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Resonance approximation and charge loading and unloading in adiabatic quantum pumping

Vyacheslavs Kashcheyevs, Amnon Aharony, and Ora Entin-Wohlman
School of Physics and Astronomy, Raymond and Beverly Sackler faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978

~Received 19 August 2003; revised manuscript received 17 December 2003; published 6 May 2004!

Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission.
The pumped charge is close to an integer number of electrons when the pumping contour surrounds a reso-
nance, but the transmission remains small on the contour. For noninteracting electrons, we give a quantitative
account of the detailed exchange of electrons between the dot and the leads~to the electron reservoirs! during
a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot’s
Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged
between the dot and each lead through a single resonance point is related to the relative couplings of the dot
and the leads at this resonance. If each resonance point along the pumping contour is dominated by the
coupling to a single lead~which also implies a very small transmission!, then the crossing of each such
resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized
charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks
of the transmissions between the various leads.

DOI: 10.1103/PhysRevB.69.195301 PACS number~s!: 73.23.2b, 73.63.Rt, 72.10.2d, 73.40.Ei
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I. INTRODUCTION

There has been much recent experimental1–3 and
theoretical4–17 interest in adiabatic quantum pumpin
through mesoscopic electronic devices, such as quan
channels or quantum dots~QD’s!. Typically, the QD is con-
nected via leads to several electron reservoirs, and is su
to a slowly varying oscillating potential, with periodT
52p/v. Under appropriate conditions, the device yields
nonzero dc time-averaged current between pairs of termin
even when the terminals have the same chemical poten
Under ideal conditions, the chargeQ transferred between th
terminals during a periodT may be ‘‘quantized,’’ i.e., very
close to an integer times the electron chargee. Several recent
theoretical studies have considered enhancement of the
batic pumping current due to resonant transmission18 through
the QD, both for noninteracting9,11,16,19,20 and interacting
electrons.21 Connections between pumped charge quant
tion and resonant transmission have been reported in di
ent contexts.11,16,19,20,22,23

Usually, the oscillating potential is characterized by se
eral time-dependent parameters,$Xi(t)%. As time evolves
during one periodT, these parameters follow a closed co
tour in the parameter space. A schematic example is sh
in Fig. 1 for two such parameters. In parallel to discuss
pumping, one can also consider the conductance betw
pairs of terminals generated by an appropriate bias. This c
ductance, which depends on the parameters$Xi%, may have
resonance peaks in the same parameter space. In this co
one freezes the time dependence, and considers the con
tance at some instantaneous values of the$Xi% ’s. It has been
argued11 that the pumped chargeQ will be close to being
quantized if the pumping contour surrounds such a p
~e.g., at the pointM in Fig. 1!, while staying at points with a
low conductance.

In the present paper we present an approximate theory
adiabatic pumping of coherent noninteracting spinless e
trons, which is valid for discrete and distinct resonances,
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use this approximation to obtain physical insight into t
reasons for this quantization. Given a conductance p
~e.g., at the pointM in Fig. 1!, one can usually also identify
a ‘‘resonance line,’’ along which the conductance decrea
from its peak more slowly than along other directions.11,16

Such a line is illustrated by the dashed line in Fig. 1. In t
example shown in this figure, the resonance line is cros
by the pumping contour twice, at pointsB andD. Measuring
the instantaneous biased conductance between the two
evant terminals for each timet during the oscillation period,
one expects two local peaks at these two resonance po
Under appropriate conditions, which include the limit
weak QD-terminal coupling, most of the pumped curre
arises when the parameters are close to these reson
points: for example, one can identify a ‘‘loading’’ of the QD
by some chargeDQa

res, coming from terminala, at the point
B, and an ‘‘unloading’’ of the QD, byDQa8

res, into terminal
a8, at the pointD. The resulting total pumped charge p
period approaches a robust, detail-independent valueQR,
which is determinedonly by the ratios of the coupling
strengths between the QD and the different reservoirs at

FIG. 1. ~Color online! Schematic picture of a two-dimensiona
pumping contour, crossing the resonance line at two resona
points (B andD). The transmission is maximal at the pointM.
©2004 The American Physical Society01-1
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resonance points. We also show thatQR can be related quan
titatively to the measured values of the peak conductan
QR is ~almost! quantized~in units of e) when there is one
dominant coupling for each resonance.

