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Resonance approximation and charge loading and unloading in adiabatic quantum pumping
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Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission.
The pumped charge is close to an integer number of electrons when the pumping contour surrounds a reso-
nance, but the transmission remains small on the contour. For noninteracting electrons, we give a quantitative
account of the detailed exchange of electrons between the dot and théttettus electron reservoirsluring
a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot’s
Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged
between the dot and each lead through a single resonance point is related to the relative couplings of the dot
and the leads at this resonance. If each resonance point along the pumping contour is dominated by the
coupling to a single leadwhich also implies a very small transmissjpthen the crossing of each such
resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized
charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks
of the transmissions between the various leads.
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[. INTRODUCTION use this approximation to obtain physical insight into the
reasons for this quantization. Given a conductance peak
There has been much recent experiméﬁfaland (e.g., at the poinM in Fig. 1), one can usually also identify
theoretical™’ interest in adiabatic quantum pumping a “resonance line,” along which the conductance decreases
through mesoscopic electronic devices, such as quantuffom its peak more slowly than along other directidhs®
channels or quantum dot®D’s). Typically, the QD is con- Such a line is illustrated by the dashed line in Fig. 1. In the
nected via leads to several electron reservoirs, and is subjeekample shown in this figure, the resonance line is crossed
to a slowly varying oscillating potential, with period by the pumping contour twice, at poirisandD. Measuring
=2m/w. Under appropriate conditions, the device yields athe instantaneous biased conductance between the two rel-
nonzero dc time-averaged current between pairs of terminal€vant terminals for each timteduring the oscillation period,
even when the terminals have the same chemical potentiag®ne expects two local peaks at these two resonance points.
Under ideal conditions, the char@etransferred between the Under appropriate conditions, which include the limit of
terminals during a period may be “quantized,” i.e., very weak QD-terminal coupling, most of the pumped current
close to an integer times the electron chaggBeveral recent arises when the parameters are close to these resonance
theoretical studies have considered enhancement of the adigeints: for example, one can identify a “loading” of the QD
batic pumping current due to resonant transmissitirough by some chargd Q's°, coming from terminak, at the point
the QD, both for noninteractiig**®**?°and interacting B, and an “unloading” of the QD, byAQ"®, into terminal
electrons’* Connections between pumped charge quantizay ', at the pointD. The resulting total pumped charge per
tion and resonant transmission have been reported in diffeeriod approaches a robust, detail-independent v&Ge
ent contexts: 619202223 which is determinedonly by the ratios of the coupling

Usually, the oscillating potential is characterized by sev-srengths between the QD and the different reservoirs at the
eral time-dependent parametef;(t)}. As time evolves

during one periodr, these parameters follow a closed con- X
tour in the parameter space. A schematic example is shown
in Fig. 1 for two such parameters. In parallel to discussing
pumping, one can also consider the conductance between
pairs of terminals generated by an appropriate bias. This con-
ductance, which depends on the paramef¥t$, may have
resonance peaks in the same parameter space. In this context,
one freezes the time dependence, and considers the conduc-
tance at some instantaneous values of{th¢’s. thasbeen [ | g
argued! that the pumped charg® will be close to being
qguantized if the pumping contour surrounds such a peak
(e.g., at the poinM in Fig. 1), while staying at points with a X‘1
low conductance.

In the present paper we present an approximate theory for F|G. 1. (Color online Schematic picture of a two-dimensional
adiabatic pumping of coherent noninteracting spinless elegumping contour, crossing the resonance line at two resonance
trons, which is valid for discrete and distinct resonances, angdoints 8 andD). The transmission is maximal at the polit
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resonance points. We also show tkt can be related quan- Hamiltonian for noninteracting spinless electrons is
titatively to the measured values of the peak conductances.
QR is (almos) quantized(in units of €) when there is one
dominant coupling for each resonance.

