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Coherent control of electric currents in superlattices and molecular wires: Effect of relaxation
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We consider ad-dimensional conductor~a superlattice! within the independent-electron one-band approach
taking into account relaxation processes. The nonperturbative nonlinear dc electric current in response to a sum
of coherent time-periodic electric fields with frequenciesv and 2v and a phase shiftw is studied in~a! the
quantum coherent ‘‘dynamic’’ regime and~b! the ‘‘kinetic’’ regime under the influence of scattering. For slow
relaxation the first one takes place at short time and the second at long time. We demonstrate that coherent
control of dc electric currents is possible in both cases, though the particular conditions and manifestations are
drastically different. We obtain a detailed picture of coherent control through intraband dynamics, and discuss
the role of scattering and the time evolution of the response.
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I. INTRODUCTION

The usual way of producing a current in a semiconduc
is by applying an electric field, which changes the velocity
the carriers and their concentration in semiconducting lay
A novel and promising alternative to a dc bias is coher
control—the quantum effect of controlling the magnitu
and direction of the electric current through phase relati
ships of the applied coherent ac fields. Typically a laser fi
v and its generated second harmonic 2v with some phase
shift w are used—without any dc field component. Chang
the phasew and the amplitudes of the componentsE1 , E2 ,
one controls the magnitude and even the polarity of the p
duced dc current. Many aspects of the effect have been s
ied lately for semiconductors, superlattices, optical lattic
and molecular and quantum wires—both theoretically a
experimentally.1–30

Phase-coherent control of the dc current, generated
shallow-level doped semiconductors by multifrequency la
excitation has been considered in Ref. 17. That was an
tension to solid-state devices of the previous work by
authors on controlling gas phase reaction products.18 Coher-
ent control through the carrier photoexcitation from t
ground state in the quantum well up to the continuum
been used for the interpretation of experimental data in R
19. Calculations of phase-controlled interband transitions
bulk semiconductors have been performed in Ref. 20. Re
fication of the harmonic-mixing field in a single-band tigh
binding system with quantum dissipation~coupling to a ther-
mal bath of harmonic oscillators! has been studied in Re
23. The space-time symmetry aspects of the directed d
sion and dc current in ac field, both in the classical a
quantum framework, have been investigated in Ref.
Phase control of the emitted THz field in the calculation
the dynamical Franz-Keldysh effect has been demonstr
numerically for the two-band model of a quantum well wi
the account of excitonic effects.26

Experimentally phase-controlled currents in quantum-w
superlattices have been measured in Ref. 19 with the us
mid-infrared radiation and its second harmonic. Coheren
controlled directional photocurrents due to interband o
0163-1829/2004/69~19!/195308~7!/$22.50 69 1953
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and two-photon excitation in bulk semiconductor GaAs ha
been studied experimentally in Ref. 21. The most interes
systems for the observation of coherent-control effects in
solid state include semiconductor dots and superlattices1–9

optical lattices,9–12 quantum wires,6,9 and molecular
wires.13–15

Typically coherent control is considered to determine
current at the stage of photoexcitation of the carrier from
bound donor state, Ref. 17, or from the ground state in
well to the continuum,19 or across the band gap.20 In our
approach, on the contrary, we consider the carriers to
already present either intrinsically or due to some unsp
fied mechanism, and focus on intraband propagation. On
the primary goals of the paper is to demonstrate that cohe
control is possible through intraband evolution within simp
constant-time relaxation approach, both in the quant
relaxation-free case and in the case of slow scattering.
comparison of the latter two cases reveals the role of co
ence and relaxation in phase control and demonstrates
nontrivial time dependence of the response.

Closely related to the problem of coherent control is t
effect of dynamic localization, discovered in. Ref. 29. In t
present paper we use our results from the study of dyna
localization,30,31 extending Ref. 29, and relate this to asym
metric ionization of molecules with two-color lase
excitation.16,32,33

II. MODEL AND GENERAL SOLUTION

We consider ad-dimensional crystalline conductor~a
semiconductor/optical superlattice, molecular/quantum w!
within an independent-electron one-band approach. The
tice structure is of cubic type@linear in 1D ~one dimen-
sional!, square in 2D, cubic in 3D#. The overlap between al
sites is taken into account, and the transfer integrals migh
anisotropic, so that the electron dispersionH (0)(k) is of
rather general type. The system is exposed to a two-m
time-periodic ~period T, basic frequency v) space-
homogeneous electric field

E~ t !5E1cos~vt !1E2cos~2vt1w!, ~1!
©2004 The American Physical Society08-1
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which may be strong compared to the second energy-
parameter\v. In the Wannier basis the quantum Ham
tonian reads

H~ t !5( Hn,n8
(0) un&^n8u1eE~ t !( nun&^nu. ~2!

