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An extended Keldysh formalism, well suited to properly take into account the initial correlations, is used in
order to deal with the time-dependent current response of a resonant tunneling system. We use a partition-free
approach by Cini in which the whole system is in equilibrium before an external bias is switched on. No
fictitious partitions are used. Despite a more involved formulation, this partition-free approach has many
appealing features being much closer to what is experimentally done. In particular, besides the steady-state
responses one can also calculate physical dynamical responses. In the noninteracting case we clarify under
what circumstances a steady-state current develops and compare our result with the one obtained in the
partitioned scheme. We prove a theorem of asymptotic equivalence between the two schemes for arbitrary
time-dependent disturbances. We also show that the steady-state current is independent of the history of the
external perturbatiofimemory-loss theoremin the so-called wide-band limit an analytic result for the time-
dependent current is obtained. In the interacting case we work out the lesser Green function in terms of the
self-energy and we recover a well-known result in the long-time limit. In order to overcome the complications
arising from a self-energy which is nonlocal in time we propose an exact nonequilibrium Green-function
approach based on time-dependent density-functional theory. The equations are no more difficult than an
ordinary mean-field treatment. We show how the scattering-state scheme by Lang follows from our formula-
tion. An exact formula for the steady-state current of an arbitrary interacting resonant tunneling system is
obtained. As an example the time-dependent current response is calculated in the random-phase approximation.
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[. INTRODUCTION dependent perturbation is a lead-device hopping rather than a
local one-particle level shift. Since the device is a mesos-
A resonant tunneling system is essentially a mesoscopicopic object, it is reasonable to assume that the hopping per-
region, typically a semiconductor heterostructure, coupled teurbation does not alter the thermal equilibrium of the left
two metallic leads, which play the role of charge reservoirsand right charge reservoirs and that a nonequilibrium steady
In a real experiment the whole system is in thermodynamigtate will eventually be reached. This argument is very strong
equilibrium before the external disturbance is switched orand remains valid even famoninteractingleads. Actually,
and one can assign a unique temperaf8iré and chemical the partitioned approach by Carait al. was originally ap-
potential . Therefore, the initial density matrix ip  plied to a tight-binding modéldescribing a metal-insulator-
~exd —B(H—uN)] whereH is the total Hamiltonian an8l  metal tunneling junction and then extended to the case of
is the total number of particles. By applying a bias to thefree electrons subjected to an arbitrary one-body potential.
leads at a given time, charged particles will start to flowThis extension was questioned by Feuchtwafthe contro-
through the central device from one lead to the other. As fagersy was about the appropriate choice of boundary condi-
as the leads are treated msninteracting it is not obvious tions for the uncontacted-system Green functions. In later
that in the long-time limit a steady-state current can evegears the nonequilibrium Green-function technigiféa the
develop. The reason behind the uncertainty is that the biggsartitioned approach framework were mainly applied to in-
represents a large perturbation and, in the absence of dissiestigate steady-state situations. An important breakthrough
pative effects, e.g., electron-electron or electron-phonon scain time-dependent nonequilibrium transport was achieved by
terings, the return of time-translational invariance is notwingreenet al.”~2° Still in the framework of the partitioned
granted. approach, they derive an expression for the fully nonlinear,
An alternative approach to this quantum transport probtime-dependent current in terms of the Green functions of the
lem has been suggested by Catlial who state the fol- mesoscopic regiofthis embedding procedure holds only for
lowing: “It is usually considered that a description of the noninteracting leadsUnder the physical assumption that the
system as a whole does not permit the calculation of thénitial correlations are washed out in the long-time limit,
current.”* Their approach is based on a fictitiopartition  their formula is well suited to study the response to external
where the left and right leads are treated as two isolatedme-dependent voltages and contacts.
subsystems in the remote past. Then, one can fix a chemical The limitations of the partitioned approach are essentially
potential u, and a temperatured, ! for each lead,@ three. First, it is difficult to partition the electron-electron
=L,R. In this picture the initial density matrix is given by interactions between the leads and between the leads and the
p~exd— B (H.—u N)lexd — Br(Hr—urNRr)], whereH| r device. These interactions are important for establishing di-
andN, r now refer to the isolatel,R lead. The current will  pole layers and charge transfers which shape the potential
flow through the system once the contacts between the déandscape in the device region. Second, there is a crucial
vice and the leads have been established. Hence, the timassumption of equivalence between the long-time behavior
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of the (1) initially partitioned and biased system once the
coupling between the subsystems is established @ndhe Ho=2> TmnChCn:  (Dimn=Tmn, 1)
whole partition-free system in thermal equilibrium once the mn
biasis established. Third, the transient current has no direcind by a time-dependent disturbance of the form
physical interpretation since in a real experiment one
switches on the bias and not the contacts; moreover, there is T
no well-defined prescription which fixes the initial equilib- Hu(t):%1 Unn(DCmCn,  [UM) Imn=Uma(t), (2
rium distribution of the isolated central device.

In this paper we use a partition-free scheme without thewith U(t)=0 for anyt<t,. In Egs.(1) and (2), cm,cl are
above limitations. This conceptually different time- Fermi operators in some suitable basis, and we use boldface
dependent approach has been proposed by'€lé devel-  to indicate matrices in one-electron labels. Without loss of

oped the general theory for the case of free electrons dejenerality one can takig=0. The system is in equilibrium
scribed in terms of a discrete set of states and a continuufigr negative times.

set of states with focus on semiconductor junction devices.

For a one-dimensional free-electron system subjected to a 1. Elementary derivation

time-dependent perturbation of the fol® (1) © (x), where ' _ .

U is the applied bias anc(t) is the space-time variable, the e first obtain the Green function by elementary means
Cini theory yields a current-voltage characteristics whichWithout resorting to any Keldysh techniques. For a noninter-
agrees with the one obtained by Feuchtwihig the parti-  acting system everything is known once we know how to
tioned approach. This result is particularly important since itPropagate the one-electron orbitals in time and how they are
shows that a steady state in a partition-free scheme developpulated before the system is perturbed. The time evolution
even in the noninteracting case. Moreover, it demonstrates df fully described by the retarded or advanced Green func-
equivalence which had previously been assumed. In thions G** and the initial population at zero time, i.e., by
present work we extend the partition-free approach to non&=(0;0). The real-time Green functions are defined by
interacting resonant tunneling systems and aldntaracting

such systems—in both cases using arbitrary time-dependent G A(tit') == O(£tFt")[G™(t;t")—G~(t;t')],
disturbances. We shall clarify under what circumstances ith

nonequilibrium steady state can develop and discuss the

equivalence of the current-voltage characteristics obtained by G (tit)=—i(cm(t)ci(t))

Jauhoet al® and that obtained by us. One of the advantages e e A

of the partition-free scheme over the traditional methods lies G () =i(cl(t")em(t))

in the ability of the former to calculate transient physical ne n mae

(i.e., measurab)ecurrent responses. where the operators are Heisenberg operators and where the

The plan of the paper is the following. In Sec. Il we averages are with respect to the equilibrium grand-canonical
develop the general formalism which properly accounts fofensemble. Because there are no interparticle interactions, the

the |n|t|a| correlations. We derive a solution of the Kel.dysh.equation of motion for the electron operators S|mp||f|es to
equations for the lesser and the greater Green functions in

noninteracting and interacting systems. An exact and alterna- »

tive treatment based on time-dependent density-functional iCm(1) =2 Kma()Ca(1),

theory*? (TDDFT) is proposed in order to calculate the total "

nonlinear time-dependent current. The current response of\ghereK(t)=T+ U(t) is the full one-body Hamiltonian ma-
noninteracting resonant tunneling system is discussed in Segix. Consequently, the time evolution of, is given by the
lll. We specify when the partitioned and the partition-free gne-electron evolution matrix ~ S(t), Cr(t)

schemes yield the same asymptotic curréthteorem of =S a(t)cn(0), where S obeysiS(t)=K(t)S(t), with

equivalencg and how this current may depend on history. = - ; : .
(memory-loss theoremThe general results are illustrated by initial V?‘“_J?S(O)—l- We Insert the t|me—_evolved operators in
the definitions of theG matrices to obtain

model calculations. In Sec. IV we consider an interacting
resonant tunneling system with interacting leads. The
TDDFT approach is compared with earlier works by Lang
et al*¥*and Tayloret al*>*6Assuming that a steady state is and
reached we write down an exact formula for the nonlinear
steady-state current. As a simple example we also study th&=(t;t’)=S(t)G=(0;0)S'(t') = GR(t;0)G=(0;0) G (0it’),
current response in the random-phase approximati?h) (4)

of a capacitor-device-capacitor junction. Our main conclu- .
sions ar% summarized inpSec VJ where the last equality holds for ariyt’>0. We observe

that the instantaneous current can be expressed in terms of

GRAt:t ) =FiO(+=tFt)S(t)S'(t") (3)