Our results can be summarized in a very simple and
physically transparent way, by considering the occupation
numbers of the quasibound state on the QD, corresponding HdZE hmn(t)dden (dot), 2)
to each transmission resonance. Each time the energy of such mn
a state crosses the chemical potentidivhich is the same in
all reservoirg, the QD gains or loses one electron, so that the | T
total pumped charge flowing into (per period is quantized. H .= Ek EakCakCok  (leads, ()
However, the distribution of the pumped charge between dif-
ferent reservoirs is proportional to the corresponding cou-
pling strengthgtunneling rates Therefore the pumping cur- L,=N (D) JaknChidn  (hopping. (4)
rent between any two leads can be obtained by summing up k.n
individual resonance contributions, with appropriate signs. q N ,

A similar “shuttling mechanism” for pumping has been Here H® is the Haml_ltonlan of anN-state isolated QD
used widely to interpret experimeffsin the Coulomb (MmM=1,....N), the indexe=1,... L enumerates the
blockade regime, when the energetics on the QD is domione-dimensional leads connected to the @, creates a
nated by the electron-electron interactidhsin that ap- Standing wavewy,) with wave numbek and energy . in
proach, electrons are transferred from a lead to the dot anél® channek, the operatol., describes hopping from the
then from the dot to another lead, whenever such transfef@D into the channek, and thex ;s are real dimensionless
are favored energetically. In contrast, Refs. 11,15,16,25 angoefficients. For pumping we allow variation f(t) via the
26 presented explicit quantum-mechanical calculations fofme-dependent parameterg, and\, .
pumping of noninteracting electrons, calculated the total The instantaneous adiabatic current in the chaanedi-
charge pumped during a full cycle, and emphasized the rolgected from a remote reservoir towards the QD, has been
played by quantum interference in such processes. In sonfxpressed in Ref. 15 as
sense, the present paper bridges between these points of L
view: in the limit of weak coupling between the QD and the € , B :
leads, we do end up with a loading/unloading picture, even lo(1)= EJ dEF(E)Z,, Ia—%(Xka|H|Xka>1 (5)
for noninteracting electrorfS. However, the details of the
charge exchanges during a pumping cycle are found to bwheref(E)=1[1+eE~#/sT] is the Fermi-Dirac distribu-
more complicated than in the “shuttling” picture: at a given tion and|xy,) is the instantaneous scattering state normal-
resonance point, charge can usually be shared by severaked to a unit flux, (x| xk o) = (27/vi,) S(k—K'), with
leads. Apart from this, the conditions for the applicability of vy,=JEy,/d(fk) being the velocity in the channel.
our loading/unloading picture are similar to those of a single In Appendix we use standard scattering theory formulas to
electron transistdt,in the sense that the role of quantum rewrite this equation in the form
interference is restricted to the definition of independent
single-particle resonances. In view of this, there is room to Za(E,t)=Trd[G$(Hd+§)Gdfa+(Gd+G£)fa/2]. (6)
conjecture that some of our results may also apply in the

H=H44> (H' +L,+L), (1)

presence of electron interactions. Here, the operators
The paper is organized as follows. In Sec. Il we review
the physical assumptions of the model and the formulas used Gy=(E+i0—H9-3)"1 )

for the calculation of the adiabatic current. We then use these
formulas to derive the current for a single resonant state, by

approximating the Green function on the QD by a Breit- 2=, ®)
Wigner-type formula. In Sec. Ill we obtain our main result—

the adiabatically pumped charge for a sequence of well- 5 S B tiAl L Alt

defined distinct resonances—and discuss possible F‘% Far Ta=ilo(Go=Go)ba, ©)

applications and experimental verification. To demonstrate
this general picture, Sec. IV presents the analysis of the
pumped charge for a simple motfebf a “turnstile” pump- &=> &, 2&=LIG +c"MHL, (10)
ing device. A short summary concludes the paper in Sec. V. @
act only on the subspace of the QD. AISB'a denotes the
Il. ADIABATIC CURRENT retarded Green function of an isolated chanr®|,=(E

