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Effect of surface curvature on magnetic moment and persistent currents
in two-dimensional quantum rings and dots

D. V. Bulaev,* V. A. Geyler, and V. A. Margulis
Mordovian State University, Saransk 430000, Russia

~Received 25 August 2003; revised manuscript received 21 January 2004; published 25 May 2004!

The effect of the surface curvature on the magnetic moment and persistent currents in two-dimensional
quantum rings and dots is investigated. It is shown that the surface curvature decreases the spacing between
neighboring maxima of de Haas–van Alphen type oscillations of the magnetic moment of a ring and decreases
the amplitude and period of Aharonov-Bohm type oscillations. In the case of a quantum dot, the surface
curvature reduces the level degeneracy at zero magnetic fields. This leads to a suppression of the magnetic
moment at low magnetic fields. The relation between the persistent current and the magnetic moment is
studied. We show that the surface curvature decreases the amplitude and the period of persistent current
oscillations.
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I. INTRODUCTION

A metallic ring of mesoscopic dimension in an extern
magnetic field is known to exhibit a wide variety of interes
ing physical phenomena: Aharonov-Bohm~AB! effects,1,2

quantum Hall effects,3 persistent currents,4,5 the Berry
phase,6 and spin-orbit effects.7

One of the most important factors that cause compli
tions in real experiments is the finite width of ring
Lorke and co-workers8 showed that even in very small nan
scopic quantum rings, occupied with one or two electro
there are some electron modes, corresponding to diffe
radii of electron orbits in the ring. In a ring with finite width
not only are multiple channel effects important, but the p
etration of the uniform magnetic field into the conducti
region of the ring also plays a significant role.4,5,9–11 For
example, the penetration of a magnetic field into the c
ducting region can result in aperiodic oscillations of the p
sistent currents2,4,9,10and the breakdown of the simple line
relation between the persistent current and
magnetization.4

There are many theoretical models which take into
count the finite width of rings,4,5,9–11such as the model of a
two-dimensional~2D! ring with a hard-wall confinemen
potential,5,12 a parabolic potential,13,14 and a finite square
well potential.15 Recently, the current-spin density-function
theory has been employed to study the combined effect
the confinement, Coulomb interactions, a spin polarizati
and a magnetic field in a quantum dot and a quant
ring.16,17The above-mentioned models allow only numeric
analysis. There are some exactly solvable models for
quantum rings.4,9–11 Experiments on the spectroscopy
nanoscopic rings showed that a parabolic potential descr
lowest electron states in a quantum ring very well.8 Note that
the confining potential proposed in Refs. 9 and 11 is in v
good agreement with the experiment also.

Quantum interferences lead to a number of new phen
ena in the transport properties of nanostructures. Howe
the phase coherence conservation of the electron wave f
tions in the whole sample can also affect the equilibriu
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properties of the system. Byers and Yang18 were the first to
show that an isolated normal-metal ring threaded by a m
netic flux carries an equilibrium current at finite temperatu
as long as the electron phase coherence is preserved.
work by Büttiker, Imry, and Landauer,19 predicting persistent
currents in 1D disordered loops, renewed the interest in
topic. This interest is heightened4,20 by recent advances in
submicrometer physics21 that have brought the effect int
reach of experimental investigation. It was shown that
very thin quantum rings the persistent current is a perio
function of the magnetic flux with a periodF05hc/ueu ~the
AB effect!. The persistent currentI in this nanostructure is
simply related to the magnetic momentM of the ring by I
5cM/S, whereS is the area of the ring. However, for a wid
ring, in addition to orbital modes of electron motion in th
ring there are also radial modes. Tan and Inkson4 showed
that the presence of the radial modes leads to aperiod
and complication of oscillations of the persistent current
the ring. Moreover, in the wide quantum rings the effects
the penetration of magnetic field into the conducting reg
arise. These effects result in the breakdown of the lin
relation between the persistent current and
magnetization4 and the appearance of dHvA-type oscillatio
of the magnetization of the ring.4,11,22

In recent years, the effect of the surface curvature
the spectral, magnetic, and transport properties of nanos
tures has attracted a substantial interest.23–27 The recent
progress in nanotechnology has made it possible to prod
curved 2D layers28 and nanometer-size objects of desir
shapes.29 In particular, an original technique developed
Refs. 28 and 29 enables fabricating nanotubes, quan
rolls, rings, and spiral-like strips of precisely controllab
shapes and dimensions.

