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Thermal conductivity modeling of periodic two-dimensional nanocomposites
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In this paper, the phonon Boltzmann equation model is established to study the phonon thermal conductivity
of nanocomposites with nanowires embedded in a host semiconductor material. Special attention has been paid
to cell–cell interaction using periodic boundary conditions. The simulation shows that the temperature profiles
in nanocomposites are very different from those in conventional composites due to ballistic phonon transport
at nanoscale. Such temperature profiles cannot be captured by existing models in literature. The general
approach is applied to study silicon wire/germanium matrix nanocomposites. We predict the thermal conduc-
tivity dependence on the size of the nanowires and the volumetric fraction of the constituent materials. At
constant volumetric fraction the smaller the wire diameter, the smaller is the thermal conductivity of periodic
two-dimensional nanocomposites. For fixed silicon wire dimension, the lower the atomic percentage of ger-
manium, the lower the thermal conductivity of the nanocomposites. Comparison is also made with the thermal
conductivity of superlattices. The results of this study can be used to direct the development of high efficiency
thermoelectric materials.
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I. INTRODUCTION

The efficiency and energy density of thermoelectric d
vices are determined by the dimensionless thermoele
figure of meritZT5S2sT/k, whereS is the Seebeck coeffi
cient, s is the electrical conductivity,k is the thermal con-
ductivity, andT is the absolute temperature.1 Significant ad-
vances for increasingZT have been made based on new ide
to engineer electron and phonon transport.2 One particularly
fruitful and exciting approach has been the use of nanost
tures, so that the electron performance can be improve
maintained concurrently with a reduction of phonon therm
conductivity.3–5 Nanostructure-based materials such
Bi2Te3 /Sb2Te3 superlattices and PbTe/PbSeTe quantum
superlattices have shown significant increases inZT values
compared to their bulk counterparts6,7 due to mainly reduced
phonon thermal conductivity of these structures. Nanoco
posites may realize a similar thermal conductivity reduct
and provide a pathway to scale-up the nanoscale effects
served in superlattices to thermoelectric material in b
form.

Most of the previous studies on thermal transport in na
structures have focused on thin films, semiconductor su
lattices, and nanowires. One key question in modeling of
thermal conductivity in nanostructures is when the wave
fect, i.e., the phonon dispersion change, should
considered.8,9 For example, models for phonon transport
superlattices generally fall into two groups. One gro
~‘‘wave models’’! assumes that phonons form superlatt
bands and calculates the modified phonon dispersion u
lattice dynamics or other methods.10–13 The other group of
models~‘‘particle models’’! assumes that the major reas
for the thermal conductivity reduction is the sequential sc
tering of phonons at interfaces.14–17In these models, phono
transport falls in the totally incoherent regime and super
tices are treated as inhomogeneous multilayer structures.
fuse interface scattering is usually incorporated into the B
zmann equation~BE! as boundary conditions. These mode
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succeeded in fitting experimental values of several supe
tice systems in the thick period range. However, because
wave nature of phonons is ignored, these models fail to
plain the thermal conductivity recovery in the short peri
limit that is observed in some superlattices. More recen
models9,18 and direct simulations19 combining the above
two pictures have been presented. These models and sim
tions further confirm the importance of diffuse interfa
scattering for thermal conductivity reduction. The diffuse i
terface scattering cannot only reduce the phonon m
free path~MFP! but also destroy the coherence of phono
Due to the loss of coherence, the phonon dispersion cha
in nanostructures predicted by ideal lattice dynam
approximation cannot be realized. Previous studies on
thermal conductivity of superlattices demonstrated that c
sical size effect models are expected to be applicable
wide range of nanostructures. This has been furt
confirmed by a recent study on developing the classical
effect model for phonon transport in nanowires and super
tice nanowires.20 The model, assuming gray and diffus
phonon scattering at interfaces and side walls, has succ
fully explained the thermal conductivity reduction effe
measured from nanowires. Based on previous studies,
will apply in this work the phonon Boltzmann equation
study the classical size effect on the thermal conductivity
nanocomposites.