Il. GENERAL FORMULATION G=(t;t), and thus the problem of finding the current is re-
) _ _ duced to that of finding the retarded Green function and the
A. Noninteracting systems in the presence equilibrium population of the one-electron levels. We note in
of an external disturbance passing that the initial populations can be expressed as
Let us consider a system of noninteracting electrons deG~(0;0)=if(T), wheref is the Fermi function. Because
scribed by an unperturbed Hamiltonian is a matrix, so isf(T).
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the contactg. The Green functionG(z;z') is obtained by

4l - branch Y solving the equation of motion

< d
+ branch :id—Z—S(z)—V(z)]G(z;z’)=5(z—z’), (7)
(and its adjoint with boundary conditiong6). We define
B '.,-p 0(z;z') as the uncontacted Green function. Tiesatisfies
Eq. (7) with V=0 and obeys the same boundary conditions

FIG. 1. Contour suited to include the effect of the initial corre- Of the contactedG. The uniqueg resulting from such a
lations, see also Sec. Il B. scheme belongs to the Keldysh sp&@nd can be written as

The above solution for the lesser/greater Green function 9(z2')=0(22)9"(22')+0(2", 29" (z2),
was also derived by Cifii with an equation-of-motion ap- where®(z,z’)=1 if zis later tharz’ on y and 0 otherwise.
proach. He also pointed out that they can be derived in thg=(z;z') is analytic for anyz later thanz’ while g~(z;z') is
framework of the Keldysh formalisfras a finite-temperature analytic for anyz’ later thanz, they are given by
extension of a treatment by Blandan al’

z __
2. Derivation based on the Keldysh technique g<(z;z’)=|f(8)exp{ -l L,dzf,'(z)

In this section we give an alternative derivation of E4).
using an extension of the Keldysh formalism. There are two b ==
reas%ns for giving another deri)\//ation. On one hand, we will g (zz")=i[f(&)~ 1]ex;{ - L,dz&'(z)
use the Keldysh formalism taking due account of the pre-
scribed integration along the imaginary axis. This will allow Where€=£(0) and the integral appearing in the exponential
us to understand what kind of approximations are made ifiunction is a contour integral along going fromz’ to z
the partitioned approach. On the other hand, the derivatiofhoosingzandz’ on the real axig~ andg™~ reduces to the
below clearly shows how the electron-electron interactiorreal-time lesser and greater components. From Ejsone

: ®

can be included. can easily verify that the corresponding retarded and ad-
We introduce the Green function vanced components can be written as
' H P t
Gmn(z:2')=—I(T[cn(2)Cn(Z')]), ) gR'A(t;t’)=Ii@(ttit’)exr{—iJ dt£(t)}. (9)
t!
which is path ordered on the oriented contguof Fig. 1. In
Eq. (5) z=t+ 7 is the complex variable running op with The uncontacted allows to convert Eqs(7) into an in-

t=R¢z], =i Im[z] while A andB are the end points of.  tegral equation which preserves the relati¢d)s
Further,c(z) andc,(z) are Heisenberg operators defined

by the nonunitary evolution operator for complex times G(z;z’)=g(z;z’)+f d?g(z;_)V(?)G(?;z’). (10)
They are in general not Hermitian conjugates of one another, y

but the usual equal-time anticommutation relations

— Using the Langreth theoréfthone find
{cm(2),cn(2)} = 6mn are still obeyed. As before the average sing ¢ nas

is the grand-canonical average. On the vertical track going G==[6+GR-V]-g5+G=-V-g*+ Gl Vxd, (11
from 0 to —iB we haveK(7)=K(0)=T independent ofr. .
Therefore, the Green function satisfies the relations where we have used the shorthand notatioi to denote
integrals along the real axis, going from 0tg and “x” for
G(A;z')=—€ePrG(B;2Z'), integrals along the imaginary vertical track, going from 0 to
—iB. For the sake of clarity we have also introduced the
G(z;A)=—e P*G(z;B). (6) symbols] and[: any function with the superscrigtis in-

tended to have a real first argument and an imaginary second

Next, we write the total Hamiltoniai (t)=Hy+Hy(t) ~ argument; the opposite is specified By In Eq. (11),
as the sum of a diagonal term and an off-diagonal one,  V(z;z")=48(z—2")V(2); for V we do not need to say more
since it is always foregone and followed byr x so that no
+ + ambiguity arises. In particular we note thaV/x implies a
H(t):% 8m(t)cmcm+% Vinn(1)CrCn - simple matrix multiplication since along the vertical tra¢k
is a constant matrix times th& function.
The quantitiess(7) =&, andV, o(7) =V, , are constants The equation foilG= containsG(t; ) with one real and
on the vertical track(The decomposition above is com- one imaginary argument. This coupling does not allow to get
pletely general. In our model examples discussed later, tha closed equation fdB(t;t’) with two real arguments, unless
diagonal parf £(z) 110 = Sm.nem(2) Will represent an uncon- V=0 on the vertical track. ConverselgR andG* satisfy an
tacted system and the off-diagonal dn&z) ], n=Vmn(2) integral equation without any coupling:
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GRA= gRAL GRA. V. gRA.

Equation(11) can be solved fo6= and one obtains

12

G==[6+GR-V].g°-[6+ V-G ]+ GlxVxd-[5+V-G"].
(13

From Egs. (8 and (99 we have g¢g=(t;t")

=g7(t;0)g=(0;0)g*(0;t’) and g(7;t)=—ig(r;0)g*(0;t),

so that Eq(13) can be rewritten as
G=(t;t')=GR(t;0)g=(0;0)G*(0;t")

—i[G*Vxg](t;0)GA(0;t"). (14)

The above expression f@= deserves a brief comment. In-

deed, the first term on the right-hand si@tbs) is exactly

PHYSICAL REVIEW B 69, 195318 (2004

(3) and (4), can now be directly obtained from the equation
of motion and the Keldysh formalism is unavoidable.

A proper treatment of the initial correlations naturally
leads to an extension of the Keldysh equations. The gener-
alization was put forth by Wagn@who obtained a minimal
set of five independent integro-differential equations for the
unknownsGR, G*, G= (or G™) (or the Keldysh Green func-
tion GX=G~+ G~), G (or G)) and the thermal Green func-
tion G with two imaginary arguments. In Appendix A we
exploit the results of the preceding section to prove that the
solution forG= can be written as

G=(t;t') =GT(1;0)G7(0;0)GH(0:t") + A=(t;t"),
(19)

what one got in the partitioned approach, where the hopping

parameters/, , vanish along the vertical track. It is usually

argued that ift,t’ —o the second term vanishes. However,

we point out that in the noninteracting case this is not true. If —GR(t;0)G*(0;0)G*(0:t")

in the long-time limit some physical response functions, e.g., R rws Av/eer

the currer?t, are correctly re%rgduced b)? using the partition%d TIGH[ET+ 2R Gx2- M),

G=(t;t")=GR(t;0)g=(0;0)G*(0;t’) other kind of argu- This result clearly reduces to E(L7) if the self-energy van-

mentations should be invoked. We shall come to this pointshes sinceGR(0;0)=[G*(0;0)]"=—i. We observe that if

later on. the Green functions vanish when the separation of their time
To proceed further we need the Dyson equation forarguments goes to infinity, Eq19) yields a well-known

A=(t;t")=iGR(t;0)G™(0;t")—iG=(t;0)GA(0;t")

G(t; 7). Exploiting the identityg(t; 7) =igR(t;0)g(0;7), we
find

G(t;7)=iGR(t;0)g(0;7) +[G*Vxg](t;7). (15
Equation (15) can be solved foiG(t; 7). From the Dyson
equation G(T;T’)_:g(T;T’)+[G*V:Q](T;T,), it follows
that[ 6—Vxg] 1(r;7)=[ 6+ VxG](r;7) and hence

G(t;7)=iGR(t;0)G(0; 7). (16)
Substituting Eq(16) into Eq. (14) one gets
G=(t;t")=GR(t;0)G=(0;0)G(0;t"). (17)

Equation(17) coincides with Eq(4), as it should.

B. Interacting systems in the presence
of an external disturbance

identity
lim G=(t;t")=[GR-2=-G*|(t;t").

t,t’HOC

(20

Equation(20) is well suited to study théong-timeresponse

of an interacting system subjected to an external time-
dependent disturbance. On the other hand, if one is interested
in the short-timeresponse Eq(19) cannot be simplified. In
some cases it might be simpler to use an alternative ap-
proach. Below we propose an exact nonequilibrium Green-
function treatment based on TDDFT and discuss the relations
to ordinary mean-field approximations.

