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Thermal conductivity modeling of periodic two-dimensional nanocomposites
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In this paper, the phonon Boltzmann equation model is established to study the phonon thermal conductivity
of nanocomposites with nanowires embedded in a host semiconductor material. Special attention has been paid
to cell—cell interaction using periodic boundary conditions. The simulation shows that the temperature profiles
in nanocomposites are very different from those in conventional composites due to ballistic phonon transport
at nanoscale. Such temperature profiles cannot be captured by existing models in literature. The general
approach is applied to study silicon wire/germanium matrix nanocomposites. We predict the thermal conduc-
tivity dependence on the size of the nanowires and the volumetric fraction of the constituent materials. At
constant volumetric fraction the smaller the wire diameter, the smaller is the thermal conductivity of periodic
two-dimensional nanocomposites. For fixed silicon wire dimension, the lower the atomic percentage of ger-
manium, the lower the thermal conductivity of the nanocomposites. Comparison is also made with the thermal
conductivity of superlattices. The results of this study can be used to direct the development of high efficiency
thermoelectric materials.
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[. INTRODUCTION succeeded in fitting experimental values of several superlat-
tice systems in the thick period range. However, because the
The efficiency and energy density of thermoelectric de-wave nature of phonons is ignored, these models fail to ex-
vices are determined by the dimensionless thermoelectriplain the thermal conductivity recovery in the short period
figure of meritZT=S?c'T/k, whereSis the Seebeck coeffi- limit that is observed in some superlattices. More recently,
cient, o is the electrical conductivityk is the thermal con- model$*® and direct simulatio’® combining the above
ductivity, andT is the absolute temperatutéSignificant ad-  two pictures have been presented. These models and simula-
vances for increasingT have been made based on new ideagions further confirm the importance of diffuse interface
to engineer electron and phonon transpaBne particularly  scattering for thermal conductivity reduction. The diffuse in-
fruitful and exciting approach has been the use of nanostruaerface scattering cannot only reduce the phonon mean
tures, so that the electron performance can be improved dree path(MFP) but also destroy the coherence of phonons.
maintained concurrently with a reduction of phonon thermalDue to the loss of coherence, the phonon dispersion change
conductivity>~® Nanostructure-based materials such asn nanostructures predicted by ideal lattice dynamics
Bi,Te;/Sh,Te; superlattices and PbTe/PbSeTe quantum doapproximation cannot be realized. Previous studies on the
superlattices have shown significant increase&Tirvalues thermal conductivity of superlattices demonstrated that clas-
compared to their bulk counterpartdue to mainly reduced sical size effect models are expected to be applicable to a
phonon thermal conductivity of these structures. Nanocomwide range of nanostructures. This has been further
posites may realize a similar thermal conductivity reductionconfirmed by a recent study on developing the classical size
and provide a pathway to scale-up the nanoscale effects oleffect model for phonon transport in nanowires and superlat-
served in superlattices to thermoelectric material in bulkiice nanowire€® The model, assuming gray and diffuse
form. phonon scattering at interfaces and side walls, has success-
Most of the previous studies on thermal transport in nanofully explained the thermal conductivity reduction effect
structures have focused on thin films, semiconductor supemeasured from nanowires. Based on previous studies, we
lattices, and nanowires. One key question in modeling of thavill apply in this work the phonon Boltzmann equation to
thermal conductivity in nanostructures is when the wave efstudy the classical size effect on the thermal conductivity of
fect, i.e., the phonon dispersion change, should b&anocomposites.
considered:® For example, models for phonon transport in  Another field of related research is effective thermal con-
superlattices generally fall into two groups. One groupductivity of composites. The effective thermal conductivity
(“wave models”) assumes that phonons form superlatticeof composites in macroscale has been studied since Maxwell
bands and calculates the modified phonon dispersion usingor a review, see Miltoff) and a variety of methods have
lattice dynamics or other methos:™® The other group of been proposed to estimate physical properties of heteroge-
models (“particle models”) assumes that the major reason neous media. In most of these research works, the interfaces
for the thermal conductivity reduction is the sequential scatbetween two heteromedia are treated as nonresistive to heat
tering of phonons at interfacé$:*’In these models, phonon flow. The interface thermal resistance, or Kapitza
transport falls in the totally incoherent regime and superlatresistancé? has been considered only recently. The first two
tices are treated as inhomogeneous multilayer structures. Difheoretical analyses that included the interface thermal resis-
fuse interface scattering is usually incorporated into the Bolttance were conducted by Hasselman and JoHrsord by
zmann equatioBE) as boundary conditions. These models Benvensite’ respectively. Hasselman and Johnson extended
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the classical work of Maxwell and Rayleigh to derive nanocomposites and serve as a prototype to be further devel-
Maxwell-Garnett-type effective medium approximation oped to characterize more complex nanocomposites, such as
(EMA) for calculating effective thermal conductivity of sim- nanoparticle composites. Some fundamental questions,
ply spherical particulate and cylindrical fiber reinforced ma-such as(a how is phonon transport in nanocomposites
trix composites in which interface effect and particle sizedifferent from that in macroscale composités) what is the
effect are included. Benvensite and Mif8ldeveloped a gen- behavior of the size effect in nanowire-embeded composites,
eral framework incorporating thermal boundary resistance bnd (¢) can nanocomposites have lower effective thermal

