
, ~B5a!

Grr8
S

~ ivn![
drr8

ivn1
U

2
Sr

5
drr8

2 S 12Sr

ivn2
U

2

1
11Sr

ivn1
U

2
D
~B5b!

and the fact that in the AF phaset̃ (2z)5 t̃ (z) since ^Si&
1^Sj&50, we can reduce the expression~B3!, extract the
SiSj term, and obtain finally

ln~Z@$Sr%#!52bHeff1O~ t3,J2! ~B6!

with Heff given by Eqs.~36!. The additional termJr
mn does

not contribute to theJIsing since it would give aO(1/U2)
contribution. Moreover, sinceJIsing; t̃ 2/U we do not need to
compute the 1/U term of SC.

Finally, higher orders in the expansion do not contribu
Indeed, sinceZ@$Sr%# is a Gaussianaction and since we
compute lnZ@$Sr%#/Z0, we only getconnected diagrams, thus
we have one sum over Matsubara frequencies. Each Mat
ara sum gives a factorbU @in the large-U limit (vn

is re-

placed byb/4p*d(xU)] and eachG a factorU21. There-
fore higher-order terms are subdominant.

APPENDIX C: CLASSICAL LIMIT OF PCDMFT

In this appendix, we present the solution of Eqs.~9!, ~29!,
and ~33! for completeness. We restrict ourselves to neare
neighbor hopping. We start by solving at order 1 in the 1U
expansion. From Eqs.~29! and ~33!, we have formÞn
(Dmm50),

Dmn
a 5tn2m1dS latt

mn
a 2Dmn

a ^hm
ahn

a&c

^hm
a&^hn

a&
, ~C1!

wherea51,2 is an index for the two~AF! solutions as in Eq.
~9!. Dividing the cluster into its two sublatticesA andB with
C5CAøCB and using Eq.~9!, we have~for all mPC)

dS latt
m,m1d
a 5

1

Sc
(

rPCA
r1dPC

dSC
r,r1d
b 1

1

Sc
(

rPCB
r1dPC

dSC
r,r1d
b̄ ,

~C2!

whereb5a if mPCA , b5ā otherwise, since ifr1d¹C,
the exponential depends onK and averages to zero. Fo
m,m1dPC, Eq. ~C1! leads to

Dm,m1d
a ^hm

ahm1d
a &

^hm
a&^hm1d

a &
5td1

1

Sc
(

rPCA
r1dPC

Dr,r1d
b ^hr

bhr1d
b &c

^hr
b&^hr1d

b &

1
1

Sc
(

rPCB
r1dPC

Dr,r1d
b̄ ^hr

b̄hr1d
b̄ &c

^hr
b̄&^hr1d

b̄ &
,

~C3!
8-16
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for all m,d. The left-hand side depends only on whetherm
PCA or not. Therefore, for alld, we can define formPCA
andzPCB ,

Fd
aA[Dm,m1d

a ^hm
ahm1d

a &

^hm
a&^hm1d

a &
, ~C4a!

Fd
aB[Dz,z1d

a ^hz
ahz1d

a &

^hz
a&^hz1d

a &
~C4b!

~they are independent ofm andz). Equation~C3! then leads
to

Fd
aA5td1AdaFd

aA1BdaFd
āB , ~C5a!

Fd
aB5td1AdāFd

āA1BdāFd
aB , ~C5b!

Ada[
1

Sc
(

rPCA
r1dPC

^hr
ahr1d

a &c

^hr
ahr1d

a &
,

Bda[
1

Sc
(

rPCB
r1dPC

^hr
āhr1d

ā &c

^hr
āhr1d

ā &
, ~C5c!

which can be rewritten as

~12Ada!Fd
aA2BdaFd

āB5td , ~C6a!

~12Bda!Fd
āB2AdaFd

aA5td . ~C6b!

The determinant of the equations forF is given by )a(1
2Ada2Bda), which does not vanish for a genericx. For
udu.1, td50 by assumption henceFd

aA/B50. In the classi-
cal limit, the two solutions are related by a spin flip,
^hm

ahn
a&c /^hm

ahn
a& does not depend ona for m,n nearest

neighbor, according to Eq.~31!. For udu51, the unique so-
lution is obtained for equalFd[Fd

aA/B , which is given by

Fd5
td

12
1

Sc
(
rPC

r1dPC

^hrhr1d&c

^hrhr1d&

. ~C7!

Using the square symmetry, one can pick up oned to com-
pute the denominator. Hence, we obtain Eqs.~41a! and~41c!
~the hopping is nearest neighbor!. Note that the hopping is
renormalized at order 1~in 1/U), but it is still restricted to
nearest neighbors. In order to compute theJ term, we now
focus ont1dS latt, which satisfies

~ t1dS latt!m,m1d5Fd . ~C8!