C. Mean-field theory and relations to TDDFT

Any mean-field theory is a one-particle-like approxima-
tion in which each particle moves in an effective average
potential independently of all other particles. The mean-field

In the interacting case we keep track of the interactions byyotential is local in time, meaning that, is discarded. Con-

introducing a self-energy matrix. Then, BT) becomes

H d S -
|d—z—8(z)—V(z)—2 (2)1G(z;2")

= 5(2—2’)+f dz2(z,2)G(z,2). (18
Y

sequently, all the results of the Sec. Il A can be reused pro-
vided we substitut& by K+3°. Thus, no extra complica-

tions arise if we treat an interacting system at the Hartree-
Fock level. To be specific, let us focus on the Coulomb
interaction and on paramagnetic syste(as that the self-

energy and the Green function are diagonal in the spin indi-
ceg. Then, it is natural to choose the one-electron index as

HereX? is the self-energy part which is local in time and it the coordinate of the particle and to split the self-energy

, e )
consists of a Hartree and an exchange term. The remainingy /(2)=2°(r,r',z) as a sum of the Hartree and the ex-
part of the self-energ¥.. contains the contributions coming change terms,

from the correlation and belongs to the Keldysh sp&ce:

3.(2,2)=0(2,2)%7(2;2))+0(2',2)2~(2,2").

Sr,r",2)=Vu(r,2)8(r—r')+3,(r,r',z).
For extended systems, the Hartree potentjgland the Cou-

Like G, the self-energy and its components are matrices iromb potential from the nucleV, are separately infinite but
the one-electron labels. No simple expressions, such as Eqgsith a finite sum. Together with the external fieltl these
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terms form the classical electrostatic potentifl=U +Vy, The density-functional theory and the Runge-Gross exten-
+V,. The Green functio, ,,(z;z')=G(r,z;r’,z') can be sion refer specifically to the basis. However, the arguments
obtained from the self-consistent solution of the equation ofemain valid if we instead consider the diagonal density
motion and the lesser/greater component can be written as=(c/c;) in some other basis provided the interactions com-
mute with the diagonal density operator. The latter condition
= e — 7 ~R - is essential for the Runge-Gross theorem. Thus, for instance,
Gur(r.tir,t )_f drdr’Gue(r,t:r.0) if the one-electron indices refer to a particular lead one can
_ - — N still use Eq.(21) to calculate the corresponding total current
XGyr(r,0r",00Gye(r',0ir",t"), (see Sec. IV,
where the subscript MF has been used to stress that it is a FOF later references we now derive an expression for the
mean-field approximate result. In the ordinary many_bod))essgr/greaterGregn function in the linear approximation. We
theory one has to abandon the one-particle picture in order t8onsider the partition-free system described in etpe one-
improve the approximation beyond the Hartree-Fock levelParticle scheme of mean-field theory or TDDFT. 1™ (t)

This leads to a self-energy nonlocal in time and hence to th8€ _the errAaII tif?we-ggpendent effective perturbation and
complicated solutiorf19). SGRA=Gg#. 5U°™. G3* be the first-order variation of the

In the case we only ask for the density(r,t) retarded and advanced Green functions with respect to their
——iG=(r,t:r,t) the original density-functional thecty??  equilibrium counterpart€g*. Then, from Eq(17) we get
and its finite-temperature generalizatibhas been extended
to time-dependent phenometf* The theory applie; only _ 5G§(t;t’)=f dTG(F)Q(t;t_) SUSf(1)G=(0:0)
to those cases where the external disturbance is local in
space, i.eU, ;/(t)=8(r—r")U(r,t). Fort>0 we switch on
an external potentidl (r,t) to obtain a densityi(r,t). The XG(Ff(t_;O)GQ(O;t’HJ dTGE(t;O)
Runge-Gross theorem states that if we instead had switched
on a differentU’(r,t) [giving a differentn’(r,t)], then «GAOTIGS(0: eff TN AT s
n(r,t)=n’(r,t) impliesU(r,t)=U"(r,t). ThusU(r,t) is a Co(0;1)G(0;0) SUTHH (L),
unique functional oh(r,t). Runge and Gross also show that (22
one can computa(r,t) in a one-particle manner using an

. Y'A .
effective potential where we have taken into account ti&}” commutes with

G=(0;0). Theabove expre_ssion takes an elggant form when
UST(r,t)=U(r,t) + v, (T,1). t'=t. Indeed, for anyt>t>0 one hasG}(t;0)G)(0;t)

Here, v, accounts for exchange and correlations and is ob= —1Go(t;t) andGg(t;0)Go(0;t)=iGg(t;t). Since the in-
tained from an exchange-correlation action functionaltegrands in Eq(22) vanish fort>t due to the® function in
(1) =8A,n]/én(r,t). In our earlier language this cor- Gf in the first term and irG, in the second term, we con-
responds to an effective self-energy which is local in bothclude that for any positive time

space and time. The TDDFT one-particle scheme corre-
sponds to a fictitious Green functigifr,z;r’,z") which sat- U (i - = = —
isfies the equations of motiof¥) with [& /(2)+V, ,/(2)] oG (t’t)__'f dtGS(t,t)[éUeﬁ(t),G (0’0)]G€(t't)'
replaced bys(r —r')[ — VZ/2+ U®f(r,z)]. As a consequence (23

we have We shall use this equation later on to calculate the linear

o o o current response in noninteracting and interacting resonant
g>(r,t;r’,t’)=f drdr’GR(r,t;r,00G=(r,0;r",0) tunneling systems.
XGA(r 0r' t"). l1Il. NONINTERACTING RESONANT

_ . . . . TUNNELIN YSTEM
The fictitiousG will not in general give correct one-particle v G SYS S

properties. However by definitiog= gives the correct den- As a first application of the partition-free approach we
sity study the time-dependent current response of a noninteract-
o ing resonant tunneling system. For the sake of simplicity the
n(r,t)=-2ig=(r,.5r,t) central device will be modeled by a single localized level.

(where the factor of 2 comes from spirlso total currents  All the results of this section can be generalized to the case

are correctly given by TDDFT. If, for instanca, is the total ~ Of @ multilevel noninteracting central device without any
current from a particular regioa we have conceptual complications. There are many different geom-

etries one can conceive beyond a one-level model, e.g., a
d double quantum dot mod&t,a quantum wire coupled to a
J ()= —ef dran(r.0), (2)  quantum dof® a one-dimensional quantum dot arfaygr a
“ mesoscopic multiterminal systethHowever, the present pa-
where the space integral extends over the regid is the  per is not intended to give a description of a series of appli-
electron charge cations. Rather, we prefer to illustrate how the partition-free
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approach works in a simple noninteracting model. We alsavith G(¢)=[{—&-V] %, and to write the current in the
emphasize thatll the results of this section remain valid in form
the interacting case if the bare external potential is replaced

by the exacteffective potential of TDDFT; see Sec. IV. d¢ ot _
The whole system is described by a quadratic Hamil- Jo(t)=2eR sz(g)e Qu(&it) . (27)
tonian

It is worth noticing that the partitioned approach leads to
Ho= 2, £kaChaCkat €0CoCoT 2 Vil Ch.Cot Citkal Eq. (25 with g=(0;0)=if (&) in place of G=(0;0)=if(&
ke ke +V). Itis our intention to clarify under what circumstances,
if any, the long-time behavior of the time-dependent current
=> TmnChcn, (24)  is not affected by this replacement.
mn As a side remark we also observe tila(t=0) in Eq.
where @=L,R denote the left and right leads andn are (25 correc_tly vanishes. Letting\,) and\, be the eigenvec-
collective indices forker and 0. We assume the system in {0rs and eigenvalues df=£+V, we have
thermodynamic equilibrium at a given inverse temperagire

and chemical potentiglk before the time-dependent pertur- (0)=—2e2 2 IM[(O|X ) (A) (A p|Kat) Vi =0
bation @ o =,

since (O|\,) and (\,|ka) can always be chosen as real

Hy(t)= ; Uga(1)ClaCra T Uo(t)CSCoE% Uma(t)Crcn quantities for systems with time-reversal symmetry.
is switched on. In principle the time-dependent perturbation A. Steplike modulation

may have off-diagonal matrix elements. In order to model a _ . A
uniform potential deep inside the electrodes such off- The first exactly solvable model we wish to consider is a

diagonal terms must be of lower order with respect to theSt€Plike modulation, i.elJ)y n(t) =0 ()Up, . From Eq.(3)
system size. However their inclusion is trivial and it does not' follows that for anyt>0
lead to any qualitative changes.
The current from thex contact through thex barrier to GR(t;0)= _iefi[£+U+V]tEf d_wefithR(w)
the central region can be calculated from the time evolution ’ 2@ ’

of the occupation number operatdl, of the « contact. Arnoes  r~Rpe. vt .
From the obvious generalization of E@1) one readily finds af;dA G0 =[G _(t,O)] - The device component of
G™*(w) can be written as