averaging all pertinent variables like heat flux and intensityconductivity than a superlattice, will be addressed in the

over the composite medium viewed as a continuum consist/Vestigation.
ing of a matrix with inclusions. Evergt al?® refined the
effective medium theory and presented an asymmetric
Bruggeman type EMA, corrected for Kapitza resistance, as a
simple solution for high volumetric fraction of inclusion, Based on the reasoning that the phonon particle model
based on Bruggeman'’s integration-embedding principle. Aan be a good predictive tool for thermal conductivity of
noticeable work was by Naet al,”® who adopted the mul- nanocomposites, we focus our work on the phonon transport
tiple scattering theoR/ to develop a more general EMA in nanowire-embedded composites for the case where the
formulation for the effective thermal conductivity of arbi- heat-flow direction is perpendicular to the wire axis. As
trary particulate composites with interfacial thermal resis-shown in Fig. 1a), there is no heat flow along the wire axis
tance. They considered the properties of the matrix and reirthus the problem is simplified to two-dimensional although
forcement, particle size and size distribution, volumethe nature of phonon transport is three-dimensional in nature
fraction, interface resistance, and the effect of shape. Othefs shown in Fig. (t). The unit cell to be simulated is shown
models have also been proposed including the bounding Fig. 1(b). The detail about the interface and boundary
modef®??and thermal resistance network theory. Numericalcondition will be presented in a later section. To make a
simulation of thermal conductivity of composites can comparison, we also calculated the cross-plane thermal con-
also be found in literatur&~3*However, these macroscopic ductivity of a simple one-dimensional Si—Ge layered struc-
models are developed based on Fourier heat conductiaiire, which is often called superlattices when the thickness of
theory that is not valid at nanoscale due to the ballisticeach layer is tens of nanometers, as shown in Fid). To
phonon transport. establish the phonon particle model the following assump-
So far, there are not many theoretical studies on the thetions are made(1) the phonon wave effect can be excluded;
mal conductivity of nanocomposites despite their importancg?) the frequency-dependent scattering rate in the bulk me-
in both thermoelectrics and thermal management of electrordium is approximate by an average phonon MFP; @dhe
ics (especially the development of thermal interface materiinterface scattering is diffuse.
als). Closely related works are done by Khiten al3* and
Balandin and Lazarenkovato explain theZT enhancement
of Ge quantum dot structurgsvhere Ge quantum dots are A. Phonon Boltzmann equation

~4 nm and can be thought of as nanoparticldhe model With the above assumptions, the phonon BE can be

by Khitun et al.calc_ulatgs the reduced thermal conductivityexpressed in terms of the total phonon intensity defined
through the relaxation time change due to the nanoparticleggs.39

embedded using the Mathiessen rifi@hey used the Mie

theory for acoustic wave scattering to calculate the scattering

cross section of a single particle and thus the additional re- 1 @max

laxation time due to single particle scattering. Their method 'i:E% fo [ Vmil fh oD pi(w)dw, D

is valid if there is no inelastic scattering inside the particle

and the interface scattering must be speciii@his approach

does not recover to bulk material properties of compositegvhere subscript (=1,2) denotes properties of the host and

since the thermal conductivity of nanoparticle material doesvire material (or alternative material of a 1D layered

not get into the final picture. Similar to the wave model of structure, in this worki=1 is for germanium and=2

superlattices, Balandin and Lazarenkbvassumed that a for silicon), D(w) is the density of states per unit volunfe,

