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Effect of surface curvature on magnetic moment and persistent currents
in two-dimensional quantum rings and dots
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The effect of the surface curvature on the magnetic moment and persistent currents in two-dimensional
guantum rings and dots is investigated. It is shown that the surface curvature decreases the spacing between
neighboring maxima of de Haas—van Alphen type oscillations of the magnetic moment of a ring and decreases
the amplitude and period of Aharonov-Bohm type oscillations. In the case of a quantum dot, the surface
curvature reduces the level degeneracy at zero magnetic fields. This leads to a suppression of the magnetic
moment at low magnetic fields. The relation between the persistent current and the magnetic moment is
studied. We show that the surface curvature decreases the amplitude and the period of persistent current

oscillations.
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[. INTRODUCTION properties of the system. Byers and Y&hgere the first to

show that an isolated normal-metal ring threaded by a mag-
A metallic ring of mesoscopic dimension in an externalnetic flux carries an equilibrium current at finite temperature
magnetic field is known to exhibit a wide variety of interest- as long as the electron phase coherence is preserved. The
ing physical phenomena: Aharonov-Boh{AB) effects®?  work by Buttiker, Imry, and Landauél predicting persistent
quantum Hall effects, persistent currents® the Berry  currents in 1D disordered loops, renewed the interest in the
phasée® and spin-orbit effects. topic. This interest is heighten&® by recent advances in

One of the most important factors that cause Compnca_submicrometer_physi&%_that have brought the effect into
tions in real experiments is the finite width of rings. reach of experimental investigation. It was shown that in

Lorke and co-workefsshowed that even in very small nano- very thin quantum rings the persistent current is a periodic

scopic quantum rings, occupied with one or two electrons],cunCtlon of the magnetic flux with a periolo=hc/|e] (the

there are some electron modes, corresponding to diﬁererﬁf’n elffercet)létz Zeté)%se'srtsgt rf;tz(r:enmt(')?ntg;‘ Or}atr;]zstrmctlérel IS
radii of electron orbits in the ring. In a ring with finite width, Py 9 9 by

not only are multiple channel effects important, but the pen—:CM/S’ whereSis the area of the ring. However, for a wide

trati f th i tic field into th ducti ring, in addition to orbital modes of electron motion in the
etrafion of the unriorm magnetic field into the gf’ﬂ UCiNG ing there are also radial modes. Tan and InKssimowed
region of the ring also plays a significant rél2%-1! For

X o ) that the presence of the radial modes leads to aperiodicity
example, the penetration of a magnetic field into the conyny complication of oscillations of the persistent current in
ducting region can result in aperiodic oscHIa’uoqs of th.e Perthe ring. Moreover, in the wide quantum rings the effects of
sistent currenfs*®*%and the breakdown of the simple linear the penetration of magnetic field into the conducting region
relation between the persistent current and theyrise. These effects result in the breakdown of the linear
magnetizatiort. relation between the persistent current and the
There are many theoretical models which take into acmagnetizatiohand the appearance of dHvA-type oscillations
count the finite width of ring4>°*!such as the model of a of the magnetization of the rinfy'-22
two-dimensional(2D) ring with a hard-wall confinement In recent years, the effect of the surface curvature on
potential>*? a parabolic potentidf’* and a finite square- the spectral, magnetic, and transport properties of nanostruc-
well potential'® Recently, the current-spin density-functional tures has attracted a substantial intefést’ The recent
theory has been employed to study the combined effects gfrogress in nanotechnology has made it possible to produce
the confinement, Coulomb interactions, a spin polarizationcurved 2D layer® and nanometer-size objects of desired
and a magnetic field in a quantum dot and a quantunshape$® In particular, an original technique developed in
ring.!81” The above-mentioned models allow only numericalRefs. 28 and 29 enables fabricating nanotubes, quantum
analysis. There are some exactly solvable models for 2Dolls, rings, and spiral-like strips of precisely controllable
quantum ring$:°~** Experiments on the spectroscopy of shapes and dimensions.
nanoscopic rings showed that a parabolic potential describes In this paper, we study the effect of surface curvature on
lowest electron states in a quantum ring very Wellote that  the magnetic moment and persistent currents in a single iso-
the confining potential proposed in Refs. 9 and 11 is in verylated 2D quantum ring. Noninteracting spinless electrons in a
good agreement with the experiment also. 2D ring with a constant negative curvature are considered.
Quantum interferences lead to a number of new phenonithe 2D ring is placed in an orthogonal magnetic field and an
ena in the transport properties of nanostructures. HoweveAB flux piercing through the center of the ring. The consid-
the phase coherence conservation of the electron wave funered model of such a nanostructure is very flexible: both the
tions in the whole sample can also affect the equilibriumradius and the width of the ring can be adjusted indepen-
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dently by suitably choosing the two parameters of the con- N

