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Time-dependent partition-free approach in resonant tunneling systems
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An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in
order to deal with the time-dependent current response of a resonant tunneling system. We use a partition-free
approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No
fictitious partitions are used. Despite a more involved formulation, this partition-free approach has many
appealing features being much closer to what is experimentally done. In particular, besides the steady-state
responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under
what circumstances a steady-state current develops and compare our result with the one obtained in the
partitioned scheme. We prove a theorem of asymptotic equivalence between the two schemes for arbitrary
time-dependent disturbances. We also show that the steady-state current is independent of the history of the
external perturbation~memory-loss theorem!. In the so-called wide-band limit an analytic result for the time-
dependent current is obtained. In the interacting case we work out the lesser Green function in terms of the
self-energy and we recover a well-known result in the long-time limit. In order to overcome the complications
arising from a self-energy which is nonlocal in time we propose an exact nonequilibrium Green-function
approach based on time-dependent density-functional theory. The equations are no more difficult than an
ordinary mean-field treatment. We show how the scattering-state scheme by Lang follows from our formula-
tion. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is
obtained. As an example the time-dependent current response is calculated in the random-phase approximation.

DOI: 10.1103/PhysRevB.69.195318 PACS number~s!: 73.40.Gk, 05.60.Gg, 72.10.Bg, 85.30.Mn
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I. INTRODUCTION

A resonant tunneling system is essentially a mesosc
region, typically a semiconductor heterostructure, couple
two metallic leads, which play the role of charge reservo
In a real experiment the whole system is in thermodyna
equilibrium before the external disturbance is switched
and one can assign a unique temperatureb21 and chemical
potential m. Therefore, the initial density matrix isr
;exp@2b(H2mN)# whereH is the total Hamiltonian andN
is the total number of particles. By applying a bias to t
leads at a given time, charged particles will start to flo
through the central device from one lead to the other. As
as the leads are treated asnoninteracting, it is not obvious
that in the long-time limit a steady-state current can e
develop. The reason behind the uncertainty is that the
represents a large perturbation and, in the absence of d
pative effects, e.g., electron-electron or electron-phonon s
terings, the return of time-translational invariance is n
granted.

An alternative approach to this quantum transport pr
lem has been suggested by Caroliet al.1,2 who state the fol-
lowing: ‘‘It is usually considered that a description of th
system as a whole does not permit the calculation of
current.’’1 Their approach is based on a fictitiouspartition
where the left and right leads are treated as two isola
subsystems in the remote past. Then, one can fix a chem
potential ma and a temperatureba

21 for each lead,a
5L,R. In this picture the initial density matrix is given b
r;exp@2bL(HL2mLNL)#exp@2bR(HR2mRNR)#, where HL,R
andNL,R now refer to the isolatedL,R lead. The current will
flow through the system once the contacts between the
vice and the leads have been established. Hence, the
0163-1829/2004/69~19!/195318~17!/$22.50 69 1953
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dependent perturbation is a lead-device hopping rather th
local one-particle level shift. Since the device is a mes
copic object, it is reasonable to assume that the hopping
turbation does not alter the thermal equilibrium of the l
and right charge reservoirs and that a nonequilibrium ste
state will eventually be reached. This argument is very stro
and remains valid even fornoninteractingleads. Actually,
the partitioned approach by Caroliet al. was originally ap-
plied to a tight-binding model1 describing a metal-insulator
metal tunneling junction and then extended to the case
free electrons subjected to an arbitrary one-body potent2

This extension was questioned by Feuchtwang;3,4 the contro-
versy was about the appropriate choice of boundary co
tions for the uncontacted-system Green functions. In la
years the nonequilibrium Green-function techniques5,6 in the
partitioned approach framework were mainly applied to
vestigate steady-state situations. An important breakthro
in time-dependent nonequilibrium transport was achieved
Wingreenet al.7–10 Still in the framework of the partitioned
approach, they derive an expression for the fully nonline
time-dependent current in terms of the Green functions of
mesoscopic region~this embedding procedure holds only fo
noninteracting leads!. Under the physical assumption that th
initial correlations are washed out in the long-time lim
their formula is well suited to study the response to exter
time-dependent voltages and contacts.

The limitations of the partitioned approach are essentia
three. First, it is difficult to partition the electron-electro
interactions between the leads and between the leads an
device. These interactions are important for establishing
pole layers and charge transfers which shape the pote
landscape in the device region. Second, there is a cru
assumption of equivalence between the long-time beha
©2004 The American Physical Society18-1
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of the ~1! initially partitioned and biased system once t
coupling between the subsystems is established and~2! the
whole partition-free system in thermal equilibrium once t
bias is established. Third, the transient current has no di
physical interpretation since in a real experiment o
switches on the bias and not the contacts; moreover, the
no well-defined prescription which fixes the initial equilib
rium distribution of the isolated central device.

In this paper we use a partition-free scheme without
above limitations. This conceptually different time
dependent approach has been proposed by Cini.11 He devel-
oped the general theory for the case of free electrons
scribed in terms of a discrete set of states and a contin
set of states with focus on semiconductor junction devic
For a one-dimensional free-electron system subjected
time-dependent perturbation of the formUQ(t)Q(x), where
U is the applied bias and (x,t) is the space-time variable, th
Cini theory yields a current-voltage characteristics wh
agrees with the one obtained by Feuchtwang3,4 in the parti-
tioned approach. This result is particularly important sinc
shows that a steady state in a partition-free scheme deve
even in the noninteracting case. Moreover, it demonstrate
equivalence which had previously been assumed. In
present work we extend the partition-free approach to n
interacting resonant tunneling systems and also tointeracting
such systems—in both cases using arbitrary time-depen
disturbances. We shall clarify under what circumstance
nonequilibrium steady state can develop and discuss
equivalence of the current-voltage characteristics obtaine
Jauhoet al.8 and that obtained by us. One of the advanta
of the partition-free scheme over the traditional methods
in the ability of the former to calculate transient physic
~i.e., measurable! current responses.

The plan of the paper is the following. In Sec. II w
develop the general formalism which properly accounts
the initial correlations. We derive a solution of the Keldy
equations for the lesser and the greater Green function
noninteracting and interacting systems. An exact and alte
tive treatment based on time-dependent density-functio
theory12 ~TDDFT! is proposed in order to calculate the tot
nonlinear time-dependent current. The current response
noninteracting resonant tunneling system is discussed in
III. We specify when the partitioned and the partition-fr
schemes yield the same asymptotic current~theorem of
equivalence! and how this current may depend on histo
~memory-loss theorem!. The general results are illustrated b
model calculations. In Sec. IV we consider an interact
resonant tunneling system with interacting leads. T
TDDFT approach is compared with earlier works by La
et al.13,14and Tayloret al.15,16Assuming that a steady state
reached we write down an exact formula for the nonlin
steady-state current. As a simple example we also study
current response in the random-phase approximation~RPA!
of a capacitor-device-capacitor junction. Our main conc
sions are summarized in Sec. V.

II. GENERAL FORMULATION

A. Noninteracting systems in the presence
of an external disturbance

Let us consider a system of noninteracting electrons
scribed by an unperturbed Hamiltonian
19531
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H05(
mn

Tm,ncm
† cn , ~T!m,n5Tm,n , ~1!

and by a time-dependent disturbance of the form

HU~ t !5(
mn

Um,n~ t !cm
† cn , @U~ t !#m,n5Um,n~ t !, ~2!

with U(t)50 for any t<t0. In Eqs.~1! and ~2!, cm ,cn
† are

Fermi operators in some suitable basis, and we use bold
to indicate matrices in one-electron labels. Without loss
generality one can taket050. The system is in equilibrium
for negative times.

1. Elementary derivation

We first obtain the Green function by elementary mea
without resorting to any Keldysh techniques. For a nonint
acting system everything is known once we know how
propagate the one-electron orbitals in time and how they
populated before the system is perturbed. The time evolu
is fully described by the retarded or advanced Green fu
tions GR,A and the initial population at zero time, i.e., b
G,(0;0). The real-time Green functions are defined by

GR,A~ t;t8!56Q~6t7t8!@G.~ t;t8!2G,~ t;t8!#,

with

Gm,n
. ~ t;t8!52 i ^cm~ t !cn

†~ t8!&,

Gm,n
, ~ t;t8!5 i ^cn

†~ t8!cm~ t !&,

where the operators are Heisenberg operators and wher
averages are with respect to the equilibrium grand-canon
ensemble. Because there are no interparticle interactions
equation of motion for the electron operators simplifies to

i ċm~ t !5(
n

Km,n~ t !cn~ t !,

whereK(t)[T1U(t) is the full one-body Hamiltonian ma
trix. Consequently, the time evolution ofcm is given by the
one-electron evolution matrix S(t), cm(t)
5(nSm,n(t)cn(0), where S obeys i Ṡ(t)5K(t)S(t), with
initial valueS(0)51. We insert the time-evolved operators
the definitions of theG matrices to obtain

GR,A~ t;t8!57 iQ~6t7t8!S~ t !S†~ t8! ~3!

and

G"~ t;t8!5S~ t !G"~0;0!S†~ t8!5GR~ t;0!G"~0;0!GA~0;t8!,
~4!

where the last equality holds for anyt,t8.0. We observe
that the instantaneous current can be expressed in term
G,(t;t), and thus the problem of finding the current is r
duced to that of finding the retarded Green function and
equilibrium population of the one-electron levels. We note
passing that the initial populations can be expressed
G,(0;0)5 i f (T), wheref is the Fermi function. BecauseT
is a matrix, so isf (T).
8-2
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The above solution for the lesser/greater Green func
was also derived by Cini11 with an equation-of-motion ap
proach. He also pointed out that they can be derived in
framework of the Keldysh formalism6 as a finite-temperature
extension of a treatment by Blandinet al.17

2. Derivation based on the Keldysh technique

In this section we give an alternative derivation of Eq.~4!
using an extension of the Keldysh formalism. There are t
reasons for giving another derivation. On one hand, we
use the Keldysh formalism taking due account of the p
scribed integration along the imaginary axis. This will allo
us to understand what kind of approximations are made
the partitioned approach. On the other hand, the deriva
below clearly shows how the electron-electron interact
can be included.