] : 5
We consider a spatially confined nanostruct(tre QD +i0—"H,) " *. We have separated the self-energy operator

connected by ideal leads to the electronic reservoirs with 1to a sum of resonance width and shift operafdrk,, and
common chemical potentigt and temperaturd@. The total £,, which are Hermitian.
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Equation(6) is a generalized version of the pumping cur-  In the remainder of this section we discuss the physical
rent formula derived in Ref. 25 for a particular case ofinterpretation of Eq(13). The total current =X I, repre-
single-mode tight-bindindTB) leads and time-independent sents changes in the total charge accumulated both on the dot
couplings?®® and in the leads. For small dot-lead couplings, one would

The adiabatic current6) can be calculated exactly, pro- expect that the charge on the QD itself is a well-defined
vided that one is able to compute the Green functignron  quantity and a simple picture of single electrons tunneling
the QD. We are interested in the regime when the transport isetween the leads and the QD should apply. In order to
dominated by a single nondegenerate orbital state, and irclarify the relation between our quantum calculation and this

stead of Eq(2) we consider “classical shuttling picture,” we comment on the localization
g of the charge.
H o= €(D] ) (y]=e(t)d"d. (11 Equation(13) implies that the total current in our model is

. . a full time derivative, | =dQ"(E,,I')/dt of some time-
The energy distance to the next resonant statevill be dependent charg@™(t). where

assumed to be much larger than all other energies. The Green

function corresponding toH % now assumes the Breit- 1 1 2(E-Eyp)
Wigner-like fornf® QF(t)=—ef dET'(E)j5 + —arctan—r——.
(14
_ Ly . . .
== - (12 (We have chosen the integration constant such @fae is
E—e—(4>[¢) bounded between 0 and)IThe chargeQF represents the

The approximation of a single noninteracting energy levelintegrated 7388re|t-W|gner_ density of states and can be
Eq. (12), is valid for resonant tunneling structures with neg_mterpretea =°as the_addmonal charge induced in the system
ligible charging energy, and corresponds to the Breit-WignePY &n extra electronic Statd’z-_ _
treatment of mesoscopic electrical transport initiated in Refs. This delocalized charg®” is to be compared with the
29 and 30. For example, our results are directly applicable t¢¢@l equilibrium occupation inside the QD, which is given
the much studied double barrier pumpidy™43132in the by . Q*Ye=Trlpl (], _where  p
resonant tunneling reginfé We also list several experi- =N def(E)2_a|Xka><XkaL7's the equilibrium density ma-
mental situations when the charging energy is not small, buifix corresponding taH(t)."" Using Egs.(Al), (A6), and
our noninteracting spinless model can still have some rel{12 one can show that
evance. First, it applies when spin degeneracy is removed
either by a constant in-plane magnetic field or by feeding the QOCCZiJ dEf(E) I (15)
device with fully polarized electrons form half metallic fer- 2 (EO—E)2+(F/2)2'
romagnetic leads, e.g., C;@Ref. 33. In this case the en-
ergy scaleA is set by the level spacing of the effective de- ;  oce. ~F
vice Hamiltonian %9 Second, the Breit-Wigner Wouldyield the equallt)QOCC—QF. In generalEo andI” do
approximation(12) is relevant for the Coulomb blockade dePend orE, and hence&Q™"# Q"
peaks of a strongly pinched quantum dot well above the
Kondo temperatur&3® Specifically, within the Hartree ap- lll. RESONANCE APPROXIMATION
proximation, a large on-site Coulomb repulsion enetgdy
forbids double occupancy of otherwise spin-degenerate enyn
ergy levels and sets the interresonance distaned). Ex-
plicit derivation of the Breit-Wigner resonances for a weakly
coupled interacting system can be found in Ref. 36.
Substitution of Eq(12) into Eq. (6) gives