Here n, 2`,ni,`, enumerates the lattice sites. The si
of the electron charge is incorporated in the equations h
and below, so thate is its modulus. Below we consider ex
plicitly the electrons. The generalization to the case of ho
is straightforward—by the change of the overlap integ
Hn,n8

(0) in the dispersion relation and of the sign of the cha
e. However, we do not address the simultaneous presenc
both types of carriers, as that would need the accoun
correlation and excitonic effects beyond the adop
independent-electron approximation.

We are interested in the study of the dc response to th
electric field, Eq.~1!. The former is characterized by th
electric currentj (t)52e(d/dt)D^R(t)&, whereD^R(t)& is
the average displacement of the electrons in the fi
summed over the band fillingD^R(t)&5(n@rn,n(t)
2rn,n(0)# (r—the density matrix!. The angular brackets
here and below denote quantum averaging in the dyna
relaxation-free case, while in the kinetic regime it is avera
ing with the quantum density operator over scattering a
fluctuations. Double angular brackets denote additional t
average over the period of the field.

The Schro¨dinger equation of the system without rela
ation ~2! can be solved exactly to give~see, for example
Refs. 29 and 30!

D^R~ t !&5E dk
rk,k~0!

VBZ
E

0

t

dt8 vk(t8) ,

vk(t)5
1

\
“kH

(0)@k~ t !#, k~ t !5k1
e

\c
A~ t !. ~3!

Here

A~ t !52cE
0

t

dt E~ t !

52
c

v
E1 sin~vt !2

c

2v
E2@sin~2vt1w!2sinw#

~4!

is the vector potential andA(0)50. The scalar potential is
identically zero.H (0)(k) is the electron dispersion in the ab
sence of the field andrk,k(0) is the initial density matrix,
rk,k85(rn,n8exp(2ik•n1 ik8•n8). VBZ is the volume of the
Brillouin zone. We take the intersite distancea as length unit
throughout.

Scattering by phonons is introduced by dephasing
wave function and inducing relaxation to the thermal eq
librium distribution f («(k)).29,34 We do not specify the par
ticular form of the equilibrium distribution function—the so
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lution and subsequent discussion is good for a gen
f («(k)). The equation for the density matrixr(t) is of the
form

i\
]

]t
rn,n8~ t !5@H (0),r~ t !#n,n81eE~ t !~n2n8!rn,n8~ t !

2 ia\~12dn,n8!rn,n8~ t !

2 ia\dn,n8Frn,n8~ t !2
Ne

Ns
f „«~k!…G , ~5!

where a is the relaxation rate. The density matrix has t
norm (rn,n(t)5Ne , whereNe is the total number of elec
trons andNs is the number of sites in the lattice. The equ
librium distribution functionf „«(k)… is normalized to 1 and
is symmetric in6k. The solution of Eq.~5! is ~see, for
example, Refs. 29 and 30!

j ~ t !52eE dk
rk,k~0!

VBZ
e2atvk1(e/\c)A(t)

2eaNeE dk f „«~k!…e2atE
0

t

dt8

3eat8vk1(e/\c)A(t)2(e/\c)A(t8) . ~6!

Despite the different appearance, Eq.~6! is in fact equiva-
lent to Eq.~4.5! of Ref. 29~generalized to the case of arb
trary lattice structure, long-distance overlap, and arbitr
initial conditions!. However, the form of Eq.~6! presented
here is more convenient for analytical analysis and ma
transparent the relation to conventional formulas of so
state theory.