Another field of related research is effective thermal co
ductivity of composites. The effective thermal conductivi
of composites in macroscale has been studied since Max
~for a review, see Milton21! and a variety of methods hav
been proposed to estimate physical properties of heter
neous media. In most of these research works, the interf
between two heteromedia are treated as nonresistive to
flow. The interface thermal resistance, or Kapit
resistance,22 has been considered only recently. The first tw
theoretical analyses that included the interface thermal re
tance were conducted by Hasselman and Johnson23 and by
Benvensite,24 respectively. Hasselman and Johnson exten
©2004 The American Physical Society16-1
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the classical work of Maxwell and Rayleigh to deriv
Maxwell–Garnett-type effective medium approximatio
~EMA! for calculating effective thermal conductivity of sim
ply spherical particulate and cylindrical fiber reinforced m
trix composites in which interface effect and particle s
effect are included. Benvensite and Miloh24 developed a gen
eral framework incorporating thermal boundary resistance
averaging all pertinent variables like heat flux and intens
over the composite medium viewed as a continuum cons
ing of a matrix with inclusions. Everyet al.25 refined the
effective medium theory and presented an asymme
Bruggeman type EMA, corrected for Kapitza resistance, a
simple solution for high volumetric fraction of inclusion
based on Bruggeman’s integration-embedding principle
noticeable work was by Nanet al.,26 who adopted the mul-
tiple scattering theory27 to develop a more general EMA
formulation for the effective thermal conductivity of arb
trary particulate composites with interfacial thermal res
tance. They considered the properties of the matrix and r
forcement, particle size and size distribution, volum
fraction, interface resistance, and the effect of shape. O
models have also been proposed including the bound
model28,29 and thermal resistance network theory. Numeri
simulation of thermal conductivity of composites ca
also be found in literature.30–33 However, these macroscop
models are developed based on Fourier heat conduc
theory that is not valid at nanoscale due to the ballis
phonon transport.

So far, there are not many theoretical studies on the t
mal conductivity of nanocomposites despite their importa
in both thermoelectrics and thermal management of elect
ics ~especially the development of thermal interface mat
als!. Closely related works are done by Khitunet al.34 and
Balandin and Lazarenkova35 to explain theZT enhancemen
of Ge quantum dot structures~where Ge quantum dots ar
;4 nm and can be thought of as nanoparticles!. The model
by Khitun et al. calculates the reduced thermal conductiv
through the relaxation time change due to the nanoparti
embedded using the Mathiessen rule.36 They used the Mie
theory for acoustic wave scattering to calculate the scatte
cross section of a single particle and thus the additional
laxation time due to single particle scattering. Their meth
is valid if there is no inelastic scattering inside the parti
and the interface scattering must be specular.37 This approach
does not recover to bulk material properties of compos
since the thermal conductivity of nanoparticle material do
not get into the final picture. Similar to the wave model
superlattices, Balandin and Lazarenkova35 assumed that a
new homogeneous material is formed and calculates the
electron and phonon dispersion relation thus the group
locity reduction. This approach requires phonon cohere
over several unit cells and does not apply to diffuse interf
scattering as observed in previous studies on superlattic

The motivation of this work is to develop a microscop
framework for thermal conductivity of nanocomposites
terms of the phonon particle transport model. For simplic
we will study the thermal conductivity of periodic two
dimensional~2D! nanocomposites. The model will help t
understand some basic physical phenomena that exis
19531
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nanocomposites and serve as a prototype to be further de
oped to characterize more complex nanocomposites, suc
nanoparticle composites. Some fundamental questi
such as~a! how is phonon transport in nanocomposit
different from that in macroscale composites,~b! what is the
behavior of the size effect in nanowire-embeded composi
and ~c! can nanocomposites have lower effective therm
conductivity than a superlattice, will be addressed in
investigation.

II. THEORETICAL MODEL

Based on the reasoning that the phonon particle mo
can be a good predictive tool for thermal conductivity
nanocomposites, we focus our work on the phonon trans
in nanowire-embedded composites for the case where
heat-flow direction is perpendicular to the wire axis. A
shown in Fig. 1~a!, there is no heat flow along the wire ax
thus the problem is simplified to two-dimensional althou
the nature of phonon transport is three-dimensional in na
as shown in Fig. 1~c!. The unit cell to be simulated is show
in Fig. 1~b!. The detail about the interface and bounda
condition will be presented in a later section. To make
comparison, we also calculated the cross-plane thermal
ductivity of a simple one-dimensional Si–Ge layered stru
ture, which is often called superlattices when the thicknes
each layer is tens of nanometers, as shown in Fig. 1~d!. To
establish the phonon particle model the following assum
tions are made:~1! the phonon wave effect can be exclude
~2! the frequency-dependent scattering rate in the bulk m
dium is approximate by an average phonon MFP; and~3! the
interface scattering is diffuse.