It is a translation invariant quantity, which is also restrict
to nearest neighbors. It has a formula analogous to Eq.~A1!
for the hopping, and its value inside the cluster is given by
K average. Using Eq.~33c! to compute the mean-field term
Jn

mm , we see that the computation is similar than f
CDMFT, with just a renormalization of the hopping~note,
20510
s

r

however, thatt1dS latt is not the effective hoppingt̃ defined
as the order 1 term ofD). In particular, theJB terms have the
same range as the original lattice hopping. Reporting
~C8! into Eq. ~33c! leads to Eq.~40a!, which completes the
derivation.

APPENDIX D: CLASSICAL LIMIT OF THE PAIR
SCHEME

The first task is to generalize the pair scheme in the p
ence of antiferromagnetic order. Denoting the two sublatti
by A andB, we have the approximation forF,

Fpair5~12z!S (
i PA

F1@Gii #1 (
j PB

F1@Gj j # D
1 (̂

i j &
i PA
j PB

F2@Gii ,Gj j ,Gi j #. ~D1!

We denote by (1) and (2) the one-site and the two-s
model, respectively. We group the two one-site models i
232 diagonal matrices, and denote with an indexdiag the
diagonal part of a matrix. To write the self-consistency co
dition, we take as unit cell one site onA, one site onB. K is
now a vector in the corresponding reduced Brillouin zon
presented in Fig. 4. The hopping and the lattice self-ene
are given by

tAA~K !5tBB~K !50, ~D2a!

tAB~K !5tC~K !, ~D2b!

C~K !511e2 i (K12K2)1ei (K12K2)1e2 i (K11K2),
~D2c!

Sdiag
latt ~K !5S loc5~12z!Sdiag

(1) 1zSdiag
(2) , ~D2d!

SAB
latt~K !5S12

(2)C~K ! ~D2e!

and the Green function by the usual formula~with 232
matrices!

G5@ ivn2t~K !2S latt~K,ivn!#21.

The scheme implies consistency equations for the Gr
functions:

FIG. 4. Notations and reduced Brillouin zone for the pa
scheme~shaded area!.
8-17
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G(2)5G, G(1)5D~G!,

where we denote byD the linear operator that restricts
matrix to its diagonal.

First G0↓ is diagonal~with same proof as for the othe
schemes! but here it is not trivial:

~G0↓
(1)!21~ ivn!5 ivn1S↓

(1)~ ivn!2S↓
latt~ ivn!

5 ivn2z@S↓
(2)~ ivn!2S↓

(1)~ ivn!#,

~D3!

~G0↓
(2)!21~ ivn!5 ivn1S↓

(2)~ ivn!2S↓
latt~ ivn!

5 ivn2~z21!@S↓
(2)~ ivn!2S↓

(1)~ ivn!#.

~D4!

Using previous notations, we have

D↓
(1)~x!

D↓
(2)~x!

5
z

z21
. ~D5!

Let us turn now to the up electrons. Introducing the no
tions

Ā(2)5Ā, Ā(1)5D~A!

and, using that, ford a diagonal matrix independent ofK,
Ad(a)5Ā(a)d ~for a51,2), we can expand the sel
consistency conditions

~G0
(1)!215~G(1)!211S (1), ~D6!

~G0
(2)!215~G(2)!211S (2) ~D7!

with the expansion~33!, to get

D i i
(a)~x!5 t̄ i i

(a)1S i i
loc2S i i

(a)1
2t

U
Jii r

(a)~x!^hr
(a)&

1OS 1

U2D ~a,i 51,2!, ~D8a!

Jmnr
(a) ~x![

1

t
~ t̃ mr t̃ rn

(a)2 t̃ mr
~a) t̃ rn

(a), ~D8b!

t̃ ~K,x![t~K !1S latt~K,x!. ~D8c!

Clearly,r5 ī with the notation 2̄51,1̄52. Moreover,

S latt
diag
(1) 2S (1)5z~Sdiag

(2) 2S (1)!, ~D9a!

S latt
diag
(2) 2S (2)5~z21!~Sdiag

(2) 2S (1)! ~D9b!

and theJ terms are given by

J(1)5
1

t (
R

t̃ mr~R! t̃ rn~2R!, ~D10a!
20510
-

J(2)5
1

t (
RÞ0

t̃ mr~R! t̃ rn~2R!, ~D10b!

which implies

J(1)5zJ0 , ~D11a!

J(2)5~z21!J0 . ~D11b!

Therefore the equations forD simplify into

D↑ i i
(1)5z~Sdiag

(2) 2S (1)!12zJ0^hī
(1)

&, ~D12a!

D↑ i i
(2)5~z21!~Sdiag

(2) 2S (1)!12~z21!J0^hī
(2)

&.
~D12b!