new homogeneous material is formed and calculates the nethe phonon distribution functior, the Planck constaniy |

electron and phonon dispersion relation thus the group vethe magnitude of the phonon group velocity,the phonon

locity reduction. This approach requires phonon coherenc&equency, andwp.y is the maximum frequency of each

over several unit cells and does not apply to diffuse interfaceolarization. The summation indem is over the three

scattering as observed in previous studies on superlatticesphonon polarizations. The purpose of introducing the phonon
The motivation of this work is to develop a microscopic intensity concepf is for the mathematical convenience be-

framework for thermal conductivity of nanocomposites incause the concept of photon intensity is widely used in ther-

terms of the phonon particle transport model. For simplicitymal radiation literature and many results in radiative transfer

we will study the thermal conductivity of periodic two- might be used for phonon transport studi&g!

dimensional(2D) nanocomposites. The model will help to  The 2D phonon BE under the single mode relaxation time

understand some basic physical phenomena that exist @pproximation can be written as

Il. THEORETICAL MODEL
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Direction of
Phonon Transport

FIG. 1. (a) Heat flow across periodic 2D composite with silicon wires embedded in germaniun{j)asie unit cell to be simulatedc)
local coordinate used in phonon Boltzmann equation simulation(dnldeat flow across 1D Si—Ge layered struct(seperlattice

' i al, =1y group velocity, and thus account for interactions among
siné, COS¢iW +Cost—— =~ ——, (2)  phonons of different frequencies. This will relax the assump-

! tion (2). However, it requires solution of the phonon BE for
where # and ¢, as shown in Fig. (t), are the polar and many different frequencies. Previous works show that an av-
the azimuthal angles, respectively, andis the average erage MFP is a good approximation for thermal conductivity
phonon MFPI ,; is determined by the Bose-Einstein distri- modeling across the interfacésross-plane transpornt® For
bution of phonons and depends on the local equilibriuniransport parallel to the interface, frequency dependent relax-
temperature. In nanostructures, however, local equilibriun@tion time gives a better solutidfi.However, the existing
cannot be established and thus the temperature obtaindldeories for the frequency dependence of relaxation time
should not be treated the same as the case of local thermadntain large uncertainties because they are based on many
equilibrium. An energy balance shows thgt can be calcu- approximations and rely on the fitting parameters from ex-
lated fromt®42 perimental dat4® Therefore we will use a frequency inde-

pendent phonon MFP for simplicity. Often the phonon MFP

1 A is estimated from the thermal conductivity, the specific
loi(X,y) = A 4W|i(r'ﬂ)d9 heat, and the speed of sound, according to the standard ki-
netic theory expression,
1 2@ (m )
— = [ [Ty 0.0 smodoag) @ eicon, @

and the corresponding temperature obtained is a measure whereC is the volumetric specific heat. This method, how-
the local energy density. We note the equations for the 1[®ver, neglects the facts that at room temperature most acous-
layered structure are much simpler because the intensity do¢is phonons are populated close to the zone boundary where
not depend on the direction andy position. the phonon group velocity is significantly smaller than the
A rigorous phonon transport simulation should incorpo-sound velocity and that the optical phonons contribute a sig-
rate the frequency dependence of phonon relaxation time anuficant portion of specific heat but little to thermal conduc-
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TABLE |. Room-temperature parameters used in the calculation.

C (I K) v (/9 k (W/m K) a (nm)
Silicon 0.93x 1¢° 1804 150 0.5431
Germanium 0.8% 1¢° 1042 60 0.5658

tivity due to their near zero group velocity. A better estima-transport of the whole structure can be represented by
tion of the phonon MFP and the group velocity can bethat in the unit cell. Boundary conditions thus defined require
obtained by approximating the dispersion of the transversan iterative scheme to solve the equation, which implies
and the longitudinal-acoustic phonons with simple sine functhat it is more complicated than the front-to-end scheme that
tions and subtracting the optical phonon contribution to theds usually adopted to solve the emitted temperature boundary
specific heaC in calculating the phonon MFP. This estima- condition problems. This periodic boundary condition has
tion leads to a mean free path in silicon of the order ofbeen used in studying the cross-plane thermal conductivity
250—300 nm at room temperature. Experiments and modebf superlatticegwhich is a 1D structupebefore® It can be
ing from Goodson’s group also lead to similar numb#rs. proven that the temperature difference across the unit cell
The method gave a better fitting of the experimental thermashould be independent gf That is,
conductivity data on superlattices than that based on bulk
specific heat forC and the speed of sound far in Eq. ~ Cog[T(0OY)—T(Lge,Y)]