A. Phonon Boltzmann equation

With the above assumptions, the phonon BE can
expressed in terms of the total phonon intensity defin
as38,39

I i5
1

4p (
m

E
0

vmax
unmiu f \vDmi~v!dv, ~1!

where subscripti ~51,2! denotes properties of the host an
wire material ~or alternative material of a 1D layere
structure, in this worki 51 is for germanium andi 52
for silicon!, D(v) is the density of states per unit volume,f
the phonon distribution function,\ the Planck constant,uvmiu
the magnitude of the phonon group velocity,v the phonon
frequency, andvmax is the maximum frequency of eac
polarization. The summation indexm is over the three
phonon polarizations. The purpose of introducing the phon
intensity concept38 is for the mathematical convenience b
cause the concept of photon intensity is widely used in th
mal radiation literature and many results in radiative trans
might be used for phonon transport studies.40,41

The 2D phonon BE under the single mode relaxation ti
approximation can be written as
6-2
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FIG. 1. ~a! Heat flow across periodic 2D composite with silicon wires embedded in germanium host,~b! the unit cell to be simulated,~c!
local coordinate used in phonon Boltzmann equation simulation, and~d! heat flow across 1D Si–Ge layered structure~superlattice!.
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I i2I oi

L i
, ~2!

where u and f, as shown in Fig. 1~c!, are the polar and
the azimuthal angles, respectively, andL is the average
phonon MFP.I oi is determined by the Bose-Einstein dist
bution of phonons and depends on the local equilibri
temperature. In nanostructures, however, local equilibri
cannot be established and thus the temperature obta
should not be treated the same as the case of local the
equilibrium. An energy balance shows thatI oi can be calcu-
lated from16,42

I oi~x,y!5
1

4p E
4p

I i~r ,V!dV

5
1

4p E
0

2pE
0

p

I i~x,y,u,f! sinududf) ~3!

and the corresponding temperature obtained is a measu
the local energy density. We note the equations for the
layered structure are much simpler because the intensity
not depend on thef direction andy position.

A rigorous phonon transport simulation should incorp
rate the frequency dependence of phonon relaxation time
19531
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group velocity, and thus account for interactions amo
phonons of different frequencies. This will relax the assum
tion ~2!. However, it requires solution of the phonon BE f
many different frequencies. Previous works show that an
erage MFP is a good approximation for thermal conductiv
modeling across the interfaces~cross-plane transport!.16 For
transport parallel to the interface, frequency dependent re
ation time gives a better solution.14 However, the existing
theories for the frequency dependence of relaxation t
contain large uncertainties because they are based on m
approximations and rely on the fitting parameters from
perimental data.43 Therefore we will use a frequency inde
pendent phonon MFP for simplicity. Often the phonon MF
L is estimated from the thermal conductivity, the speci
heat, and the speed of sound, according to the standar
netic theory expression,

k5 1
3 CvL, ~4!

whereC is the volumetric specific heat. This method, ho
ever, neglects the facts that at room temperature most ac
tic phonons are populated close to the zone boundary w
the phonon group velocity is significantly smaller than t
sound velocity and that the optical phonons contribute a
nificant portion of specific heat but little to thermal condu
6-3
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TABLE I. Room-temperature parameters used in the calculation.

C ~J/m3 K! v ~m/s! k ~W/m K! a ~nm!

Silicon 0.933106 1804 150 0.5431
Germanium 0.873106 1042 60 0.5658
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tivity due to their near zero group velocity. A better estim
tion of the phonon MFP and the group velocity can
obtained by approximating the dispersion of the transve
and the longitudinal-acoustic phonons with simple sine fu
tions and subtracting the optical phonon contribution to
specific heatC in calculating the phonon MFP. This estim
tion leads to a mean free path in silicon of the order
250–300 nm at room temperature. Experiments and mo
ing from Goodson’s group also lead to similar numbers44

The method gave a better fitting of the experimental ther
conductivity data on superlattices than that based on b
specific heat forC and the speed of sound forv in Eq.
~4!.14,16In our analysis, some parameters used are taken f
Ref. 16 as listed in Table I.