Ja(t)zzeik‘, RE Ggya(t;1)Via

Gopl(@)=—= : (28)

06 («) o—go—3RNw)*in

=2e>, REGR(t;0)G~(0;0)G (0;t) JokaVie - ~

zk 4G LOGHO0GH0) JoxaVi where gg=¢g¢+ U, Here, ER'A(w)=Ea25*A(w) is the

(25) retarded/advanced self-energy induced by back and forth vir-
tual hopping processes from the localized level to the leads

The above expression is manifestly gauge invariant. Indeednd is given by

if Umnn() = Unmn(t) + 8mnx (1) then  GR(t;0)

—exfd —ifpx(t)dt]GR(t;0) while GA(0;1) e A »

—exfi[px(t)dt]GA(0;t) and the time-dependent shifi(t) 2o (@)= "

has no effect on the current response. In the same way it is

invariant under a simultaneous shift afand the initial po-  where we have used the short-hand notatiap = ¢,

Vi
, (29

w—gr,tin

tential. + Uy, .
The matrixG=(0;0) can bewritten ag®
1. U,=U,: Steady-state current
G O'O—f d¢ 1(drem If U,=U, th levels of ther lead Il
(0;0)= 2w —E-V" ka=U, the energy levels of the lead are equally

shifted. From Eq(25) it follows that we need to estimate the
whereT is the contour surrounding all the Matzubara fre- Matrix elementsGg (t;0) and Ggy,(t;0) of the retarded
quenciesn, = (2n+1)ri/ B+ u clockwise(see Fig. 9in Ap-  Green function and the two contractioBGyy,(0;t) Vi,
pendix Q while 7 is an infinitesimally small positive con- and EkG’k\,a,yka(O;t)Vka in the long-time limit. We assume
stant. It is therefore convenient to define the kernel thatES‘A(w) is a smooth function for all reab. Then, using

the Riemann-Lebesgue theorem one can preee Appen-

0 (g.t)zz [GR(£;0)G(£)GNO0:t) Toxa Vi (26) dix B) that the kerneQ,(¢{;t) has the following asymptotic
“o X ’ TR TR behavior:
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. de T ,(e) R 2. Uy,=U,: Time-dependent current in the wide-band limit
tlle“({’t) B J 27 [—&+ UQGO*O(S) The calculation of the stationary current is greatly simpli-
fied by the long-time behavior of the various terms coming
de T'(¢) . <A from Eg. (25). However, as far as we are interested in the
+E j o —|Go,o(8)| (e), current at any finite time we need to specify the structure of
o T{—etUa the retardedadvanced self-energy. Here, we consider the
(300  so-called wide-band limit where the level-width functions
where I' (w)=2vy, are assumed to be constant and hence, from

Eqg. (33), A (w)=0. In this casdB(Fio(w) has a simple-pole
structure and the calculations are slightly simplified. We em-
I'(e)=—2 Im[ES(s)] = 2772 S(e _Eka)vﬁa . (3D phasize that what follows is the first explicit result of a time-

k dependent current in a model system in the framework of a
partition-free approach and therefore also a simple model
could be of some interest. Without loss of generality we can
always choose:o=0; for the sake of simplicity we also
considerU,=0. We defer the reader to Appendix C for the
details. Here, we just write down the final result fhy(t):

In Eqg. (30) the rhs has a simple pole structure in theari-
able and therefore the integration along theontour can be
easily performed. Using the identity(dZ/2m)f({)e" (L
—g) " t=if(e) the stationary current’®=lim,_..J(t) has
the following expression:

S) _4 [ do
1 de Tr(e)T(e) Ju=00-4ey.e | 5—f(w)
=—€e| 53— =
" 27 [=50= Ae) P+ [I'(2)/2)? o
eI w+U,
U —f(e—Ug)]=— 3 Uy
X[f(e—Up)—f(e—Ug)]=—J, (32 X Ul o i e U T T) +§ YarUq
where A (¢)=Rg2R(¢)] is the Hilbert transform of(¢)
=3I (&): ><Ua,e*”t—i-2(1)005{((1)-1-Ua/)t]-|-2'ySir'[(a)-i-Ua/)t]
do’ (") [0+ ][(0+U )%+ 7] ’
Ao)=P | 5— - (33 (34)
w—w

) i WherngS) is the stationary current of Eq32) and y= yg
It is of interest to note that the dependence on the bigs | ¥, . One can easily check thé) for t— o Eq.(34) yields

appears not only in the distribution functiétut also in the the result in E _ : ;
- q(32), (2) for t=0 the current vanishes, that is
quantitiesI" and A, see Eqs(31)—(33). The dependence of 3,(0)=0, and(3) for U_=Ugr=0 the current vanishes for

thet;:?lf-e_nirgt);]on the Ie\_/el shifts s ph){[sr:cal S'T_Cz wh:en :_hEnyt. Equation(34) can be rewritten in a more physical and
particie VISILS the reservoirs experience the applied potentia ompact way if we exploit the particle-number conservation.

We also remark that Eq32) is of the Landauer typ&. More . Denoting byng, the particle number operator in the central
generally the Landauer formula is valid for any MeS0SCOPIGia ice we have

device provided it is noninteracting. This result agrees with

the one obtained in the partitioned approach by Jauho and d
co-workers®1? There the leads are decoupled from the cen- Jr()+I () =e—(ny),
tral device and in thermal equilibrium at different chemical dt
potentialsu, andug and inverse temperaturgs and By in so that

the remote past. In order to preserve charge neutrality each

energy levele,, must be shifted by.,—u whereu is the Yr d YRYL dw
chemical potential of the two undisturbed leads. The station-Jr(t) =I5 +e— gi{ho—4e——e ”f >Im
ary current is then obtained by switching on the contacts, i.e., Y Y m

f(w)
w+iy

the hybridization part of the Hamiltonian. By tunings gl (0t URlt gl(etunt
(=32,8)L=,8 and ur—u =Ug—U_ the current is given by Eq. X URw+ Untiy UL w+U +iy||’

To summarize we have found that for noninteracting leadsl, (t) is obtained by exchangin®«L in the rhs of the
a steady state develops in the long-time limit whene\l¢r above expression. Therefordg(t)# —J, (t) for any finite
the one-body levels of the charge reservoirs form a contimet, even in the symmetric casg,= v, ; the time deriva-
tinuum and(2) the self-energy due to the hopping term is ative of (ny) contributes talg andJ, in the same way.
smooth function. Under these hypotheses the time- Ourformula for the nonlinear transient current clearly dif-
translational invariance is restored by means dephasing fers from the one obtained by Jauébal® in the partitioned
mechanismThe comparison of our result with the one ob- scheme. Indeed, the prescribed integration along the imagi-
tained in the partitioned scheme provides the criteria ohary axis gives extra termsee Appendix Cwhich are ab-
equivalence: besides the tuning,—ugr=U_ —Ugr one sentif the system is uncontacted for negative times. We have
needs to shift the levels of the reservoir byu,— u. explicitly verified that by discarding these terms our formula
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FIG. 2. Time-dependent curredi(t) for different values of the FIG. 4. Stationary current vs the applied bias at zero tempera-

applied biasU =0.8, 2.0, 4.0, and 6.0. The numerical integration tyre and chemical potential for three different values of the line-
has been done withg=y, =0.2, =0, and zero temperature. widths yg= v, =0.2, 0.5, and 1.0.

reduces to the one obtained in the partitioned scheme. Fahe total linewidthy and for a fixed valueJ, =6 of the
long times, the extra terms vanish and our scheme reprapplied bias. As expected, the largerjisthe bigger is the

duces the earlier steady-state results. slope of the current in=0.
If one of the two leads does not undergo any level shift, Finally, in Fig. 4 we report the trend of the stationary
e.g.,Ug=0, from Eq.(34) we get currentJ(RS) as a function of the biall, for three different

choices of the level widths. As one can see the biggey is
de and the wider is the range of validity of the Ohm law.
JR()=I0)—4eygy Ue™” f 5 f(w)
m B. Arbitrary modulation: theorem of equivalence

y Ue "+2wcog(w+U)t]+2ysin (o+Up)t] We have shown that the steady-state current induced by a
[02+ Y[ (w+U )2+ ¥2] ' steplike modulation does not change if one usesGheof
the partitioned approach, given by the first term on the rhs of
(39 Eqg. (14), in place of the one coming from the partition-free
approach. This reasonable result is norevedand not sim-