Our results can be summarized in a very simple a
physically transparent way, by considering the occupat
numbers of the quasibound state on the QD, correspon
to each transmission resonance. Each time the energy of
a state crosses the chemical potentialm ~which is the same in
all reservoirs!, the QD gains or loses one electron, so that
total pumped charge flowing into it~per period! is quantized.
However, the distribution of the pumped charge between
ferent reservoirs is proportional to the corresponding c
pling strengths~tunneling rates!. Therefore the pumping cur
rent between any two leads can be obtained by summing
individual resonance contributions, with appropriate sign

A similar ‘‘shuttling mechanism’’ for pumping has bee
used widely to interpret experiments2,3 in the Coulomb
blockade regime, when the energetics on the QD is do
nated by the electron-electron interactions.24 In that ap-
proach, electrons are transferred from a lead to the dot
then from the dot to another lead, whenever such trans
are favored energetically. In contrast, Refs. 11,15,16,25
26 presented explicit quantum-mechanical calculations
pumping of noninteracting electrons, calculated the to
charge pumped during a full cycle, and emphasized the
played by quantum interference in such processes. In s
sense, the present paper bridges between these poin
view: in the limit of weak coupling between the QD and t
leads, we do end up with a loading/unloading picture, e
for noninteracting electrons.45 However, the details of the
charge exchanges during a pumping cycle are found to
more complicated than in the ‘‘shuttling’’ picture: at a give
resonance point, charge can usually be shared by se
leads. Apart from this, the conditions for the applicability
our loading/unloading picture are similar to those of a sin
electron transistor,2 in the sense that the role of quantu
interference is restricted to the definition of independ
single-particle resonances. In view of this, there is room
conjecture that some of our results may also apply in
presence of electron interactions.

The paper is organized as follows. In Sec. II we revi
the physical assumptions of the model and the formulas u
for the calculation of the adiabatic current. We then use th
formulas to derive the current for a single resonant state
approximating the Green function on the QD by a Bre
Wigner-type formula. In Sec. III we obtain our main result
the adiabatically pumped charge for a sequence of w
defined distinct resonances—and discuss poss
applications and experimental verification. To demonstr
this general picture, Sec. IV presents the analysis of
pumped charge for a simple model15 of a ‘‘turnstile’’ pump-
ing device. A short summary concludes the paper in Sec

II. ADIABATIC CURRENT

We consider a spatially confined nanostructure~the QD!
connected by ideal leads to the electronic reservoirs wit
common chemical potentialm and temperatureT. The total
19530
s.

d
n
ng
ch

e

f-
-

up

i-

nd
rs
d
r
l
le
e
of

n

e

ral

e

t
o
e

ed
se
y

-

ll-
le
te
e

V.

a

Hamiltonian for noninteracting spinless electrons is

H5H d1(
a

~H a
l 1La1La

† !, ~1!

H d5(
mn

hmn~ t !dm
† dn ~dot!, ~2!

H a
l 5(

k
Eakcak

† cak ~ leads!, ~3!

La5la~ t !(
k,n

Jakncak
† dn ~hopping!. ~4!

Here H d is the Hamiltonian of anN-state isolated QD
(n,m51, . . . ,N), the index a51, . . . ,L enumerates the
one-dimensional leads connected to the QD,cak

† creates a
standing waveuwka& with wave numberk and energyEak in
the channela, the operatorLa describes hopping from the
QD into the channela, and thela’s are real dimensionles
coefficients. For pumping we allow variation ofH(t) via the
time-dependent parametershmn andla .

The instantaneous adiabatic current in the channela, di-
rected from a remote reservoir towards the QD, has b
expressed in Ref. 15 as

I a~ t !5
e

2pE dE f8~E!Ia , Ia5
1

\
^xkauḢuxka&, ~5!

where f (E)51/@11e(E2m)/kBT# is the Fermi-Dirac distribu-
tion and uxka& is the instantaneous scattering state norm
ized to a unit flux,^xkauxk8a&5(2p/vka)d(k2k8), with
vka5]Eka /](\k) being the velocity in the channela.

In Appendix we use standard scattering theory formulas
rewrite this equation in the form

Ia~E,t !5Trd@Gd
†~Ḣ d1 Ė̂!GdĜa1~Gd1Gd

†!Ġ̂a/2#. ~6!

Here, the operators

Gd5~E1 i02H d2Ŝ !21, ~7!

Ŝ5 Ê2 i Ĝ/2, ~8!

Ĝ5(
a

Ĝa , Ĝa5 iL a
†~Ga

l 2Ga
l†!La , ~9!

Ê5(
a

Êa , 2 Êa5La
†~Ga

l 1Ga
l†!La ~10!

act only on the subspace of the QD. Also,Ga
l denotes the

retarded Green function of an isolated channel,Ga
l 5(E

1 i02H a
l )21. We have separated the self-energy operatoŜ

into a sum of resonance width and shift operators,27 Ĝa and
Êa , which are Hermitian.
1-2
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RESONANCE APPROXIMATION AND CHARGE LOADING . . . PHYSICAL REVIEW B69, 195301 ~2004!
Equation~6! is a generalized version of the pumping cu
rent formula derived in Ref. 25 for a particular case
single-mode tight-binding~TB! leads and time-independen
couplings.46

The adiabatic current~6! can be calculated exactly, pro
vided that one is able to compute the Green function~7! on
the QD. We are interested in the regime when the transpo
dominated by a single nondegenerate orbital state, and
stead of Eq.~2! we consider

H res
d 5e~ t !uc&^cu[e~ t !d†d. ~11!

