RAPID COMMUNICATIONS

Classical trajectories in quantum transport at the band center of bipartite
lattices with or without vacancies

PHYSICAL REVIEW B 69, 20140%R) (2004

G. Chiappé;? E. Louis! M. J. SmcheZ? and J. A. Vergg®
!Departamento de Bica Aplicada and Unidad Asociada del Consejo Superior de Investigacionesficatiniversidad de Alicante,
San Vicente del Raspeig, Alicante 03690, Spain
’Departamento de Bica J. J. Giambiagi, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria,
1428 Buenos Aires, Argentina
3‘Departamento de Teade la Materia Condensada, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco,
Madrid 28049, Spain
(Received 22 September 2003; revised manuscript received 1 December 2003; published 25 Nay 2004

Here we report on anomalies in quantum transport at the band center of a bipartite lattice with vacancies,
namely: no weak localization effect shows up, and when leads have a single channel the transmission is either
one or zero. We propose that both are a consequence of the chiral symmetry and the large number of states at
the band center. The probability amplitude associated with the eigenstate that gives unit transmission resembles
a classical trajectory both with or without vacancies. The large number of states allows one to build up
trajectories that elude the blocking vacancies explaining the absence of weak localization.
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Bipartite lattices. The possibility that qualitative differ- where|m,n) represents an atomic orbital at sit@,), and
ences between models with pure diagonal or non-diagonal,, . its energy(in the perfect system all were taken equal to
disorder may exist has attracted considerable interest sinGgrqg). For zero magnetic field the hopping energies between
Dyson’s work on a phonon model in one dimensfoRor nearest-neighbor sitéthe symbok ) denotes that the sum is
instance it has been reported that ”0”"3[%90”3' disorder proastricted to nearest-neighbbmgere taken equal to 1. With
motes a delocalization transition B=0." " Although this s cpojce the spectrum of the square lattice covers the en-
raised a controversy regarding the general statement sayw&g . )
that the particular type of disorder should not matter in ac'9Y rangeEe[—4.,4]. A vacancy was introduced at site
single parameter scaling thedryn recent years a different (MN) by taking ey, ,=2°. On the other hand, for a uniform
view has emerged which ascribes that transition to the pecunagnetic field, and using Landau’s gauge, the hopping en-
liar properties of bipartite lattices. A bipartite lattice is a lat- ergy from site (n,n) to site (m’,n’) is written asty, n.mn/
tice that can be divided into two sublattices such that a site in=exp{27i[m/(L—1)?](®/P,)}, whered is the magnetic
one of them is connected only with sites in the other latticeflux through theL XL cluster and®, the magnetic flux
A spectrum with electron-hole symmetgso known as chi-  quantum. In the absence of defects this systemLheigen-
ral symmetry characterizes these lattices, and, while diagotates at the band center with momentiam (k, ,k,) such
nal disorder efficiently breaks this symmetry, pure non-y, e\ ky= (the lattice constant is hereafter taken as the

diagonal dlsordérdoe_s not. More recently, hpwever,_ It has length uni}. Once the cavity was connected to leads of width
been showhthat, atE=0, standard exponential localization :
W, the conductanc& was calculated by means of an effi-

occurs in a system with vacanci¢s defect that also pre- " ; . , s
serves chirality, proving that a naive diagonal versus non- Ci€nt implementation of Kubo's formalisrn.

diagonal classification of disorder loses subtle effects related Quantum transport anomalies in bipartite lattices with
to model details. vacanciesIn Fig. 1 we plot the results for the conductance
Here we report on anomalies in transport properties at th#ersus magnetic flux in two cases. In the upper panel, results
band center of bipartite lattices that are indeed related téor a rather large cavity with leads of widW=4 are re-
chirality, namely:(i) the absence of weak localizati6fiand ~ ported. It can be noted that while at an energy close to the
(i) when single channels leads are connected to cavities withand center the weak localization effect clearly shows up,
or without vacancies, the transmission is either zero or ondust at the band center the conductance unambiguously de-
We show that these anomalies are associated with the exigreases with the magnetic fldhe lower panel of the figure
tence of classical trajectories which are possible due to chirgirovides further support to this result. It shows the results of
symmetry and the large number of state€at0. We illus- @ calculation on a rather small cluster which includes all
trate these ideas on cavities of the square lattice with vacarpossible configurations of disorder. Again at the band center
cies. no weak localization effect is present. B= —0.1, instead,
The Hamiltonian.We consider a tight-binding Hamil- we observe a clean increase ®fup to a flux in which an
tonian inLX L clusters of the square lattice with a single abrupt change of slope is noted. The latter is probably an
atomic orbital per lattice site, effect of level crossing. In any case, this result confirms that
obtained on the larger cluster. The conductance distribution
obtained on &6 clusters with 6 vacancies and leads of
width 1 connected at opposite corners of the cavity are
(1) shown in Fig. 2. All disorder realizations were included in