We introduce the Green function

Gm,n~z;z8!52 i ^T @cm~z!c̄n~z8!#&, ~5!

which is path ordered on the oriented contourg of Fig. 1. In
Eq. ~5! z5t1t is the complex variable running ong with
t5Re@z#, t5 i Im@z# while A andB are the end points ofg.
Further,cm(z) and c̄n(z) are Heisenberg operators defin
by the nonunitary evolution operator for complex timesz.
They are in general not Hermitian conjugates of one anot
but the usual equal-time anticommutation relatio

$cm(z),c̄n(z)%5dm,n are still obeyed. As before the averag
is the grand-canonical average. On the vertical track go
from 0 to 2 ib we haveK(t)5K(0)5T independent oft.
Therefore, the Green function satisfies the relations

G~A;z8!52ebmG~B;z8!,

G~z;A!52e2bmG~z;B!. ~6!

Next, we write the total HamiltonianH(t)5H01HU(t)
as the sum of a diagonal term and an off-diagonal one,

H~ t !5(
m

«m~ t !cm
† cm1(

mn
Vm,n~ t !cm

† cn .

The quantities«m(t)5«m and Vm,n(t)5Vm,n are constants
on the vertical track.„The decomposition above is com
pletely general. In our model examples discussed later,
diagonal part@E(z)#m,n5dm,n«m(z) will represent an uncon
tacted system and the off-diagonal one@V(z)#m,n5Vm,n(z)

FIG. 1. Contour suited to include the effect of the initial corr
lations, see also Sec. II B.
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the contacts.… The Green functionG(z;z8) is obtained by
solving the equation of motion

H i
d

dz
2E~z!2V~z!J G~z;z8!5d~z2z8!, ~7!

~and its adjoint! with boundary conditions~6!. We define
g(z;z8) as the uncontacted Green function. Theg satisfies
Eq. ~7! with V50 and obeys the same boundary conditio
of the contactedG. The uniqueg resulting from such a
scheme belongs to the Keldysh space18 and can be written as

g~z;z8!5Q~z,z8!g.~z;z8!1Q~z8,z!g,~z;z8!,

whereQ(z,z8)51 if z is later thanz8 on g and 0 otherwise.
g.(z;z8) is analytic for anyz later thanz8 while g,(z;z8) is
analytic for anyz8 later thanz; they are given by

g,~z;z8!5 i f ~E!expF2 i E
z8

z

dz̄E~ z̄!G ,
g.~z;z8!5 i @ f ~E!21#expF2 i E

z8

z

dz̄E~ z̄!G , ~8!

whereE[E(0) and the integral appearing in the exponent
function is a contour integral alongg going from z8 to z.
Choosingz andz8 on the real axisg, andg. reduces to the
real-time lesser and greater components. From Eqs.~8! one
can easily verify that the corresponding retarded and
vanced components can be written as

gR,A~ t;t8!57 iQ~6t7t8!expF2 i E
t8

t

d t̄E~ t̄ !G . ~9!

The uncontactedg allows to convert Eqs.~7! into an in-
tegral equation which preserves the relations~6!:

G~z;z8!5g~z;z8!1E
g
dz̄g~z; z̄!V~ z̄!G~ z̄;z8!. ~10!

Using the Langreth theorem19 one finds

G"5@d1GR
•V#•g"1G"

•V•gA1Ge!V!gd, ~11!

where we have used the shorthand notation ‘‘• ’’ to denote
integrals along the real axis, going from 0 to`, and ‘‘! ’’ for
integrals along the imaginary vertical track, going from 0
2 ib. For the sake of clarity we have also introduced t
symbols e and d: any function with the superscripte is in-
tended to have a real first argument and an imaginary sec
argument; the opposite is specified byd. In Eq. ~11!,
V(z;z8)[d(z2z8)V(z); for V we do not need to say mor
since it is always foregone and followed by• or ! so that no
ambiguity arises. In particular we note that!V! implies a
simple matrix multiplication since along the vertical trackV
is a constant matrix times thed function.

The equation forG" containsG(t;t) with one real and
one imaginary argument. This coupling does not allow to
a closed equation forG(t;t8) with two real arguments, unles
V50 on the vertical track. Conversely,GR andGA satisfy an
integral equation without any coupling:
8-3
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GR,A5gR,A1GR,A
•V•gR,A. ~12!

Equation~11! can be solved forG" and one obtains

G"5@d1GR
•V#•g"

•@d1V•GA#1Ge!V!gd
•@d1V•GA#.

~13!

From Eqs. ~8! and ~9! we have g"(t;t8)
5gR(t;0)g"(0;0)gA(0;t8) and g(t;t)52 ig(t;0)gA(0;t),
so that Eq.~13! can be rewritten as

G"~ t;t8!5GR~ t;0!g"~0;0!GA~0;t8!

2 i @Ge!V!g#~ t;0!GA~0;t8!. ~14!

The above expression forG" deserves a brief comment. In
deed, the first term on the right-hand side~rhs! is exactly
what one got in the partitioned approach, where the hopp
parametersVm,n vanish along the vertical track. It is usual
argued that ift,t8→` the second term vanishes. Howeve
we point out that in the noninteracting case this is not true
in the long-time limit some physical response functions, e
the current, are correctly reproduced by using the partitio
G"(t;t8)5GR(t;0)g"(0;0)GA(0;t8) other kind of argu-
mentations should be invoked. We shall come to this po
later on.

To proceed further we need the Dyson equation
G(t;t). Exploiting the identityg(t;t)5 igR(t;0)g(0;t), we
find

G~ t;t!5 iGR~ t;0!g~0;t!1@Ge!V!g#~ t;t!. ~15!

Equation ~15! can be solved forG(t;t). From the Dyson
equation G(t;t8)5g(t;t8)1@G!V!g#(t;t8), it follows
that @d2V!g#21( t̄;t)5@d1V!G#( t̄;t) and hence

G~ t;t!5 iGR~ t;0!G~0;t!. ~16!

Substituting Eq.~16! into Eq. ~14! one gets

G"~ t;t8!5GR~ t;0!G"~0;0!GA~0;t8!. ~17!

Equation~17! coincides with Eq.~4!, as it should.

B. Interacting systems in the presence
of an external disturbance

In the interacting case we keep track of the interactions
introducing a self-energy matrix. Then, Eq.~7! becomes

H i
d

dz
2E~z!2V~z!2Sd~z!J G~z;z8!

5d~z2z8!1E
g
dz̄Sc~z; z̄!G~ z̄;z8!. ~18!

HereSd is the self-energy part which is local in time and
consists of a Hartree and an exchange term. The remai
part of the self-energySc contains the contributions comin
from the correlation and belongs to the Keldysh space:18

Sc~z;z8!5Q~z,z8!S.~z;z8!1Q~z8,z!S,~z;z8!.

Like G, the self-energy and its components are matrices
the one-electron labels. No simple expressions, such as
19531
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~3! and ~4!, can now be directly obtained from the equatio
of motion and the Keldysh formalism is unavoidable.

A proper treatment of the initial correlations natural
leads to an extension of the Keldysh equations. The ge
alization was put forth by Wagner20 who obtained a minimal
set of five independent integro-differential equations for
unknownsGR, GA, G, ~or G.) ~or the Keldysh Green func
tion GK[G.1G,), Gd ~or Ge) and the thermal Green func
tion G with two imaginary arguments. In Appendix A w
exploit the results of the preceding section to prove that
solution forG" can be written as

G"~ t;t8!5GR~ t;0!G"~0;0!GA~0;t8!1D"~ t;t8!,
~19!

where

D"~ t;t8!5 iGR~ t;0!G.~0;t8!2 iG,~ t;0!GA~0;t8!

2GR~ t;0!GK~0;0!GA~0;t8!

1@GR
•@S"1Se!G!Sd#•GA#~ t;t8!.

This result clearly reduces to Eq.~17! if the self-energy van-
ishes sinceGR(0;0)5@GA(0;0)#†52 i . We observe that if
the Green functions vanish when the separation of their t
arguments goes to infinity, Eq.~19! yields a well-known
identity

lim
t,t8→`

G"~ t;t8!5@GR
•S"

•GA#~ t;t8!. ~20!

Equation~20! is well suited to study thelong-timeresponse
of an interacting system subjected to an external tim
dependent disturbance. On the other hand, if one is intere
in the short-timeresponse Eq.~19! cannot be simplified. In
some cases it might be simpler to use an alternative
proach. Below we propose an exact nonequilibrium Gre
function treatment based on TDDFT and discuss the relat
to ordinary mean-field approximations.