The energy distance to the next resonant stateD will be
assumed to be much larger than all other energies. The G
function corresponding toH res

d now assumes the Breit
Wigner-like form28

Gd5
uc&^cu

E2e2^cuŜuc&
. ~12!

The approximation of a single noninteracting energy lev
Eq. ~12!, is valid for resonant tunneling structures with ne
ligible charging energy, and corresponds to the Breit-Wig
treatment of mesoscopic electrical transport initiated in R
29 and 30. For example, our results are directly applicabl
the much studied double barrier pumping9,11,14,31,32in the
resonant tunneling regime.9,11 We also list several experi
mental situations when the charging energy is not small,
our noninteracting spinless model can still have some
evance. First, it applies when spin degeneracy is remo
either by a constant in-plane magnetic field or by feeding
device with fully polarized electrons form half metallic fe
romagnetic leads, e.g., CrO2 ~Ref. 33!. In this case the en
ergy scaleD is set by the level spacing of the effective d
vice Hamiltonian H d. Second, the Breit-Wigne
approximation~12! is relevant for the Coulomb blockad
peaks of a strongly pinched quantum dot well above
Kondo temperature.34,35 Specifically, within the Hartree ap
proximation, a large on-site Coulomb repulsion energyU
forbids double occupancy of otherwise spin-degenerate
ergy levels and sets the interresonance distanceD5U. Ex-
plicit derivation of the Breit-Wigner resonances for a weak
coupled interacting system can be found in Ref. 36.

Substitution of Eq.~12! into Eq. ~6! gives

Ia5
GaĖ02Ġa~E02E!

~E2E0!21~G/2!2
, ~13!

where E0(E,t)5e1^cuÊuc& and Ga(E,t)5^cuĜauc&.
Since the partial ‘‘width’’Ga is of orderla

2 uJaku2, it repre-
sents a measure for the coupling of the QD with the chan
a. The exact adiabatic current for a single level given by E
~13! will be the starting point for our analysis of the pump
charge in Sec. III. Breit-Wigner-type expressions for the c
rent pumped by a single orbital level have been derived p
viously in the weak pumping limit,21 and in the presence o
interactions and Zeeman splitting.22 However, they were no
used to discuss the details of the pumped charge quan
tion.
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In the remainder of this section we discuss the phys
interpretation of Eq.~13!. The total currentI 5(aI a repre-
sents changes in the total charge accumulated both on th
and in the leads. For small dot-lead couplings, one wo
expect that the charge on the QD itself is a well-defin
quantity and a simple picture of single electrons tunnel
between the leads and the QD should apply. In order
clarify the relation between our quantum calculation and t
‘‘classical shuttling picture,’’ we comment on the localizatio
of the charge.

Equation~13! implies that the total current in our model
a full time derivative, I 5dQF(E0 ,G)/dt of some time-
dependent chargeQF(t), where

QF~ t !52eE dE f8~E!H 1

2
1

1

p
arctan

2~E2E0!

G J .

~14!

~We have chosen the integration constant such thatQF/e is
bounded between 0 and 1.! The chargeQF represents the
integrated Breit-Wigner density of states and can
interpreted37,38as the additional charge induced in the syst
by an extra electronic stateuc&.

This delocalized chargeQF is to be compared with the
local equilibrium occupation inside the QD, which is give
by Qocc/e5Tr@ruc&^cu#, where r
5h21*dE f(E)(auxka&^xkau is the equilibrium density ma-
trix corresponding toH(t).47 Using Eqs.~A1!, ~A6!, and
~12! one can show that

Qocc5
e

2pE dE f~E!
G

~E02E!21~G/2!2
. ~15!

If E0 andG were independent ofE, then integration by parts
would yield the equalityQocc5QF. In general,E0 andG do
depend onE, and henceQoccÞQF.

III. RESONANCE APPROXIMATION

The Breit-Wigner form~13! of the pumping current dem
onstrates a well-established fact9,11,16that pumping is greatly
enhanced near a resonance. The resonance condition isuE0
2mu&D, whereD5max(G,kT) is the energetic width of the
resonance. One option, considered in Ref. 21, is to design
pumping contour in such a way that the system stays enti
at resonant transmission. In this case, the Breit-Wigner
proximation does not lead to any pumped char
quantization.21 Here we focus on a more generic case, wh
the resonance condition is satisfied only during a small fr
tion of the pumping cycle, as the system goes throug
resonance point. As shown in Refs. 11,16,19 and 20,
situation allows for pumped charge quantization. Spec
cally, we assume that the system remains near a reson
point only during a small fraction of the pumping cycle. Th
requires relatively narrow resonances, i.e., small widthsD
and therefore also smallG.