The first term in Eq.~6! characterizes the exponential d
cay of the initial coherent oscillations, damped by relaxati
At low scatteringaT!1 (T is the period of the field!, and
short timeat!1 the first term governs the evolution—it i
independent ofa, while the second one is small withaT.
This limit in the main term is equivalent to the cohere
relaxation-free case~3! whena is strictly zero and formula
~3! is good in the entire time domain. Now back in the k
netic regimeaÞ0, the second term in Eq.~6! describes the
standard kinetic evolution plus the transition process. It
comes dominant at long timeat@1 when the first term
fades. The first relaxation-free regime we call dynamic~or
short-time!, the second one kinetic~long time!. Note that it is
impossible to go back to the short-time dynamic regime fr
the long-time kinetic one even in the limit of vanishing sca
tering. Indeed, the transition to the long-time limit at sm
~but finite! damping implies that the electron during that tim
has suffered many scatterings and thus has thermalized.
precludes us in fact from going back to the dynam
~relaxation-free! regime of electron evolution by subseque
transition to vanishing scattering.

III. COHERENT CONTROL AND RELAXATION

Let us analyze the possibility of controlling the dc ele
tron response by the applied coherent ac fields and the e
8-2



o

o
n-
is

ca
d

es
dc
a

tt
e
a
-

th
ric

ud
.
a
ri

te
d
-
u

ic

e

d

ht-

e

e
,

ur-

COHERENT CONTROL OF ELECTRIC CURRENTS IN . . . PHYSICAL REVIEW B69, 195308 ~2004!
of relaxation upon electron propagation/coherent control
the basis of Eqs.~3! and ~6!.

First, we exclude from the very beginning the case
strong scatteringaT@1 which corresponds to the conve
tional kinetic regime with coherent effects vanishing—this
not of interest to us.

For the study of coherence control the case of slow s
tering (aT!1) is of major interest, and it will be addresse
in the rest of the paper. At short time (at!1) and for low
scattering the purely coherent~dynamic! results with no re-
laxation, Eqs.~2! and~3!, studied previously,29–31 are repro-
duced. This is the first interesting case which we will addr
in the following section, aimed at coherent control of
currents in the dynamic regime. The second important c
deals with the kinetic regime at long timeat@1 and low
scatteringaT!1, which we will address in the following
section. In this second case the electron after many sca
ings has thermalized, but the probability of a scattering ev
during one period of the applied ac field is still low, so th
coherent effects in electron evolution are still of primary im
portance. The comparison of these two cases will reveal
effect of slow relaxation upon coherent control of elect
currents.

To relate the present consideration to our previous st
of dynamic localization30 we note that the applied field, Eq
~1!, has no dc component, which positions the present c
as the ‘‘periodic’’ regime of the cited references. In the pe
odic case the quantum evolution of the electronic sys
k(t)5k1(e/\c)A(t) during the period of the external fiel
drives it back to the same states ink space it occupied be
fore. However, in position space the electron may shift d
ing that time. This nonzero on average dc drift in ac fields~or
in other words, zero-harmonic generation! is the subject of
interest for coherent control of electric currents.

A. Dynamic „or short-time… regime

The expression of the dc current in the dynam
relaxation-free regime follows readily from Eq.~3!. Besides,
we use the electron dispersion in ad-dimensional cubic-type
lattice for the velocity in the band to give

vk52
2

\ (
n.0

H0,n
(0)n sin~k•n!. ~7!

We also assume the initial band filling symmetrical in6k,
rk,k(0)5r2k,2k(0), no currents in the initial state in the
absence of the field. Then the expression of the averag
current is

^^ j ~ t !&&52
e

p\ (
n

H0,n
(0)n

3E dk
rk,k~0!

VBZ
cos~k•n!I dyn~«1 ,«2 ;w!, ~8!

where«15n•eE1 /\v, «25n•eE2/2\v are the dimension-
less field amplitudes, normalized by field frequencies, an
19530
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I dyn~«1 ,«2 ;w!5E
0

2p

dt sin@«1 sint1«2sin~2t1w!

2«2sinw#. ~9!

We note that the same expression~8! can be obtained
from the kinetic case below, Eq.~14!, in the limit at!1,
aT!1.

To avoid unnecessary complications let us adopt the tig
binding approximation when summation overn corresponds
to nearest neighbors only.

Let us study the« andw dependencies of the current. Th
symmetry properties inw:

^^ j ~ t !&&u2w52^^ j ~ t !&&uw , ^^ j ~ t !&&up2w5^^ j ~ t !&&uw
~10!

follow readily from Eq.~9! and reduce the study to the rang
0<w,p/2. Forw50 the current is zero identically. Clearly
increasing the phase shiftw from 2p/2 to p/2 one obtains
the change of the electric current from some positive~nega-
tive! value to some negative~positive! one, depending on the
values of«1 and «2 , see Fig. 1~a!. Thus, in the dynamic
regime both the directionality and the magnitude of the c
rent can be changed forw in the range2p/2,w,p/2 .