The transient behavior of the time-dependent quantityoly postulatedThe equivalence between the two expressions
J,(1) _JEYS) is not simply an exponential decay. In Fig. 2 we for the current is of special importance since it is much easier
have plottedix(t) in Eq. (35) versust for different values of ~t0 work in the partitioned scheme. However, it has been
the applied bias), at zero temperature. The current strongly Proved only for steplike modulations wit,,=U,, . Here,
depends otJ, for smallU, while it is fairly independent of ~We prove that the above equivalence remains true under very
it in the strong bias regime; using the parameter specified igeneral assumptions. To this end we consider the quantity
the caption, the time-dependent current has essentially the
same shape for any, =8. RA 447 — RA 4.471772

In Fig. 3 the currenfix(t) is plotted for different values of Zap(tit) Ek: AT (39

whereV is an arbitrary complex function d€«. Then, the

JR -20 following theorem holds:
0.4 =< Theorem of Equivalencéf
0.3 imSR () =lim34 (t';H)=0 (37
,Y: 10 t—oo t—o
0.2 for any nonsingulad, then
0.1 Y=04 lim[Qu(£;1) — du(£:1)1=0, (39)
t—oo
e | where q,(£;1) =2 G¥(£;0)9(£) G*(0;1) JokaVka and g(¢)
=[{— E] s the uncontacted Green function.
FIG. 3. Time-dependent current fad, =6, ©=0, and zero Equation (38) says that if we apply the same time-

temperature vs time for three different values of the linewidths dependent perturbation the same asymptotic current will
=v,=0.2, 0.5, and 1.0. emerge in the partitioned and partition-free approaches.
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Proof. In terms of the self-energyG= EMES,V, the equa-

tion of motion forG(F,"O takes the form

d
{ia_‘%(t)]Gg"’(t;t/)_[zs'Gg,o](t:t’)zé(t—t’),

where the symbol *” denotes the real-time convolution. We

now consider the limit—oo. The hypothesi$37) implies

limG§ (t;t")=0,

t—oo

(39

t—oo

which in turn implies thaf 2§ Ggol(t;t') — 0. Further-

more, from the Dyson equation f@g,, we find

t—oo

zk Gora(t i) Vi =[Gho 24 1(t';t) — 0. (40)

PHYSICAL REVIEW B9, 195318 (2004

C. Memory-loss theorem

If the condition (37) of the theorem of equivalence is
fulfilled, the asymptotic value of the nonlinear time-
dependent current in Eg27) simplifies to

d
Ja(t)=2eRe[ L%f@)e“qa(&;t)

=2eRe{k2ﬁ Gyp(t:0)915(050) 2 Giiy oo (031 Vi |-
k!

(42

We note in passing that expressigg,; and Gfﬂ'k,a in
terms ofG§, andG§ o, respectively, Eq(42) can be rewrit-
ten in terms o =240, Vie

Jo()=2eRe{[ GGy 25 V](51) +[ G 2h 1L D)},

where the asymptotic reIatioG§0=2aG§’0-2a<,V-Géo has
been usefisee Eq(20)]. This agrees with the result obtained

We note that the above two asymptotic relations have beepy Wingreenet al.”€in the partitioned approach, as it should
obtained fort’ =0 in the special case of a steplike modula- pe.

tion; see Eq(B1). Here, we have shown that they hold in a

In generald ,(t—) is not a constant unless the external

more general context. As a consequence of these two identerturbation tends to a constant in the distant future. In this

ties, the asymptotic differendeQ,(;t) —q.(¢;t)] can be
written as

[Gho SRI(t:0)Go o O)Z4-[6+Ghe Sh v1(0;1).

Here,25=3 SR | is given by Eq.(36) with VE,=VE/(¢

—&y,). Sincelel, Im[{]#0 and hencé’2, is nonsingu-
lar, meaning that Eq(37) holds. Eq.(37) together with Eq.

(40) imply the equation of equivalendg8).

case the following theorem holds:
Memory-loss theorenif

Iimua(S,t):Ua(S), I|mU0(t):U0

t—ow t—oe
the current],(t) tends to a constant, given by E@1), in
the long-time limit.

Proof It is convenient to denote wité andg the Green
functions corresponding to the steplike modulation with co-

As a simple application of the theorem of equivalence onefficientsU ,(¢) andU,. We have already shown that in the
can calculate the stationary current for an arbitrary Step”k%ng-time limit Eq.(42) yields Eq.(41) if GRA= GRA The

modulation. The quantitg,({;t) is simply given by the first
two terms of Eq(B2). Both have a simple-pole structure in
the ¢ variable and we can perform the integration along the

contourl". Using the definition in Eq(31), with &, =&y,
+U,(ex,), ONe obtains

J@:—ef:—ifw){rﬁm(s)m(wuus))

X|GRe+UL(eNP+T R (&) (e +Ug(e))

X |GG e +Ur(#))|?. (41)
The quantityI'?(g)=273 V2, 6(s—&y,) is the equilib-
rium linewidth. Equation(41) reduces to Eq(32) if U,(e)
=U, since in this cas&€?(e—U,) =T (&).

In the noninteracting case it is reasonable to assume that
Eq. (41) yields the steady-state current even for an arbitrary

time-dependent disturbance such that ligU,,(t)=U,,

and lim_Ugy(t)=Uq. In the following section we shall
prove that the asymptotic current has no memory and d

memory-loss theorem is then proved if

A .
6ORkB('f'O) % Gig kol 0D Vi

im R
t—WOGO'kIB(t;O)

=e'%ks= lim
t—oo ~A .
2 Gy a0V,
kl

(43

for some real constant,.
According to Eq. (39), the device component of
the retarded Green functiofﬁffyo(taoo;t’) vanishes for

any finite t’. Since lim, _.[gf(t;t')/gR(t;t")]=1,
from  Gfo=95+0q 2y Ggo it  follows  that

Iimm,_m[G(F)*,o(t;t’)/aso(t;t’)] =1. Let us now consider the
Dyson equation

GBu(tit)= [ dECRUtDVIGE (), (49

with t'=0 andt—«. Since the integrand vanishes for any
dinite t, we can substitut&} , with Gf,. Furthermore, since

pends only on the asymptotic value of the external perturbathe applied bias tends to a constant in the distant future,

tion.

lim,_..[gR (t;0)/gR (t;0)]=e 2k« for some real quantity
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0.15
0.10
,\ﬂ:
“w .
0.05 FIG. 5. Current vs time for
two different external disturbances
t (a) SU_. In both figures yg=1vy.
2 4 6 8 10 =0.5; the current is plotted for
0.15 two different inverse temperatures
' B=2 andB=100. In(a) 6U, is a
square  bumplike  modulation
0.10 whose duration is 1 while irib)
the duration is 5.
,\N
K o.05
t (b

2 4 6 8 10

Ay, - The left-hand side of Eq43) is then proved. A similar wherew,,=(2n+1)#i/B+ u are the Matzubara frequencies

reasoning leads to the rhs of E¢23). and the identity
D. Linear response in the wide-band limit j dw f ) e""t 4 ) et 2 elent
» i 5
In the case of small time-dependent perturbations, one can 2w y ,3 n=0 w; 242

use Eq.(23) to calculate the lesser Green function. In order _ o _
to carry on the calculations analytically we consider thehas been used. In the special case of a vanishing chemical
wide-band limit and we choos8U,(t)= 58U (t). For sim- potential, the Matzubara frequencies are imaginary humbers
plicity we omit the subscript 0 in the retarded and advancednd 6Jg(t) simplifies

equilibrium Green functions. By explicitly writing down the

. . . . t — —

matrix product in Eq(23) gne regdlly rEallzethhat we have SIn(t)= — 26 'YR'YLf dtou (—Te 2"

to calculate the functlonsG0 oft— Gogr o (t—1), 0

EkaaGOKQ(t t), andEkaaGk, , ka(t t). They are eas- By [l T

ily obtained from Eqgs(C2) by simply replacinge— & and [tar{ 5 T (t)], (46)

t—t—t. The calculations are rather similar to those already
performed to derive the expressi@®4) and they are left to  where
the reader. Denoting b§J,(t) the time-dependent current in

the linear regime one ends up with

t [ do el (0= 0g)(t-1)
5Ja(t):46’yaR Jodtf Ef(w)w——ﬂo

8Uo(1)— 68U (1)
w—QS

_\m
_2Wg5,1,77+(2 "By
a

F(t_>=m§01(—)m¢> e

SUq(1) o o .
Uo(t) is a linear combination of the Lerch transcendent functions

®[z,s,a]l=2,_02"(a+n)".
In Fig. 5 we show the trend afJg(t) for square bumplike
» (45 modulations. On the topU,(t)=0(t1)®(1—t) while on
the bottom U (t)=0(t)O(5—1); both disturbances are
where Q) y=¢,—iv. In the special case,=0, sUy(t)=0,  considered for two different inverse temperatuges2 and
and 8U (t)=6U_ =const, 8J,(t) reduces to the time- B=100. As one can see the effect of an increasing tempera-
dependent current in Eq34) to first order insU,, as it ture consists in a sort of rescaling of the time-dependent
should. current. The linewidthsy, have been taken equal and large
Equation (45) takes a very simple form ifeq=6U,  enough to justify the linear approximation. Since the distur-
=6Ur=0 anda=R: bance is of order 1, in Fig. 4 one can see that y, =0.5is
a good choice.
t__ mif(iy)] _, + The ac current in the linear approximation is plotted in
5‘]R(t):4e7’R7’Lfodt5UL(t_t) -, ¢ 7 Fig. 6 for B=100 and yg=17,=0.5. The time-dependent
disturbance is taken to b&U, (t) = sinwgt with wy=5, 10,
2 o e(iwn—y)t_ and 20 in(a), (b), and(c), respectively. Finally, in Fig. 7 we
BR{nZO wﬁ-ﬁ- 'yz ],