If Eg andl” were independent d&, then integration by parts

The Breit-Wigner form(13) of the pumping current dem-
strates a well-established fatt®that pumping is greatly
enhanced near a resonance. The resonance conditj&g is
— u|=D, whereD =max(,kT) is the energetic width of the
resonance. One option, considered in Ref. 21, is to design the
pumping contour in such a way that the system stays entirely
at resonant transmission. In this case, the Breit-Wigner ap-
(13) proximation does not lead to any pumped charge
quantizatiorf! Here we focus on a more generic case, when
R R the resonance condition is satisfied only during a small frac-
where Ey(E,t)=e+(¢|&ly) and T (E,t)=(y|' ). tion of the pumping cycle, as the system goes through a
Since the partial “width"I" , is of orderk§|Jak|2, it repre-  resonance point. As shown in Refs. 11,16,19 and 20, this
sents a measure for the coupling of the QD with the channedituation allows for pumped charge quantization. Specifi-
«. The exact adiabatic current for a single level given by Eqcally, we assume that the system remains near a resonance
(13) will be the starting point for our analysis of the pumped point only during a small fraction of the pumping cycle. This
charge in Sec. Ill. Breit-Wigner-type expressions for the currequires relatively narrow resonances, i.e., small widihs
rent pumped by a single orbital level have been derived preand therefore also smdll.
viously in the weak pumping limit! and in the presence of Consider a resonance tintg on the pumping contour,
interactions and Zeeman splittiigHowever, they were not identified by the resonance conditid®y(u,tg)=pw. This
used to discuss the details of the pumped charge quantizédentifies a “resonance point” on the contour. Assume also
tion. that the system “crosses” this resonance point completely

_FaEO_Fa(EO_ E)
(E—Eg)2+(I'/2)%’

[e3
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between timeg, andt,, such that(1) T',, E, are energy Eq. (13)], then the simple picture of loading/unloading of a

independent around the Fermi surfdfa |E— u|<kT); (2) single electron, as reflected in E@L6), is applicable—

at the “boundary” times, the system is far from the reso-regardless of the ratib/kT.

nance,D<|Eqy(u,t12) — n|<A; (3) while at resonance, the We also note that for such an ideal quantizatiQﬁ(—>e

couplings change negligiblﬂ/f‘a|<|E0|. Xinteger), that is independent of the contour details, one
Under these conditions, we can integrate @@ and get would need to consider the limlt ,~I'—0 for each reso-

the charge transferred from the reserweiin a simple form: ~ nance; the resonance approximation becomes exact, with re-
sults which are independent of the details of the contour,

es (12 r, . whenI'—0, and the charge goes only via chanaelhen
AQ. ™= tld“w:_engrEO (at Bo=p). (18 /11, As explained in the following section, this im-
plies a vanishing transmission throughout the whole pump-
For this particular resonance point, other parts of the pumping cycle, in accordance with the conclusions of Refs. 11 and
ing contour contribute negligibly to this charge. Equation3g.
(16) is our main result for the pumped charge due to a well-
defined resonance point. We will refer to this result as “the
resonance approximation.” In this approximation, each res-
ervoir contributes on average a fraction of the electronic The criteria for the validity of the resonance approxima-
charge, which is proportional to the corresponding fractionation, listed in the preceding section, can faantitatively
decay width or couplingl’,,/T". The total change in the checked in experimentfor in numerical calculationsby
charge accumulated in the system due to this particular reseronitoring the conductance between different leads as a
nance is thus function of parameters along the pumping contddf A de-
finitive signature of the relevant transport regiffier having
a significant nonzero pumped chargeould be the presence
of an even number of well-separated peaks in the conduc-
tance time trace: each resonandé {n Fig. 1) is associated
This result can be easily generalized for several indepenwith two peaks in the instantaneous transmission, encoun-
dent resonance points. If the pumping contour can be sepzered at the two resonance point8 @nd D) where the
rated into several parts, each containing a single well-definegumping contour crosses the resonance line on each side of
resonance point, and if the pumping currents on the rest ahe resonance, as schematically shown in Fig. 1. Note that
the contour remain negligible, then the total cha@g, this measurement is independent of time: one simply mea-
pumped through the channel is given by a sum over the sures the conductance at different points on the pumping
resonanceR==,, AQ'S. For a periodicH(t), the pump- ~ contour.
ing contour is closed, and charge conservatiyQR=0 is The contribution of each particular conductance peak to
ensured by Eq(17) and the fact that the number of loading the pumped charge can be calculated along the following
(E,<0) and unloading E,>0) resonance points is the Ilnes. Appllcgfuo? of the general ?xpressmn of the transmis-
same. sion probability trom E:hannela to channela, 7,, =
—JdEf(E)TI[ G/ ,G4l' /], to our resonance modé¢hs
defined in Eq(11)] gives the standard Breit-Wigrféresult
(see, e.g., Ref. 34