In this paper, we study the effect of surface curvature
the magnetic moment and persistent currents in a single
lated 2D quantum ring. Noninteracting spinless electrons
2D ring with a constant negative curvature are consider
The 2D ring is placed in an orthogonal magnetic field and
AB flux piercing through the center of the ring. The consi
ered model of such a nanostructure is very flexible: both
radius and the width of the ring can be adjusted indep
©2004 The American Physical Society13-1



on
m
te
em
an
o-
,

e
p
m

rry
ch
he

su

ux

o

to
ic

e

s a
pic

ing

an
t

of
de-

D. V. BULAEV, V. A. GEYLER, AND V. A. MARGULIS PHYSICAL REVIEW B 69, 195313 ~2004!
dently by suitably choosing the two parameters of the c
fining potential. Moreover, 1D rings and curved quantu
dots can be described at peculiar values of the parame
For the mathematical description of the considered syst
we use a ring domain in a manifold of negative const
curvature~in mathematical literature also known as the L
bachevsky plane!; for the geometric confinement of the ring
we choose a kind of the soft-wall potential~see the following
section for details!. It is significant that the problem of th
physics on the surfaces of constant curvature has a dee
lation with some interesting problems, like the quantu
chaos,30,31 influence of the negative curvature on the Be
phase,32 and on the spectrum of the magneto-Blo
electron.33 In recent years, the quantum Hall effect on t
Lobachevsky plane is a subject of current interest.24,34–36

II. ELECTRON ENERGY SPECTRUM

Let us consider a two-dimensional electron gas on a
face L of constant negative curvature~the Lobachevsky
plane! subjected to an orthogonal~to the surface! magnetic
field that is the superposition of a uniform magnetic fieldB
and the field of an Aharonov-Bohm solenoid with the fl
FAB . We employ the Poincare´ realization forL identifying it
with the complex disk$zPC:uzu,2a% endowed with the
metric

ds25
dr21r 2dw2

@12~r /2a!2#2
,

wherea is the radius of curvature; (r ,w) are the polar coor-
dinates in the planeC:z5r exp(iw) (0,r,2a,0<w,2p).

The vector potentialA may be represented as the sum
two terms:A5A11A2, where

A15S 0,
Br

2@12~r /2a!2#
D

is the vector potential of the uniform component andA2
5(0,FAB/2pr ) is the vector potential of the AB flux.

The Hamiltonian of such a system is given by

H05
\2

2m* a2 H 2a2F12S r

2aD 2G2F ]2

]r 2
1

1

r

]

]r
1

1

r 2 S ]

]w

1 i
FAB

F0
D 2G J 2 i

\vc

2 F12S r

2aD 2G S ]

]w
1 i

FAB

F0
D

1
m* vc

2a2

2 S r

2aD 2

2
\2

8m* a2
, ~1!

where m* is the effective electron mass andvc is the
cyclotron frequency. The last term in Eq.~1! is the surface
potential37 which arises from the surface curvature.32

We consider a 2D ring onL defined by a radial confining
potential
19531
-

rs.
,
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f

V~r !5l1r 21
l2

r 2
@12~r /2a!2#22V0 , ~2!

where l1 ,l2 are the parameters of the potential,V05
2l2/2a212Al2@l11l2 /(2a)4#. The potential has the
minimum V(r 0)50 at

r 05S l2

l11l2 /~2a!4D 1/4

.

Hencer 0 defines the average radius of the ring. It is easy
show, that forr .r 0 the confining potential has the parabol
form

V~r !.
1

2
m* v0

2~r 2r 0!2,

where the frequencyv05A8@l11l2 /(2a)4#/m* character-
izes the strength of the transverse confinement.

The outerr 1 and innerr 2 radii of the ring ~and, there-
fore, its widthDr 5r 12r 2) can be expressed in terms of th
Fermi energyEF :

r 65S V01EF6A2EFV01EF
2

2l11l2/8a4 D 1/2

.

Note that in the limit of zero curvature. (a→`), the con-
finement potential~2! has the form

V~r ! →
a→`

l1r 21
l2

r 2
22Al1l2.

As shown in Refs. 2, 4, 9, and 11, this potential provide
good description of the confinement for actual mesosco
rings.