fining potential. Moreover, 1D rings and curved quantum V(r)=n.r2+ —22[1—(r/2a)2]2—vo, 2

dots can be described at peculiar values of the parameters. r

For the mat'hematicall dgscription.of the consid_ered systemyhere 1.\, are the parameters of the potentialy=

we use a ring domain in a manifold of negative constant_ 1222+ 2\ [N, T N,/(22)"]. The potential has the

curvature(in mathematical literature also known as the Lo- i &°" v(r )2: Oat '

bachevsky planefor the geometric confinement of the ring, 0

we choose a kind of the soft-wall potent{ake the following ( X, ) /4
0=

section for details It is significant that the problem of the
physics on the surfaces of constant curvature has a deep re-
lation with some interesting problems, like the quantum
chaos®3! influence of the negative curvature on the Berry
phase’> and on the spectrum of the magneto-Bloch
electron®® In recent years, the quantum Hall effect on the
Lobachevsky plane is a subject of current intefésf. 6

N+ N,/ (2a)t

Hencer , defines the average radius of the ring. It is easy to
show, that for =r the confining potential has the parabolic
form

1
V(r)zzm*wé(r—ro)z,

1. ELECTRON ENERGY SPECTRUM

where the frequency,=\8[\,+ \,/(2a)*]/m* character-
Let us consider a two-dimensional electron gas on a sutizes the strength of the transverse confinement.
face L of constant negative curvaturéghe Lobachevsky The outerr . and innerr _ radii of the ring(and, there-
plang subjected to an orthogongo the surfacemagnetic  fore, its widthAr=r, —r _) can be expressed in terms of the
field that is the superposition of a uniform magnetic fiBld Fermi energyEg:
and the field of an Aharonov-Bohm solenoid with the flux

®,5. We employ the Poincanmealization forlL identifying it Vo+Ep£V2EgVo+ Ez,: vz
with the complex disk{ze C:|z|<2a} endowed with the re= 7 .
metric 2Nt \,/8a

Note that in the limit of zero curvaturea{~«), the con-
_dr?+r2de? finement potential2) has the form
[1-(r/2a)%]% \
V(1) — Air2+ — =2\ hs.
wherea is the radius of curvaturey (¢) are the polar coor- ( )aﬁw ! r2 e
dinates in the plan€:z=r expl¢) (0<r<2a,0<¢<2mw).

The vector potentiah may be represented as the sum of AS Shown in Refs. 2, 4,9, and 11, this potential provides a
two terms:A=A,+A,, where good description of the confinement for actual mesoscopic

rings.

It is convenient to express the parameters of the confining
potential in terms of ; and wy. Note that the model defined
by Eq.(2) is very flexible. It can also be used to describe an
1D quantum ring {y= constwy—) and a 2D quantum dot

is the vector potential of the uniform component afdg  (ro=0).

A _(OL
Y 21— (r/2a)?]