—6U (1) +2i > g

have considered the current response to a periodic square
bumplike modulation for different values of the period.
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FIG. 6. Current vs time for an oscillating external disturbance FlG_' 7 Curren_t Versus t"T‘e for three different periodic square
U, . In both figuresyg=y,=0.5 and the inverse temperature is PUMPlike modulations. In all figurege= 1y, =0.5 and5=100. The
B=100. U, (t)=Sinwgt with w,=5, 10, and 20 in(@), (b), and thin lines represendU, while the thick lines represedly.

(c), respectively.
IV, INTERACTING SYSTEMS Iimit is independg_nt of history. We also _showed thgt the par-
titioned and partition-free treatments give an equivalent de-

In earlier theoretical works on quantum transport one camscription of the steady state. The mechanism for the loss of
distinguish at Ieast. two schools. In one school one tries tgnemory was pure dephasing, and it holds provided the leads
keep the full atomistic structure of the conductor and thezre macroscopic while the device is finite. Another important
leads, but all works so far are at the level of the Iocal—densﬂyngrediem is that the applied bias is uniform deep inside the

approximation(LDA) and only the steady state has beenjgaqs. with these assumptions, our results can be generalized
considered. The advantage of this approach is that the intefyq, 14 more general cases than the simplified model explic-
actions in the leads and in the conductor are treated on tr’\ﬁy considered in Sec. Ill. In TDDFT, the full interacting

same footing via self-consistent calcu_latlons on the current: roblem is reduced to a fictitious noninteracting one afid
carrying system. It also allows for detailed studies of how th he results of Sec. Il can be recycled. In the case of time-

contacts influence the conductance properties. dependent local-densit roximation. th chan
The other school is using simplified models which allows epenae ocal-density —approximation, € exchange-

the analysis to be carried much further. Considerabl&o'Telation potentiab,. depends only on the instantaneous
progresses have been made in this respect for a localizegCc@! dénsity and has no memory at all. If the density tends to
level described by a Lundquist-like mod&® and for the @ constant, so does the effective potentiél, which again
so-called “Coulomb island®***whereH, in Eq. (24) is re- implies that the density tends to a constant. Owing to the
placed by the Anderson Hamiltonian. However, all thesenonlinearity of the problem there might still be more than
works treat the leads as noninteracting, which prohibits @ne steady-state solution or none at all.
realistic description of the contacts and of the long-range If a steady state is reached in TDDFT, we can go directly
aspects of the Coulomb interactidhiThe model approach is to the long-time limit of the Dyson equation and work in the
based on a partitioned scheme which makes the timefrequency space. We may with no restriction use a parti-
dependent results difficult to interpret. tioned approach and split the fictitious one-electron Hamil-
We here want to show how the current LDA by Lang tonian matrix in a non-conducting paftand a correctiory
et al***follows from the TDDFT scheme described in Sec.involving one-body hopping terms between the two leads

Il C. We also present an exact result for the steady-state cuand the device. The lesser Green function of TDDFT fulfills
rent of an interacting resonant tunneling system. Finally, the

transient behavior of a capacitor-device-capacitor system is
investigated on the level of mean field. G=(e)=[1+GR(e)V]g=(e)[1+VGA(e)],
A. Steady-state limit of TDDFT

In Sec. Ill we showed that under certain conditions awhereg is the uncontacted TDDFT Green functifcf. Eq.
steady state is reached in the long-time limit, and that thi§13)]. In direct space, the uncontactgd can be written as
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o, _ . where nmchcm is the occupation number operator of the
g (r,r ,8)=27T|% fa(€ma) Dmall) Pma(r") 8(e —€my) level m and W,,, ,=W,, , is a symmetric matrix(If Hyy in-
cludes long-range terms, the regrouping of potential terms as

in terms of diagonalizing orbitalg,, with fictitious eigen-  discussed in Sec. Il C must be donén the generalized

valuese,,, for the left and right leads{=L,R) and the TDDFT schemedbased on tha,, occupations rather than on

device (@=D) and Fermi functiong, with chemical poten- density outlined in Sec. Il C the fictitious Green function

tial u, . The chemical potentials for the two leads differ, andg,, , is obtained by solving the Dyson equations Witk T

the final result is independent of the chosen chemical poten+ US™ where

tial for the device. When we apply1GRv=gGR[gR] ! to

an unperturbed orbitab,,, , it is transformed to an interact- Uemf’fn(t)z Ol Um(t) + Vi m(t) Fvyem(t)].

ing, i.e., contacted eigenstatg,,. Above the conductance P . :
threshold, states originating from the left lead become right!f U satisfies the hypothesis of the theorem of equivalence

going scattering states, and states from the right lead becon?@d Of the memory-loss theorem we can use @d) and

left-going scattering states. In addition, fully reflected waveg/rite an exact formula for the steady-state current ofran

and discrete state may arise which contribute to the densitifractingresonant tunneling system:
but not to the current. Thus,

K= e[ SRt T+ UET(e)
. o
g<(r'r’,8)=277|m2 fa(ema)l»//ma(r)l//:na(r,)6(8_ema’)'

X|GR e +ULM(e)2+TQ(e)T (e +UE(e))

These results correspond closely to the general approach by R off
Lang and co-worker§>*'#In their approach, the continuum is X|Goole+UR(e))]%- (48)
split into left- and right-going parts, which are populated por normal-metal electrodes we expect that the effective po-
according to two different chemical potentials. The density isgptig| USf(e,t)—U(s)=const provided U (e,t)
then calculated self-consistently. Laagal. further approxi- o < o
hmate exchange_ af‘d correlation by the LDA and .the I.eads. b end on the history of) ,(e,t) while the steady-state current

omogeneous jellia, but apart from these approximations it is_ . : off R S
clear that his method implements TDDFT, as described irf> mdependem Oj the hlst_ory o, (ﬁs’t)‘ gO:O(_‘") 'S given
Sec. II C, in the steady state. It is also clear that the correcby EQ. (28) with eo=go+lim;_..Ug'(t) and with =R from
ness of Lang’s approach relies on the theorem of equivalendgq. (29) with gy, = ey, + Iimtﬂwuﬁg(t). For the sake of clar-
between the partitioned and partition-free approaches and they, Eq. (48) has been written for systems having a one-to-
memory-loss theorem derived here. The equivalence besne correspondence between the one-body indicesand
tween the scattering state approach by Lat@l. and the the one-body energies,,+UE"(0). The generalization to
partitioned nonequilibrium approach used by Taylorsystems with degenerate levels is straightforward and it is
et al®!®has also been shown by Brandbyefeal 3’ left to the reader.

As shown above, the steady state of TDDFT can always As a further example we study the RPA time-dependent
be formulated in terms of orbitals which diagonalize thecurrent response in the partition-free approach. In the Hartree
asymptotic one-particle Hamiltonian matrix. The current-gpproximation the Green functio™ satisfies the equation
carrying orbitals can always be grouped into a right-goingof motion (18) with 3,=0 and
class and a left-going class. As a consequence, the current
can be expressed in a Landauer formula

—U (&) =const whert—. The constant)®(¢) may de-

2r?],n(z)zzr';'],n(z) = 5m,n|§n Wi, n|H(z),

IQ=—e> [fL(en)Tm— fr(EmRT; 4
R % [feCn) Tnc = fr(emd Tnel - (47) wheren{(z) = —iG}~(z;2). According with the results ob-

tained in Sec. I, the lesser Green functiGf = is given by
Eq. (17) with G—G". Therefore, in the linear approximation
we have

in terms of fictitious transmission coefficients,, and en-
ergy eigenvalues,,, «=L,R. We also wish to emphasize
that the steady-state current in Ed.7) comes out from a
pure dephasing mechanism in the fictitious noninteracting
problem. The memory-loss effects from scatterings are de- 5G<(t;t):—if dTGg,R(t;t_)
scribed byA,; andv,.
_ X[8Uf(1),G™=(0;0)]GE(t;t), (49)
B. One-level resonant tunneling system
In this section we consider a resonant tunneling systerﬁ‘”th
described by the quadratic Hamiltonian of Eg4) and an off/en H
interparticle interaction, SUT(1) = 8U(1) + 627(D). (50
Equations(49) and (50) form a coupled system of integral
HWZE 2 W, Ny equati_ons for_the unkn_own§G<(t;t) and 5U%f(t). For a
2 mZn ' capacitor-device-capacitor system one can take
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w

W, = .
m™holo otherwise.