It is convenient to express the parameters of the confin
potential in terms ofr 0 andv0. Note that the model defined
by Eq. ~2! is very flexible. It can also be used to describe
1D quantum ring (r 05const,v0→`) and a 2D quantum do
(r 050).

The Schro¨dinger equation for electrons on the surface
constant negative curvature with the confining potential
fined by Eq.~2! reads

@H01V~r !#c~r ,w!5Ec~r ,w!.

By substituting the wave function c(r ,w)
5@exp(imw)/A2p# f m(r ) and by changing the variablex
51/@12(r /2a)2#, the Schro¨dinger equation is simplified to

~Hm22m* a2E/\2! f m~x!50,

where

Hm52
d

dx
x~x21!

d

dx
1

M2

4

1

x21
2

m* 2vm
2 a4

\2

1

x

1
m* 2a4

\2 H vc
21v0

2F12S r 0

2aD 2G2J 2
1

4
, ~3!
3-2
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M5A~m1fAB!21~m* v0r 0
2/2\!2, ~4!

vm5A@vc2\~m1fAB!/2m* a2#21v0
2, ~5!

fAB5FAB /F0 is the number of Aharonov-Bohm flu
quanta.

After some algebra we find that the spectrum ofHm con-
sists of two parts: a discrete spectrum in the interval (0,E0)
and a continuous one in the interval@E0 ,`#, where E0

5m* vc
2a2/21m* v0

2a2@12(r 0/2a)2#2/2 is the lower bound
of the continuous spectrum.

The discrete spectrum consists of finite numbers of eig
values

Enm5\vmS n1
1

2
1

M

2 D1
\vc

2
~m1fAB!2

m* v0
2r 0

2

4

2
\2

2m* a2 F1

2
~m1fAB!21S n1

1

2D 2

1S n1
1

2D M G ,
~6!

where

nPN:0<n,m* vma2/\2M /221/2. ~7!

The corresponding orthonormal eigenfunctions ofHm are
given by

f nm~x!5Cnm~x21!bmxn2amF~2n,2n12am ;2am22bm

22n;1/x!, ~8!

wheream5vm /V,bm5M /2.
Using the properties of hypergeometric functions, one

find the normalization constantsCnm :

uCnmu2522am22bm22n22
G~2am2n!G~2am22bm2n!

a2@G~2am22bm22n!#2

3
~2am22bm22n21!

G~112bm1n!n!
,

whereG(x) is the EulerG-function.
The continuous spectrum ofHm is defined by

En5
m* vc

2a2

2
1

m* v0
2a2

2
@12~r 0/2a!2#2

1
\2

2m* a2
n2, nPR. ~9!

The corresponding orthonormal eigenfunctions are given

f nm~x!5Cnmxam~x21!bmF~am1bm1 in11/2,am1bm

2 in11/2;112bm ;12x!,

where
19531
n-

n

y

Cnm5
~sinh 2pn!1/2

2paG~112bm!
uG~2am1bm2 in11/2!

3G~am1bm2 in11/2!u.

As follows from Eq.~9!, the lower bound of the continuou
spectrum is a quadratic function of the uniform compon
of the magnetic field and independent of the AB flux. The
is a finite number of discrete eigenvalues ofHm below this
bound.

Note that the width of the quantum ringDr ,r 0 and for
the quantum dot Dr ,2a. Therefore, EF!m* v0

2a2@1
2(r 0/2a)2#2/2 for these nanostructures. In this case, as
be seen from Eq.~9!, the continuous spectrum is muc
higher than the Fermi energy for the quantum ring and d
Hence, at low temperatures, there is no contribution of
continuous spectrum of electrons to magnetic and trans
properties of these nanostructures.

As can be seen from Eq.~6!, the effect of an AB flux on
the energy spectrum and the wave function of electrons i
shift m→m1fAB . Note that, in contrast to the case of a
1D ring, an AB flux changes not only the phases of the wa
functions but also the trajectory of electron states in a
quantum ring@see Eq.~8!#, which results in a nonparaboli
dependence of the energy spectrum on the AB flux.9

As can be seen from Eq.~6!, the energy levels with the
same quantum numbern form a subband. The energy spe
trum of the ring is a periodic function ofFAB with the period
F0. While the energy spectrum of the ring is an aperiod
function of B. Thus, the effect of the penetration of a ma
netic field into the conducting region of the ring is to th
appearance of the dependence of subband minima on a
netic field and to the asymmetry of the subband dispers
about the subband minimum.9 Note that the surface curvatur
leads to the additional subband asymmetry. In the follow
we consider the case offAB50 only.