C. Mean-field theory and relations to TDDFT

Any mean-field theory is a one-particle-like approxim
tion in which each particle moves in an effective avera
potential independently of all other particles. The mean-fi
potential is local in time, meaning thatSc is discarded. Con-
sequently, all the results of the Sec. II A can be reused p
vided we substituteK by K1Sd. Thus, no extra complica
tions arise if we treat an interacting system at the Hartr
Fock level. To be specific, let us focus on the Coulom
interaction and on paramagnetic systems~so that the self-
energy and the Green function are diagonal in the spin in
ces!. Then, it is natural to choose the one-electron index
the coordinater of the particle and to split the self-energ
S r ,r8

d (z)[Sd(r ,r 8,z) as a sum of the Hartree and the e
change terms,

Sd~r ,r 8,z!5VH~r ,z!d~r2r 8!1Sx~r ,r 8,z!.

For extended systems, the Hartree potentialVH and the Cou-
lomb potential from the nucleiVn are separately infinite bu
with a finite sum. Together with the external fieldU these
8-4
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terms form the classical electrostatic potentialUc5U1VH
1Vn . The Green functionGr ,r8(z;z8)[G(r ,z;r 8,z8) can be
obtained from the self-consistent solution of the equation
motion and the lesser/greater component can be written

GMF
" ~r ,t;r 8,t8!5E dr̄dr̄ 8GMF

R ~r ,t; r̄ ,0!

3GMF
" ~ r̄ ,0;r̄ 8,0!GMF

A ~ r̄ 8,0;r 8,t8!,

where the subscript MF has been used to stress that it
mean-field approximate result. In the ordinary many-bo
theory one has to abandon the one-particle picture in orde
improve the approximation beyond the Hartree-Fock lev
This leads to a self-energy nonlocal in time and hence to
complicated solution~19!.

In the case we only ask for the densityn(r ,t)
52 iG,(r ,t;r ,t) the original density-functional theory21,22

and its finite-temperature generalization23 has been extende
to time-dependent phenomena.12,24 The theory applies only
to those cases where the external disturbance is loca
space, i.e.,U r ,r8(t)5d(r2r 8)U(r ,t). For t.0 we switch on
an external potentialU(r ,t) to obtain a densityn(r ,t). The
Runge-Gross theorem states that if we instead had switc
on a different U8(r ,t) @giving a different n8(r ,t)], then
n(r ,t)5n8(r ,t) implies U(r ,t)5U8(r ,t). ThusU(r ,t) is a
unique functional ofn(r ,t). Runge and Gross also show th
one can computen(r ,t) in a one-particle manner using a
effective potential

Ueff~r ,t !5Uc~r ,t !1vxc~r ,t !.

Here,vxc accounts for exchange and correlations and is
tained from an exchange-correlation action function
vxc(r ,t)5dAxc@n#/dn(r ,t). In our earlier language this cor
responds to an effective self-energy which is local in b
space and time. The TDDFT one-particle scheme co
sponds to a fictitious Green functionG(r ,z;r 8,z8) which sat-
isfies the equations of motion~7! with @Er ,r8(z)1Vr ,r8(z)#
replaced byd(r2r 8)@2¹ r

2/21Ueff(r ,z)#. As a consequence
we have

G "~r ,t;r 8,t8!5E dr̄dr̄ 8G R~r ,t; r̄ ,0!G "~ r̄ ,0;r̄ 8,0!

3G A~ r̄ 8,0;r 8,t8!.

The fictitiousG will not in general give correct one-particl
properties. However by definitionG, gives the correct den
sity

n~r ,t !522iG ,~r ,t;r ,t !

~where the factor of 2 comes from spin!. Also total currents
are correctly given by TDDFT. If, for instance,Ja is the total
current from a particular regiona we have

Ja~ t !52eE
a
dr

d

dt
n~r ,t !, ~21!

where the space integral extends over the regiona (e is the
electron charge!.
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The density-functional theory and the Runge-Gross ext
sion refer specifically to ther basis. However, the argumen
remain valid if we instead consider the diagonal densityni

5^ci
†ci& in some other basis provided the interactions co

mute with the diagonal density operator. The latter condit
is essential for the Runge-Gross theorem. Thus, for insta
if the one-electron indices refer to a particular lead one
still use Eq.~21! to calculate the corresponding total curre
~see Sec. IV!.

For later references we now derive an expression for
lesser/greater Green function in the linear approximation.
consider the partition-free system described in the o
particle scheme of mean-field theory or TDDFT. LetdUeff(t)
be the small time-dependent effective perturbation a
dGR,A5G0

R,A
•dUeff

•G0
R,A be the first-order variation of the

retarded and advanced Green functions with respect to t
equilibrium counterpartsG0

R,A . Then, from Eq.~17! we get

dG"~ t;t8!5E d t̄G0
R~ t; t̄ !dUeff~ t̄ !G"~0;0!

3G0
R~ t̄ ;0!G0

A~0;t8!1E d t̄G0
R~ t;0!

3G0
A~0; t̄ !G"~0;0!dUeff~ t̄ !G0

A~ t̄ ;t8!,

~22!

where we have taken into account thatG0
R,A commutes with

G"(0;0). Theabove expression takes an elegant form wh
t85t. Indeed, for anyt. t̄ .0 one hasG0

R( t̄ ;0)G0
A(0;t)

52 iG0
A( t̄ ;t) andG0

R(t;0)G0
A(0; t̄ )5 iG0

R(t; t̄ ). Since the in-

tegrands in Eq.~22! vanish for t̄ .t due to theQ function in
G0

R in the first term and inG0
A in the second term, we con

clude that for any positive timet

dG"~ t;t !52 i E d t̄G0
R~ t; t̄ !@dUeff~ t̄ !,G"~0;0!#G0

A~ t̄ ;t !.

~23!

We shall use this equation later on to calculate the lin
current response in noninteracting and interacting reson
tunneling systems.

III. NONINTERACTING RESONANT
TUNNELING SYSTEMS

As a first application of the partition-free approach w
study the time-dependent current response of a noninte
ing resonant tunneling system. For the sake of simplicity
central device will be modeled by a single localized lev
All the results of this section can be generalized to the c
of a multilevel noninteracting central device without an
conceptual complications. There are many different geo
etries one can conceive beyond a one-level model, e.g
double quantum dot model,25 a quantum wire coupled to a
quantum dot,26 a one-dimensional quantum dot array,27 or a
mesoscopic multiterminal system.28 However, the present pa
per is not intended to give a description of a series of ap
cations. Rather, we prefer to illustrate how the partition-fr
8-5
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approach works in a simple noninteracting model. We a
emphasize thatall the results of this section remain valid
the interacting case if the bare external potential is repla
by theexacteffective potential of TDDFT; see Sec. IV.

The whole system is described by a quadratic Ham
tonian

H05(
ka

«kacka
† cka1«0c0

†c01(
ka

Vka@cka
† c01c0

†cka#

[(
mn

Tm,ncm
† cn , ~24!

wherea5L,R denote the left and right leads andm,n are
collective indices forka and 0. We assume the system
thermodynamic equilibrium at a given inverse temperaturb
and chemical potentialm before the time-dependent pertu
bation

HU~ t !5(
ka

Uka~ t !cka
† cka1U0~ t !c0

†c0[(
mn

Um,n~ t !cm
† cn

is switched on. In principle the time-dependent perturbat
may have off-diagonal matrix elements. In order to mode
uniform potential deep inside the electrodes such o
diagonal terms must be of lower order with respect to
system size. However their inclusion is trivial and it does n
lead to any qualitative changes.

The current from thea contact through thea barrier to
the central region can be calculated from the time evolut
of the occupation number operatorNa of the a contact.
From the obvious generalization of Eq.~21! one readily finds

Ja~ t !52e(
k

Re@G0,ka
, ~ t;t !#Vka

52e(
k

Re@GR~ t;0!G,~0;0!GA~0;t !#0,kaVka .

~25!

The above expression is manifestly gauge invariant. Inde
if Um,n(t)→Um,n(t)1dm,nx(t) then GR(t;0)
→exp@2i*0

t x( t̄)dt̄#GR(t;0) while GA(0;t)

→exp@i*0
t x( t̄)dt̄#GA(0;t) and the time-dependent shiftx(t)

has no effect on the current response. In the same way
invariant under a simultaneous shift ofm and the initial po-
tential.

The matrixG,(0;0) can bewritten as29

G,~0;0!5E
G

dz

2p

f ~z!ehz

z2E2V
,

whereG is the contour surrounding all the Matzubara fr
quenciesvn5(2n11)p i /b1m clockwise~see Fig. 9 in Ap-
pendix C! while h is an infinitesimally small positive con
stant. It is therefore convenient to define the kernel

Qa~z;t !5(
k

@GR~ t;0!G~z!GA~0;t !#0,kaVka , ~26!
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with G(z)5@z2E2V#21, and to write the current in the
form

Ja~ t !52eReF E
G

dz

2p
f ~z!ehzQa~z;t !G . ~27!

It is worth noticing that the partitioned approach leads
Eq. ~25! with g,(0;0)5 i f (E) in place ofG,(0;0)5 i f (E
1V). It is our intention to clarify under what circumstance
if any, the long-time behavior of the time-dependent curr
is not affected by this replacement.