= (0, op/27r) is the vector potential of the AB flux. The Schrdinger equation for electrons on the surface of
The Hamiltonian of such a system is given by constant negative curvature with the confining potential de-
fined by Eq.(2) reads
2 212 2
oot {_ 2[1_ PR, i(i [Ho+ V() 19(r, )= EW(r,@).
2 2 2
2m*a 2a gre ror r2lde By substituting the wave  function (r,¢)
q) heo r 2l g CD =[expime)/y2m]f(r) and by changing the variablg
2B e — | [ =228 =1[1—(r/2a)?], the Schrdinger equation is simplified to
q)o 2 2a 8cp (I)O
(Hm—2m*a2E/%2)f,(x)=0,
m* a)ga2 r\?2 72 " "
+ S S — (1)  where
2 2a 8m* a2
d M2 1 m*2wia*1l
where m* is the effective electron mass and, is the Hm=—d—XX(X—1)d—X+Tx_1— 7 x
cyclotron frequency. The last term in E(L) is the surface h
potentiaf” which arises from the surface curvatife. e cA22) 1
We consider a 2D ring oh defined by a radial confining + 02+ wil1— (_0) } ] S 3
i 2 ¢ 2a 4’
potential 3
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M= /(M+ pap)+ (M* wor3/24)2, (4) (sinh 2 )12

szm |F( - am-l— Bm_ lv+ 1/2)

om=\[wc—h(M+ $ap)/2m*a’]*+ wp, (5) KTyt i+ 1/2)].
dag=Pag/Py is the number of Aharonov-Bohm flux
quanta.

After some algebra we find that the spectruntgf con-
sists of two parts: a discrete spectrum in the intervaEgp,
and a continuous one in the intervlEy,©], where Eg

k242 *  2°2r1 272 H
=M wea™/2+ M wga’1-(re/2a)"]/2 is the lower bound Note that the width of the quantum rinr <r, and for

of the continuous spectrum. - . the quantum dotAr<2a. Therefore, Ep<m* wéaz[l
The discrete spectrum consists of finite numbers of eigen- 122)212/2 for th hi
values —(ro/2a)7]4/2 for these nanostructures. In this case, as can
be seen from Eq(9), the continuous spectrum is much
7 x 2.2 higher than the Fermi energy for the quantum ring and dot.
+ @We + _ Hence, at low temperatures, there is no contribution of the
(M+ ¢ap) . .
2 4 continuous spectrum of electrons to magnetic and transport
properties of these nanostructures.
M As can be seen from E@6), the effect of an AB flux on
' the energy spectrum and the wave function of electrons is to
shift m—m+ ¢,5. Note that, in contrast to the case of an
(6) 1D ring, an AB flux changes not only the phases of the wave
functions but also the trajectory of electron states in a 2D
guantum ring[see Eq.(8)], which results in a nonparabolic
neN:0<n<m* w,a%h—M/2—1/2. (7) dependence of the energy spectrum on the AB 9rlux_.
As can be seen from Ed6), the energy levels with the
The corresponding orthonormal eigenfunctionsHyf, are  same quantum numberform a subband. The energy spec-
iven b trum of the ring is a periodic function @b g with the period
9 y : 3 L C
®,. While the energy spectrum of the ring is an aperiodic
fam(X) = Cpm(X—1)Amx"~®mF(—n,—n+2am:2am—2Bm function of B. Thus, the effect of the penetration of a mag-
netic field into the conducting region of the ring is to the
—2n;1/x), 8 appearance of the dependence of subband minima on a mag-
_ _ netic field and to the asymmetry of the subband dispersion
whereay,=wp/{, By=M/2. _ _ about the subband minimufiNote that the surface curvature
_ Using the properties of hypergeometric functions, one caflgaqs to the additional subband asymmetry. In the following
find the normalization constan@,,,,: we consider the case @f,5=0 only.

As can be seen from E@6), at zero magnetic fields, the

As follows from Eq.(9), the lower bound of the continuous
spectrum is a quadratic function of the uniform component
of the magnetic field and independent of the AB flux. There
is a finite number of discrete eigenvalueshHyf, below this
bound.

LN
T2 2

Enm=fion

%2 +1
n"a

1 ) 1\2
§(m+¢AB) + n+§ +

2m* a2

where

c 2_22am_23m_2n_zr(20m—n)F(Zam—ZBm—n) minima of all subbands are a=0. At nonzero magnetic
|Coml*= aT (2am—2Bm—2n)]2 fields, all subband minima lie ah=m,, where
(2am—2Bm—2n—1) m* wr3
[(1+28,+n)n! ’ Mo (10

T 2h[1—(rol20)2]

wherel'(x) is the EulerT’-function.