As can be seen from Eq.~6!, at zero magnetic fields, th
minima of all subbands are atm50. At nonzero magnetic
fields, all subband minima lie atm5m0, where

m05
m* vcr 0

2

2\@12~r 0/2a!2#
. ~10!

Note that, as for the case of the flat surface,m0 is the number
of quantum flux penetrated the ring with effective radiusr 0.9

The dependence of the subband minimum on the magn
field is given by

En,m0
5\ṽS n1

1

2D2
\2

2m* a2 S n1
1

2D 2

, ~11!

whereṽ5Avc
21v0

2@12(r 0/2a)2#2. Note that in the limit of
zero curvature~the case of the flat surface! we get the fol-
lowing formula for the subband minimum:

En,m0
→

a→`

\vS n1
1

2D , ~12!
3-3
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wherev5Avc
21v0

2. Stress that in the case of a ring on t
surface of constant negative curvature,r 0,2a; therefore the
hybrid frequencyṽ is less than that corresponding to th
case of the flat surface (v). The surface curvature decreas
the contribution of the term which is due to the ring width
ṽ. Hence, the decrease of the transverse confinement o
ring is one of the manifestations of the surface curvature.
can be seen from Eq.~12!, the spacing between the bottom
of neighboring subbands is\v. From Eq. ~11! it can be
easily shown that for the case of the Lobachevsky plane
spacing is less than that for the flat surface and depend
the subband index. It can be seen from Eq.~11! that the
bottoms of subbands are increasing with a magnetic-fi
Moreover, the magnetic field dependence of the subband
toms is stronger for the higher subbands. The decrease o
ring width shifts the subbands to higher energies, increa
the subband spacings, and weakens the dependence o
subband bottom on a magnetic field. As can be seen f
Eqs. ~11! and ~12!, the surface curvature leads to the co
verse effects: the decrease of the curvature radius shifts
subbands to lower energies, decreases the subband spa
and strengthens the dependence of the subband bottoms
magnetic field.

Let us study the limiting cases. Firstly, we consider t
case of an 1D ring (r 05const,v0→`). The energy spectrum
of the nanostructure atv0→` can be found in the same wa
as in Ref. 9:

En,m5\ṽS n1
1

2D2
\2

2m* a2 S n1
1

2D 2

1
\2

2m* r 0
2 F12S r 0

2aD 2G2

~m2m0!2, ~13!

wherem0 is defined by Eq.~10!. As can be seen from Eq
~13!, electrons occupy the lowest subband only. The subb
bottom is independent of a magnetic field and the subb
energy spectrum is symmetric aboutm0. Comparing Eq.~13!
and that for the case of the flat surface, we find that
surface curvature shifts the subband minima to the lo
magnetic field and weakens the magnetic field dependenc
the electron energy.

Second, we consider the case of a quantum dot (r 050).
Assuming thatr 050 in Eq.~6!, we find the energy spectrum
of electrons in a quantum dot on the surface of cons
negative curvature,

En,m5\vmS n1
1

2
1

umu
2 D1

\vcm

2
2

\2

2m* a2

3Fm2

2
1S n1

1

2D 2

1S n1
1

2D umuG . ~14!

It is well known4 that the energy spectrum of an isotropic 2
quantum dot on the flat surface is degenerate at zero m
netic fields~thenth level isn-fold degenerate!. The low mag-
netic field lifts the degeneracy of the levels, whereas, at h
magnetic fields, the energy levels form the Landau subba
19531
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As can be seen from Eq.~14!, the surface curvature shifts th
energy levels to the lower energy. Moreover, the shift is m
essential for the levels with highern or m. Furthermore, the
surface curvature reduces the level degeneracy at zero m
netic fields. The level withm50 is nondegenerate, wherea
the levels withmÞ0 are twofold degenerate. As can be se
from Eq. ~14!, the hybrid frequencyvm depends on the
quantum numberm, therefore, for the levels with smallumu,
the curvature has negligible effect on the behavior of
levels in magnetic fields. On the contrary, for the levels w
large umu, the curvature essentially changes the hybrid f
quency and changes the behavior of the levels in a magn
field.