14,16 : 16(0.y) —To(Lge,y) = =const.
(4).**°In our analysis, some parameters used are taken from A
Ref. 16 as listed in Table I. (8)

In our simulation, we superimposed(0,y)—T(Lge,Y)
=1 K in the above equation. If we do not superimpose such
Mathematically, the structure of the BE demands thea temperature difference in the program, Ef. will auto-
boundary conditions to be specified on those parts of boundnatically converge to a constant temperature difference
aries where the characteristics point into the dofaifhis  T(0y) —T(Lge,Y) value. The converged value varies with
boundary condition is termed as emitted temperature agimulated structures. But the final results of thermal conduc-
wall.*® Most of the previous works on phonon transporttivity value do not depend on whether the temperature dif-
simulation used a specified emitted temperature boundargrence is superimposed. However, the calculation is much
condition. This can give an artificial temperature jump at thefaster when the temperature difference value is superim-
boundaries due to the additional nonphysical scattering at theosed. We should note that superimposing the temperature
boundarie$® A more physical boundary condition is difference across the unit cell is physically different from
desirable to simulate phonon transport in realistic structuressuperimposing temperatui@ither emitted or Fourier-limit
In this work, the periodic boundary condition is used basedemperaturgat each boundary.
on the underlying physics for phonon transport in periodic The interface scattering between the nanowire and the
structures. As shown in Fig. (), heat is enforced to host material is assumed to diffuse. Zimaproposed the
flow in the x direction. The specular reflected boundary con-following expression for estimating the interface specularity
ditions are enforced at=0 andy=L¢, boundaries due to parametep:

B. Boundary and interface conditions

symmetry,
g g 16m35°
(X, Lger 0,)=1(X, L e, 6,— ), (5) p=exp — —2—|. ©
1(x,0,0,0)=1(x,0,0,— ¢). (6)  wheredis the characteristic interface roughness ans the

characteristic phonon wavelength. At room temperature, the
characteristic phonon wavelengti+ hv/kgT is about 1 nm,
whereh is the Planck constaritg is the Boltzmann constant,

In the x direction, we applied periodic boundary conditions.
At equilibrium, the phonon distribution, i.e., the phonon

intensity [see Eq.(1)], is isotropic. If heat is enforced to andv is the sound velocity in the material. Clearly even one

flow, the phonon distribution/intensity will be distorted. % ; ; )
Physically the periodic boundary condition means that th%monolayer roughnesa 0.3 nm gives an interface specular

. . . o L . arameterp=0, and allows for totally diffuse interface
distortion of phonon intensity in each direction at each pomtty P P y

- : . P2 "assumption. Determining the phonon reflectivity and
(Oy) at thex—O_ boundary is the same as the distortion '.ntransmissivity at interface is difficult as in the treatment

bf the classical thermal boundary resistance probffert?
One rather crude model is called the diffuse mismatch
model?® which assumes that phonons emerging from the
I(Lee V. 0,8)—lo(Leay)=1(0y.6,0)—1,(0y). (7 interface do not really bear any relationship to its origin, i.e.,
(Loey.0:4) = lo(Leey) =1(0Y.6.6)~1o(0). (7) one cannot tell which side they come from. This assumption
With this boundary condition, the total surface heat flux isimplies that

conserved in the direction and the cell-cell interaction is
taken into account. Because of the periodicity, the phonon Ta21=Rg12=1— Ty12, (10

(Lge,Y) at thex=Lg, boundary. The equation can be ex-
pressed as
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where the second equation comes from the energy conserviive transfer for a set of discrete directions spanning the en-
tion identity Rq;o+ Ty12= 1. We remind again that subscript tire solid angle. The integrals over the solid angle are ap-
12 means from medium 1 into medium 2 and vice versaproximated by numerical quadratures. For phonon transport
Dames and Chéfl obtained the following equation for in nanostructures, the challenge is to reduce the “ray effect,”
Tq12, Which is expected to be valid over a wide temperaturewhich often happens similarly in thermal radiation in the