The continuous spectrum &f,, is defined by Note that, as for the case of the flat surfaog,is the number

of quantum flux penetrated the ring with effective radiys
m* w2a?  m* wa? The dependence of the subband minimum on the magnetic
E=— e 00T 1 (rgf20)2]? field is given by
v 2 2

2

n+ 5/ (12

ﬁ2

2m* a?

ﬁZ o~
—— 2, veR. (9 E“rmo_ﬁw n+§

2m* a?

The corresponding orthonormal eigenfunctions are given byvhereo= w2+ wg[ 1—(ro/2a)?]2. Note that in the limit of
zero curvaturdthe case of the flat surfaceve get the fol-

f,m(X)=CpXm(X— 1)PmF (@ + Bt i v+ 112,00+ B lowing formula for the subband minimum:
—iv+1/2;1+ 2B, 1—X), . . 1 12
— ho| N+ 5/,
where " 2
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wherew=\w?+ w?. Stress that in the case of a ring on the As can be seen from E¢l4), the surface curvature shifts the
surface of constant negative curvaturgs 2a; therefore the ~energy levels to the lower energy. Moreover, the shift is more

hybrid frequencya is less than that corresponding to the essential for the levels with higheror m. Furthermore, the

case of the flat surfaceo(). The surface curvature decreasessurfac_e curvature reduc_es the '?Ve' degeneracy at zero mag-
the contribution of the term which is due to the ring width in N€tic fields. The level witm=0 is nondegenerate, whereas
the levels withm+ 0 are twofold degenerate. As can be seen

w. Hence, the decrease of the transverse confinement of ﬂ??om Eq. (14), the hybrid frequencyw,, depends on the
. , m

ring is one of the manifestations of the surface curvature. A%]uantum numbem, therefore, for the levels with sman|
can be seen from Eq12), the spacing between the bottoms the curvature has negligible effect on the behavior of the

g;gf'%?}%onr??h;yg Eatﬂgscizloftrﬁglggé&g gkcanlaaz th.Ievels in magnetic fields. On the contrary, for the levels with
ny W VSKy P 'Farge |m|, the curvature essentially changes the hybrid fre-

fr?:cslﬂgt;:r:?jsisnzjiin }Pitafr?rbt:esggﬁl Sfl:gfr?]CEt?]_r)]dtr?aetptehneds 0qnuency and changes the behavior of the levels in a magnetic

bottoms of subbands are increasing with a magnetic-fieldf.leld'

Moreover, the magnetic field dependence of the subband bot-
toms is stronger for the higher subbands. The decrease of the
ring width shifts the subbands to higher energies, increases As is well known, the magnetic moment of any closed

the subband spacings, and weakens the dependence of {guilibrium thermodynamic system in an uniform magnetic
subband bottom on a magnetic field. As can be seen fromeld is defined by?

Egs. (11) and (12), the surface curvature leads to the con-
verse effects: the decrease of the curvature radius shifts the B ( <9F>
T,N

IIl. MAGNETIC MOMENT

= :2 Mn,me(En,m)1 (15

subbands to lower energies, decreases the subband spacings, B “h

and strengthens the dependence of the subband bottoms on a

magnetic field. whereF is the free energyf(E) is the Fermi distribution
Let us study the limiting cases. Firstly, we consider thefunction, Nis the number of electrons, and

case of an 1D ringr(;=constwy— ). The energy spectrum

of the nanostructure ai,— o~ can be found in the same way My m=— 9Enm (16)
as in Ref. 9: ’ JB
) ) is the magnetic moment of the(m)th state. The chemical
Tz E _ h 1 potential of a system is determined completely by the nor-
E,.=fo|n+ + o -
mm 2] om*a? 2 malization condition
h? ro\?]? _
_[fo gy N=2 fo(Enm)-

Although we study the ring and the dot in a nonuniform
agnetic fieldorthogonal to the surface of constant negative
urvaturg, the magnetic moment of the systems considered