ﬂ:E €m,nlM,N)(mM, N[ — 2 tn, e[ MMM’ 0’|,
m,n (mmm’n’)
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FIG. 1. Change in the conductance versus magnetidffiath in FIG. 3. Conductance distribution InX L cavities withL vacan-

units of their respective quantan: (a) 78x78 clusters with 78 cies connected to leads of width The results correspond to

vacancies(1200 realizations were includednd leads of widthy ~ =6 (@ and L=30 (b). For L=6 all realizations were included
=4 connected at opposite corners of the cavity, @ x 6 clus-  While for L=30 the distribution was calculated with 300000 real-

ters with 6 vacanciegall realizations were included in the calcula- 1Zations. Thex axis in the upper panel should be divided by 5.
tion) and leads of width 1 connected at opposite corners of the

cavity. The results correspond ©=0 (closed circlesand E= gt E=0.° The conductance distribution for thex@ cavity
—0.1 (empty circles. with W=6 leads and 6 vacancies, although still showing
peaks atG=G,,2G,, ... they are no longeb-functions.

the calculation. At the band center the distribution is reducedncreasing the system size shows the expected tendency to-
to two S-functions atG=0 and G, i.e., the cavity either ward a Gaussian distribution. The probable causes of these
does not conduct or behaves as a purely ballistic system witfesults are discussed below.

unit transmission. Similar behavior is obtained for other clus- Classical trajectoriesAt this stage we wish to identify

ter sizes and averaging on different disorder configurationghe nature of the state that, at zero magnetic field, contributes
This is no longer the case at a finite enefgtill quite close to the current with exactly one conductance quantum in the
to the band centgrs shown in the lower panel of the figure. case of leads of widtliV=1 (see below. Working within the

In fact the latter resembles the conductance distribution for &reen functions formalism does not allow one to single out a
chaotic cavity with left-right symmetry and leads supportinggiven state as Green functions contain information of all
a single channé! Figure 3 illustrates how increasing the states at a particular energy. As it is evident that only one of
leads width and cavity size affect the rather odd result foundhe states aE=0 is participating in the current, we should
look for an alternative procedure. In the following we try to
derive directly from the Hamiltonian the relevant informa-

(a) tion changing the boundary conditions. In order to center the
08 1 ] discussion let us focus on a defect freeXL cluster with
06 | 1 leads of width 1 connected at opposite corners of the cavity.
04 | Diagonalizing such a cluster with two negative imaginary
parts added to the diagonal energies of the sites at which the
~ 027 | ] leads are connected, gives-1 eigenstates with real energy
g 0 T at E=0. None of the probability densities associated with
os | ®) | these states seem to be related to the unit transmission found
- in this case. What actually happens is that, in order to build
o2 | up an eigenstate which travels from one lead to the other, one
should diagonalize a Hamiltonian which includes a large por-
o1 | 1 tion of the leads. When this is done, the eigenstate missing
\ J from theL set shows up. Now, to establish a current we have

added to the diagonal energies at the two lead ends a positive

and a negative imaginary part, respectively, which is a prac-

tical way to introduce the source and sink required to pro-
FIG. 2. Conductance distribution in 66 cavities with 6 vacan- duce a current. This procedure splits an eigenstate frorh the

cies(all realizations were includédind leads of width 1 connected degenerate set &=0 which is precisely the one that con-

at opposite corners of the cavity. The results corresporfitHeo (a) tributes to the current. The result obtained on x30 defect

andE=—-0.1(b). free cluster connected to leads of length 100 is shown in the
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states remain localized within the cavity. Introducing vacan-
cies slightly distorts this straight trajectory but still keeping
the classical picture. The results for the same cavity with 30
vacancies are shown in the middle panel of Fig. 4. The sys-
tem has enough degrees of freed@®ee belowto build up a
trajectory that eludes the blocking vacancies. Of course, as
this is not always possible, the average conductance is re-
duced by the presence of vacandiese below. Nonetheless,

the classical picture of Fig. 4 offers an explanation to the odd
conductance distribution of Fig. 2 reduced to just two peaks
at 0 andG,. As shown in the lower panel of Fig. 4, a mag-
netic field destroys the classical picture and, as a conse-
quence, transmission is reduced. The conductance histogram
(not shown hergis no longer similar to that of Fig. 2.

How are these results related to the absence of the weak
localization effect shown in Fig. 1? As already observed in
Ref. 12, the change i® for small magnetic fields is negli-
gibly small unless a “stopper” is placed on the cavity to
prevent direct transmission. On semiclassical grounds, the
magnitude of the weak-localization correction was derived to
be® G(P)—G(0)= T, R, whereT,, andR, are the classi-
cal transmission and reflection probabilities respectively.
Therefore if a trajectory eludes the vacandias in Fig. 4,
R.~0 and the weak localization correction is suppressed.
This explains the absence of the weak localization effect.
Besides, the spreading of the probability amplitude shown in
Fig. 4 is the cause of the decrease in conductance as the field
is switched on.