range: optical thin limit. In our previous work® double Gauss-
Legender quadratures have been used to replace the conven-
Uovp tional Sy quadratures for the discrete ordinate method and
TarAT)= Uy(Tv+Uyx(T)vy’ 1D demonstrated to successfully resolve the ray effect problem

of phonon transport simulation in nanostructures. We briefly
whereU is the volumetric internal energy. discuss the calculation method here. The method separately
With the given interface transmiSSiVity and reﬂeCtiVity, We discretizes the integrating points in the: cosfl (the ang|e
can write down the phonon intenSiw at interfaces. As an@) and the ang|Qb using Gauss-Legender quadrature_ To ob-
example, the phonon intensity fo#>0 at the X=(Lge  tain high accuracyy is discretized into 120 points from 1
—Lg)/2, (Lee=Ls)/2sy=<(LgetLs)/2 interface can be +to 1 and¢ is discretized into 24 points for 9 (not 0

written from the energy balance equation. ~ 27 due to symmetry Then Eq.(3) can be written in dis-
crete form as

2m (72 [Lge—Ls; .
f j | ——=—,y,0,¢ |cosh-sinddod ¢ 2

o Jo 2 '

oY) =72 20 20 1Y, ) W (14)
2m (7 [Lge—Ls; .
= Rd21fo L/zl (T’y’ 6, |cosd-singdod e The weights satisfi ,=,w,w/,= 2. In order to accurately

capture the physics of the transport phenomena and mini-
27 (72 [Lge—Lyg; ) mize the calculation time, a nonuniform grid system is used.
+Td12J'0 fo |(T,y,9,¢)0039'3|n 6dode. The step scheme is used for spatial discretization. Total spa-
tial grids of 102<102 are used in the calculation. Fewer
(12 points in both spatial and angular coordinates can be used for

Because the phonons are scattered diffusely at interfaces, t %ster calculation. The_ equation IS sqlved_ by |t¢rat|on over
phonons leaving an interface are isotropically distributed, e value of the equivalent ,equnlbrlum |ntenS|'t)5(x,y)
and Eq.(11) can be written as =24 S nZnl (XY, thn , ) WaWr, - When the relative error
of the calculated value of the equivalent equilibrium inten-
| Lee—Lsi Ry21 ZWJW I('—Ge— L , ¢>) sity between two iteration steps is less thar 20~ °, the
/2

2

,y,0,¢) = program is assumed to converge and the effective tempera-
2 a 0
ture and heat flux are calculated.

X cosé-sin6dod Although at n_qnqscale, temperature cannot be defined as a

measure of equilibrium, we can use the effective temperature

Tarz (27 (72 [Lge—Ls; to reflect the local energy density inside the medi§riv.

+ o Jo ! 2 Y0, Assuming constant specific heat over a wide temperature
range, we can write the effective temperature as

kg

X cosf-sinfddd¢p for 6>0. (13

4alo(X,y) 1 ,
Phonons leaving fod<0 and other interfaces can be simi- T(X,y)= Clol _ Clo| ; % (XY, s Gm) WaWi,
larly written. (15
C. Method of numerical solution The heat fluxes at every point can be accordingly written

as
Equation(2) is similar to the photon radiative transport

equation(RTE).*? The key is to solve for the intensity distri- ,

bution 1(r,€). Once the intensity is found by solving Eq. qx(x,y)=§m: ; LY sn s Bm) oW Wry, - (16)
(2), the heat fluxg,(x,y), gy(x,y) and the effective tempera-

ture T(X,y) can be determined through the numerical inte-

gration over the whole solid anglem4A variety of solution ay(x,y)= > D (XYt s ) V1— 2 COShpm- WW
method is available in the thermal radiative transfer mon

literature?®4* The most often used methods are the discrete (17
ordinates methodDOM)*® and the finite volume methad. ~ where g, and g, are heat flux in thex andy directions,
The discrete ordinate method is a tool to transform the equaespectively. After local effective temperature distribution
tion of radiative transfer into a set of simultaneous partialand heat flux are obtained, the thermal conductivity calcula-
differential equations. This is based on a discrete representéion is straightforward, taking advantage of the unit cell con-
tion of directional variation of intensity. A solution to the cept. The surface heat flux in thedirection can be calcu-
transport problem is found by solving the equation of radiadated as
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Lge of the interface resistance to the effective thermal resistance
QX(X):LZJ ax(X,y)dy, (18 of the composite. When the nanowire dimension is much
0 smaller than the phonon MFP, shy;= 10 nm, the tempera-
where L, is the unit length in thez direction. Equations ture gradient along the direction can be negative in some
(5) and (), i.e., the specular reflected boundary conditiongocal regions. The heat fluxes in thalirection, however, are
enforced aty=0 and y=Lg, boundaries have ensured always positive as shown in Figs(a3 and 3b). This phe-
Q,(x) = const. The average energy densiyerage tempera- Nomenon was not observed before in macroscale composites