III. MAGNETIC MOMENT

As is well known, the magnetic moment of any clos
equilibrium thermodynamic system in an uniform magne
field is defined by38

M52S ]F

]BD
T,N

5(
n,m

Mn,mf 0~En,m!, ~15!

whereF is the free energy,f 0(E) is the Fermi distribution
function,Nis the number of electrons, and

Mn,m52
]En,m

]B
~16!

is the magnetic moment of the (n,m)th state. The chemica
potential of a system is determined completely by the n
malization condition

N5(
n,m

f 0~En,m!.

Although we study the ring and the dot in a nonunifor
magnetic field~orthogonal to the surface of constant negat
curvature!, the magnetic moment of the systems conside
here is given by Eq.~15!. In fact, an infinitesimal changedF
in the free energy consequent on the infinitesimal changedB
in a magnetic field is given by39

dF52E MdBdS,

whereM is the magnetic moment of the unit area anddS is
the surface element. In this work, the magnetic field is
thogonal to the surface:B5Bn, wheren is the normal to the
surface. Therefore,

dF52dBE MdS52dBM,

whereM is the magnetic moment of the system. Thus,

dF52SdT2MdB1mdN,

where S is the entropy of the system. It follows that th
magnetic moment of the systems considered here is defi
by Eq. ~15!. Note that the magnetic moment is given by th
formula only for closed systems. In the case of open syste
as shown in Ref. 40, the magnetic moment is no longer
3-4
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fined by this formula. But in the case of the weak coupli
between the system and reservoir, the magnetic momen
be calculated by Eq.~15!.

For the case of a quantum ring on the Lobachevsky pla
substituting Eq.~6! into Eq. ~16!, we get

Mn,m

mB
52

me

m*
Fm1fAB1

vc2\~m1fAB!/2m* a2

vm

3~2n111M !G , ~17!

whereme is the free electron mass, andM and vm are de-
fined by Eqs.~4! and ~5! respectively.

As shown in Fig. 1, the magnetic moment of a 2D qua
tum ring on the Lobachevsky plane as well as on the
surface11,4 has a complex oscillation pattern: oscillations
the AB type are superimposed on oscillations of the
Haas–van Alphen~dHvA! type. The amplitude of AB-type
oscillations is strongly suppressed by increasing magne
field strength, whereas the amplitude of dHvA-type oscil
tions is increased with the magnetic field. At low magne
fields, the amplitudes of these oscillation types are of
same order of magnitude, and the superimposition of
oscillations leads to the appearance of a beating patter
M(B) ~Fig. 2!. At high magnetic fields, the amplitude o
AB-type oscillations is much smaller than that of dHvA-typ
oscillations~Fig. 1!. Moreover, the AB-type oscillations ar
almost periodic in the strong-magnetic-field regime~Fig. 3!.

Note that the AB-type oscillations of the magnetic m
ment arise from the electron-level crossings, whereas
dHvA-type oscillations arise from singularities in the ele
tron density of states. It can be shown that the electron d
sity of states is larger at the subband bottoms. Therefore
maxima of dHvA-type oscillations arise when the chemi
potential crosses the subband bottoms.

Let us consider the effect of the surface curvature on
magnetic moment of a ring. As mentioned above, the
crease of subband spacings is the one of manifestation
the surface curvature. This leads to the decrease of the s

FIG. 1. The magnetic moment of a 2D quantum ring as a fu
tion of a magnetic field; N51000, r 05800 nm, v051.5
31012 s21, fAB50, andT50 K.
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ing between neighboring maxima of dHvA-type oscillatio
~Fig. 1!. Moreover, in the limit of low magnetic fields, th
number of subbands below the Fermi energy is larger t
that for the case of the flat surface. Therefore, the numbe
oscillations increases and the maximum of the amplitude
oscillations decreases with the increasing of surface cu
ture ~Fig. 2!.

The dependence of the hybrid frequency on the magn
quantum number is the other manifestation of the surf
curvature@Eq. ~5!#. As follows from this equation that the
surface curvature weakens the dependence of the energy
els on a magnetic field and decreases the level spacing.
former decreases the amplitude of AB-type oscillatio
while the latter decreases the period of these oscillati
~Fig. 3!. As shown in Fig. 3, the monotonic part of the ma
netic moment for a ring on the Lobachevsky plane is bel
that for the flat surface.

Note that temperature results in smearing of oscillat
maxima and decreasing the oscillation amplitude~Fig. 2!.