B. Boundary and interface conditions

Mathematically, the structure of the BE demands
boundary conditions to be specified on those parts of bou
aries where the characteristics point into the domain.45 This
boundary condition is termed as emitted temperature
wall.16 Most of the previous works on phonon transpo
simulation used a specified emitted temperature bound
condition. This can give an artificial temperature jump at
boundaries due to the additional nonphysical scattering a
boundaries.46 A more physical boundary condition i
desirable to simulate phonon transport in realistic structu
In this work, the periodic boundary condition is used bas
on the underlying physics for phonon transport in perio
structures. As shown in Fig. 1~b!, heat is enforced to
flow in thex direction. The specular reflected boundary co
ditions are enforced aty50 andy5LGe boundaries due to
symmetry,

I ~x,LGe,u,f!5I ~x,LGe,u,2f!, ~5!

I ~x,0,u,f!5I ~x,0,u,2f!. ~6!

In the x direction, we applied periodic boundary condition
At equilibrium, the phonon distribution, i.e., the phono
intensity @see Eq.~1!#, is isotropic. If heat is enforced to
flow, the phonon distribution/intensity will be distorte
Physically the periodic boundary condition means that
distortion of phonon intensity in each direction at each po
(0,y) at thex50 boundary is the same as the distortion
the corresponding direction at the corresponding po
(LGe,y) at the x5LGe boundary. The equation can be e
pressed as

I ~LGe,y,u,f!2I 0~LGe,y!5I ~0,y,u,f!2I 0~0,y!. ~7!

With this boundary condition, the total surface heat flux
conserved in thex direction and the cell–cell interaction i
taken into account. Because of the periodicity, the pho
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transport of the whole structure can be represented
that in the unit cell. Boundary conditions thus defined requ
an iterative scheme to solve the equation, which impl
that it is more complicated than the front-to-end scheme
is usually adopted to solve the emitted temperature bound
condition problems. This periodic boundary condition h
been used in studying the cross-plane thermal conducti
of superlattices~which is a 1D structure! before.16 It can be
proven that the temperature difference across the unit
should be independent ofy. That is,

I o~0,y!2I o~LGe,y!5
C1v1@T~0,y!2T~LGe,y!#

4p
5const.

~8!

In our simulation, we superimposedT(0,y)2T(LGe,y)
51 K in the above equation. If we do not superimpose su
a temperature difference in the program, Eq.~7! will auto-
matically converge to a constant temperature differe
T(0,y)2T(LGe,y) value. The converged value varies wi
simulated structures. But the final results of thermal cond
tivity value do not depend on whether the temperature
ference is superimposed. However, the calculation is m
faster when the temperature difference value is super
posed. We should note that superimposing the tempera
difference across the unit cell is physically different fro
superimposing temperature~either emitted or Fourier-limit
temperature! at each boundary.

The interface scattering between the nanowire and
host material is assumed to diffuse. Ziman36 proposed the
following expression for estimating the interface specular
parameterp:

p5expS 2
16p3d2

l2 D , ~9!

whered is the characteristic interface roughness andl is the
characteristic phonon wavelength. At room temperature,
characteristic phonon wavelengthl5hv/kBT is about 1 nm,
whereh is the Planck constant,kB is the Boltzmann constant
andv is the sound velocity in the material. Clearly even o
monolayer roughnessd;0.3 nm gives an interface specula
ity parameterp50, and allows for totally diffuse interface
assumption. Determining the phonon reflectivity a
transmissivity at interface is difficult as in the treatme
of the classical thermal boundary resistance problem.47–49

One rather crude model is called the diffuse misma
model,49 which assumes that phonons emerging from
interface do not really bear any relationship to its origin, i.
one cannot tell which side they come from. This assumpt
implies that

Td215Rd12512Td12, ~10!
6-4
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where the second equation comes from the energy conse
tion identity Rd121Td1251. We remind again that subscrip
12 means from medium 1 into medium 2 and vice ver
Dames and Chen20 obtained the following equation fo
Td12, which is expected to be valid over a wide temperat
range:

Td12~T!5
U2v2

U1~T!v11U2~T!v2
, ~11!

whereU is the volumetric internal energy.
With the given interface transmissivity and reflectivity, w

can write down the phonon intensity at interfaces. As
example, the phonon intensity foru.0 at the x5(LGe
2LSi)/2, (LGe2LSi)/2<y<(LGe1LSi)/2 interface can be
written from the energy balance equation.