As a side remark we also observe thatJa(t50) in Eq.
~25! correctly vanishes. Lettinguln& andln be the eigenvec-
tors and eigenvalues ofT5E1V, we have

Ja~0!522e(
k

(
n

Im@^0uln& f ~ln!^lnuka&#Vka50,

since ^0uln& and ^lnuka& can always be chosen as re
quantities for systems with time-reversal symmetry.

A. Steplike modulation

The first exactly solvable model we wish to consider is
steplike modulation, i.e.,Um,n(t)5Q(t)Um,n . From Eq.~3!
it follows that for anyt.0

GR~ t;0!52 ie2 i [E1U1V] t[E dv

2p
e2 ivtGR~v!,

and GA(0;t)5@GR(t;0)#†. The device component o
GR,A(v) can be written as

G0,0
R,A~v!5

1

v2 «̃02SR,A~v!6 ih
, ~28!

where «̃05«01U0. Here, SR,A(v)5(aSa
R,A(v) is the

retarded/advanced self-energy induced by back and forth
tual hopping processes from the localized level to the le
and is given by

Sa
R,A~v!5(

k

Vka
2

v2 «̃ka6 ih
, ~29!

where we have used the short-hand notation«̃ka5«ka
1Uka .

1. UkaÄUa : Steady-state current

If Uka5Ua the energy levels of thea lead are equally
shifted. From Eq.~25! it follows that we need to estimate th
matrix elementsG0,0

R (t;0) and G0,ka
R (t;0) of the retarded

Green function and the two contractions(kG0,ka
A (0;t)Vka

and (kGk8a8,ka
A (0;t)Vka in the long-time limit. We assume

thatSa
R,A(v) is a smooth function for all realv. Then, using

the Riemann-Lebesgue theorem one can prove~see Appen-
dix B! that the kernelQa(z;t) has the following asymptotic
behavior:
8-6
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lim
t→`

Qa~z;t !5E d«

2p

Ga~«!

z2«1Ua
G0,0

R ~«!

1(
a8

E d«

2p

Ga8~«!

z2«1Ua8

uG0,0
R ~«!u2Sa

A~«!,

~30!

where

Ga~«!522Im@Sa
R~«!#52p(

k
d~«2 «̃ka!Vka

2 . ~31!

In Eq. ~30! the rhs has a simple pole structure in thez vari-
able and therefore the integration along theG contour can be
easily performed. Using the identity*G(dz/2p) f (z)ehz(z
2«)215 i f («) the stationary currentJa

(S)[ limt→`Ja(t) has
the following expression:

JR
(S)52eE d«

2p

GR~«!GL~«!

@«2 «̃02L~«!#21@G~«!/2#2

3@ f ~«2UL!2 f ~«2UR!#52JL
(S) , ~32!

whereL(«)5Re@SR(«)# is the Hilbert transform ofG(«)
5(aGa(«):

L~v!5PE dv8

2p

G~v8!

v2v8
. ~33!

It is of interest to note that the dependence on the biasUa
appears not only in the distribution functionf but also in the
quantitiesG andL, see Eqs.~31!–~33!. The dependence o
the self-energy on the level shifts is physical since when
particle visits the reservoirs experience the applied poten
We also remark that Eq.~32! is of the Landauer type.30 More
generally the Landauer formula is valid for any mesosco
device provided it is noninteracting. This result agrees w
the one obtained in the partitioned approach by Jauho
co-workers.8,10 There the leads are decoupled from the c
tral device and in thermal equilibrium at different chemic
potentialsmL andmR and inverse temperaturesbL andbR in
the remote past. In order to preserve charge neutrality e
energy level«ka must be shifted byma2m wherem is the
chemical potential of the two undisturbed leads. The stati
ary current is then obtained by switching on the contacts,
the hybridization part of the Hamiltonian. By tuningbR
5bL5b andmR2mL5UR2UL the current is given by Eq
~32!.

To summarize we have found that for noninteracting le
a steady state develops in the long-time limit whenever~1!
the one-body levels of the charge reservoirs form a c
tinuum and~2! the self-energy due to the hopping term is
smooth function. Under these hypotheses the tim
translational invariance is restored by means of adephasing
mechanism. The comparison of our result with the one o
tained in the partitioned scheme provides the criteria
equivalence: besides the tuningmL2mR5UL2UR one
needs to shift the levels of thea reservoir byma2m.
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2. UkaÄUa : Time-dependent current in the wide-band limit

The calculation of the stationary current is greatly simp
fied by the long-time behavior of the various terms comi
from Eq. ~25!. However, as far as we are interested in t
current at any finite time we need to specify the structure
the retarded~advanced! self-energy. Here, we consider th
so-called wide-band limit where the level-width function
Ga(v)[2ga are assumed to be constant and hence, fr
Eq. ~33!, La(v)50. In this caseG0,0

R (v) has a simple-pole
structure and the calculations are slightly simplified. We e
phasize that what follows is the first explicit result of a tim
dependent current in a model system in the framework o
partition-free approach and therefore also a simple mo
could be of some interest. Without loss of generality we c
always choose«050; for the sake of simplicity we also
considerU050. We defer the reader to Appendix C for th
details. Here, we just write down the final result forJa(t):

Ja~ t !5Ja
(S)24egae2gtE dv

2p
f ~v!

3FUaImH ei (v1Ua)t

~v1 ig!~v1Ua1 ig!J 1(
a8

ga8Ua8

3
Ua8e

2gt12vcos@~v1Ua8!t#12gsin@~v1Ua8!t#

@v21g2#@~v1Ua8!
21g2#

G ,

~34!

whereJa
(S) is the stationary current of Eq.~32! and g5gR

1gL . One can easily check that~1! for t→` Eq. ~34! yields
the result in Eq.~32!, ~2! for t50 the current vanishes, that i
Ja(0)50, and~3! for UL5UR50 the current vanishes fo
any t. Equation~34! can be rewritten in a more physical an
compact way if we exploit the particle-number conservatio
Denoting byn0 the particle number operator in the centr
device we have

JR~ t !1JL~ t !5e
d

dt
^n0&,

so that

JR~ t !5JR
(S)1e

gR

g

d

dt
^n0&24e

gRgL

g
e2gtE dv

2p
ImH f ~v!

v1 ig

3FUR

ei (v1UR)t

v1UR1 ig
2UL

ei (v1UL)t

v1UL1 igG J ;

JL(t) is obtained by exchangingR↔L in the rhs of the
above expression. Therefore,JR(t)Þ2JL(t) for any finite
time t, even in the symmetric casegR5gL ; the time deriva-
tive of ^n0& contributes toJR andJL in the same way.

Our formula for the nonlinear transient current clearly d
fers from the one obtained by Jauhoet al.8 in the partitioned
scheme. Indeed, the prescribed integration along the im
nary axis gives extra terms~see Appendix C! which are ab-
sent if the system is uncontacted for negative times. We h
explicitly verified that by discarding these terms our formu
8-7
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reduces to the one obtained in the partitioned scheme.
long times, the extra terms vanish and our scheme re
duces the earlier steady-state results.

If one of the two leads does not undergo any level sh
e.g.,UR50, from Eq.~34! we get

JR~ t !5JR
(S)24egRgLULe2gtE dv

2p
f ~v!

3
ULe2gt12vcos@~v1UL!t#12gsin@~v1UL!t#

@v21g2#@~v1UL!21g2#
.

~35!

The transient behavior of the time-dependent quan
Ja(t)2Ja

(S) is not simply an exponential decay. In Fig. 2 w
have plottedJR(t) in Eq. ~35! versust for different values of
the applied biasUL at zero temperature. The current strong
depends onUL for smallUL while it is fairly independent of
it in the strong bias regime; using the parameter specifie
the caption, the time-dependent current has essentially
same shape for anyUL*8.

In Fig. 3 the currentJR(t) is plotted for different values o

FIG. 2. Time-dependent currentJR(t) for different values of the
applied biasUL50.8, 2.0, 4.0, and 6.0. The numerical integrati
has been done withgR5gL50.2, m50, and zero temperature.

FIG. 3. Time-dependent current forUL56, m50, and zero
temperature vs time for three different values of the linewidthsgR

5gL50.2, 0.5, and 1.0.
19531
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the total linewidthg and for a fixed valueUL56 of the
applied bias. As expected, the larger isg the bigger is the
slope of the current int50.

Finally, in Fig. 4 we report the trend of the stationa
currentJR

(S) as a function of the biasUL for three different
choices of the level widths. As one can see the bigger ig
and the wider is the range of validity of the Ohm law.

B. Arbitrary modulation: theorem of equivalence

We have shown that the steady-state current induced
steplike modulation does not change if one uses theG, of
the partitioned approach, given by the first term on the rhs
Eq. ~14!, in place of the one coming from the partition-fre
approach. This reasonable result is nowprovedand not sim-
ply postulated. The equivalence between the two expressio
for the current is of special importance since it is much ea
to work in the partitioned scheme. However, it has be
proved only for steplike modulations withUka5Ua . Here,
we prove that the above equivalence remains true under
general assumptions. To this end we consider the quanti

Sa,V
R,A~ t;t8!5(

k
gka

R,A~ t;t8!V ka
2 , ~36!

whereV is an arbitrary complex function ofka. Then, the
following theorem holds:

Theorem of Equivalence. If

lim
t→`

Sa,V
R ~ t;t8!5 lim

t→`

Sa,V
A ~ t8;t !50 ~37!

for any nonsingularV, then

lim
t→`

@Qa~z;t !2qa~z;t !#50, ~38!

where qa(z;t)[(k@GR(t;0)g(z)GA(0;t)#0,kaVka and g(z)
5@z2E#21 is the uncontacted Green function.