. : . Here is given by Eq(15). In fact, an infinitesimal changéF
energy spectrum is symmetric abeug. Comparlng' EA(13)  in the free energy consequent on the infinitesimal chafiye
and that for the case of the flat surface, we find that thqn a magnetic field is given 5?/

surface curvature shifts the subband minima to the lower
magnetic field and weakens the magnetic field dependence of
the electron energy. oF = _f MéBdS,

Second, we consider the case of a quantum dgt Q). . . . )
Assuming that ,=0 in Eq.(6), we find the energy spectrum WhereM is the magnetic moment of the unit area afflis

of electrons in a quantum dot on the surface of constanf'€ Surface element. In this work, the magnetic field is or-
negative curvature, thogonal to the surfac&=Bn, wheren is the normal to the

surface. Therefore,

wheremy is defined by Eq(10). As can be seen from Eq.
(13), electrons occupy the lowest subband only. The subban

Enm=fion

1 |m|\ Zom h?
2 2

n+-+—|+ 2 o a? 5F=—5Bf MdS= - sBM,

2
+

where M is the magnetic moment of the system. Thus,

dF=—SdT— MdB+ udN,

It is well knowrf* that the energy spectrum of an isotropic 2D where S is the entropy of the system. It follows that the
quantum dot on the flat surface is degenerate at zero magnagnetic moment of the systems considered here is defined
netic fields(thenth level isn-fold degenerafe The low mag- by Eq.(15). Note that the magnetic moment is given by this
netic field lifts the degeneracy of the levels, whereas, at higliormula only for closed systems. In the case of open systems,
magnetic fields, the energy levels form the Landau subbandas shown in Ref. 40, the magnetic moment is no longer de-

L1
T3

><m2+ +1 14
> ne3fim|. s
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A . flat surface -
s b a=1500nm, T=0K ——
Y a=1500nm, T = 0.0] K em—
0
m
5
o
S 4}
8 flat surface
a=1500nm ——
L 1 1 1 2k 1 E 1
0 1 2 3 4 5 0 1 2

B(T) 10°B (T

~ FIG. 1. The magnetic moment of a 2D quantum ring as a func-  FIG. 2. The magnetic moment of a 2D quantum ring as a func-
tion of a magnetic field; N=1000, r,=800 nm, wy=1.5 tion of a magnetic field(the case of low magnetic fieldsN
X10% s, $pap=0, andT=0 K. =1000, ro=800 NM, wy=1.5x 102 5%, and ¢p=0.

fined by this formula. But in the case of the weak couplinging between neighboring maxima of dHvA-type oscillations
between the system and reservoir, the magnetic moment cahid- 1. Moreover, in the limit of low magnetic fields, the
be calculated by Eq15). number of subbands below the Fermi energy is larger than
For the case of a quantum ring on the Lobachevsky plané,hat_ for the case of the flat surface. Therefore, the number of
substituting Eq(6) into Eq. (16), we get osc!llat!ons increases an(_:l the maximum of the amplitude of
' oscillations decreases with the increasing of surface curva-

_ w2 ture (Fig. 2.
Mnm __Me M+ dpp+ we—h(M+ Jap)/2m*a The dependence of the hybrid frequency on the magnetic
MB m* Om quantum number is the other manifestation of the surface
curvature[Eg. (5)]. As follows from this equation that the
surface curvature weakens the dependence of the energy lev-
x(@2n+1+M)l, (17 els on a magnetic field and decreases the level spacing. The

) former decreases the amplitude of AB-type oscillations,
wherem, is the free electron mass, ahl and o, are de-  \yhile the latter decreases the period of these oscillations
fined by Eqs(4) and(5) respectively. (Fig. 3. As shown in Fig. 3, the monotonic part of the mag-

As shown in Fig. 1, the magnetic moment of & 2D quan-petic moment for a ring on the Lobachevsky plane is below
tum ring on the Lobachevsky plane as well as on the flatyat for the flat surface.