Using thatm(1)5m(2), we have^hī
(2)

&5^hī
(1)

& at dominant
order and therefore

D↑ i i
(2)

D↑ i i
(1)

5
z21

z
. ~D13!

From Eqs.~D5! and ~D13!, using the computation of the
classical field fromD presented in Appendix B, we obtai
the classical variation method defined in Eqs.~41! and ~42!.

Strictly speaking, we only prove here that, in the largeU
limit, if there is a magnetic solution, it obeys the CVM equ
tions. We have not shown that such nonzero solution ex
A priori, one could wish to push the semiclassical compu
tion further andcompute the classical field explicitly to
check that it gives the values prescribed by the consiste
of the classical equations. However, this is much harder to
than in previous schemes for the following reason. Contr
to all other schemes studied in this paper, there is no can
lation between the diagonal part ofS latt and of SC. There-
fore, we have to compute correction to^h& to order 1/U2, in
order to computeD to order 1/U @the relation~31a! is a
priori valid only at dominant order#. Becauseb;U, we
needD up to order 1/U3 to get such a correction~like we
needD at order 1/U to get a classical field of order 1!. All
these difficulties are hidden in theSdiag

(2) 2S (1) term in Eq.
~D12!.

APPENDIX E: PROOF OF THE CUTKOVSKY-t’HOOFT-
VELTMAN EQUATION

In this appendix, we prove the Cutkovsky-t’Hoof
Veltman formula using the Keldysh method.24 We first
briefly present our conventions.

1. Notations

We denote with a ‘‘1 ’’ the upper contour~going from
2` to `) and a ‘‘2 ’’ the lower contour. The definition of
the Keldysh propagators~for fermions! is

2 i ^Tf~x,t !f†~x8,t8!&5G11~x,x8,t2t8!, ~E1!

2 i ^T̃f~x,t !f†~x8,t8!&5G22~x,x8,t2t8!, ~E2!
8-18
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FIG. 5. A self-energy diagram
and its Keldysh counterparts, with
the Keldysh indices and the over
all factor.
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i ^f†~x8,t8!f~x,t !&5G12~x,x8,t2t8!, ~E3!

2 i ^f~x,t !f†~x8,t8!&5G21~x,x8,t2t8!. ~E4!

After Fourier transformation@ f̂ (v)5*dteivt f (t)#, we have,
in particular, the following useful relations:

r~x,x8,v!52
1

p
Im GR~x,x8,v!, ~E5a!

G12~x,x8,v!52ipr~x,x8,v!u~2v!, ~E5b!

G21~x,x8,v!522ipr~x,x8,v!u~v!, ~E5c!

@G11~x,x8,v!#* 52G22~x8,x,v!. ~E5d!

To illustrate the diagrammatics, consider, for example
second-order self-energy diagram in Fig. 5. It correspond

Gx,x8,t2t8Gx,x8,t2t8Gx8,x,t82t .

The Keldysh counterparts of the diagram are obtained
replacing each vertex by his corresponding Keldysh coun
part ~see Fig. 5!. They correspond to

Gx,x8,t2t8
11 Gx,x8,t2t8

11 Gx8,x,t82t
11

2Gx,x8,t2t8
12 Gx,x8,t2t8

12 Gx8,x,t82t
12

2Gx,x8,t2t8
21 Gx,x8,t2t8

21 Gx8,x,t82t
21

1Gx,x8,t2t8
22 Gx,x8,t2t8

22 Gx8,x,t82t
22 ,

whereG6,6 are the Keldysh propagators.

2. Proof

The first point is to write the imaginary part of the zer
temperature retarded self-energy in terms of the Keld
components:

Im SR~v!5
S12~v!2S21~v!

2i
. ~E6!

An important point is that this relation must hold for ea
diagram individually, in order to be compatible with any a
proximation considered as a diagram summation. Indee
T50 for v.0,

SR~v!5
1

2i
@S11~v!1S12~v!#

and using Eqs.~E5b! and~E5c!, it is sufficient to prove that
20510
a
to

y
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at

S111S221S121S2150 ~E7!

is verified for each diagram individually. A way to prove tha
which is actually in Veltman’s book,21 consists in noticing
that each diagram with a ‘‘1 ’’ at the largest time vertex
cancels against the same diagram with a ‘‘2 ’’ at this largest
time vertex. This happens becauseG11(t2t8)5G21(t
2t8) and G22(t2t8)5G12(t2t8) for t.t8 so the only
thing that changes between one diagram and the other
minus sign~associated with the ‘‘2 ’’ vertex and not with the
‘‘ 1 ’’ vertex!. This is called by Veltmanthe largest time
equation. To unveil this relationship we use the followin
notation: circle a vertex if it corresponds tof2 and do not
circle it if it corresponds tof1. Then the relationship with
Veltman rules to obtain the largest time equation will beco
clear.