FIG. 1. The dc electric current̂̂ j && ~arbitrary units! in the
coherent dynamic regime~a! as function of the phase shiftw in the
range@2p/2,p/2# and of the dimensionless field amplitude«2 with
«151 fixed, and ~b! as function of «1 , «2 for phase shiftw
5p/2.
8-3
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KIRILL A. PRONIN AND ANDRE D. BANDRAUK PHYSICAL REVIEW B 69, 195308 ~2004!
The «1 ,«2 dependencies of the current^^ j && in the dy-
namic regime show current reversals, depicted in Fig. 1~b!
for w5p/2. Obviously, changing either one or both of th
parameters«1 ,«2 along a suitable trajectory one can go fro
positive values of the current through zero to negative v
ues, or vice versa. For example, from the maximal va
2I dyn54.050 . . . at«150, «251.031 . . . to theminimum
2I dyn523.185 . . . at «153.634 . . . , «250.9631 . . . , w
5p/2. As it can be seen from Fig. 1~b!, the decrease of on
~or both! component~s! of the applied field may lead to coun
terintuitive increase of the resulting dc current, and v
versa.

Explicit analytic expansions can be obtained for sm
values of«. For example, for«2!1 and arbitrary«1 one
gets

I dyn~«1 ,«2 ;w!52p«2sinw@J2~«1!2J0~«1!#2••• .
~11!

For «2 strictly zero the current̂^ j && is zero identically.
The growth rate for small«2 is linear, with the slope depen
dent on the value of«1 and sign and value of the phase sh
w.

More interesting is the case«1!1 with «2 arbitrary:

I dyn~«1 ,«2 ;w!52 2p sin@«2sinw#J0~«2!

1
p

2
«1

2$sin@«2sinw#J0~«2!

1sinw cos@«2sinw#J1~«2!%2••• .

~12!

Here the current is nonzero even for«150, first term in
Eq. ~12!. Thus, with the change of the magnitude of the on
component«2 with «150, we obtain the dc current whos
value changes from positive to negative values and back.
difference with the previous case, Eq.~11!, is in the phase
shift w for the field«2 . This phase shift cannot be compe
sated by the shift of the time origin, even in the absence
the other field«1 . In fact, w determines the phase at whic
the applied field starts att50, and this effect does not di
away even at long time due to the absence of relaxatio
the dynamic regime. Note that the solutions, Eqs.~3! and~6!,
imply that the vector potential satisfiesA(t50)50. Thus in
the simplest case«150, «2Þ0 the coherent control of the
sign and magnitude of the current is due rather to the init
field-value effect. However, if both fields«1 , «2 are present,
their coherent interference comes into play as well.

The second term in the low«1 expansion~12! is not lin-
ear, but quadratic in«1 .

Both expansions, Eqs.~11! and ~12!, reproduce correctly
the limits I dyn(«1 ,«2 ;w→0)→0, and I dyn(«1→0,«2
→0;w)→0. The low«1 ,«2 expansion

I dyn~«1!1,«2!1;w!52 2p«2sinw1••• ~13!

signifies that the lowest-order contribution to the dc curr
is the linear one in«2 . The form of the last expansion i
quite transparent: for low quasimomentum trans
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(e/\c)A(t)!1 ~low field! the average of the velocity, Eq
~3!, is proportional to the time-averagee/\c,A(t).
5«2sinw, Eq. ~4!.

Equation ~13! can be compared to the drift velocity i
two-color photoionization of simple molecules:32,33 vd(t0)
5(E1 /v)sin(vt0)1(E2/2v)sin(2vt01w), where vt0 is the
phase around the field maximum~minimum! where ioniza-
tion occurs mainly. In the present case the latter reduce
the initial time t050. Obviously, the corresponding drift ve
locity vd(t050) agrees with the expansion~13!.