ture) at eachy-z plane along the direction can be written and cannot be predicted by Fourier heat conduction based
as theories. Another question that may raise is whether the re-

sults shown in Figs. ) and 2d) violate the second law of
— 1 (Llee thermodynamic because the temperature inside the cell is
T(x)= L_fo T(x,y)dy. (19 Jarger than the cell boundary. To answer this question, we
ce should first remind, as pointed out before, that temperature as
Therefore the effective thermal conductivikyof the com-  defined is not the same as the case of thermal equilibrium or
posite can be obtained as local thermal equilibrium. When ballistic transport domi-
nates, no local thermal equilibrium can be established and
Qx temperature calculated represents the local energy density.
k=—02 — (20) Figures 4a) and 4b) illustrate the mechanisms of the obser-
LIT(Lee = T(0)] vation in Fig. 2. WherLg; is much smaller than the phonon
from MFP, the internal scattering in the mediufoth host mate-
rial and the wirg is negligible. We further assume that the
[?(LGQ—?(O)] phonon reflectivity is unity at the wire and host material
_— (21) interface. Then the scenario can be simplified as thermal ra-
diation in vacuum with opaque wire inclusionéost
The following dimensionless parameters have been intromaterial-vacuum, interface—solid wall, wire-opaque solid

Qu=k(Lobg) —=
Ge

duced to present temperature and heat flux results: body). Referring to Fig. 4a), we are interested in knowing
the temperature distribution of poinés-F when the heat is
~_ 4 . . X .Y enforced to flow in thes direction. We can qualitatively call

a = m Qx " Lgd,Ciuy’ Xt = |__Ge y = |__Ge the left half of the region shown as the “hot” region and the

(22 right half as the “cold” region. As shown in the figure, points
D andF “see” the hot region and pointd andC “see” the
cold region, thus point® andF locally receive higher en-
ergy phonons and have higher effective temperature then
A. Nonequilibrium temperature and heat flux distribution pointsA andC. Moving from pointA to F (or from C to D),
more hot area is seen than cold area, thus the effective tem-
perature increases. Comparing Boand F, point E has a
lower temperature due to a small view factor from the hot
eregion. Similarly pointB has a higher effective temperature
than A and C. Figure 2 shows the temperature distribution
I:,only in one unit cell. To visualize the temperature distribu-
tion, one needs to stitch several periods of Fig. 2. Figupg 4
shows the temperature distribution alongt severay points

Ill. RESULTS AND DISCUSSIONS

Figures 2a) and 4c) show the effective temperature dis-
tribution in the composite structures with silicon wire dimen-
sion of Lg=268 nm andLg=10 nm, respectively. The
atomic percentage is 20% for Si and 80% for Ge. Simpl
calculation gives the geometric ratioge/Lg=2.35. The
choosing ofL =268 nm is based on the fact that the MF
value is around 268 nm calculated from E¢g) by using

the parameters listed in Table I. Figur@Ris very close to . . .
the temperature we expect in macroscale composite ver three periods. The energy over those regions with even

with interface thermal resistance. Therefore, for a wire igher temperature than the unit cell boundary comes

dimension larger than 268 nm, the effective temperature disf_rom the much higher temperature region in their previous

tribution is expected to be similar to that plotted in Figg)2 cells. The results do not violate the second law of thermo-
The comparison of Figs. (8 and Zc) shows that the dynamics.
temperature or energy density distribution at nanoscale in

periodic 2D composites can be very different from that at
macroscale due to the ballistic nature of phonons. To better To calculate the effective thermal conductivity of compos-
understand the effect of interface thermal resistance, w#es, the surface heat flux and the average tempergdves-

plot the temperature distribution along thelirection at cer- ~age energy densityat eachy-z plane along the direction is

tain fixedy positions of the two structures in Figsbp and  calculated. As examples, Fig. 5 shows the dimensionless av-
2(d). Apparent temperature jumps at the wire—host materiafrage energy density distribution along thelirection in a
interfaces are clearly shown in Figgb2and 2d). There are  Sip.o—G@& g composite with a silicon wire dimension afs;

also temperature jumps along thelirection as indicated in =268 and 10 nm, respectively. The dimensionless surface
Figs. 2a) and 2c). The larger the wire dimension, the lower heat flux is conserved tQj (x) =0.088 for anL ;=268 nm

the temperature jump relative to the total temperature differeomposite and} (x) =0.037 for anLg=10 nm composite.
ence across the interface, and thus the lower the contributioigain, the surface heat flux is conserved and the temperature