Consider a resonance timetR on the pumping contour
identified by the resonance conditionE0(m,tR)5m. This
identifies a ‘‘resonance point’’ on the contour. Assume a
that the system ‘‘crosses’’ this resonance point complet
1-3
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between timest1 and t2, such that~1! Ga , E0 are energy
independent around the Fermi surface~for uE2mu&kT); ~2!
at the ‘‘boundary’’ times, the system is far from the res
nance,D!uE0(m,t1,2)2mu!D; ~3! while at resonance, the
couplings change negligibly,uĠau!uĖ0u.

Under these conditions, we can integrate Eq.~13! and get
the charge transferred from the reservoira in a simple form:

DQa
res5E

t1

t2
dtIa52e

Ga

G
sgnĖ0 ~at E05m!. ~16!

For this particular resonance point, other parts of the pum
ing contour contribute negligibly to this charge. Equati
~16! is our main result for the pumped charge due to a w
defined resonance point. We will refer to this result as ‘‘t
resonance approximation.’’ In this approximation, each r
ervoir contributes on average a fraction of the electro
charge, which is proportional to the corresponding fractio
decay width or couplingGa /G. The total change in the
charge accumulated in the system due to this particular r
nance is thus

DQres[(
a

DQa
res56e. ~17!

This result can be easily generalized for several indep
dent resonance points. If the pumping contour can be s
rated into several parts, each containing a single well-defi
resonance point, and if the pumping currents on the res
the contour remain negligible, then the total chargeQa

R ,
pumped through the channela, is given by a sum over the
resonances:Qa

R5( resDQa
res. For a periodicH(t), the pump-

ing contour is closed, and charge conservation(aQa
R50 is

ensured by Eq.~17! and the fact that the number of loadin
(Ė0,0) and unloading (Ė0.0) resonance points is th
same.

A. Pumped charge quantization

Equation~17! can be interpreted as the loading/unloadi
of exactly one electron into/out of the QD, depending on
sign of Ė0 at the Fermi level. Furthermore, Eq.~16! implies
thatDQres is dominated by the current from a single chann
a, provided thatGa@Ga8 for aÞa8. If the same applies to
all the resonances, then we end up with a ‘‘classical’’ pictu
in which the pumping cycle contains a sequence of in
vidual discrete events, of exchanging electrons one by
between a reservoir and the QD. After a full cycle, the cha
on the QD will remain unchanged, and an integer numbe
electrons will have crossed the QD between any pair of
ervoirs. This gives a detailed explanation of the pump
charge quantization within this approximation.

Using the same conditions as used to derive Eq.~16!, one
can show that bothDQF[QF(t2)2QF(t1) and DQocc are
equal to DQres. This means that every time the syste
crosses a resonance point, the charge associated with
resonant state changes by;6e. Therefore we stress that
one is interested in the total charge pumped by a single r
nance@and not, for example, in the line shape of the curre
19530
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Eq. ~13!#, then the simple picture of loading/unloading of
single electron, as reflected in Eq.~16!, is applicable—
regardless of the ratioG/kT.

We also note that for such an ideal quantization (Qa
R→e

3 integer), that is independent of the contour details, o
would need to consider the limitGa'G→0 for each reso-
nance; the resonance approximation becomes exact, wit
sults which are independent of the details of the conto
whenG→0, and the charge goes only via channela when
Ga /G→1. As explained in the following section, this im
plies a vanishing transmission throughout the whole pum
ing cycle, in accordance with the conclusions of Refs. 11 a
39.

B. Relation to conductance

The criteria for the validity of the resonance approxim
tion, listed in the preceding section, can bequantitatively
checked in experiments~or in numerical calculations! by
monitoring the conductance between different leads a
function of parameters along the pumping contour.11,16A de-
finitive signature of the relevant transport regime~for having
a significant nonzero pumped charge! would be the presence
of an even number of well-separated peaks in the cond
tance time trace: each resonance (M in Fig. 1! is associated
with two peaks in the instantaneous transmission, enco
tered at the two resonance points (B and D) where the
pumping contour crosses the resonance line on each sid
the resonance, as schematically shown in Fig. 1. Note
this measurement is independent of time: one simply m
sures the conductance at different points on the pump
contour.

The contribution of each particular conductance peak
the pumped charge can be calculated along the follow
lines. Application of the general expression of the transm
sion probability27 from channela8 to channela, Taa85

2*dE f8(E)Tr@Gd
†ĜaGdĜa8#, to our resonance model@as

defined in Eq.~11!# gives the standard Breit-Wigner28 result
~see, e.g., Ref. 34!:

Taa852E dE f8~E!
Ga8Ga

~E2E0!21~G/2!2
. ~18!