14 . : . B H . . . .
surfacé™* has a complex oscillation pattern: oscillations of Note that temperature results in smearing of oscillation

the AB type are superimposed on oscillations of the d&yaxima and decreasing the oscillation amplitEig. 2).
Haas—van AlpheridHvA) type. The amplitude of AB-type

oscillations is strongly suppressed by increasing magnetic: 1367 -11.06
field strength, whereas the amplitude of dHvA-type oscilla- L
tions is increased with the magnetic field. At low magnetic
fields, the amplitudes of these oscillation types are of the
same order of magnitude, and the superimposition of the
oscillations leads to the appearance of a beating pattern i1
M(B) (Fig. 2. At high magnetic fields, the amplitude of -
AB-type oscillations is much smaller than that of dHvA-type
oscillations(Fig. 1). Moreover, the AB-type oscillations are
almost periodic in the strong-magnetic-field regithréy. 3).

Note that the AB-type oscillations of the magnetic mo-

-13.73 H -11.12

M

-1379 N 1118

ment arise from the electron-level crossings, whereas the 1385 . . s L
dHvA-type oscillations arise from singularities in the elec- 5.98 5985 3.99 5.995 6
tron density of states. It can be shown that the electron den- B

sity of states is larger at the subband bottoms. Therefore, the £ 3. The dependence of the magnetic moment of a 2D quan-

maxima of dHvA-type oscillations arise when the chemicaly,m ring on the magnetic fiel@he case of high magnetic fields

potential crosses the subband bottoms. The magnetic moment of a 2D ring on the Lobachevsky plane with
Let us consider the effect of the surface curvature on thene radius of curvatura=800 nm is plotted with a solid linéeft

magnetic moment of a ring. As mentioned above, the deordinatd. The magnetic moment of a 2D ring on the flat surface is

crease of subband spacings is the one of manifestations gfotted with a dotted lindright ordinate; N= 1000, r ;=800 nm,

the surface curvature. This leads to the decrease of the spag;=1.5X102s7%, ¢pg=0, andT=0 K.
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2000 2 F
flat surface E
1500
a=800nm —
1000 b
500
£
g 0 S
= 500 o
-1000
-1 F
-1500
2000
) 1 1 1 1
-2500 0 0.01 0.02 0.03 0.04 0.05

B (T)

B(T)

FIG. 4. The magnetic moment of a quantum dot as a function ofd tF|G' 5. The ?e;}erlldﬁnce of thfel magnetic ;pofmtlent_r?‘f a quantum
a magnetic field;N=500, wo=1.5x10"*s1, ¢,z=0, and T ot on a magnetic fieldthe case of low magnetic fielisThe mag-
—0 K netic moment of a dot on the Lobachevsky plane with the radius of

curvaturea=800 nm is plotted with a solid line. The magnetic
moment of a dot on the flat surface is plotted with a dotted line;

Let us consider particular cases. In the limit of an 1D ring,N_500 0g=15xX102 5L, pa=0. andT=0
- ] o +- ’ AB— VY — VY.

substituting Eq(13) into Eq. (16), we get for the magnetic

moment M(B) for the Lobachevsky plane as well as for the flat
surface. As follows from the behavior of the electron levels
in a magnetic field, the surface curvature decreases the pe-
riod and the amplitude of the dHvA-type oscillatiofisig.
4). Since the surface curvature reduces the level degeneracy
where ®=BS is the magnetic flux penetrating through a at zero magnetic fields, the magnetic moment of a quantum
ring, andS= wr%/[l—(rO/Za)z] is the surface area circled dot on the Lobachevsky plane is lower than that for the flat
by a ring with an effective radiusy. As can be seen from surface at weak magnetic fields. The new jumps in the field
this equation, the magnetic moment is a periodic function otlependence of the magnetic moment arise with increasing
the magnetic field with the perio®,. As follows from the the magnetic field, which are due to the crossings of degen-
analysis of the energy spectrum of electrons in an 1D ringerated levels aB=0 in the case of the flat surfa¢eig. 5).
the surface curvature decreases the amplitude of the magt high magnetic fields, when the lowest subband is occu-
netic moment oscillations. Note that the dependence of thpied only there is no level crossings, therefore the AB-type
magnetic moment on the surface curvature is caused by thescillations vanisiFig. 6).
nonuniformity of a magnetic field. As mentioned above, we
consider the case of an orthogoife the surfacemagnetic IV. PERSISTENT CURRENTS
field.