E
0

2pE
0

p/2

I S LGe2LSi

2
,y,u,f D cosu•sinududf

5Rd21E
0

2pE
p/2

p

I S LGe2LSi

2
,y,u,f D cosu•sinududf

1Td12E
0

2pE
0

p/2

I S LGe2LSi

2
,y,u,f D cosu•sinududf.

~12!

Because the phonons are scattered diffusely at interfaces
phonons leaving an interface are isotropically distribut
and Eq.~11! can be written as

I S LGe2LSi

2
,y,u,f D5

Rd21

p E
0

2pE
p/2

p

I S LGe2LSi

2
,y,u,f D

3cosu•sinududf

1
Td12

p E
0

2pE
0

p/2

I S LGe2LSi

2
,y,u,f D

3cosu•sinududf for u.0. ~13!

Phonons leaving foru,0 and other interfaces can be sim
larly written.

C. Method of numerical solution

Equation~2! is similar to the photon radiative transpo
equation~RTE!.42 The key is to solve for the intensity distr
bution I (r ,V). Once the intensity is found by solving Eq
~2!, the heat fluxqx(x,y), qy(x,y) and the effective tempera
ture T(x,y) can be determined through the numerical in
gration over the whole solid angle 4p. A variety of solution
method is available in the thermal radiative trans
literature.40,41 The most often used methods are the discr
ordinates method~DOM!50 and the finite volume method.51

The discrete ordinate method is a tool to transform the eq
tion of radiative transfer into a set of simultaneous par
differential equations. This is based on a discrete represe
tion of directional variation of intensity. A solution to th
transport problem is found by solving the equation of rad
19531
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tive transfer for a set of discrete directions spanning the
tire solid angle. The integrals over the solid angle are
proximated by numerical quadratures. For phonon trans
in nanostructures, the challenge is to reduce the ‘‘ray effe
which often happens similarly in thermal radiation in th
optical thin limit. In our previous work,46 double Gauss-
Legender quadratures have been used to replace the con
tional SN quadratures for the discrete ordinate method a
demonstrated to successfully resolve the ray effect prob
of phonon transport simulation in nanostructures. We brie
discuss the calculation method here. The method separa
discretizes the integrating points in them5cosu ~the angle
u! and the anglef using Gauss-Legender quadrature. To o
tain high accuracy,m is discretized into 120 points from21
to 1 andf is discretized into 24 points for 0;p ~not 0
;2p due to symmetry!. Then Eq.~3! can be written in dis-
crete form as

I 0~x,y!5
2

4p (
m

(
n

I ~x,y,mn ,fm!wnwm8 . ~14!

The weights satisfy(m(nwnwm8 52p. In order to accurately
capture the physics of the transport phenomena and m
mize the calculation time, a nonuniform grid system is us
The step scheme is used for spatial discretization. Total s
tial grids of 1023102 are used in the calculation. Few
points in both spatial and angular coordinates can be used
faster calculation. The equation is solved by iteration o
the value of the equivalent equilibrium intensityI 0(x,y)
52/4p(m(nI (x,y,mn ,fm)wnwm8 . When the relative error
of the calculated value of the equivalent equilibrium inte
sity between two iteration steps is less than 231026, the
program is assumed to converge and the effective temp
ture and heat flux are calculated.

Although at nanoscale, temperature cannot be defined
measure of equilibrium, we can use the effective tempera
to reflect the local energy density inside the medium.36,39

Assuming constant specific heat over a wide tempera
range, we can write the effective temperature as

T~x,y!5
4pI 0~x,y!

Cuvu
5

1

Cuvu (n
(
m

~x,y,mn ,fm!wnwm8 .

~15!

The heat fluxes at every point can be accordingly writ
as

qx~x,y!5(
m

(
n

I ~x,y,mn ,fm!mnwnwm8 , ~16!

qy~x,y!5(
m

(
n

I ~x,y,mn ,fm!A12mn
2 cosfm•wnwm8 ,

~17!

where qx and qy are heat flux in thex and y directions,
respectively. After local effective temperature distributio
and heat flux are obtained, the thermal conductivity calcu
tion is straightforward, taking advantage of the unit cell co
cept. The surface heat flux in thex direction can be calcu-
lated as
6-5
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RONGGUI YANG AND GANG CHEN PHYSICAL REVIEW B69, 195316 ~2004!
Qx~x!5LZE
0

LGe
qx~x,y!dy, ~18!

where Lz is the unit length in thez direction. Equations
~5! and ~6!, i.e., the specular reflected boundary conditio
enforced at y50 and y5LGe boundaries have ensure
Qx(x)5const. The average energy density~average tempera
ture! at eachy-z plane along thex direction can be written
as

T̄~x!5
1

LGe
E

0

LGe
T~x,y!dy. ~19!