Next, we pass over to the kinetic regime with relaxatio

B. Kinetic „or long-time… regime

In the periodic regime the integral over time in the gene
kinetic solution, Eq.~6!, for the electric current can be rep
resented as a sum of integrals over periods of the app
field, and the corresponding geometric series can be ea
summed up.30,31 The dc current at timet5mT ~wherem is
integer! is given by

^^ j ~ t5mT!&&52eE dk
rk,k~0!

VBZ

e2amT

T

3E
0

T

d~Dt !e2aDtvk1(e/\c)A(Dt)

2
eaNe

T

12e2a(m11)T

12e2aT E dk f „«~k!…

3E
0

T

d~Dt !e2aDtE
0

T

d~Dt8!

3eaDt8vk1(e/\c)A(Dt)2(e/\c)A(Dt8) . ~14!

Note that in the absence of scatteringa50 the first term
of Eq. ~14! reproduces the dynamic result of the preced
section. However, as soon as we pass to the long-time l
at@1 in Eq. ~14! the first term fades and there is no wa
back to the dynamic regime any more.

As discussed above, of major interest to us is the lo
time at@1, low-scatteringaT!1 regime, when the elec
trons have thermalized, but coherence effects are still of
mary importance, as scattering during the period of the
field is a rare occasion. Then the leading term of the
current is

^^ j &&52
eNe

T2 E dk f „«~k!…E
0

T

d~Dt !

3E
0

T

d~Dt8!vk1(e/\c)A(Dt)2(e/\c)A(Dt8) . ~15!

However, it can be shown easily that on a cubic-type l
tice with symmetric 6k distribution function f „«(k)…
5 f „«(2k)… the expression~15! is identically zero due to
symmetry relations for any periodic fieldE(t) without dc
component.

Next-order terms in the expansion inaT are nonzero:
8-4
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^^ j &&52
eaNe

2p2\v
(

n
H0,n

(0)nE dk f „«~k!…cos~k•n!

3I kin~«1 ,«2 ;w!, ~16!

where the dimensionlessI kin is

I kin~«1 ,«2 ;w!5E
0

2p

dtE
0

2p

dt8~t2t8!

3sinF e

\c
AS t

v D •n2
e

\c
AS t

v
8D •nG

22pE
0

2p

dtE
0

t

dt8

3sinF e

\c
AS t

v Dn2
e

\c
AS t

v
8D •nG .

~17!

For simplicity we again adopt the tight-binding approx
mation below.

Let us study the« andw dependencies of the dc curren
In the kinetic case there are also symmetries with respec
w, which can be verified readily from Eqs.~17! and~4!. This
time, however, the second equation is antisymmetric in c
trast to Eq.~10!, where antisymmetric was the first one:

^^ j ~ t !&&u2w5^^ j ~ t !&&uw , ^^ j ~ t !&&up2w52^^ j ~ t !&&uw .
~18!

The symmetry properties~18! reduce the study to the
range 0,w,p/2. For w56p/2 the current is identically
zero. Note the difference with the dynamic regime, when
current was zero atw50 instead. Increasing the phase sh
w from 0 to p one obtains the change of the dc elect
current ^^ j && from some positive~negative! value to some
negative~positive! one, depending on the values of«1 and
«2 , see Fig. 2~a!. The possibility to control both the direc
tionality and the magnitude of the current in the kinetic
gime is a fact, qualitatively similar to the dynamic cas
However, this timew varies in the range 0,w,p, and
quantitatively the corresponding dependencies are drastic
different, cf. Figs. 1 and 2.

The«1 ,«2 dependencies of the current^^ j && in the kinetic
regime are depicted in Fig. 2~b! for w50. Changing either
one or both of the parameters«1 ,«2 along a suitable trajec
tory one can go from positive values of the current throu
zero to negative values, or vice versa. For example, from
maximal positive value 2I kin518.37 . . . at «1
52.188 . . . , «251.051 . . . , w50 to the minimal negative
one 2I kin526.730 . . . at «152.377 . . . , «252.991 . . . ,
w50. Obviously, the decrease of one~or both! component~s!
of the applied field may lead to counterintuitive increase
the resulting dc current, Fig. 2~b!, and vise versa. In com
parison to the dynamic regime the shape of the kinetic s
face representing the dc current as function of field am
tudes, however, is drastically different~note different ranges
for w).
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It can be demonstrated from Eq.~17! that the dc current is
zero if either one of the fields«1 or «2 vanishes. In this
respect the situation differs from the dynamic regime wh
the current was nonzero if«150,«2Þ0. The reason is in the
fact that at long time relaxation smears out the effect
initial-field value, discussed in the preceding sectio
Equivalently, it restores the invariance of average quanti
with respect to the shift of the time origin. Then in a sing
applied field nothing breaks the left-right symmetry on av
age, so that there cannot be any dc current. Obviously,
introduction of the second coherent field breaks that sym
try and the dc current appears—away from the lines«150
and«250.