Equation ~38! says that if we apply the same time
dependent perturbation the same asymptotic current
emerge in the partitioned and partition-free approaches.

FIG. 4. Stationary current vs the applied bias at zero temp
ture and chemical potential for three different values of the lin
widths gR5gL50.2, 0.5, and 1.0.
8-8
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Proof. In terms of the self-energySV
R5(aSa,V

R , the equa-
tion of motion forG0,0

R takes the form

H i
d

dt
2«0~ t !J G0,0

R ~ t;t8!2@SV
R
•G0,0

R #~ t;t8!5d~ t2t8!,

where the symbol ‘‘• ’’ denotes the real-time convolution. W
now consider the limitt→`. The hypothesis~37! implies

lim
t→`

G0,0
R ~ t;t8!50, ~39!

which in turn implies that@SV
R
•G0,0

R #(t;t8) →
t→`

0. Further-
more, from the Dyson equation forG0,ka

A we find

(
k

G0,ka
A ~ t8;t !Vka5@G0,0

A
•Sa,V

A #~ t8;t ! →
t→`

0. ~40!

We note that the above two asymptotic relations have b
obtained fort850 in the special case of a steplike modu
tion; see Eq.~B1!. Here, we have shown that they hold in
more general context. As a consequence of these two id
ties, the asymptotic difference@Qa(z;t)2qa(z;t)# can be
written as

@G0,0
R
•SV

R#~ t;0!G0,0~z!SV
A
•@d1G0,0

A
•Sa,V

A #~0;t !.

Here,SV
R5(aSa,V

R is given by Eq.~36! with V ka
2 5Vka

2 /(z
2«ka). SincezPG, Im@z#Þ0 and henceV ka

2 is nonsingu-
lar, meaning that Eq.~37! holds. Eq.~37! together with Eq.
~40! imply the equation of equivalence~38!.

As a simple application of the theorem of equivalence o
can calculate the stationary current for an arbitrary step
modulation. The quantityqa(z;t) is simply given by the first
two terms of Eq.~B2!. Both have a simple-pole structure
the z variable and we can perform the integration along
contourG. Using the definition in Eq.~31!, with «̃ka5«ka
1Ua(«ka), one obtains

JR
(S)52eE d«

2p
f ~«!$GL

(0)~«!GR„«1UL~«!…

3uG0,0
R
„«1UL~«!…u21GR

(0)~«!GL„«1UR~«!…

3uG0,0
R
„«1UR~«!…u2%. ~41!

The quantityGa
(0)(«)[2p(kVka

2 d(«2«ka) is the equilib-
rium linewidth. Equation~41! reduces to Eq.~32! if Ua(«)
5Ua since in this caseGa

(0)(«2Ua)5Ga(«).
In the noninteracting case it is reasonable to assume

Eq. ~41! yields the steady-state current even for an arbitr
time-dependent disturbance such that limt→`Uka(t)5Uka
and limt→`U0(t)5U0. In the following section we shal
prove that the asymptotic current has no memory and
pends only on the asymptotic value of the external pertur
tion.
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C. Memory-loss theorem

If the condition ~37! of the theorem of equivalence i
fulfilled, the asymptotic value of the nonlinear time
dependent current in Eq.~27! simplifies to

Ja~ t !52eReF E
G

dz

2p
f ~z!ehzqa~z;t !G

52eReF(kb
G0,kb

R ~ t;0!gkb
, ~0;0!(

k8
Gkb,k8a

A
~0;t !Vk8aG .

~42!

We note in passing that expressingG0,kb
R and Gkb,k8a

A in
terms ofG0,0

R andG0,0
A , respectively, Eq.~42! can be rewrit-

ten in terms ofSa,V
, 5(kgka

, Vka
2 ,

Ja~ t !52eRe$@G0,0
R
•Sa,V

, #~ t;t !1@G0,0
,
•Sa,V

A #~ t;t !%,

where the asymptotic relationG0,0
, 5(aG0,0

R
•Sa,V

,
•G0,0

A has
been used@see Eq.~20!#. This agrees with the result obtaine
by Wingreenet al.7,8 in the partitioned approach, as it shou
be.

In generalJa(t→`) is not a constant unless the extern
perturbation tends to a constant in the distant future. In
case the following theorem holds:

Memory-loss theorem. If

lim
t→`

Ua~«,t !5Ua~«!, lim
t→`

U0~ t !5U0

the currentJa(t) tends to a constant, given by Eq.~41!, in
the long-time limit.

Proof. It is convenient to denote withḠ and ḡ the Green
functions corresponding to the steplike modulation with c
efficientsUa(«) andU0. We have already shown that in th
long-time limit Eq.~42! yields Eq.~41! if GR,A5ḠR,A. The
memory-loss theorem is then proved if

lim
t→`

Ḡ0,kb
R ~ t;0!

G0,kb
R ~ t;0!

5eiDkb5 lim
t→`

(
k8

Gkb,k8a
A

~0;t !Vk8a

(
k8

Ḡkb,k8a
A

~0;t !Vk8a

~43!

for some real constantDkb .
According to Eq. ~39!, the device component o

the retarded Green functionG0,0
R (t→`;t8) vanishes for

any finite t8. Since limt,t8→`@g0
R(t;t8)/ḡ0

R(t;t8)#51,
from G0,0

R 5g0
R1g0

R
•SV

R
•G0,0

R it follows that

limt,t8→`@G0,0
R (t;t8)/Ḡ0,0

R (t;t8)#51. Let us now consider the
Dyson equation

G0,ka
R ~ t;t8!5E d t̄G0,0

R ~ t; t̄ !Vkagka
R ~ t̄ ;t8!, ~44!

with t850 and t→`. Since the integrand vanishes for an
finite t̄ , we can substituteG0,0

R with Ḡ0,0
R . Furthermore, since

the applied bias tends to a constant in the distant futu
limt→`@gka

R (t;0)/ḡka
R (t;0)#5e2 iDka for some real quantity
8-9
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FIG. 5. Current vs time for
two different external disturbance
dUL . In both figures gR5gL

50.5; the current is plotted for
two different inverse temperature
b52 andb5100. In~a! dUL is a
square bumplike modulation
whose duration is 1 while in~b!
the duration is 5.
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Dka . The left-hand side of Eq.~43! is then proved. A similar
reasoning leads to the rhs of Eq.~43!.

D. Linear response in the wide-band limit

In the case of small time-dependent perturbations, one
use Eq.~23! to calculate the lesser Green function. In ord
to carry on the calculations analytically we consider t
wide-band limit and we choosedUka(t)5dUa(t). For sim-
plicity we omit the subscript 0 in the retarded and advan
equilibrium Green functions. By explicitly writing down th
matrix product in Eq.~23! one readily realizes that we hav
to calculate the functionsG0,0

R (t2 t̄ ), G0,k8a8
R (t2 t̄ ),

(kVkaG0,ka
A ( t̄ 2t), and(kVkaGk8a8,ka

A ( t̄ 2t). They are eas-

ily obtained from Eqs.~C2! by simply replacing«̃→« and
t→t2 t̄ . The calculations are rather similar to those alrea
performed to derive the expression~34! and they are left to
the reader. Denoting bydJa(t) the time-dependent current i
the linear regime one ends up with

dJa~ t !54egaReH E
0

t

d t̄E dv

2p
f ~v!

ei (v2V0)(t2 t̄ )

v2V0
F dU0~ t̄ !

2dUa~ t̄ !12i(
a8

ga8

dU0~ t̄ !2dUa8~ t̄ !

v2V0*
G J , ~45!

whereV05«02 ig. In the special case«050, dU0(t)50,
and dUa(t)5dUa5const, dJa(t) reduces to the time
dependent current in Eq.~34! to first order indUa , as it
should.

Equation ~45! takes a very simple form if«05dU0
5dUR50 anda5R:

dJR~ t !54egRgLE
0

t

d t̄dUL~ t2 t̄ !H Im@ f ~ ig!#

g
e22g t̄

2
2

b
ReF (

n50

`
e( ivn2g) t̄

vn
21g2 G J ,
19531
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wherevn5(2n11)p i /b1m are the Matzubara frequencie
and the identity

E
2`

` dv

2p
f ~v!

eiv t̄

v21g2
5 f ~ ig!

e2g t̄

2g
2

i

b (
n50

`
eivnt̄

vn
21g2

,

has been used. In the special case of a vanishing chem
potential, the Matzubara frequencies are imaginary numb
anddJR(t) simplifies

dJR~ t !522e
gRgL

g E
0

t

d t̄dUL~ t2 t̄ !e22g t̄

3H tanFbg

2 G1
e2[p/b2g] t̄

p
F~ t̄ !J , ~46!

where

F~ t̄ !5 (
m50,1

~2 !mFFe22p t̄ /b,1,
p1~2 !mbg

2p G
is a linear combination of the Lerch transcendent functio
F@z,s,a#5(n50

` zn/(a1n)s.
In Fig. 5 we show the trend ofdJR(t) for square bumplike

modulations. On the topdUL(t)5Q(t)Q(12t) while on
the bottom dUL(t)5Q(t)Q(52t); both disturbances are
considered for two different inverse temperaturesb52 and
b5100. As one can see the effect of an increasing temp
ture consists in a sort of rescaling of the time-depend
current. The linewidthsga have been taken equal and larg
enough to justify the linear approximation. Since the dist
bance is of order 1, in Fig. 4 one can see thatgR5gL50.5 is
a good choice.