0.15¢

Thus, putting an extra particle in the isolatedcapacitor

costs an energW,, per particle. This means that the trans- 0.1}

fer of a finite number of particles from one capacitor to the

0.05
other causes a finite change of the effective applied bias. W

war I mM=Kka,n=k'a’ S/

PHYSICAL REVIEW B9, 195318 (2004

expect that the current vanishes in the long-time limit unless
the applied bias continues to grow up. The coefficients_
Wgr_ =W,_r mimic the repulsion energy between two par-

ticles in different capacitors. Actually, one can also consider -0.1;

the interaction between a particle in the central device anc
another in one of the two capacitors. No extra complications
arise if Wox,=W,,, V K, and the results we are going to

0.05¢

=0:15¢

10

(a)

obtain can be easily extended.

Switching a biaséU,,(t) = 6U ,(t), from Eg. (50) one
gets SUST (1) = 8 ndUET(t) with SUET(t)=sUS(t), V K,
and

off on _} t _
SUST(t)=5U (1) e}ﬁ)fodtwaﬁmﬁ(t), (51)

where it has been taken into account thaNg(t)
=3 ong (t)=—(1/e)[5dt6d,(t). SincesU™ has the same
matrix structure of the baréU, in the wide-band limit the
linear time-dependent curred®] (t) is given by Eq.(45)
with 6U replaced bysUS™. (It is worth noticing that the
wide-band limit still makes sense if the linewidth is approxi-

mately constant in a small interval around the chemical po-

tential w.) In this way the system of equatiof¥9) and(50)
is reduced to a system of four coupled integral equations f
the four scalar unknownsU®", 83, with a=L,R. The

symmetric caseyr= 7y, = y/2, Wgr=W,_ allows a further
simplification. Let us definesU%"=sUg"+ sU™, sU.

=8Ugr*dU,, &8J.=08Jg=8J., and Wi—WRRtWR,_
=W, =W, g. Then, from Eq(51) we find
W, [t —
5Uiﬁ(t)=6Ut(t)—?’f dtsd. (1), (52)
0

while from Eg.(45)

5J+(t)=2e~yfthC+(t—t_)[25U0(t_)— sUs(1)],
0
(53

5J,(t):—2eyJ;ch,(t—t_)5u‘i“(t_), (54)

where
I(w ggtiyt
C.(t)= Re“—f( ) oSy

is the conductivity kernel. OncéJ.. has been obtained, one
can calculate 8Jg=(83,+8J_)/2 and 63 =(8J,
—48J.)12.

af |/ (b)

FIG. 8. Numerical solutions of Eq952)—(54) in the zero-
temperature limit withu=e¢=0, W_=5, and an external distur-

OE)ance as described in the main text. The thick lines are the current

in (a) and the effective potential itb) for the steplike modulation.
The currents and the effective potentials fge=1, 2, 4, and 6
unstick from the thick line and start to oscillate and eventually
vanish after a timet<1W_. The vertical lines are the bare
applied potentials.

with SUR(t)=— 68U (1)=(1/2)0(1)O(ty—t) and SUy(t)

=0. Then,sU_(t)=0 and hencesJ, (t)=sU"(t)=0. It
follows that 8Jx(t)=—48J (t)=46J_(t)/2 and 5U§ﬁ(t)

=— 5Ufi(t) = 5U°M(t)/2 for any timet. In Fig. 8a) we dis-
play the time-dependent current for square bumplike modu-
lations withty,=1,2,4,6 andW_=5. The thick line is the
current for the steplike modulatiofU _(t) =0 (t); depend-

ing on the value ofty the current unsticks itself from the
thick line giving rise to different damped oscillating curves.
In correspondence of eath a vertical line has been drawn;

it represents the bare applied potent&l _(t). Figure &b)
shows the time-dependent effective potenial®"(t). As

the current response, it drops to zero in the long-time limit
since the interactions completely screen the applied bias after
atimetc1/MW_ .

V. SUMMARY AND CONCLUDING REMARKS

In the present work we have used a partition-free scheme

In order to illustrate what is the time-dependent responsé order to treat the time-dependent current response of a
of this model we have considered the zero-temperature caseesoscopic system coupled to macroscopic leads. To this
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end, we have further developed the Keldysh formalism andhe European Union NANOPHASEContract No. HPRN-

we have formulated a formally exact theory which is moreCT-2000-0016Y.

akin to the way the experiments are carried out. Among the

advantages of the partition-free scheme we stress the possi- APPENDIX A: PROOF OF EQ. (19)

bility to calculate physical dynamical responses and to in- . ] ) .

clude the interactions between the leads and between the It is convenient to defin&, as the solution of Eq418)

leads and the device in a quite natural way. with 3.=0. G, satisfies all the relations we have derived for
In the noninteracting case we have shown that a perfect noninteracting system in the presence of an external distur-

destructive interference takes place provided the energy lelance. By using the Langreth theorem, we get

els of the leads form a continuum. The steady-state develops - S | = A

due to adephasing mechanisnThe comparison of our G==[6+G"-2"]- Gy +G=-32-Gy

steady-state current with that obtained in the partitioned +[GR- 35+ G 3] GA+ GR- S G+ G 3+ G,

scheme shows that the two currents are equivalent if the _

energy levels are properly shifted in order to preserve chargand solving forG=,

neutrality. This kind of equivalence remains true for any __ R <Ry = A ~A

time-dependent external potentiélseorem of equivalenge G™=[6+G"-27]- Gy -[6+27- Gg]

The theorem of equivalence has then been used in order to R.y=_. al,S[1. ;A Ry, ]

prove that the steady-state current depends only on the TICTETHCHY]- GG 2*G°+G*2*d°]

asymptotic value of the external perturbationemory-loss L6+ EA~G§].

theorem. For the sake of clarity, the theorem of equivalence

and the memory-loss theorem have been proved for a singl&{€Xt, we use

level central device. The generalization to a multilevel cen- < i Ry, <. Arorr

tral device is straightforward, as can be readily verified. In Go (1) =Go(1,0) Gy (0;0)Go(03t")

the wide-band limit we have obtained an analytic result forand

the time-dependent current in the case of a steplike modula-

tion and for arbitrary modulations in the linear regime. Go(75t)= —iGo(7;0)Gp(0;t),
The interacting case represents a more difficult challeng

and the expression for the lesser Green function at any finite

time is more complicated than that commonly used to calcu-G=(t;t’)=GR(t;0)G5 (0;0)G*(0;t") +[GR-2=- G |(t;t")

late steady-state response functions. As an alternative to a

full many-body treatment we have proposed a formally exact +[GE- GA(t;t)

one-particle scheme based on TDDFT. Thalh,the results R ) Asmoe)

obtained in the noninteracting case can be recycled provided —I[G™- 2k Go+ Gl 2x Go] (1;0)G(03t).

we substitute the external potential with the exact effective (A1)

potentlal of TDDFT. Although it is_difficult to. PIOVE ANy A in the noninteracting case, we proceed by writing down

rigorous results for the effective TDDFT potential, we expect . . s

: . the Dyson equation fo&(t; 7). Taking into account that

the interactions to reduce the memory effects even further

compared to the noninteracting case. Thus, any nonlinear G(7;7')=Gy(7: 7" ) +[Co*Z*G](7:7') (A2)

steady-state current can be expressed in a Landauer-like for-

mula in terms of fictitious transmission coefficients and one-and that

particle energy eigenvalues. The steady-state current depends R

on history only through the asymptotic shape of the effective Go(t;7)=1Gg(t;0)Go(0;7),