An explicit expansion can be obtained for«1!1,«2!1:

I kin~«1 ,«2 ;w!52 3
2 p2 cosw«1

2«21••• . ~19!

It is linear in «2 , quadratic in«1 , and becomes zero forw
56p/2, in agreement with Fig. 2~b!. The functional depen-
dence of the current~19! on «1 ,«2 , andw agrees with the
result of Ref. 23, obtained for a different model of quantu
dissipation in the incoherent sequential tunneling regim
The leading term of the dc current, Eq.~19!, comes from the
third-order nonlinear response20,21,23and thus is proportiona
to the time average ofE3(t), Eq. ~1!, with coefficient
s (3)(v,v,22v). Such dependence on electric-field amp

FIG. 2. The dc electric current̂̂ j && ~arbitrary units! in the
kinetic regime~a! as function of the phase shiftw in the range
@0,p# and of the dimensionless field amplitude«2 with «151 fixed,
and ~b! as function of«1 ,«2 for phase shiftw50.
8-5
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KIRILL A. PRONIN AND ANDRE D. BANDRAUK PHYSICAL REVIEW B 69, 195308 ~2004!
tudes has been observed in experiments on coherent co
in optical superlattices,12 semiconductor superlattices,19 and
bulk semiconductors.21

IV. DISCUSSION

To summarize, we have considered the coherently c
trollable dc current ~zero-harmonic generation! in an
independent-electron one-band conductor in two regim
dynamic without relaxation~or short time! and kinetic with
the account of scattering~long time!. The applied field has
two components with frequenciesv and 2v with phase shift
w. Explicit expressions of the dc current are obtained in b
cases, with special emphasis in the kinetic case on the
scattering nearly coherent regime. Coherent control is p
sible in either one. However, the field- and phase-shift
pendencies of the dc current in both cases are drastic
different. One of the reasons for that is in the fact that in
dynamic regime the effect of initial-field value~or initial
phase shiftw) does not decay in time due to absence
relaxation. In the kinetic long-time regime, on the contra
the electrons thermalize and the initial conditions play
role. Another important difference is in the fact that the
current in the kinetic long-time regime arises due to the n
linear ~starting with third-order! response. In the dynami
regime the lowest-order contribution is first order in the fie
«2 . Additionally, in the kinetic regime the result depen
considerably on the space symmetry of the lattice.

In the kinetic regime the dc current in an ac field oft
vanishes@for example, in the cos(vt) field, considered mos
often#, unless other coherent components of the applied fi
break the space inversion symmetry. The same is true for
dynamic regime as well. However, in the latter case ther
an additional mechanism for nonzero current formation:
herence effects in electron evolution, including the effect
initial conditions, which do not decay due to absence of
laxation. The latter initial-field-value effect is quite transpa
ent: The initial band filling is symmetric,rk,k(0)
5r2k,2k(0), but thefield may have nonzero initial valu
E(t50)Þ0, which breaks the symmetry in electron evol
tion ~similar to Refs. 32 and 33!.

Coherently controllable dynamic dc currents should
observable on shorter time scales than the ones in the kin
regime; namely, which one takes place is determined by
time of observation: at short time, comparable to intersc
tering time the first one is realized, while for long time, e
ceeding the inverse relaxation rate, the second one shou
observed.

The mathematical reason for the cited differences betw
the dynamic and the low-scattering kinetic regimes is
additional integral over time in Eq.~6! as compared to Eq
~3!, which occurs due to the implicit averaging over scatt
ing events, entering the kinetic formulas. This additional
tegration cancels the contribution, linear in the field due
lattice symmetry in Eq.~14! and thus raises the order of th
contributing nonlinear processes.

In the final expressions for the current, Eqs.~8! and ~16!
within the tight-binding approximation the initial band fillin
and the equilibrium distribution function factor out from th
19530
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field and phase dependence, which enables the study ofE1 ,
E2 , andw dependence of the current in general form witho
specifyingrk,k(0) and f „«(k)….