The ac current in the linear approximation is plotted
Fig. 6 for b5100 andgR5gL50.5. The time-dependen
disturbance is taken to bedUL(t)5sinv0t with v055, 10,
and 20 in~a!, ~b!, and~c!, respectively. Finally, in Fig. 7 we
have considered the current response to a periodic sq
bumplike modulation for different values of the period.
8-10
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IV. INTERACTING SYSTEMS

In earlier theoretical works on quantum transport one
distinguish at least two schools. In one school one tries
keep the full atomistic structure of the conductor and
leads, but all works so far are at the level of the local-den
approximation~LDA ! and only the steady state has be
considered. The advantage of this approach is that the in
actions in the leads and in the conductor are treated on
same footing via self-consistent calculations on the curre
carrying system. It also allows for detailed studies of how
contacts influence the conductance properties.

The other school is using simplified models which allo
the analysis to be carried much further. Considera
progresses have been made in this respect for a loca
level described by a Lundquist-like model31–33 and for the
so-called ‘‘Coulomb island’’34,35 whereH0 in Eq. ~24! is re-
placed by the Anderson Hamiltonian. However, all the
works treat the leads as noninteracting, which prohibit
realistic description of the contacts and of the long-ran
aspects of the Coulomb interaction.36 The model approach is
based on a partitioned scheme which makes the ti
dependent results difficult to interpret.

We here want to show how the current LDA by Lan
et al.13,14 follows from the TDDFT scheme described in Se
II C. We also present an exact result for the steady-state
rent of an interacting resonant tunneling system. Finally,
transient behavior of a capacitor-device-capacitor system
investigated on the level of mean field.

A. Steady-state limit of TDDFT

In Sec. III we showed that under certain conditions
steady state is reached in the long-time limit, and that

FIG. 6. Current vs time for an oscillating external disturban
dUL . In both figuresgR5gL50.5 and the inverse temperature
b5100. dUL(t)5sinv0t with v055, 10, and 20 in~a!, ~b!, and
~c!, respectively.
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limit is independent of history. We also showed that the p
titioned and partition-free treatments give an equivalent
scription of the steady state. The mechanism for the los
memory was pure dephasing, and it holds provided the le
are macroscopic while the device is finite. Another importa
ingredient is that the applied bias is uniform deep inside
leads. With these assumptions, our results can be genera
also to more general cases than the simplified model exp
itly considered in Sec. III. In TDDFT, the full interacting
problem is reduced to a fictitious noninteracting one andall
the results of Sec. III can be recycled. In the case of tim
dependent local-density approximation, the exchan
correlation potentialvxc depends only on the instantaneo
local density and has no memory at all. If the density tend
a constant, so does the effective potentialUeff, which again
implies that the density tends to a constant. Owing to
nonlinearity of the problem there might still be more th
one steady-state solution or none at all.

If a steady state is reached in TDDFT, we can go direc
to the long-time limit of the Dyson equation and work in th
frequency space. We may with no restriction use a pa
tioned approach and split the fictitious one-electron Ham
tonian matrix in a non-conducting partE and a correctionV
involving one-body hopping terms between the two lea
and the device. The lesser Green function of TDDFT fulfi

G,~«!5@11GR~«!V#g,~«!@11VGA~«!#,

whereg is the uncontacted TDDFT Green function@cf. Eq.
~13!#. In direct space, the uncontactedg, can be written as

FIG. 7. Current versus time for three different periodic squ
bumplike modulations. In all figuresgR5gL50.5 andb5100. The
thin lines representdUL while the thick lines representdJR .
8-11
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g,~r ,r 8,«!52p i(
ma

f a~ema!fma~r !fma* ~r 8!d~«2ema!

in terms of diagonalizing orbitalsfma with fictitious eigen-
valuesema for the left and right leads (a5L,R) and the
device (a5D) and Fermi functionsf a with chemical poten-
tial ma . The chemical potentials for the two leads differ, a
the final result is independent of the chosen chemical po
tial for the device. When we apply 11GRV5GR@gR#21 to
an unperturbed orbitalfma , it is transformed to an interact
ing, i.e., contacted eigenstatecma . Above the conductance
threshold, states originating from the left lead become rig
going scattering states, and states from the right lead bec
left-going scattering states. In addition, fully reflected wav
and discrete state may arise which contribute to the den
but not to the current. Thus,

G ,~r ,r 8,«!52p i(
ma

f a~ema!cma~r !cma* ~r 8!d~«2ema!.

These results correspond closely to the general approac
Lang and co-workers.13,14In their approach, the continuum i
split into left- and right-going parts, which are populat
according to two different chemical potentials. The density
then calculated self-consistently. Langet al. further approxi-
mate exchange and correlation by the LDA and the leads
homogeneous jellia, but apart from these approximations
clear that his method implements TDDFT, as described
Sec. II C, in the steady state. It is also clear that the corr
ness of Lang’s approach relies on the theorem of equivale
between the partitioned and partition-free approaches and
memory-loss theorem derived here. The equivalence
tween the scattering state approach by Langet al. and the
partitioned nonequilibrium approach used by Tay
et al.15,16 has also been shown by Brandbygeet al.37

As shown above, the steady state of TDDFT can alw
be formulated in terms of orbitals which diagonalize t
asymptotic one-particle Hamiltonian matrix. The curre
carrying orbitals can always be grouped into a right-go
class and a left-going class. As a consequence, the cu
can be expressed in a Landauer formula

JR
(S)52e(

m
@ f L~emL!TmL2 f R~emR!TmR# ~47!

in terms of fictitious transmission coefficientsTma and en-
ergy eigenvaluesema , a5L,R. We also wish to emphasiz
that the steady-state current in Eq.~47! comes out from a
pure dephasing mechanism in the fictitious noninterac
problem. The memory-loss effects from scatterings are
scribed byAxc andvxc .

B. One-level resonant tunneling system

In this section we consider a resonant tunneling sys
described by the quadratic Hamiltonian of Eq.~24! and an
interparticle interaction,

HW5
1

2 (
mÞn

Wm,nnmnn ,
19531
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wherenm5cm
† cm is the occupation number operator of th

level m andWm,n5Wn,m is a symmetric matrix.~If HW in-
cludes long-range terms, the regrouping of potential term
discussed in Sec. II C must be done.! In the generalized
TDDFT scheme~based on thenm occupations rather than o
density! outlined in Sec. II C the fictitious Green functio
Gm,n is obtained by solving the Dyson equations withK5T
1Ueff, where

Um,n
eff ~ t !5dm,n@Um~ t !1VH,m~ t !1vxc,m~ t !#.

If Ueff satisfies the hypothesis of the theorem of equivale
and of the memory-loss theorem we can use Eq.~41! and
write an exact formula for the steady-state current of anin-
teracting resonant tunneling system:

JR
(S)52eE d«

2p
f ~«!$GL

(0)~«!GR„«1UL
eff~«!…

3uG 0,0
R
„«1UL

eff~«!…u21GR
(0)~«!GL„«1UR

eff~«!…

3uG 0,0
R
„«1UR

eff~«!…u2%. ~48!

For normal-metal electrodes we expect that the effective
tential Ua

eff(«,t)→Ua
eff(«)5const provided Ua(«,t)

→Ua(«)5const whent→`. The constantUa
eff(«) may de-

pend on the history ofUa(«,t) while the steady-state curren
is independent of the history ofUa

eff(«,t). G 0,0
R (v) is given

by Eq. ~28! with «̃05«01 limt→`U0
eff(t) and with SR from

Eq. ~29! with «̃ka5«ka1 limt→`Uka
eff (t). For the sake of clar-

ity, Eq. ~48! has been written for systems having a one-
one correspondence between the one-body indiceska and
the one-body energies«ka1Uka

eff (0). The generalization to
systems with degenerate levels is straightforward and i
left to the reader.

As a further example we study the RPA time-depend
current response in the partition-free approach. In the Har
approximation the Green functionGH satisfies the equation
of motion ~18! with Sc50 and

Sm,n
d ~z![Sm,n

H ~z!5dm,n (
l : lÞn

Wn,l nl
H~z!,

wherenl
H(z)52 iGl ,l

H,,(z;z). According with the results ob-
tained in Sec. II, the lesser Green functionGH,, is given by
Eq. ~17! with G→GH. Therefore, in the linear approximatio
we have

dG,~ t;t !52 i E d t̄G0
H,R~ t; t̄ !

3@dUeff~ t̄ !,GH,,~0;0!#G0
H,A~ t̄ ;t !, ~49!

with

dUeff~ t !5dU~ t !1dSH~ t !. ~50!

Equations~49! and ~50! form a coupled system of integra
equations for the unknownsdG,(t;t) and dUeff(t). For a
capacitor-device-capacitor system one can take
8-12
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Wm,n5H Waa8 if m5ka, n5k8a8

0 otherwise.