Let us consider for simplicity an example ofL single-
mode leads. By using the multiterminal Landauer cond
tance formula40 for spinless electrons,Gaa85(e2/h)Taa8 , in
Eq. ~18!, we recover well-established34 results for the peak
conductance of a strongly pinched QD, that are related to
~16! in an extremely simple way:

Gaa8
peak

5
e2

h

4GaGa8
GD

[
4G

hD
DQa

resDQa8
res, ~19!

where

D5H G, kT!G,

~8/p!kT, kT@G.
~20!
1-4
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Measurements of the peak conductance at a partic
resonance point for fixed temperature and all possible c
binations of source and drain leads would give, in princip
(L22L)/2 experimental values to be used in Eqs.~19!. To-
gether with Eq.~17!, this gives (L22L)/211 equations for
the L11 unknownsDQa

res and G/D. Measurement of the
temperature dependence ofG aa8

peak(T) would yield D(T), and
thus determineG. We see that even forL52 it is possible to
predict the adiabatically pumped charge from the cond
tance measurements, and forL.2 different cross checks be
come feasible.

Additional input of a few bits of information is necessa
to make the solution of Eqs.~19! and ~17! unique. For a
specific resonance ‘‘res,’’ all the chargesDQa

res ~for all a)
have the same sign, determined by the type of the resona
‘‘ 1 ’’ for loading and ‘‘2 ’’ for unloading, see Eq.~16!. An
additional sign uncertainty arises in the case of two termin
(a5 l ,r ): the respective equation for the pumped char
DQl(e2DQr)5G lr

peak(hD/4G), is symmetric under inver-
sion, l↔r . The resolution of these uncertainties depends
the particular experimental situation, and should be eas
simple cases. We illustrate this point in Sec.~IV ! below,
when we discuss a two-terminal example.

C. Adiabaticity condition

One condition for the validity of the adiabatic picture r
quires that an electron should have enough time to tun
under the barriers while the system is at resonance. Thus
inverse tunneling rate\/G should be much smaller than th
duration of the resonance,t r5D/uĖ0u, yielding the adiaba-
ticity condition,

\uĖ0u!GD. ~21!

This condition implies that both the amplitude and the f
quency of the pumping potential must be sufficiently sm
for an adiabatic pump.26 The resonance durationt r can be
extracted from measurements of the conductance as follo
measuring the variation of the conductance through the r
nance, using a very low frequencyv0, would yield the reso-
nance widtht r0 for that frequency. The value oft r relevant
for the pumping experiments can then be found by rescal
t r5t r0v0 /v.

At zero temperature,D5G and the condition~21! can be
compared to the adiabaticity criterion for coherent pump
formulated recently by Moskalets and Bu¨ttiker.31 They con-
sider the number of sidebandsnmax required to describe ad
equately the Fourier transform of the instantaneous scatte
matrix. In our case the resonant peak of transmission in
time domain has the widtht r , and the number of relevan
Fourier harmonicsnmax is at least (vt r)

21, wherev is the
cyclic frequency of the pump. The adiabaticity criterion
Ref. 31 states that the scattering matrix should vary li
with energy over the rangeE6\vnmax. Since our character
istic energy scale for the scattering matrix isG, the condition
of Ref. 31 takes the formG@\vnmax5\tr

21 , equivalent to
Eq. ~21!.
19530
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D. Application to complicated pumping potentials

In the resonance approximation, the pumped charge is
pressed in terms of the resonancepoints, where the pumping
contour crosses the resonance lines, and do not require
full information on the contour in the parameter space.
now discuss the conditions under which Eq.~16! can be used
to obtain efficient approximate estimates of the pump
charge for a model HamiltonianH d, which is complicated
enough to render an exact integration25 of Eq. ~6! impracti-
cal. Even when the validity of the resonance approximat
is marginal, such an approximate estimate could provid
handy tool for exploring complicated pumping models~e.g.,
Refs. 11,16 and 25! and identifying the relevant physica
parameters. For simplicity, we restrict this discussion to z
temperature.

To leading order in the coupling strengthsla , the param-
eters of the resonant level in Eq.~11! are given by the eigen
state of the decoupledH d(t) which is the closest to the
Fermi energym. Therefore, the following algorithm can b
formulated.

~1! DiagonalizeH d(t) ~analytically or numerically! to get
the spectrum$em(t),ucm(t)&%.

~2! Calculate the time-dependent decay widthsGa
m(t)

5^cm(t)uĜa(E5m)ucm(t)& and shifted energy levels
em8 (t)5em(t)1^cm(t)uÊ(E5m)ucm(t)&.

~3! For everym, find all such timestm, j when the reso-
nance conditionem8 (tm, j )5m is satisfied.

~4! At each resonance timet5tm, j , compute the corre-
sponding partial chargeqa

m, j5eGa
m/(a8Ga8

m .
~5! Calculate the total pumped charge as

Qa
R52(

m, j
qa

m, jsgnėm8 ~ tm, j !, ~22!

or setQa
R50 if no resonances were found in step 3.

The application of this algorithm is justified under th
conditions listed in the beginning of this section. The mo
important condition is the consistency of the perturbat
expansion,Ga

m(tm, j )!D(tm, j ), whereD(t) is the level spac-
ing of H d(t) at the Fermi surface.