To obtain the Keldysh expansion of ImSR , we can thus
take the expansion ofS ~as defined with any perturbatio
theory! and put Keldysh indices on it~as explained in the
preceding section!. First, we will focus onv.0. Then
S12(v)50, we only need to computeS21 , i.e., the dia-
gram with a ‘‘1 ’’ at the incoming vertex, and a ‘‘2 ’’ at the
outgoing vertex. The crucial properties of zero-temperat
diagrams are the following. Due to the presence ofu func-
tions in frequency forG12 andG21 ~cf. the preceding sec
tion!, the frequency always flows from the ‘‘1 ’’ vertex to the
‘‘ 2 ’’ vertex. This implies that a diagram is zero if it contain
a ‘‘2 ’’ vertex to which no external line is connected and th
is surrounded by ‘‘1 ’’ vertices because of frequency conse
vation ~the same is true if one replaces ‘‘1 ’’ with ‘‘ 2 ’’ !.
This cancellation generalizes to a connected set, or region
‘‘ 2 ’’ to which no external line is connected and that is su
rounded by ‘‘1 ’’ vertices. Since we only have two externa
vertices, the nonvanishing diagrams are those with a line
cuts propagators, dividing them into a ‘‘1 ’’ region L on the
left ~connected to the incoming vertex! and a ‘‘2 ’’ region R
on the right~connected to the outgoing vertex!. This line is
the cut of the diagram and the sum over Keldysh indic
reduces to the sum over all possible cuts~see Fig. 1!. In the
L (R) region, we have to useG11 (G22). Since
G22(x,x8,v)52@G11(x8,x,v)#* , the R part givesDMR*
times (21)number of internal lines, whereMR is the~left! diagram
part obtained fromR by inverting all the arrows. Finally, to
each cut line going from right to left~left to right! is associ-
ated aG12 (G21) propagator. Hence we obtain the thir
rule of the text: each cut line going from left to right~right to
left! is replaced byr(x,x8,v)u(v) @r(x,x8,v)u(2v)#.
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So there are two last things that remain to be clarified
order to get Eq.~44!: ~1! that the symmetry factors are takin
into account correctly and~2! that the phase between the ha
left and right diagram is the one leading to Eq.~44!. Con-
cerning the symmetry factors, one has to be sure that al
counting is done correctly. In order to do this, it is useful
replace each half~or left! diagram with the sum of all hal
diagrams obtained from the original one permuting the
lines in all the possible ways. The symmetry factor that o
has to attach to them is exactly the one needed to get b
the right symmetry factor for the original diagram by gluin
together the half-right and the half-left diagrams. The ‘‘gl
ing’’ operations means attaching to eachi line ~see Fig. 2! of
the half diagram the correspondingi line of the left diagrams.
Indeed, to get the symmetry factor of a given diagram, o
has to write all the topologically equivalent ways to obta
the same diagram. This can be done starting from the left
from the right, i.e., writing all the different ways to get th
same topologically equivalent left and right diagrams a
then attaching them in all the possible ways that give rise
the original diagram. Thus, the symmetry factors related
half or left diagrams are just all the different ways~contrac-
tions! that can be used to create them. In this way the op
tion of ‘‘gluing’’ together a half and left diagram in which a
the cut lines have been permuted producesn! ~n is the num-
ber of cut lines! times the original uncut diagrams. The 1/n!
in Eq. ~47! is there exactly to balance this redundantn! term.
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Finally, let us focus on the phase between the right par
the diagram andDMR* ,

a5~21! l R~21!vaR~21!vaR(na11)~21!nloop~2 i !n~ i !n21.
~E8!

The first term comes from the sign inG2252G11* , with
l R the number of internal lines inside the right partR. The
second term comes from the ‘‘2 ’’ Keldysh vertices, with
vaR the number of vertices of typea in the right part. The
third term comes from the (2 i )na11 factor of each vertice a
T50 with na the number of outgoing lines in the vertices
type a: this factor changes under conjugation. The fou
term comes from thenloop broken loops in the cut diagram
~we restrict ourselves for fermions here!. The fifth and sixth
terms come from the difference betweenG12 andr ~in the
cut propagators going from left to right and right to le
respectively!. The number of cut loops is given bynloop
5n21. Moreover, summing all lines ending at a vertex
the right part, we have

(
a

vaRna5 l R1n @2#, ~E9!

where @2# is the reduction modulo 2. Finally we geta5 i ,
which, combined with Eq.~E6!, leads to Eq.~44!. Similarly,
for v,0, we have ImSR5S12/2i . The left part has ‘‘2 ’’
vertices, the right part ‘‘1 ’’ vertices. Using a similar analy-
sis, we geta52 i , which leads to Eq.~44!.
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