Therefore the effective thermal conductivityk of the com-
posite can be obtained as

k5
Qx

Lz@ T̄~LGe!2T̄~0!#
~20!

from

Qx5k~LzLGe!
@ T̄~LGe!2T̄~0!#

LGe
. ~21!

The following dimensionless parameters have been in
duced to present temperature and heat flux results:

q* 5
q

C1v1
, Qx* 5

Qx

LGeLZC1v1
, x* 5

x

LGe
, y* 5

y

LGe
.

~22!

III. RESULTS AND DISCUSSIONS

A. Nonequilibrium temperature and heat flux distribution

Figures 2~a! and 2~c! show the effective temperature di
tribution in the composite structures with silicon wire dime
sion of LSi5268 nm and LSi510 nm, respectively. The
atomic percentage is 20% for Si and 80% for Ge. Sim
calculation gives the geometric ratioLGe/LSi52.35. The
choosing ofLSi5268 nm is based on the fact that the MF
value is around 268 nm calculated from Eq.~4! by using
the parameters listed in Table I. Figure 2~a! is very close to
the temperature we expect in macroscale compos
with interface thermal resistance. Therefore, for a w
dimension larger than 268 nm, the effective temperature
tribution is expected to be similar to that plotted in Fig. 2~a!.
The comparison of Figs. 2~a! and 2~c! shows that the
temperature or energy density distribution at nanoscale
periodic 2D composites can be very different from that
macroscale due to the ballistic nature of phonons. To be
understand the effect of interface thermal resistance,
plot the temperature distribution along thex direction at cer-
tain fixedy positions of the two structures in Figs. 2~b! and
2~d!. Apparent temperature jumps at the wire–host mate
interfaces are clearly shown in Figs. 2~b! and 2~d!. There are
also temperature jumps along they direction as indicated in
Figs. 2~a! and 2~c!. The larger the wire dimension, the lowe
the temperature jump relative to the total temperature dif
ence across the interface, and thus the lower the contribu
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of the interface resistance to the effective thermal resista
of the composite. When the nanowire dimension is mu
smaller than the phonon MFP, sayLSi510 nm, the tempera-
ture gradient along thex direction can be negative in som
local regions. The heat fluxes in thex direction, however, are
always positive as shown in Figs. 3~a! and 3~b!. This phe-
nomenon was not observed before in macroscale compo
and cannot be predicted by Fourier heat conduction ba
theories. Another question that may raise is whether the
sults shown in Figs. 2~c! and 2~d! violate the second law o
thermodynamic because the temperature inside the ce
larger than the cell boundary. To answer this question,
should first remind, as pointed out before, that temperatur
defined is not the same as the case of thermal equilibrium
local thermal equilibrium. When ballistic transport dom
nates, no local thermal equilibrium can be established
temperature calculated represents the local energy den
Figures 4~a! and 4~b! illustrate the mechanisms of the obse
vation in Fig. 2. WhenLSi is much smaller than the phono
MFP, the internal scattering in the medium~both host mate-
rial and the wire! is negligible. We further assume that th
phonon reflectivity is unity at the wire and host mater
interface. Then the scenario can be simplified as therma
diation in vacuum with opaque wire inclusions~host
material–vacuum, interface–solid wall, wire-opaque so
body!. Referring to Fig. 4~a!, we are interested in knowing
the temperature distribution of pointsA–F when the heat is
enforced to flow in thex direction. We can qualitatively cal
the left half of the region shown as the ‘‘hot’’ region and th
right half as the ‘‘cold’’ region. As shown in the figure, poin
D andF ‘‘see’’ the hot region and pointsA andC ‘‘see’’ the
cold region, thus pointsD and F locally receive higher en-
ergy phonons and have higher effective temperature t
pointsA andC. Moving from pointA to F ~or from C to D!,
more hot area is seen than cold area, thus the effective
perature increases. Comparing toD and F, point E has a
lower temperature due to a small view factor from the h
region. Similarly pointB has a higher effective temperatu
than A and C. Figure 2 shows the temperature distributio
only in one unit cell. To visualize the temperature distrib
tion, one needs to stitch several periods of Fig. 2. Figure 4~b!
shows the temperature distribution alongx at severaly points
over three periods. The energy over those regions with e
higher temperature than the unit cell boundary com
from the much higher temperature region in their previo
cells. The results do not violate the second law of therm
dynamics.