B. Effect of wire dimension
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FIG. 2. Effective temperaturelT(—T,) distribution in the unit cell of Si,—Ge, g composites withT (0,y) — T(Lge,Y) =1 K applied for
different wire dimensions(a) temperature contour fdrg;=268 nm, (b) the temperature distribution along aty* =0.5, 0.7, and 0.85 for
Lg=268 nm, (c) temperature contour fotg=10 nm, and(d) the temperature distribution along at y*=0.5, 0.7, and 0.85 foLg;
=10 nm. The temperature discontinuity at the interface is clearly shown. The temperature distributipnif nm nanocomposite is very

different from macroscale composites due to the ballistic phonon transport at nanoscale and cannot be captured by Fourier heat conduction
theory.

jump appears at the interface. The smaller the wire dimenshows that at constant volumetric fractiofr atomic
sion, the larger the average temperature jump and thus thgercentagethe smaller the characteristic length of silicon
larger is the interface resistance contribution to the effectivéthe silicon wire dimension in composites and the thickness
thermal resistance of the composite. We can expec®f the silicon layer in superlatticgsthe smaller the thermal
that when the wire dimension is 2 to 3 times or even large€onductivity. The simple 1D layered structure has a lower
than the silicon MFP, the contribution of the interface thermal conductivity than periodic nanowire composites at
thermal resistance will be negligible and the results willthis atomic percentage. We point out that the thermal
recover the Fourier limit. Figure 6 shows the thermal conductivity of superlattices calculated here is lower than the
conductivity of Sj,—Ge) g composites as a function of the exp_erimental data b_ecause the in_terface scatt_ering inlésuper-
silicon wire dimension. To make a comparison, we includgattices may not fall into a totally diffuse scattering linft:®
the results of cross-plan@erpendicular to the interfages The comparison shown in this paper is just for theoretical
thermal conductivity of a simple one-dimensional Si—Geconsistency.

layered structurgsuperlattices Simple calculation shows _

that the thickness of the germanium layer should be 4.52 C. Effect of atomic percentage

times the thickness of the silicon layer in 1D stacks with a Some other questions of interests dtB:can the thermal
germanium atomic percentage of 80%. Figure 6 clearlyconductivity of nanowire composites be lower than that of
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FIG. 3. The dimensionless heat flux distribution in theirectionq} : (a) Lg;=268 nm composite, anth) Lg;=10 nm composite. It
shows that thex-directional heat flux is always positive even in the localized negative temperature gradient region shown in Fig. 2.

simple 1D stackqsuperlatticg? (2) How the thermal con-

ductivity changes with the atomic percentage? Figure 7 HOT REGION COLD REGION
shows the thermal conductivity of Si,Ge, composites as a
function of atomic percentage of germanium for wire di-
mensiond_g; of 50 and 10 nm, respectively. By changing the
atomic percentage, the geometric ratio of the unit cell, i.e.,
the dimension of germanium, is changed in the numerical
simulation. It shows that for a fixed silicon wire dimension,
the lower the atomic percentage of germanium; the lower is
the thermal conductivity of the nanocomposites. This is very
different from macroscale composites and nanoparticle-filled
polymers, in which thermal conductivity of the composites
increases with the decreasing volumetric fraction of the low
thermal conductivity component. This is caused by the bal-
listic transport of phonons in both the host material and the
nanowires, and the interface resistance between the host m:
terial and the nanowires. In polymer nanocomposites, the
thermal conductivity of the host polymer is usually very low
and the thermal transport in polymers is diffusive. Thus the
thermal conductivity of polymer nanocomposites increases
with the volumetric fraction of high thermal conductivity
nanoparticle fillers. Figure 7 also shows that the thermal con-
ductivity of the periodic 2D nanocomposites is lower than
that of the superlattice with corresponding characteristic
length when the atomic percentag®f germanium is lower
than 35%. Simple calculation shows that the geometric rati
Lge/Lsi is around 1.182 whex=0.35. For a simple 1D
layered structure as shown in Figa8 phonons experience
cross-plane interface scattering in all the cross-sectional are
z-y when the heat is enforced to flow in thedirection.
Comparing Figs. & and 8b), we know that phonons can
flow through a fraction of [ ;c— Lg;)/Lge Open area without
experiencing cross-plane interface scattering in nanocompos
ites. However, phonons must experience an additional frac- (b) %
tion of Lg;/L g interface scattering parallel to the heat flow