We assumed the carriers to be already present in the b
either intrinsically or due to some unspecified mechanis
and focused on the coherent control effect upon intrab
evolution. Intraband propagation by itself provides t
means for coherent control. However, carrier generation,
example, by photoexcitation from bound states on donor17

or via interband transitions,19,20 can also be incorporated b
substituting suitable expressions in place ofNe andrk,k(0),
the latter possibly becoming nonsymmetric in6k to incor-
porate the coherent control effect upon the photoemiss
process.

The case of injectedk electrons in the coherent dynam
regime might be of some interest as well. All the field a
phase dependence of the dynamic current in Eq.~8! is incor-
porated in the factorI dyn(«1 ,«2 ;w). Thus, all the injected
electrons provide similar dependencies on«1 ,«2 ,w, which
differ, however, by a numerical prefactor, provided by t
initial distribution: the sign of the dynamic current will b
opposite for electrons injected in the upper and lower pa
of the band through cos(k). This gives the theoretical poss
bility to find out where spectrally the electrons in the ba
are injected through the measurement of the sign of the
rent. If the whole band is populated uniformly, the dynam
current becomes zero. In the thermalized long-time kine
regime ~16! there is no such dependence on initial con
tions.

The change of coherent control, i.e., current magnitu
and direction, in going from the dynamic to the kinetic r
gime could serve as a monitor for establishing the prese
of these regimes of nonlinear response.

Finally let us address the question of observability of t
considered effects in experiments on GaAs/GaAlAs se
conductor superlattices. The relaxation timea21 we assume
;1 ps ~Ref. 27 atT510 K, Refs. 22 and 28!. To meet the
slow-scattering conditionaT!1, the laser frequency shoul
be high enough,n5v/2p51/T@a51 THz, in our case. On
the other hand, for the one-band approximation to be va
the laser photon energy should be smaller than the band
D, n!D/h. For the band gap to be bigger, the superlatt
GaAs wells should be narrow enough and the spacer GaA
layers should be thick enough~but not too thick in order the
overlap does not become too small!. For example, in Ref. 19
they are 5.5 nm and 32.5 nm, respectively, so that the b
gap is 152 meV. For the interband transitions to be ne
gible, we assume the upper limiting frequency;10 THz,
corresponding to photon energy;40 meV. Thus there
should be a narrow range for the laser frequency in betw
1012 and 1013 Hz, where our results for the coherent contr
through intraband evolution should be valid. The manuf
ture of bigger band gap superlattices with longer relaxat
time ~lower-temperature measurements! should increase the
range of its applicability.

Let us estimate the peak value of the current in the kine
regime. For the carrier densityNe;1015 cm23, Refs. 8 and
27, miniband width;2 meV, laser frequencyn;5 THz,
field amplitudesE1;E2;10 kV/cm, phase shiftw50, and
8-6
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the current density is;0.3 mA/mm2, or for a spot size
;50 mm, Ref. 19, the estimated current is;0.6 mA, well
within the range of measurements. In the dynamic regime
analogous current forw50 is identically zero, as noted
above. Forw5p/2 the peak value of the short-time dynam
current density is estimated to be;1 mA/mm2.

In optical superlattices the relaxation processes are m
slower, so that the conditions for the observation of the c
sidered effects are more favorable. For example, the appa
deviation from the constant velocity at short time in the in
of Fig. 2 of Ref. 12 obviously is due to the stated differen
in short-time and long-time response.

The study of dynamic~short-time! regime in semiconduc
tor superlattices requires subpicosecond measurements
all-optical response the 1 ps–100 fs range is access
though such measurements of transient currents pose
problems.1,2,6–9 In contrast to that, optical superlattices r
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quire the time scale of only;1 –10ms Ref. 12, which
should be quite accessible. In any case, we hope the prov
theoretical consideration of the short-time dynamic regi
will serve for the clarification of the nontrivial time evolutio
of the response and coherent control in superlattices.

We believe that the coherent control, exercised throu
intraband evolution, can be observed at low temperature
the electromagnetic response of high-quality semicondu
superlattices,1–9,27,28 optical lattices,9–12 and quantum
wires6,9 in the mid-THz range.
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Höhler ~Springer, Berlin, 1982!, Vol. 94, p. 101.
8-7