B. Effect of wire dimension

To calculate the effective thermal conductivity of compo
ites, the surface heat flux and the average temperature~aver-
age energy density! at eachy-zplane along thex direction is
calculated. As examples, Fig. 5 shows the dimensionless
erage energy density distribution along thex direction in a
Si0.2– Ge0.8 composite with a silicon wire dimension ofLSi
5268 and 10 nm, respectively. The dimensionless surf
heat flux is conserved toQx* (x)50.088 for anLSi5268 nm
composite andQx* (x)50.037 for anLSi510 nm composite.
Again, the surface heat flux is conserved and the tempera
6-6
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FIG. 2. Effective temperature (T2Tref) distribution in the unit cell of Si0.2– Ge0.8 composites withT(0,y)2T(LGe,y)51 K applied for
different wire dimensions:~a! temperature contour forLSi5268 nm,~b! the temperature distribution alongx* at y* 50.5, 0.7, and 0.85 for
LSi5268 nm, ~c! temperature contour forLSi510 nm, and~d! the temperature distribution alongx* at y* 50.5, 0.7, and 0.85 forLSi

510 nm. The temperature discontinuity at the interface is clearly shown. The temperature distribution inLSi510 nm nanocomposite is ver
different from macroscale composites due to the ballistic phonon transport at nanoscale and cannot be captured by Fourier heat
theory.
e
t

tiv
e

ge
ce
il
a
e
d

e

.5
a

rl

n
ess
l
er
at
al

the
per-

cal

of
jump appears at the interface. The smaller the wire dim
sion, the larger the average temperature jump and thus
larger is the interface resistance contribution to the effec
thermal resistance of the composite. We can exp
that when the wire dimension is 2 to 3 times or even lar
than the silicon MFP, the contribution of the interfa
thermal resistance will be negligible and the results w
recover the Fourier limit. Figure 6 shows the therm
conductivity of Si0.2– Ge0.8 composites as a function of th
silicon wire dimension. To make a comparison, we inclu
the results of cross-plane~perpendicular to the interfaces!
thermal conductivity of a simple one-dimensional Si–G
layered structure~superlattices!. Simple calculation shows
that the thickness of the germanium layer should be 4
times the thickness of the silicon layer in 1D stacks with
germanium atomic percentage of 80%. Figure 6 clea
19531
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shows that at constant volumetric fraction~or atomic
percentage! the smaller the characteristic length of silico
~the silicon wire dimension in composites and the thickn
of the silicon layer in superlattices!, the smaller the therma
conductivity. The simple 1D layered structure has a low
thermal conductivity than periodic nanowire composites
this atomic percentage. We point out that the therm
conductivity of superlattices calculated here is lower than
experimental data because the interface scattering in su
lattices may not fall into a totally diffuse scattering limit.14,16

The comparison shown in this paper is just for theoreti
consistency.

C. Effect of atomic percentage

Some other questions of interests are:~1! can the thermal
conductivity of nanowire composites be lower than that
6-7
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FIG. 3. The dimensionless heat flux distribution in thex direction qx* : ~a! LSi5268 nm composite, and~b! LSi510 nm composite. It
shows that thex-directional heat flux is always positive even in the localized negative temperature gradient region shown in Fig. 2
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simple 1D stacks~superlattice!? ~2! How the thermal con-
ductivity changes with the atomic percentage? Figure
shows the thermal conductivity of Si12xGex composites as a
function of atomic percentagex of germanium for wire di-
mensionsLSi of 50 and 10 nm, respectively. By changing t
atomic percentage, the geometric ratio of the unit cell, i
the dimension of germanium, is changed in the numer
simulation. It shows that for a fixed silicon wire dimensio
the lower the atomic percentage of germanium; the lowe
the thermal conductivity of the nanocomposites. This is v
different from macroscale composites and nanoparticle-fi
polymers, in which thermal conductivity of the composit
increases with the decreasing volumetric fraction of the l
thermal conductivity component. This is caused by the b
listic transport of phonons in both the host material and
nanowires, and the interface resistance between the hos
terial and the nanowires. In polymer nanocomposites,
thermal conductivity of the host polymer is usually very lo
and the thermal transport in polymers is diffusive. Thus
thermal conductivity of polymer nanocomposites increa
with the volumetric fraction of high thermal conductivit
nanoparticle fillers. Figure 7 also shows that the thermal c
ductivity of the periodic 2D nanocomposites is lower th
that of the superlattice with corresponding characteri
length when the atomic percentagex of germanium is lower
than 35%. Simple calculation shows that the geometric r
LGe/LSi is around 1.182 whenx50.35. For a simple 1D
layered structure as shown in Fig. 8~a!, phonons experience
cross-plane interface scattering in all the cross-sectional
z-y when the heat is enforced to flow in thex direction.
Comparing Figs. 8~a! and 8~b!, we know that phonons ca
flow through a fraction of (LGe2LSi)/LGe open area without
experiencing cross-plane interface scattering in nanocom
ites. However, phonons must experience an additional f
tion of LSi /LGe interface scattering parallel to the heat flo
direction ~in-plane scattering!. When the thermal conductiv
ity of a simple 1D layered structure is the same as that of
periodic 2D nanocomposites atx50.35, we can approxi-
mately infer that a fraction ofLSi /LGe
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FIG. 4. ~a! Illustration to show the mechanisms of negative te