DiscussionNow the question is how can the system man-
age to build up a wave function that avoids scattering with
vacancies. Building up a wave function localized along lines
requires combinations of a sufficiently large number of mo-
menta. This is actually possible due to theavailable mo-
menta withk,+k,= that, in the defect free cavity, are
associated with the eigenstateskat 0. By combining the
wave functions of this linear space in the reciprocal lattice,
and others with energy positivend negative very close to
zero, it is possible to construct trajectories in real space
which are straight lines parallel or perpendicular to that
space. States with energies positive and negative participate
with the same weight, to guarantee that the total energy is
zero. This has been verified by projecting the wave functions
of Fig. 4 (upper and middle panebnto the eigenstates of the
isolated cavity. When leads of widiW=1 are attached to
the cavity, there is a set of lead positiofia fact those
couples that preserve inversion symmgfor which there is
a perfect matching between the wave functions of the cavity
and those of the semi-infinite leads and, thus, perfect trans-

nected to leads of widthV=1 at opposite corners of the cavity. mission. This occurs more rarely as the leads width in-
Upper panel: zero magnetic flux and no vacancies. Middle panef;reases. For other engrgles, the manlfold of con_s'_[ant energy
zero magnetic flux and 30 vacanciso shown in the figure by ~COTre€Sponds to an arbitrary curvekrspace. In addition, the
means of rhombi Lower panel: same as upper panel with a mag-€nergies in its vicinity are not symmetrically distributed. This
netic flux ®=0.1d, (in this case transmission is no longer 1, see does not allow, in general, to construct a well-defined curve
the tex). in real space. It is the chiral symmetry of the lattice which
guarantees that this manifold is a straight line jusE&atO.

upper panel of Fig. 4. The figure shows the probability dendn three dimensionga cubic latticé a similar effect shows
sity associated with the just mentioned eigenstate. Interestp. If leads of widthW=1 are connected to opposite corners
ingly enough it is noted that the image is much like a classi®f a cube of sidd the conductance is exactly one quantum.
ray. We have checked that all of the rest of the 1 eigen- It can be easily checked that in such a cube there &re 3

FIG. 4. (Color onling Probability density associated with the
eigenfunction that gives unit transmission in ax3D cluster con-
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1.2 . . . . . - tance is zero will vanish. If the number of vacancies is pro-
portional to the linear size of the systefim the figure we
1k Cw_a-w mE_ oo i show results folL vacancies G again increases with al-
/r’" e though our results do not elucidate the precise limit value
. - (between 0 and )lfor large systems. However, we have
0.8 - / e ] checked that the conductance distribution remains as in Fig.
- ] 5 2(a), reinforcing our assessment concerning the rather odd
O o6+ |/ J _ behavior of the system here investigated. Finally, for a con-
&) / W stant defect concentration the conductance goes exponen-
o4 b //' f | tially to zero as in the case of leads of widfit=L.°
/ Experimental implementations it possible to detect this
%/ effect? In recent years quantum corrals have been assembled
0.2 - ‘Ojﬁ 1 by depositing a closed line of atoms or molecules on noble
K G«G\% metal surfaced?~1’ In these systems the local density of
0 L—e o “Pevesg s ) . . stateg DOY) reveals patterns that remind the wave functions
0 20 40 60 80 100 120 of two-dimensional non-interacting electrons under the cor-
L responding confinement potential. These systems could be

FIG. 5. A duct t the band centénitL clust candidates in order to detect the effect here described. The
- - Average conductance at the band cen CIUSIEIS transport must be done now in the plane of the surface, not

of the square lattice with leads of width 1 connected at opposneoir,[hOgomle to it. Also, Co atoms can be inserted into the

corners, vs cluster size. The results correspond to: a fixed numberouantum corral. When this atom is in the Kondo regime it
vacanciesN, (N,=10 closed squares, ard,=30 open squargs q ) 9

N, =L (closed circlesandN, = 0.1*L.2 (open diamonds Lines are produces a local depletion in the density of states which can
v v N

guide to the eye but in the latter case where it corresponds to aﬁ'mUIate the effect of vacancies in our model, allowing to

exponential fitting to the data. The number of disorder realizationd@de Up arbitrary distributionsn number and locationof
included in the calculations was 18 them. Another possibility is to build up a dot arf8yn a

square lattice with a number of electrons that exactly half fill
. ith . in th one of the bands of the array. Controlling the gate potential
—2 eigenstates with zero energy contained in the plane  5,jied to a particular dot, it can be put into or out of reso-

+ky+k,=37/2. However, this only holds fok odd. nance, simulating in this way the existence of vacancies in
Scaling It is interesting to investigate how the above re-, o array.

sults scale with the system size. As shown in Fig. 5, when the

number of vacancies is constant the conductance increases Partial financial support by the Spanish MCYGrant No.
with L reaching 1 at a size which depends on the actuaMAT2002-04429, the Argentinians UBACYT(x210 and
number of vacancies. This shows that as far as the number @#147) and Fundacio Antorchas, and the University of Ali-
eigenstates aE=0 removed by the defects remains finite, cante are gratefully acknowledged. We are thankful to C.
the fraction of disorder realizations for which the conduc-Tejedor for interesting remarks.
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