The algorithm will fail for certain values of the adjustab
~not pumping! parameters of the model, for which the num
ber of resonance points found in step 3 changes. This cha
corresponds to the appearance~or annihilation! of a pair of
loading/unloading resonances. Such a crossover is usu
manifested by a sharp change~a step! ~Refs. 16,25! in the
total pumped charge, as function of the model paramete

IV. EXAMPLE: TURNSTILE MODEL

We illustrate the resonance approximation by a sim
example of a single energy level with adiabatically varyi
couplings to the left and right reservoirs~single level turn-
stile model!.15 Applications to more complicated model
such as pumping by surface acoustic waves,25 will be re-
ported elsewhere.
1-5
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A. The turnstile pumping model

The single level turnstile model, discussed in Ref. 15, c
be described as a special case of the general Hamiltonian~1!,
with N51 site ~and a single energyh115e) on the QD and
with L52 leads, denoted bya5 l ,r . It is now convenient to
use a slightly different notation: Consider an infinite chain
TB sites, enumerated byn50,61, . . . . The site n50,
which represents the QD, has a time-independent enere
and definesH res

d 5ed†d, with eigenstateuc&. The sites with
n.0 (n,0) form the right~left! single-mode TB lead:

H a
l 52 (

n561

6`

J~cn
†cn611cn61

† cn!, ~23!

where the upper sign refers toa5r . The coupling operators
areLa5AXa(t)Jc61

† d, with the two time-dependent pump
ing parametersXa5la

2 .
The Hamiltonian of the leads~23! is characterized by the

dispersion relationEk522J coska and the retarded Gree
function

@Ga
l #nm5

eikaun2mu2eikaum1nu

i2J sinka
, ~24!

wherea is the nearest-neighbor distance. The self-energy
erator@Eq. ~8!# is Ŝ52(Xl1Xr)Jeikad†d.

We consider the zero-temperature limit and paramet
the on-site energy ase5(221d)J coska, where the dimen-
sionless parameterd is a measure of the detuning of th
isolated levele from the Fermi energym522 J coska in
the leads. Near the band bottom one hasd'(e2m)/J.

The resonance parameters at the Fermi surface are

Ga52XaJ sinka,

E05~221d2Xl2Xr !J coska. ~25!

Both Ga andE0 depend on time via the time-dependent co
plings Xa , which span the parameter space$Xl ,Xr%. The
resonance conditionE05m defines the resonance line,Xl
1Xr5d. For an explicit calculation, we next choose t
pumping contour to be a square with corners at po
A(X1 ;X1) andC(X2 ;X2), as used in Ref. 15.@This is shown
in Fig. 2~a!, which forms an explicit example of Fig. 1#.

The necessary conditions of Sec. III, for having distin
resonances, are satisfied only at the bottom of the TB b
(sinka!coska). As we gradually increased from zero, the
resonance line in Fig. 2~a! moves in the direction indicate
by the small arrow. The resonance line crosses the con
only if 2X1[d1,d,d3[2X2. Therefore, within the reso
nance approximation we have

QR/e50, if d,d1 or d.d3 . ~26!

For the direction of the contour shown by the arrows
Fig. 2~a!, the resonance pointB corresponds to loading of th
dot mostly from the left (G l.G r). Its complementary reso
nance pointD is associated with unloading mostly to th
right (G l,G r). This interpretation is illustrated in Fig. 2~b!.
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At the lower left part of the contour,d,d25(d11d3)/2
5X11X2, the resonance points areD(X1 ,d2X1) andB(d
2X1 ,X1). The partial charges pumped from the left@using
Eqs.~16! and ~25!# are

DQl
D52e

2XlJ sinka

2~Xl1Xr !J sinka
52e

X1

d
, ~27!

DQl
B5e

d2X1

d
, ~28!

where we have used sgnĖ05sgn(d/dt)(2Xl2Xr)511 for
point D. The net pumped charge is thus

QR/e5Ql
R/e5~DQl

D1DQl
B!/e52Qr

R/

e512~d1 /d!, if d1,d,d2 . ~29!

A similar analysis for crossing atD(d2X2 ,X2) and
B(X2 ,d2X2) ~whend2,d,d3) yields

QR/e5~d3 /d!21, if d2,d,d3 . ~30!