perature gradient in the localized regions using thermal radia
analogy.~b! The temperature distribution alongx* at y* 50.5, 0.7,
and 0.85 forLSi510 nm over three periods.
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in-plane interface scattering is equivalent to a fraction
(LGe2LSi)/LGe cross-interface scattering. In other words, t
efficiency of cross-interface scattering to reduce thermal c
ductivity is around five times as effective as the scatter
parallel to the interface. This result is consistent w
previous experiments and modeling of the in-plane a
cross-plane thermal conductivity of superlattices.14,16 It also
suggests that the anisotropic nanocomposites might
more effective in reducing thermal conductivity of nanoco
posites.

IV. CONCLUSIONS

We studied theoretically the phonon thermal conductiv
of periodic two-dimensional nanocomposites with nanowi

FIG. 5. The dimensionless average temperature distribu
along thex direction in Si0.2– Ge0.8 composite with silicon wire
dimension ofLSi5268 nm andLSi510 nm, respectively.

FIG. 6. Thermal conductivity of Si0.2– Ge0.8 composites as a
function of the silicon wire dimension or layer thickness. T
smaller the characteristic length of silicon~the silicon wire dimen-
sion in composites and the thickness of the silicon layer in su
lattices!, the smaller is the thermal conductivity.
19531
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embedded in a host semiconductor material using the pho
BE. Special attention has been paid to cell–cell interact
using periodic boundary conditions. The simulatio
shows that the temperature profiles in nanocomposites
very different from those in conventional composites d
to ballistic phonon transport at nanoscale. Such tempera
profiles cannot be captured by existing models in literatu
We predict the thermal conductivity dependence on
interface conditions, the size of the nanowires, and
volumetric fraction of the constituent materials. The smal
the wire diameter, the smaller is the thermal conductiv
of periodic two-dimensional nanocomposites. The therm
conductivity of 2D Si–Ge composites is predicted to be
function of the atomic percentage of germanium for w
dimensions of 50 and 10 nm. It shows that for fixe
silicon wire dimension, the lower the atomic percentage
germanium, the lower the thermal conductivity of th

n

r-

FIG. 7. Thermal conductivity of Si12x– Gex composites as a
function of atomic percentagex of germanium. For fixed silicon
wire dimension, the lower the atomic percentage of germanium,
lower is the thermal conductivity of the nanocomposites. The re
is very different from the bulk material due to the ballistic nature
phonon transport at nanoscale and interface effect.

FIG. 8. Illustration to show that phonons experience less cro
interface scattering in periodic 2D composites than that in 1D l
ered structures but additional scattering parallel to the interface.
efficiency of cross-interface scattering to reduce thermal conduc
ity is around five times as effective as scattering parallel to
interface.
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RONGGUI YANG AND GANG CHEN PHYSICAL REVIEW B69, 195316 ~2004!
nanocomposites. This is very different from bulk composi
because the interface dominates the ballistic transpor
nanocomposites. The periodic 2D nanocomposites can h
a lower thermal conductivity than their 1D counterpart wh
the Ge atomic percentage is lower than 35%. This sugg
that the anisotropic nanocomposites might be more effec
in reducing thermal conductivity of nanocomposites. Res
of this study can be used to direct the development of b
high efficiency thermoelectric materials and thermal int
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