- FIG. 2. The magnetic moment of a 2D quantum ring as a fu
tion of a magnetic field~the case of low magnetic fields!; N
51000, r 05800 nm,v051.531012 s21, andfAB50.

FIG. 3. The dependence of the magnetic moment of a 2D qu
tum ring on the magnetic field~the case of high magnetic fields!.
The magnetic moment of a 2D ring on the Lobachevsky plane w
the radius of curvaturea5800 nm is plotted with a solid line~left
ordinate!. The magnetic moment of a 2D ring on the flat surface
plotted with a dotted line~right ordinate!; N51000, r 05800 nm,
v051.531012 s21, fAB50, andT50 K.
3-5



g

a
d

o

ng
a
th
t

we

en
c
e
le

o-
al
ic

he
c

at
ls
pe-

racy
tum
flat
eld
sing
en-

cu-
pe

um
be-

o tum

of
ic
ne;

of

D. V. BULAEV, V. A. GEYLER, AND V. A. MARGULIS PHYSICAL REVIEW B 69, 195313 ~2004!
Let us consider particular cases. In the limit of an 1D rin
substituting Eq.~13! into Eq. ~16!, we get for the magnetic
moment

Mn,m

mB
5

me

m*
F12S r 0

2aD 2G S m1
FAB

F0
2

F

F0
D , ~18!

where F5BS is the magnetic flux penetrating through
ring, andS5pr 0

2/@12(r 0/2a)2# is the surface area circle
by a ring with an effective radiusr 0. As can be seen from
this equation, the magnetic moment is a periodic function
the magnetic field with the periodF0. As follows from the
analysis of the energy spectrum of electrons in an 1D ri
the surface curvature decreases the amplitude of the m
netic moment oscillations. Note that the dependence of
magnetic moment on the surface curvature is caused by
nonuniformity of a magnetic field. As mentioned above,
consider the case of an orthogonal~to the surface! magnetic
field.

In the limit of a quantum dot, assuming thatr 050 in Eq.
~17!, we obtain

Mn,m

mB
52

me

m*
Fm1fAB1

vc2\~m1fAB!/2m* a2

vm

3~2n111um1fABu!G . ~19!

As mentioned above, for the zero magnetic fields, the
ergy levels of an isotropic 2D quantum dot on the flat surfa
are highly degenerate. The low magnetic field lifts the d
generacy of the levels, and near the Fermi energy more e
trons will occupy the states withm,0, which have a lower
energy than them>0 states. Therefore, the magnetic m
ment of the quantum dot on the flat surface has a large v
at a weak magnetic field.4 Further increase of the magnet
field leads to complex oscillations ofM(B), which arise
from the superimposition of the AB-type oscillations on t
dHvA-type oscillations. In Fig. 4 we show the dependen

FIG. 4. The magnetic moment of a quantum dot as a function
a magnetic field;N5500, v051.531012 s21, fAB50, and T
50 K.
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M(B) for the Lobachevsky plane as well as for the fl
surface. As follows from the behavior of the electron leve
in a magnetic field, the surface curvature decreases the
riod and the amplitude of the dHvA-type oscillations~Fig.
4!. Since the surface curvature reduces the level degene
at zero magnetic fields, the magnetic moment of a quan
dot on the Lobachevsky plane is lower than that for the
surface at weak magnetic fields. The new jumps in the fi
dependence of the magnetic moment arise with increa
the magnetic field, which are due to the crossings of deg
erated levels atB50 in the case of the flat surface~Fig. 5!.
At high magnetic fields, when the lowest subband is oc
pied only there is no level crossings, therefore the AB-ty
oscillations vanish~Fig. 6!.

IV. PERSISTENT CURRENTS

Let us consider the persistent current of a 2D quant
ring on the Lobachevsky plane. We study the relation

f FIG. 5. The dependence of the magnetic moment of a quan
dot on a magnetic field~the case of low magnetic fields!. The mag-
netic moment of a dot on the Lobachevsky plane with the radius
curvaturea5800 nm is plotted with a solid line. The magnet
moment of a dot on the flat surface is plotted with a dotted li
N5500, v051.531012 s21, fAB50, andT50.