In the limit of a quantum dot, assuming thgt=0 in Eq.
(17), we obtain

2

Mam  Me

)
2a

()
“AB_ ") a8
4B m* ®q q)o) (18

Let us consider the persistent current of a 2D quantum
ring on the Lobachevsky plane. We study the relation be-

2 ﬂat SuI‘faCC

— * a=800n0m, T=0K ——

Mom =——|m+ bapt 0~ h(M+ Pag)/2m”a Ol 2a=800mm,T=004K ——
MB m* Wm

X(2n+1+|m+ ¢ag)) | (19

Mg

As mentioned above, for the zero magnetic fields, the en-
ergy levels of an isotropic 2D quantum dot on the flat surface
are highly degenerate. The low magnetic field lifts the de-
generacy of the levels, and near the Fermi energy more elec
trons will occupy the states wittn<<0O, which have a lower
energy than then=0 states. Therefore, the magnetic mo-
ment of the quantum dot on the flat surface has a large valut
at a weak magnetic fieftlFurther increase of the magnetic
field leads to complex oscillations o#(B), which arise FIG. 6. The magnetic moment of a quantum dot as a function of
from the superimposition of the AB-type oscillations on thea magnetic fieldthe case of a high magnetic fie)ddN=500, w,
dHvA-type oscillations. In Fig. 4 we show the dependence=1.5x102s™%, and ¢,g=0.

6 6.1 6.2 6.3 6.4 6.5
B(T)
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15 0.4
10
02
5
T o0 T of
5
02
10
_15 1 1 Il 1 1 _0.4 1
0 05 i 15 2 25 3 5.98 5.99 6
B(T) B(D)

FIG. 7. The persistent currents of a 2D quantum ring on the FIG. 8. The dependence of the persistent currents of a 2D ring
Lobachevsky plane as a function of a magnetic fiéa; 1000, a on a magnetic fieldthe case of high magnetic fieldd¥he persistent
=1500 nm, ry=800 nm, wy=1.5x10%s !, ¢,g=0, and T  currents in a ring on the Lobachevsky plane with the radius of
=0 K. curvaturea= 1500 nm is plotted with a solid line. The persistent

) . currents in a ring on the flat surface is plotted with a dotted line;
tween the persistent current and the magnetic moment of thg_ 19go ro=800 NM, we=1.5x102s!, ¢,g=0, and T

ring and we examine the effect of the surface curvature on.
the persistent current. Note that we take no account of the

edge-state effects. In our model the Fermi energy is the Sa”};ﬁnplitude. In the limit of low magnetic fields, there are some

in the whole system, therefore, the inner and outer edggccupied subbands. The crossings of the highest occupied

states contribute no current around the ring. _When the WaV&lectron level with the levels of these subbands lead to the
functions of a system are zerorat 0, the persistent current . X !
appearance of a beating pattern li(B). As mentioned

: ; 1
can be calculated using the following equatiot above, in this magnetic-field regime, the persistent current is

JF proportional to the magnetic moment. Therefore, the behav-
I=-c 9D nn :nE:’n Inmfo(Enm), (200 jor of the persistent current is similar to the magnetic mo-
TN ment behaviofFig. 2). In the strong magnetic-field regime,
where only the lowest subband is occupied and only the crossings
JE of levels of this subband with the highest occupied level lead
nm o : )
lnm=—C ally (21) to oscillations of the persistent current. Since levels of the
' P g lowest occupied subband are nearly equidistant, the oscilla-
Taking into account E¢(17), the persistent current of the tOns of the persistent current are nearly periodic in this
(n,m)th state is given by magnetlg:-fleld reglmeé!:lg. 8). The period of osmllaﬂqns of
the persistent current is the same as for the magnetic moment
c rml2] Mo o (Fig. 3. As mentioned above, the surface curvature de-
hm=—7 1 Mam 1=| 55| | T #e—(2n+1)p, creases the period and the amplitude of oscillations of the
T mT - @m i As can b f the surf
22) magnetic moment. As can be seen from E%), the surface