Thus, putting an extra particle in the isolateda capacitor
costs an energyWaa per particle. This means that the tran
fer of a finite number of particles from one capacitor to t
other causes a finite change of the effective applied bias.
expect that the current vanishes in the long-time limit unl
the applied bias continues to grow up. The coefficie
WRL5WLR mimic the repulsion energy between two pa
ticles in different capacitors. Actually, one can also consi
the interaction between a particle in the central device
another in one of the two capacitors. No extra complicatio
arise if W0,ka5Wa , ; k, and the results we are going t
obtain can be easily extended.

Switching a biasdUka(t)5dUa(t), from Eq. ~50! one
getsdUm,n

eff (t)5dm,ndUn
eff(t) with dUka

eff (t)5dUa
eff(t), ; k,

and

dUa
eff~ t !5dUa~ t !2

1

e (
b

E
0

t

d t̄WabdJb~ t̄ !, ~51!

where it has been taken into account thatdNa
H(t)

[(kdnka
H (t)52(1/e)*0

t d t̄dJa( t̄ ). SincedUeff has the same
matrix structure of the baredU, in the wide-band limit the
linear time-dependent currentdJa(t) is given by Eq.~45!
with dU replaced bydUeff. ~It is worth noticing that the
wide-band limit still makes sense if the linewidth is appro
mately constant in a small interval around the chemical
tentialm.! In this way the system of equations~49! and~50!
is reduced to a system of four coupled integral equations
the four scalar unknownsdUa

eff , dJa with a5L,R. The
symmetric casegR5gL5g/2, WRR5WLL allows a further
simplification. Let us definedU6

eff5dUR
eff6dUL

eff , dU6

5dUR6dUL , dJ65dJR6dJL , and W65WRR6WRL
5WLL6WLR . Then, from Eq.~51! we find

dU6
eff~ t !5dU6~ t !2

W6

e E
0

t

d t̄dJ6~ t̄ !, ~52!

while from Eq.~45!

dJ1~ t !52egE
0

t

d t̄C1~ t2 t̄ !@2dU0~ t̄ !2dU1
eff~ t̄ !#,

~53!

dJ2~ t !522egE
0

t

d t̄C2~ t2 t̄ !dU2
eff~ t̄ !, ~54!

where

C6~ t !5ReH E dv

2p
f ~v!

ei (v2«01 ig)t

v2«07 ig J
is the conductivity kernel. OncedJ6 has been obtained, on
can calculate dJR5(dJ11dJ2)/2 and dJL5(dJ1

2dJ2)/2.
In order to illustrate what is the time-dependent respo

of this model we have considered the zero-temperature
19531
e
s
s

r
d
s

-

r

e
se

with dUR(t)52dUL(t)5(1/2)Q(t)Q(t02t) and dU0(t)
50. Then,dU1(t)50 and hencedJ1(t)5dU1

eff(t)50. It
follows that dJR(t)52dJL(t)5dJ2(t)/2 and dUR

eff(t)
52dUL

eff(t)5dU2
eff(t)/2 for any timet. In Fig. 8~a! we dis-

play the time-dependent current for square bumplike mo
lations with t051,2,4,6 andW255. The thick line is the
current for the steplike modulationdU2(t)5Q(t); depend-
ing on the value oft0 the current unsticks itself from the
thick line giving rise to different damped oscillating curve
In correspondence of eacht0 a vertical line has been drawn
it represents the bare applied potentialdU2(t). Figure 8~b!
shows the time-dependent effective potentialdU2

eff(t). As
the current response, it drops to zero in the long-time lim
since the interactions completely screen the applied bias a
a time t}1/W2 .

V. SUMMARY AND CONCLUDING REMARKS

In the present work we have used a partition-free sche
in order to treat the time-dependent current response
mesoscopic system coupled to macroscopic leads. To

FIG. 8. Numerical solutions of Eqs.~52!–~54! in the zero-
temperature limit withm5«050, W255, and an external distur
bance as described in the main text. The thick lines are the cur
in ~a! and the effective potential in~b! for the steplike modulation.
The currents and the effective potentials fort051, 2, 4, and 6
unstick from the thick line and start to oscillate and eventua
vanish after a timet}1/W2 . The vertical lines are the bar
applied potentials.
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GIANLUCA STEFANUCCI AND CARL-OLOF ALMBLADH PHYSICAL REVIEW B 69, 195318 ~2004!
end, we have further developed the Keldysh formalism a
we have formulated a formally exact theory which is mo
akin to the way the experiments are carried out. Among
advantages of the partition-free scheme we stress the p
bility to calculate physical dynamical responses and to
clude the interactions between the leads and between
leads and the device in a quite natural way.

In the noninteracting case we have shown that a per
destructive interference takes place provided the energy
els of the leads form a continuum. The steady-state deve
due to a dephasing mechanism. The comparison of our
steady-state current with that obtained in the partition
scheme shows that the two currents are equivalent if
energy levels are properly shifted in order to preserve cha
neutrality. This kind of equivalence remains true for a
time-dependent external potentials~theorem of equivalence!.
The theorem of equivalence has then been used in orde
prove that the steady-state current depends only on
asymptotic value of the external perturbation~memory-loss
theorem!. For the sake of clarity, the theorem of equivalen
and the memory-loss theorem have been proved for a sin
level central device. The generalization to a multilevel ce
tral device is straightforward, as can be readily verified.
the wide-band limit we have obtained an analytic result
the time-dependent current in the case of a steplike mod
tion and for arbitrary modulations in the linear regime.

The interacting case represents a more difficult challe
and the expression for the lesser Green function at any fi
time is more complicated than that commonly used to ca
late steady-state response functions. As an alternative
full many-body treatment we have proposed a formally ex
one-particle scheme based on TDDFT. Then,all the results
obtained in the noninteracting case can be recycled prov
we substitute the external potential with the exact effect
potential of TDDFT. Although it is difficult to prove any
rigorous results for the effective TDDFT potential, we expe
the interactions to reduce the memory effects even fur
compared to the noninteracting case. Thus, any nonlin
steady-state current can be expressed in a Landauer-like
mula in terms of fictitious transmission coefficients and o
particle energy eigenvalues. The steady-state current dep
on history only through the asymptotic shape of the effect
TDDFT potential. This exact result may prompt for new a
proximations to the exchange-correlation action functio
Axc . In the effective one-particle scheme of TDDFT th
steady-state current comes out from a pure dephasing me
nism. The damping mechanism~due to the electron-electro
scatterings! of the real problem is described byAxc . As an
illustrative example we have also calculated the RPA tim
dependent current of a capacitor-device-capacitor system
we have displayed the effect of the charge oscillations in
discharge process.
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APPENDIX A: PROOF OF EQ. „19…

It is convenient to defineG0 as the solution of Eqs.~18!
with Sc50. G0 satisfies all the relations we have derived f
a noninteracting system in the presence of an external dis
bance. By using the Langreth theorem, we get

G"5@d1GR
•SR#•G0

"1G"
•SA

•G0
A

1@GR
•S"1Ge!Sd#•G0

A1GR
•Se!G0

d 1Ge!S!G0
d

and solving forG",

G"5@d1GR
•SR#•G0

"
•@d1SA

•G0
A#

1@GR
•S"1Ge!Sd#•GA1@GR

•Se!G0
d 1Ge!S!G0

d #

•@d1SA
•G0

A#.

Next, we use

G0
"~ t;t8!5G0

R~ t;0!G0
"~0;0!G0

A~0;t8!

and

G0~t;t !52 iG0~t;0!G0
A~0;t !,

so that

G"~ t;t8!5GR~ t;0!G0
"~0;0!GA~0;t8!1@GR

•S"
•GA#~ t;t8!

1@Ge!Sd
•GA#~ t;t8!

2 i @GR
•Se!G01Ge!S!G0#~ t;0!GA~0;t8!.

~A1!

As in the noninteracting case, we proceed by writing do
the Dyson equation forG(t;t). Taking into account that

G~t;t8!5G0~t;t8!1@G0!S!G#~t;t8! ~A2!

and that

G0~ t;t!5 iG0
R~ t;0!G0~0;t!,

we have

G~ t;t!5@GR
•Se!G#~ t;t!1 iGR~ t;0!G~0;t!. ~A3!

Similarly, it is straightforward to show that

G~t;t !5@G!Sd
•GA#~t;t !2 iG~t;0!GA~0;t !. ~A4!

Substituting Eq.~A3! into Eq. ~A1! and using Eq.~A2! one
finds

G"~ t;t8!5GR~ t;0!G"~0;0!GA~0;t8!

1@GR
•@S"1Se!G!Sd#•GA#~ t;t8!

1 iGR~ t;0!@G!Sd
•GA#~0;t8!

2 i @GR
•Se!G#~ t;0!GA~0;t8!. ~A5!

Using Eqs.~A3! and ~A4! to express the last two terms as
8-14
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iGR~ t;0!@G!Sd
•GA#~0;t8!5 iGR~ t;0!G.~0;t8!

2GR~ t;0!G.~0;0!GA~0;t8!

and

2 i @GR
•Se!G#~ t;0!GA~0;t8!52 iG,~ t;0!GA~0;t8!

2GR~ t;0!G,~0;0!GA~0;t8!,

we end up with Eq.~19!.