Our resonance approximation results forQR/e are shown
for some typical parameters~together with the exact results
see below! in Fig. 3. These results agree qualitatively wi
those of Refs. 11 and 16:QR/e reaches its maximum valu
(X22X1)/(X11X2) at d5d2, where the resonance pointsB
andD are farthest away from the resonance pointM, which
occurs at X15X25d/2. Note that QR/e approaches the

FIG. 2. ~Color online! ~a! The pumping contourA-B-C-D-A
and the resonance lineB-D for the single level turnstile model~Ref.
15!. ~b! Interpretation of the pumping cycle on an energy diagra
~a! The effective energy levelE0 is above the chemical potentialm,
the dot is empty.~b! Loading process with preference to the le
coming electrons.~c! The levelE0 is belowm, the dot is occupied.
~d! Unloading process with preference to the right-going electro
The asymmetry betweenB and D creates the nonvanishing tota
pumped charge. The arrows indicate schematically the direction
the relative magnitude of the current pulses caused by each r
nance.
1-6
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RESONANCE APPROXIMATION AND CHARGE LOADING . . . PHYSICAL REVIEW B69, 195301 ~2004!
quantized value 1 whenX2 /X1→`, i.e., when the transmis
sion at the resonance points@related to 4X1X2 /(X11X2)2,
via Eq.~18!# vanishes. This is consistent with Ref. 11, whi
required that ‘‘a large part of the resonance line’’ be s
rounded by the pumping contour.

B. Comparison with exact results

The formula~13! for the resonance current is exact in o
case. Substitution of Eq.~25! into Eq. ~13! and integration
over the contourA-B-C-D gives the total pumped charge
the form

Q5
e

pE dX@F~X,X1!2F~X,X2!#, ~31!

where

F~X,Z!5
~d22Z!sinka coska

~d2X2Z!2cos2ka1~X1Z!2sin2ka
. ~32!

This result was obtained in Ref. 15 using the time derivati
of the scattering matrix.

In Fig. 3 we compare the exactQ and the approximate
QR. As the resonance line in Fig. 2~a! moves from pointA to
C, the pumped charge rises from zero to a maximum, cl
to (X22X1)/(X21X1), and then falls back towards zer
Except for the vicinity of the special pointsd5d1 ,d2, and
d3, there is an excellent agreement between Eqs.~26!, ~29!,
and ~30!, and Eq.~31!.

The most significant source for deviations of the ex
pumped chargeQ from the separated resonance resultQR is
the term proportional toĠa in the expression of the pumpin
current~13!:

Q2QR'
e

2pE dGa~E02m!

~m2E0!21~G/2!2
. ~33!

FIG. 3. ~Color online! Pumped charge~in units of e) as a func-
tion of d for X151/50, X251/5, andka5p/20, calculated within
the resonance approximation (QR, blue continuous line! and exactly
(Q, dashed line!. Thick bars on thed axis mark the resonanc
widths 6G/J around the special pointsd1,2,3, where deviations
from the exact result are anticipated. Inset: Absolute error of
resonance approximation (QR2Q)/e for the same values ofd. The
thick dotted line corresponds toQR calculated from the transmis
sion maxima, see text for details.
19530
-

s

e

t

In our example, Eq. ~25! yields dGa /dE05Ġa /Ė05
22 tan(ka) when the resonance is on an edge of the cont
curve where onlyXa varies. Thus, the integral in Eq.~33! is
negligibly small as long as the distance between the re
nance point and a corner of the square contour is larger
G/J. Indeed, this agrees with Fig. 3, where the regio
ud2d i u,G/J are indicated by horizontal bars on thed axis.

Figure 4 shows the Breit-Wigner transmission coefficie
Tlr , calculated from Eqs.~18! and~25! as a function of time
~defined homogeneously along the pumping contour! for sev-
eral values ofd. As d is increased from zero, a single pea
develops atd5d1, then splits into two independent reso
nancesB andD, which move along the pumping contour an
finally merge atd5d3 and disappear. By comparing Fig. 4
Fig. 3 one can follow the correlation between the presenc
separate well-defined transmission peaks and the validit
the resonance approximation for the pumped charge.

C. Relation to transmission

The quantitative relation between the pumped charge
the transmission~conductance! has been discussed in Se
III B. In order to illustrate this discussion, let us assume t
the transmission traces~Fig. 4! are theonly available data for
our two terminal system. One observes two resonances in
ranged1,d,d3—both giving the same value of the pea
transmissionTmax. One of the resonances represents loadi
contributingDQa

res.0, while the other one necessarily re
resents unloading~with DQa

res,0). If we make a mistake a
this stage and take the wrong sign in Eq.~17!, it will only
change the assumed pumping direction,QR→2QR. Let us
treat the first resonance as loading and calculate the pa
charge pumped from the left reservoir,DQl

res.0. Solution of
Eqs. ~17! and ~19! gives two roots, DQres5e(1
6A12Tmax)/2, and one must decide which of the two co
responds toDQl

res. The same dilemma holds for the seco

e

FIG. 4. Time traces of the transmission coefficientTlr along the
pumping contour for six values ofd, increasing with constant in-
tervals from top to bottom. Two complementary resonancesB and
D ~marked with arrows! are observed ford1,d,d3 when the
pumping contour crosses the resonance line@cf. Fig. 2~a!#. Thick
bars on thed axis mark the regions where the loading/unloadi
pumping mechanism fails.
1-7
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KASHCHEYEVS, AHARONY, AND ENTIN-WOHLMAN PHYSICAL REVIEW B 69, 195301 ~2004!
resonance. Considering all four options yields three poss
answersQR56Q8 and 0, whereQ85eA12Tmax. The cor-
rect result (QR5Q8) may be chosen as the one which giv
the best fit to the data of the pumping calculatio
experiment. Once the uncertain signs have been chosen
rectly, there is no need to repeat this ‘‘trial-and-error’’ pr
cedure, since the contour changes continuously. Of cours
some features of the pumping contour design are kno
~such as which coupling is dominant in different regions!, the
sign uncertainties are much easier to resolve.