direction (in-plane scattering When the thermal conductiv-  FIG. 4. (a) Illustration to show the mechanisms of negative tem-
ity of a simple 1D layered structure is the same as that of th@erature gradient in the localized regions using thermal radiation
periodic 2D nanocomposites at=0.35, we can approxi- analogy.(b) The temperature distribution along aty*=0.5, 0.7,
mately infer that a fraction off g;/L ge and 0.85 forlg;= 10 nm over three periods.
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FIG. 5. The dimensionless average temperature distribution
along thex direction in Sj,—Ge&) g composite with silicon wire
dimension ofLg=268 nm and_g;=10 nm, respectively.

FIG. 7. Thermal conductivity of $i,—Gg composites as a
function of atomic percentage of germanium. For fixed silicon
wire dimension, the lower the atomic percentage of germanium, the
) ) ) ) ) ) lower is the thermal conductivity of the nanocomposites. The result
in-plane interface scattering is equivalent to a fraction ofis yery different from the bulk material due to the ballistic nature of
(Lge— Lsi)/Lgecross-interface scattering. In other words, theéphonon transport at nanoscale and interface effect.

efficiency of cross-interface scattering to reduce thermal con-

ductivity is around five times as effective as the scatteringe

parallel to the interface. This result is consistent with E. Special attention has been paid to cell-cell interaction

previous experiments and modeling of the in-plane an usin eriodic boundary conditions. The simulation
cross-plane thermal conductivity of superlattice& It also g p y o .
hows that the temperature profiles in nanocomposites are

suggests that the anisotropic nanocomposites might be

more effective in reducing thermal conductivity of nanocom-, < ¢ff¢rent from those in conventional composites due
posites. to ballistic phonon transport at nanoscale. Such temperature

profiles cannot be captured by existing models in literature.
We predict the thermal conductivity dependence on the
IV. CONCLUSIONS interface conditions, the size of the nanowires, and the

. ) .. volumetric fraction of the constituent materials. The smaller
We studied theoretically the phonon thermal Cor‘dl"Ct'V'tythe wire diameter, the smaller is the thermal conductivity

of periodic two-dimensional nanocomposites with nanowires, periodic two-dimensional nanocomposites. The thermal

conductivity of 2D Si—Ge composites is predicted to be a
AR ] function of the atomic percentage of germanium for wire
——NANOCOMPOSITE ] dimensions of 50 and 10 nm. It shows that for fixed
=~ SUPERLATTICES ] silicon wire dimension, the lower the atomic percentage of
germanium, the lower the thermal conductivity of the

mbedded in a host semiconductor material using the phonon

50

THERMAL CONDUCTIVITY (W/m K)

interface scattering (L -L )*L,

0 ' ) Py
1.0 10 10 10
CHARACTERISTIC LENGTH LSi(nm)

(a) (b)

FIG. 8. lllustration to show that phonons experience less cross-
FIG. 6. Thermal conductivity of §i—Ge g composites as a interface scattering in periodic 2D composites than that in 1D lay-
function of the silicon wire dimension or layer thickness. The ered structures but additional scattering parallel to the interface. The
smaller the characteristic length of silicGine silicon wire dimen-  efficiency of cross-interface scattering to reduce thermal conductiv-
sion in composites and the thickness of the silicon layer in superity is around five times as effective as scattering parallel to the
latticeg, the smaller is the thermal conductivity. interface.
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nanocomposites. This is very different from bulk compositesface material with high thermal conductivity particle or wire
because the interface dominates the ballistic transport iinclusions.

nanocomposites. The periodic 2D nanocomposites can have

a lower thermal conductivity than their 1D counterpart when ACKNOWLEDGMENTS
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