APPENDIX B: PROOF OF EQ. „30…

Due to the smoothness of the self-energy, in the long-t
limit we can use the Riemann-Lebesgue theorem to ob
the following asymptotic behaviors:

lim
t→`

G0,0
R ~ t;0!5 lim

t→`
(

k
G0,ka

A ~0;t !Vka50 ~B1!

lim
t→`

G0,ka
R ~ t;0!52 iVkae2 i «̃katG0,0

R ~ «̃ka!,

and

lim
t→`

(
k

Gk8a8,ka
A

~0;t !Vka

5 iVk8a8e
i «̃k8a8t@da,a81G0,0

A ~ «̃k8a8!Sa
A~ «̃k8a8!#.

From the above results and the definition~26! one has

lim
t→`

Qa~z;t !5(
k8

Vk8a
2

z2«k8a

G0,0
R ~ «̃k8a!

1 (
k8a8

Vk8a8
2

z2«k8a8

G0,0
R ~ «̃k8a8!G0,0

A ~ «̃k8a8!

3Sa
A~ «̃k8a8!1 lim

t→`

G0,0~z! (
k8a8

Vk8a8
2

z2«k8a8

3G0,0
R ~ «̃k8a8!e

2 i «̃k8a8t(
k9

Vk9a
2

z2«k9a

ei «̃k9at

1 lim
t→`

G0,0~z! (
k8a8

Vk8a8
2

z2«k8a8

3G0,0
R ~ «̃k8a8!e

2 i «̃k8a8t (
k9a9

Vk9a9
2

z2«k9a9

3G0,0
A ~ «̃k9a9!Sa

A~ «̃k9a9!e
i «̃k9a9t

5E d«

2p

Ga~«!

z2«1Ua
G0,0

R ~«!

1(
a8

E d«

2p

Ga8~«!

z2«1Ua8

uG0,0
R ~«!u2Sa

A~«!
19531
e
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1 lim
t→`

G0,0~z!E d«

2p
Ga~«!

ei«t

z2«1Ua

3(
a8

E d«8

2p
Ga8~«8!

e2 i«8t

z2«81Ua8

G0,0
R ~«8!

1 lim
t→`

G0,0~z!(
a8

E d«8

2p
Ga8~«8!

3G0,0
R ~«8!

e2 i«8t

z2«81Ua8
(
a9

E d«9

2p
Ga9~«9!

3G0,0
A ~«9!Sa

A~«9!
ei«9t

z2«91Ua9

, ~B2!

where the relation

Gka,k8a8~z!5
dka,k8a8
z2«ka

1
Vka

z2«ka

Vk8a8

z2«k8a8

G0,0~z!

has been explicitly used. SincezPG the quantity @z2«
2Ua#21 is a smooth function of« for any real«. In the
limit t→` the last two terms in Eq.~B2! vanish according
with the Riemann-Lebesgue theorem and Eq.~30! is recov-
ered.

APPENDIX C: PROOF OF EQ. „34…

The quantityQa(z;t) involves the multiplication of three
matrices and we can recognize four contributions, two c
taining G0,0

R and other two containingG0,k8a8
R . It is straight-

forward to verify that

G0,0~z!55
1

z1 ig
Im@z#.0

1

z2 ig
Im@z#,0,

~C1!

and thatG0,0
R,A(v)5@v6 ig#21, whereg5gR1gL . Hence

G0,0
R ~ t;0!52 ie2gt,

G0,ka
R ~ t;0!52 iVka

e2 i «̃kat2e2gt

«̃ka1 ig
,

(
k

VkaG0,ka
A ~0;t !52gae2gt,

(
k8

Vk8a8Gka,k8a8
A

~0;t !5 ida,a8Vkaei «̃kat

2ga8Vka

ei «̃kat2e2gt

«̃ka2 ig
. ~C2!

Equations~C1! and~C2! are all what we need in order t
evaluate the quantityQa(z;t) in Eq. ~26!. The time-
dependent current is then obtained integrat
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Qa(z;t) f (z)ehz over z along the contourG of Fig. 9, ac-
cording to Eq. ~27!. Using Eqs. ~C2! and expressing
Gka,0(z)5G0,ka(z) andGka,k8a8(z) in terms ofG0,0(z) we
obtain

G0,0
R ~ t;0!G0,0~z!(

k
VkaG0,ka

A ~0;t !5 igaG0,0~z!e22gt,

~C3!

(
k8a8

G0,0
R ~ t;0!G0,k8a8~z!(

k
VkaGk8a8,ka

A
~0;t !

52gae2gtG0,0~z!E d«

2p

ei«t

z2«1Ua

12igae2gtG0,0~z!(
a8

ga8E d«

2p

ei«t2e2gt

~z2«1Ua8!~«2 ig!
.

~C4!

We are left with the contributions containingG0,k8a8
R . One of

them is quite easy to evaluate and yields

(
k8a8

G0,k8a8
R

~ t;0!Gk8a8,0~z!(
k

VkaG0,ka
A ~0;t !

52igaG0,0~z!(
a8

ga8E d«

2p

e2 i«t2gt2e22gt

~z2«1Ua8!~«1 ig!
.

~C5!

The other one is much more involved, but nothing more th
standard algebra is needed to get the following expressi

(
k8a8

(
k9a9

G0,k8a8
R

~ t;0!Gk8a8,k9a9~z!(
k

VkaGk9a9,ka
A

~0;t !

52gaE d«

2p

12ei«te2gt

~«1 ig!~z2«1Ua!

12iga(
a8

ga8E d«

2p

1

z2«1Ua8
Uei«t2e2gt

«1 ig U2

FIG. 9. ContourG of Eq. ~27!. The black dots correspond to th
position of the Matzubara frequencies in the complexz plane.
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:

22iG0,0~z!(
a8

ga8E d«

2p

e2 i«t2e2gt

~«1 ig!~z2«1Ua8!

3E d«8

2p F2iga

ei«8t

z2«81Ua

2
ei«8t2e2gt

~«82 ig!~z2«81Ua9!
G . ~C6!

The rhs of the above four equations must now be multipl
by f (z)ehz and integrated overz along the contourG.
Smearing the branchesG1 andG2 on the real axis and tak
ing into account Eq.~C1!, the rhs of Eq.~C3! yields the
following contribution to the current:

4egae22gt ImH E dv

2p
f ~v!

1

v1 igJ , ~C7!

where the integration overv has to be understood from
2` to 1`. Another contribution comes from the first term
on the rhs of Eq.~C4!. By closing the contour of the«
integration on the complex upper half plane, it is nonvani
ing only if Im@z#.0. Therefore, only the upper branchG1

of G contributes.G1 can then be smeared on the real a
and one gets

24egae2gt ImH E dv

2p
f ~v!

ei (v1Ua)t

v1 ig J . ~C8!

A similar procedure can be adopted to evaluate the contr
tion coming from the second term on the rhs of Eq.~C4!.
One more time we can close the contour of the« integration
on the complex upper half plane. The pole in«5 ig does not
contribute since its residue is zero. The other pole is in«
5z1Ua8 and hence one obtains

24egaReH E dv

2p

f ~v!

v1 ig (
a8

ga8

ei (v1Ua8)t2gt2e22gt

v1Ua82 ig J .

~C9!

Next, we have to calculate the contribution coming from E
~C5!. By the same reasoning leading to Eq.~C9! it is readily
verified that it yields the same result. Therefore we have
keep in mind that Eq.~C9! should be multiplied by 2 at the
end. Let us now consider the contribution coming from t
first two terms on the rhs of Eq.~C6!. Since the discontinu-
ous functionG0,0(z) does not appear in the integrand we c
perform the contour integral overz. We find

24egaImH E dv

2p
f ~v2Ua!

12eivte2gt

v1 ig J
24egaReH (

a8
ga8E dv

2p
f ~v2Ua8!Ueivt2e2gt

v1 ig U2J .

~C10!

The contribution coming from the last two terms on the r
of Eq. ~C6! vanishes. Indeed the integral over« can be
closed on the complex lower half plane. The pole
8-16
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«52 ig does not contribute since its residue is zero. T
other pole contributes only if Im@z#,0. At the same time we
can also perform the integration over«8 by closing the con-
tour in the complex upper half plane. The first term in t
square brackets of Eq.~C6! is nonvanishing only if Im@z#
.0. The same holds for the second term since the pole«8
5 ig has vanishing residue. By collecting all the results o
tained one sees that they can be grouped into three b
categories: those which are time independent and give ris
the stationary current, those which are proportional toe2gt,
and those which are proportional toe22gt. These last ones
can be rewritten as

24egae22gtE dv

2p
f ~v!(

a8

ga8Ua8
2

@v21g2#@~v1Ua8!
21g2#

.

~C11!

Let us now group the terms proportional toe2gt. Two of
them come from Eq.~C8! and the first term of Eq.~C10!;
their sum can be written as
J.

s

y

19531
e

-
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to

24egaUae2gtE dv

2p
f ~v!ImH ei (v1Ua)t

~v1 ig!~v1Ua1 ig!J .

~C12!

The other two pieces come from Eq.~C9! ~which we recall
must be multiplied by 2! and the last term of Eq.~C10!. By
writing explicitly the real part, after some algebra one fin

28egae2gtE dv

2p
f ~v!(

a8
ga8Ua8

3
vcos@~v1Ua8!t#1gsin@~v1Ua8!t#

@v21g2#@~v1Ua8!
21g2#

. ~C13!

The sum of Eqs.~C11!–~C13! gives exactly the quantity
Ja(t)2Ja

(S) of Eq. ~34!.
ys.
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