_ _ _ curvature leads to the additional decrease of the amplitude of
wherer ,,= \2AiM/m* Wy IS the effective radius of the state oscillations of the persistent current with respect to the mag-
with quantum numbem. 2 The first term in Eq(22) isthe  netic moment.

classical current in a ring with a radius, in a magnetic Note that Eq.(21) is also valid for electron states in a
field. The second term caused by the penetration of the magpantum dot, except for the states With+ ¢4g=0. This is
netic field into the conducting region of the ring breaks thepecause, when,=0, the wave function of a state witm
proportionality between the magnetic moment and the pers 4 .—0 has a nonzero value at=0, and Eq.(20) no
sistent current. It can be seen from E82) that only in the longer applies. However, since E@1) applies for all states

weak magnetic-field limit ¢ <wo) the magnetic momentof it 0 the persistent current of the state witht ¢ag
an electron state is proportional to its current. In Fig. 7, We_ g can be obtained by taking the lithit

plot the persistent current as a function of a magnetic field.

As can be seen from this figure, the persistent current shows ln—go= lim [ lim 1, ]

rapid oscillations within the whole magnetic field range. The CRR 0 me—gag

amplitudes of the persistent current are strongly suppressed

by increasing magnetic-field strength. This is due to the fact _ |e|& el wc }
that the oscillation amplitude- /P, whereP is the number  Am 4gmtal o 2)’

of the occupied subbandsThis number decreases with the
magnetic field and this leads to the decrease of the oscillatiowhere w = \/wcz+ woz_
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FIG. 9. The dependence of the persistent currents in a quantum FIG. 10. The persistent currents of a quantum dot as a function
dot on a magnetic field. The persistent currents of the dot on th@f a magnetic fieldthe case of high magnetic fieldN=500, a
Lobachevsky plane with the radius curvatare 800 nm is plotted =800 NM, wo=1.5x10"*s™*, and ¢45=0.

with a solid line. The persistent currents of a dot on the flat surface__ . _.. . .
is plotted with a dotted liNeN=500, wy=1.5% 1025 1, pag oscillations(Fig. 1). Moreover, the dependence of the hybrid

—0 andT=0 K frquency on the magnetic quantum number is the another
' ' manifestation of the surface curvatyteqg. (5)]. As follows
i o . from this equation, the surface curvature weakens the depen-
Note that the penetration of a magnetic field into the congence of the energy levels on a magnetic field and decreases
ducting region plays an essential role with increasing thahe level spacing. The former decreases the amplitude of
magnetic field. This leads to the break of the proportionalityAharonov-Bohm-type oscillations, while the latter decreases
between the magnetic moment and the persistent current difie period of these oscillatior&ig. 3). Two limiting cases
the quantum dot. The persistent current as a function of &re considered: the case of an 1D quantum ring and the case
magnetic field exhibits rapid jumps which appear when thedf @ quantum dot. It is shown that the surface curvature re-
Fermi energy crosses the subband bottdFig. 9). The os- duces the level degeneracy of a quantum dot at zero mag-

cillations due to the level crossings with the highest occupied€tic fields. Therefore, the magnetic moment of a quantum
g 9 b qot on the Lobachevsky plane is lower than that on the flat

level are superimposed on these jumps. The amplitude o . .
— . . . surface at weak fields. The persistent currents of a quantum
these oscillations decreases with a magnetic field. At highti,g 204 a quantum dot are studied. The relation between the
magnetic fields, this amplitude tends to z€éffgg. 10. Ascan  persistent current and the magnetic moment of these nano-
be seen from Figs. 9 and 10, the surface curvature decreasggyctures is investigated. It is shown that the surface curva-
the amplitude of the dHvA-type oscillations and shifts thesewre leads to the additional decrease of the amplitude of os-
oscillations in the low-field region. cillations of the persistent current with respect to the

magnetic moment.
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