FIG. 6. The magnetic moment of a quantum dot as a function
a magnetic field~the case of a high magnetic fields!; N5500, v0

51.531012 s21, andfAB50.
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tween the persistent current and the magnetic moment o
ring and we examine the effect of the surface curvature
the persistent current. Note that we take no account of
edge-state effects. In our model the Fermi energy is the s
in the whole system, therefore, the inner and outer e
states contribute no current around the ring. When the w
functions of a system are zero atr 50, the persistent curren
can be calculated using the following equation:18,41

I 52cS ]F

]FAB
D

T,N

5(
n,m

I n,mf 0~En,m!, ~20!

where

I n,m52c
]En,m

]FAB
. ~21!

Taking into account Eq.~17!, the persistent current of th
(n,m)th state is given by

I n,m5
c

pr m
2 H Mn,mF12S r m

2aD 2G1
me

m*
mB

vc

vm
~2n11!J ,

~22!

wherer m5A2\M /m* vm is the effective radius of the stat
with quantum numberm.4,9 The first term in Eq.~22! is the
classical current in a ring with a radiusr m in a magnetic
field. The second term caused by the penetration of the m
netic field into the conducting region of the ring breaks t
proportionality between the magnetic moment and the p
sistent current. It can be seen from Eq.~22! that only in the
weak magnetic-field limit (vc!v0) the magnetic moment o
an electron state is proportional to its current. In Fig. 7,
plot the persistent current as a function of a magnetic fie
As can be seen from this figure, the persistent current sh
rapid oscillations within the whole magnetic field range. T
amplitudes of the persistent current are strongly suppre
by increasing magnetic-field strength. This is due to the f
that the oscillation amplitude;AP, whereP is the number
of the occupied subbands.4 This number decreases with th
magnetic field and this leads to the decrease of the oscilla

FIG. 7. The persistent currents of a 2D quantum ring on
Lobachevsky plane as a function of a magnetic field;N51000, a
51500 nm, r 05800 nm, v051.531012 s21, fAB50, and T
50 K.
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amplitude. In the limit of low magnetic fields, there are som
occupied subbands. The crossings of the highest occu
electron level with the levels of these subbands lead to
appearance of a beating pattern inI (B). As mentioned
above, in this magnetic-field regime, the persistent curren
proportional to the magnetic moment. Therefore, the beh
ior of the persistent current is similar to the magnetic m
ment behavior~Fig. 2!. In the strong magnetic-field regime
only the lowest subband is occupied and only the crossi
of levels of this subband with the highest occupied level le
to oscillations of the persistent current. Since levels of
lowest occupied subband are nearly equidistant, the osc
tions of the persistent current are nearly periodic in t
magnetic-field regime~Fig. 8!. The period of oscillations of
the persistent current is the same as for the magnetic mom
~Fig. 3!. As mentioned above, the surface curvature
creases the period and the amplitude of oscillations of
magnetic moment. As can be seen from Eq.~22!, the surface
curvature leads to the additional decrease of the amplitud
oscillations of the persistent current with respect to the m
netic moment.

Note that Eq.~21! is also valid for electron states in
quantum dot, except for the states withm1fAB50. This is
because, whenr 050, the wave function of a state withm
1fAB50 has a nonzero value atr 50, and Eq.~20! no
longer applies. However, since Eq.~21! applies for all states
if r 0Þ0, the persistent current of the state withm1fAB
50 can be obtained by taking the limit4

I n,2fAB
5 lim

r 0→0
@ lim

m→2fAB

I n,m#

52
ueuvc

4p
1

ueu\

4pm* a2

vc

v S n1
1

2D ,

wherev5Avc
21v0

2.

e FIG. 8. The dependence of the persistent currents of a 2D
on a magnetic field~the case of high magnetic fields!. The persistent
currents in a ring on the Lobachevsky plane with the radius
curvaturea51500 nm is plotted with a solid line. The persiste
currents in a ring on the flat surface is plotted with a dotted li
N51000, r 05800 nm, v051.531012 s21, fAB50, and T
50 K.
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Note that the penetration of a magnetic field into the c
ducting region plays an essential role with increasing
magnetic field. This leads to the break of the proportiona
between the magnetic moment and the persistent curren
the quantum dot. The persistent current as a function o
magnetic field exhibits rapid jumps which appear when
Fermi energy crosses the subband bottoms~Fig. 9!. The os-
cillations due to the level crossings with the highest occup
level are superimposed on these jumps. The amplitude
these oscillations decreases with a magnetic field. At h
magnetic fields, this amplitude tends to zero~Fig. 10!. As can
be seen from Figs. 9 and 10, the surface curvature decre
the amplitude of the dHvA-type oscillations and shifts the
oscillations in the low-field region.