TDD_FT potential. This exact result may prompt for New ap-we have

proximations to the exchange-correlation action functional

A,.. In the effective one-particle scheme of TDDFT the G(t;7)=[GR-ZxG](t;7) +iGR(t;0)G(0;7). (A3)

steady-state current comes out from a pure dephasing mecha- . o ,

nism. The damping mechanisfdue to the electron-electron >milarly, itis straightforward to show that

scatteringp of the real problem is described .. As an ) — ATl ety . A

illustrative example we have also calculated the RPA time- G(rit)=[GxX- GU(mt) ~IG(1,0)GAOiD).  (Ad)

dependent current of a capacitor-device-capacitor system arglbstituting Eq(A3) into Eq. (A1) and using Eq(A2) one

we have displayed the effect of the charge oscillations in thdinds

discharge process.

that

G=(t;t')=GR(t;0)G=(0;0)G*(0;t")
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iGR(t;0)[Gx2!-G*](0;t")=iGR(t;0)G(0;t")
—GR(£,0)G™(0;00GA(0;t")
and

—i[GR-ZxG](1;0)G*(0;t")=—iG~(t;0)G*(0;t")

—GR(1;0)G=~(0;0)G*(0;t"),

we end up with Eq(19).
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eist

+IimG 0(§)f de ( )
I',(e
e O 2 e+U,

—Ist

R ’
foz (s’ )g +U0,G0,0(8)

d !
+lmGod ) S f %Fa/(s’)

t—o

e*ie't de”
APPENDIX B: PROOF OF EQ. (30) XG(F;'O(SI)g/—-I-U > %Fa//(s")
—& o o'
Due to the smoothness of the self-energy, in the long-time _
limit we can use the Riemann-Lebesgue theorem to obtain A <A gle"t
the following asymptotic behaviors: Godle") 2, (e )g—sTU' (B2)
lim Goo(t 0)= |lm2 Gom(OJt)Vka:O (B1) where the relation
t—ow t—ow
’ ’ V V ’ !
kuz k' a ka k' a
Gka k’a’(g)_ GO,O(g)

lim GEy (£,0)= —iVy e *ke!GR(Zy),

t—o

and

lim Z G s kel 0i) Vi

t—ow
IVk’ /elgk"’,t[(sa a’+G O(SKIaI)E (Sk’a')]'
From the above results and the definiti@®6) one has

2

ana@ t)= E Ghdekra)

t—oo _Skr
2

+ > ——— G eka)Cod ek ar)

k' o' g Exr !
2

XE (8kr r)+ ||m Goo(g) z

N U ST
2
XG O(Sk’ r)e Isk,“,tz elskn"‘t
K" g Exrg
2
. k/ r
+1imGo(£) X, .
e 0 e
2
Vk"a"

XGR :‘;k’ r)e_i;k’a,tE —
O'O( “ K" a" g_sk”a”

X Géo(g k”a”)zé(; krrau)ei;k”a"t
de Tole) g
f 2n {—&e+U, Goole)

+3 [om it ~IoRde) 2

g Eka g_ska §_8k/a/

has been explicitly used. Sincge I’ the quantity[{—e

—U,] ' is a smooth function ot for any reale. In the
limit t—o the last two terms in Eq(B2) vanish according
with the Riemann-Lebesgue theorem and &%) is recov-
ered.

APPENDIX C: PROOF OF EQ. (34)

The quantityQ (¢;t) involves the multiplication of three
matrices and we can recognize four contributions, two con-
taining GEO and other two containin(_;‘:g’k,a, . It is straight-
forward to verify that

1

i Im[£]>0

God{)= . (CY
—— Im[{]<0,
{—ly
and thatGg(w)=[w=iy] %, wherey=yg+ 7y, . Hence
Godt;0)=—ie ",
~ierat — gt

G, (1:0)=—iVi———,
' Ska'i‘l’y

> ViaGoka(0;t)=— v,e 7,
> ,

> ViewGh o (0:1) =18, Vg ,eioket
K’ '

elfkal — g~ N
~Ya'Vka—=—"- (C2
Eka— 1Y

Equations(C1) and(C2) are all what we need in order to
evaluate the quantityQ,({;t) in Eq. (26). The time-
dependent current is then obtained integrating
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FIG. 9. Contoud” of Eq. (27). The black dots correspond to the

position of the Matzubara frequencies in the compjgxane.

Q.(&;1)f(2)e™ over ¢ along the contoul” of Fig. 9, ac-
cording to Eg. (27). Using Egs. (C2) and expressing
G o £) = Gokal) aNd Gy o/ (¢) in terms ofGoo¢) we

obtain

G§,o<t;0>eo,o<o; ViaGora(0:1) =i7,Go o {2,

(C3)
> Ghdt; O)GOMmE ViaGle o kal0:1)
k! !
Ist
=27.8" ytGoo(é)fz —etU,
d eist_efyt
+2iy,6 "God ) ”*’Ji(g—ﬁu o
(C4)

We are left with the contributions containi@g’k,a, . One of
them is quite easy to evaluate and yields

2 Gy (1:0)Grgr o

@ ViaGoa(0it)
k! !

de e—iat—yt_e—Zyt
27 ((—e+U ) (e+iy)

(CH

~207,60d 03 7. |
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de g it g™

27 (e+iy)({—e+U,)

~2iGod 2 Yar

» f de’
21
eia't_

(&' —iy)(l—e"+Uu)|

The rhs of the above four equations must now be multiplied
by f(£)e” and integrated ovet along the contourl .
Smearing the branchds, andI'_ on the real axis and tak-
ing into account Eq(C1), the rhs of Eq.(C3) yields the
following contribution to the current:

H ’
ele t

2iy,—
4 {—&'"+U,

e "

(C6)

(C7)

4eyae27tlm[f—f( )

where the integration ovew has to be understood from
—o to +. Another contribution comes from the first term
on the rhs of Eq.(C4). By closing the contour of the
integration on the complex upper half plane, it is nonvanish-
ing only if Im[ {]>0. Therefore, only the upper branth,

of I' contributes.I', can then be smeared on the real axis
and one gets

w+iy|’

do el(w+Ua)t
—4ey,e " Im{ f —f(w)—y (C8)
A similar procedure can be adopted to evaluate the contribu-
tion coming from the second term on the rhs of EG4).
One more time we can close the contour of ¢himtegration
on the complex upper half plane. The polesis iy does not
contribute since its residue is zero. The other pole ig in
={+U, and hence one obtains

_e—27t
—iy ’

do f(w) e
_467aR9‘J’Ew+i‘y§ V!
(C9

Next, we have to calculate the contribution coming from Eq.
(C5). By the same reasoning leading to EG9) it is readily
verified that it yields the same result. Therefore we have to
keep in mind that Eq(C9) should be multiplied by 2 at the
end. Let us now consider the contribution coming from the
first two terms on the rhs of E¢C6). Since the discontinu-
ous functionGg o £) does not appear in the integrand we can
perform the contour integral over We find

i(0+U,)t—9t

w+Uar

The other one is much more involved, but nothing more than

standard algebra is needed to get the following expression:

2 E GOk’ /(t O)Gk’ ’k”a”(g)z Vka k” " ka(o t)

k/al k// n
J’ de 1—gelete™
:27a 5 _ :
27 (e+iy)({—e+U,)
de 1
217 §_8+Uu/

eiat_efyt‘Z

+2i , -
')/a% Ya 8+|’)’ ‘

1_eiwtefyt
w+iy }

4ey,Im 2 (w o)
iwt e yt 2]

_48701 3’2 ‘)/af
(C10

The contribution coming from the last two terms on the rhs
of Eq. (C6) vanishes. Indeed the integral overcan be
closed on the complex lower half plane. The pole in

w+iy
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e=—iv does not contribute since its residue is zero. The . dw gl (et Ut

. . . — v P
other pole contributes only if Iig]<0. At the same time we dey,U.e f 5o (@)m (0F i (@t Uiy
can also perform the integration ovet by closing the con- (C12

tour in the complex upper half plane. The first term in the

square brackets of EC6) is nonvanishing only if Ifi{]

>0. The same holds for the second term since the pble The other two pieces come from E@9) (which we recall
=iy has vanishing residue. By collecting all the results ob-must be multiplied by Pand the last term of EqC10). By

tained one sees that they can be grouped into three broagkiting explicitly the real part, after some algebra one finds
categories: those which are time independent and give rise to

the stationary current, those which are proportionas td',

and those which are proportional & 2”'. These last ones do

can be rewritten as —8eyae"/‘J Ef(m)E YVorUgr
a!

2
YarUer wCcog (w+U )]+ ysi (w+U,)t]

02+ 21 (w 21" X . (C13
[ "”V ][( +U ) +2’C]11) [w2+,}/2][(w+ua/)2+72]

Let us now group the terms proportional 5. Two of
them come from Eq(C8) and the first term of Eq(C10); The sum of Egs(C11)—(C13 gives exactly the quantity
their sum can be written as J,(t)—3) of Eq. (34).

—4eyae*27‘f—f( >E
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