The result of the above calculationuQ2QRu/e is shown in
the inset of Fig. 3 by a thick dotted line. One can see t
both ways of calculatingQR @from the analytic expression
~26!, ~29!, and ~30! and from using the peak transmissio#
give similar small deviations from the exact valueQ of the
pumped charge.

We now leave our specific example, and consider Eq.~33!
for a general resonance. As seen in the example, the inte
in Eq. ~33! becomes nonzero wheneverga5Ġa /Ė0 is not a
time-independent constant during the whole resonance.
nonconstantga , the largest deviationuQ2QRu arises when
ga changes sign exactly at the resonance pointE05m; one
then finds thatu(Q2QR)/QRu,xmaxugau, wherex is a num-
ber of order unity, which depends on the details of the c
tour. These considerations justify condition~3! in the begin-
ning of Sec. III.

V. CONCLUSIONS

We have considered a general model of adiabatic quan
pumping of spinless noninteracting electrons, in the cohe
resonant tunneling regime. In the limit of distinct transm
sion resonances along the pumping contour, the pum
charge is given by a sum of individual contributions due
each resonance. During each resonance one electron e
enters or leaves the system, with the probability distribut
between different reservoirs given by the corresponding t
neling ratesGa /\.

We have clarified the role of quantum coherence in
resonance-assisted pumped charge quantization by sho
that quantization arises due to population of discrete reso
states with preference to a single reservoir in each resona
A quantitative and experimentally verifiable relation betwe
the pumped charge and the peak conductance has been
posed. The resonance approximation also provides a sim
calculational algorithm for analyzing complex pumping p
tentials.

Our results remain valid if~1! the spacingD between
different resonant levels is much larger thanGa , kT; ~2! the
relative magnitude of the couplingsGa to different reservoirs
does not change much during a resonance;~3! the condition
\Ė0!max(G,kT) is not violated.

Systematic extension of the resonance approximation
situations when electron-electron interactions play an es
tial role is a topic for further future study.
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APPENDIX: FORMULA FOR THE PUMPED CURRENT

In this appendix, we use standard scattering the
relations41,27 to derive Eq.~6! from Eq. ~5!. The scattering
statesuxka& can be obtained from the Lippman-Schwing
equation

uxka&5~11GLa
† !uwka&, ~A1!

where G5(E1 i02H)21 is the retarded Green functio
taken at energyE5Eka . The time t enters Eq.~A1! as a
parameter.

Defining projection operatorsP̂d andP̂a onto the QD and
onto leada, one has

H d5 P̂dH dP̂d, Gd5 P̂dGdP̂d, P̂aHP̂a85daa8H a
l ,

La5LaP̂d5 P̂aHP̂d, P̂duwka&50, ~A2!

and therefore

Ma
d[^xkauḢ duxka&5^wkauLaGd

†H ḋGdLa
† uwka&.

~A3!

To derive Eq.~7!, we start from (E2H)G5I , multiply
from the right byP̂d and from the left byP̂a and—using the
identity P̂d1( P̂a5I—obtain the relation P̂aGP̂d

5Ga
l LaGd . A similar multiplication from the left byP̂d then

yields Eq.~7!, with

Ŝ5(
a

La
†Ga

l La , ~A4!

which is equivalent to Eq.~8!.
Similarly, the time dependance of the coupling streng

la(t) contributes to the currentI a via the matrix element
Ma

l 5(a8^xkauL̇a8uxka&1H.c. Using the trivial relations

L̇a5(l̇a /la)La and P̂a8uwka&5daa8uwka&, a straightfor-
ward calculation gives

Ma
l 5^wkauLaFGd

†Ė̂GdLa
†1

l̇a

la
~Gd1Gd

†!GLa
† uwka&.

~A5!

The normalization to the unit flux ^wkauwk8a&
5(2p/vka)d(k2k8) implies that P̂a5*(dk/
2p)vkauwka&^wkau. Using also the standard relationi (Ga

l

2Ga
l†)5uwka&^wkau/\, we find the relation

\Ĝa5La
† uwka&^wkauLa . ~A6!

Introducing the trace over the QD’s subspace, using Eq.~A6!
in Eqs. ~A3! and ~A5!, and substituting the results intoIa

5(Ma
d1Ma

l )/\, we finally end up with Eq.~6!.
1-8
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