V. CONCLUSIONS

The effect of the surface curvature on the magnetic m
ment and persistent currents of 2D quantum rings and do
investigated. It is shown that the surface curvature decre
the subband spacings. This leads to decreasing of the spa
between neighboring maxima of de Haas–van Alphen t

*Electronic address: D.Bulaev@unibas.ch
1Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
2U.F. Keyser, S. Borck, R.J. Haug, M. Bichler, G. Abstreiter, a

W. Wegscheider, Semicond. Sci. Technol.17, L22 ~2002!.
3B.I. Halperin, Phys. Rev. B25, 2185~1982!.
4W.-C. Tan and J.C. Inkson, Phys. Rev. B60, 5626~1999!.
5Y. Avishai, Y. Hatsugai, and M. Kohmoto, Phys. Rev. B47, 9501

~1993!.
6M.V. Berry and J.P. Keating, J. Phys. A27, 6167~1994!.
7Y. Meir, O. Entin-Wohlman, and Y. Gefen, Phys. Rev. B42, 8351

~1990!.
8A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garc

FIG. 9. The dependence of the persistent currents in a quan
dot on a magnetic field. The persistent currents of the dot on
Lobachevsky plane with the radius curvaturea5800 nm is plotted
with a solid line. The persistent currents of a dot on the flat surf
is plotted with a dotted line;N5500, v051.531012 s21, fAB

50, andT50 K.
19531
-
e
y
of
a
e

d
of
h

ses
e

-
is
es
ing
e

oscillations~Fig. 1!. Moreover, the dependence of the hybr
frequency on the magnetic quantum number is the ano
manifestation of the surface curvature@Eq. ~5!#. As follows
from this equation, the surface curvature weakens the de
dence of the energy levels on a magnetic field and decre
the level spacing. The former decreases the amplitude
Aharonov-Bohm-type oscillations, while the latter decrea
the period of these oscillations~Fig. 3!. Two limiting cases
are considered: the case of an 1D quantum ring and the
of a quantum dot. It is shown that the surface curvature
duces the level degeneracy of a quantum dot at zero m
netic fields. Therefore, the magnetic moment of a quant
dot on the Lobachevsky plane is lower than that on the
surface at weak fields. The persistent currents of a quan
ring and a quantum dot are studied. The relation between
persistent current and the magnetic moment of these n
structures is investigated. It is shown that the surface cu
ture leads to the additional decrease of the amplitude of
cillations of the persistent current with respect to t
magnetic moment.

ACKNOWLEDGMENTS

This work was supported by the INTAS Grant No. 0
257, the DFG-RAS Grant No. 436 RUS 113/572/0-2, t
Russian Ministry of Education Grants Nos. E02-3.4-370 a
E02-2.0-15, the RFBR Grants Nos. 02-01-00804 and 03-
06006-mas.

,

and P.M. Petroff, Phys. Rev. Lett.84, 2223~2000!.
9W.-C. Tan and J.C. Inkson, Semicond. Sci. Technol.11, 1635

~1996!.
10V.A. Margulis, A.V. Shorokhov, and M.P. Trushin, Physica

~Amsterdam! 10, 518 ~2001!.
11E.N. Bogachek and U. Landman, Phys. Rev. B52, 14 067~1995!.
12S. Klama, J. Phys.: Condens. Matter5, 5609~1993!.
13T. Chakraborty and P. Pietila¨inen, Phys. Rev. B50, 8460~1994!.
14J. Planelles, W. Jasko´lski, and J.I. Aliaga, Phys. Rev. B65,

033306~2002!.
15I. Tomita and A. Suzuki, Phys. Rev. B53, 9536~1996!.
16A. Puente and L. Serra, Phys. Rev. B63, 125334~2001!.

m
e

e

FIG. 10. The persistent currents of a quantum dot as a func
of a magnetic field~the case of high magnetic fields!; N5500, a
5800 nm,v051.531012 s21, andfAB50.
3-8



o

m

.P
s.

y,
a,

d

on

cs

s

EFFECT OF SURFACE CURVATURE ON MAGNETIC . . . PHYSICAL REVIEW B 69, 195313 ~2004!
17J.C. Lin and G.Y. Guo, Phys. Rev. B65, 035304~2002!.
18N. Byers and C.N. Yang, Phys. Rev. Lett.7, 46 ~1961!.
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