B. Relation to conductance

AQE=D AQ= e, (17)

A. Pumped charge quantization

Equation(17) can be interpreted as the loading/unloading
of exactly one electron into/out of the QD, depending on the

sign of Eo at the Fermi level. Furthermore, E{.6) implies T = —f dEf'(E)
thatAQ,sis dominated by the current from a single channel
«a, provided that” ,>T", for a# «'. If the same applies to
all the resonances, then we end up with a “classical” picture, Let us consider for simplicity an example &f single-
in which the pumping cycle contains a sequence of indiimode leads. By using the multiterminal Landauer conduc-
vidual discrete events, of exchanging electrons one by ontance formul& for spinless electrongj, = (€*/h) T, , in
between a reservoir and the QD. After a full cycle, the chargeEq. (18), we recover well-establish&tresults for the peak
on the QD will remain unchanged, and an integer number o€onductance of a strongly pinched QD, that are related to Eq.
electrons will have crossed the QD between any pair of res(16) in an extremely simple way:
ervoirs. This gives a detailed explanation of the pumped
charge quantization within this approximation. e2 4T T .. 4T

Using the same conditions as used to derive(E6), one QE,T,@F FaDa EEAQfSAQf,S, (19
can show that botAQF=QF(t,) — QF(t;) and AQ°° are
equal to AQ™ This means that every time the system here
crosses a resonance point, the charge associated with the
resonant state changes by+e. Therefore we stress that if I KT<T
one is interested in the total charge pumped by a single reso- D= ’ ’
nance[and not, for example, in the line shape of the current, (8/m)kT, KkT>T.

IFa
. 8
(E—Eg)2+(I'/2)? (18

a

(20
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Measurements of the peak conductance at a particular D. Application to complicated pumping potentials
resonance point for fixed temperature and all possible com-
binations of source and drain leads would give, in principle

(LZ_L)/Z_ experimental values t(2) be used in EGEI). To-  ontour crosses the resonance lines, and do not require the
gether with Eq(17), thlsregsjlves (“—L)/2+1 equations for ¢, information on the contour in the parameter space. We
the L+1 unknownsAQ,” and I'/D. Measurement of the o discuss the conditions under which Ef6) can be used
temperature dependence@ii‘i"(T) would yieldD(T), and  to obtain efficient approximate estimates of the pumped
thus determind’. We see that even fdr=2 it is possible to  charge for a model Hamiltonia® 9, which is complicated
predict the adiabatically pumped charge from the conducenough to render an exact integrafionf Eq. (6) impracti-
tance measurements, and for 2 different cross checks be- cal. Even when the validity of the resonance approximation
come feasible. is marginal, such an approximate estimate could provide a
Additional input of a few bits of information is necessary handy tool for exploring complicated pumping modédsg.,
to make the solution of Eq419) and (17) unique. For a Refs. 11,16 and 25and identifying the relevant physical
specific resonance “res,” all the chargaxQ'>* (for all «) parameters. For simplicity, we restrict this discussion to zero
have the same sign, determined by the type of the resonancd&mperature.
“ 4+ for loading and “—" for unloading, see Eq(16). An To leading order in the coupling strengtkg, the param-
additional sign uncertainty arises in the case of two terminalsters of the resonant level in Ed.1) are given by the eigen-
(a=1,r): the respective equation for the pumped chargestate of the decoupled(t) which is the closest to the
AQ,(e—AQr):gﬁea‘(h D/4T'), is symmetric under inver- Fermi energyu. Therefore, the following algorithm can be
sion, l<~r. The resolution of these uncertainties depends ofiormulated.
the particular experimental situation, and should be easy in (1) DiagonalizeH %(t) (analytically or numericallyto get
simple cases. We illustrate this point in Séb/) below, the spectrunfen(t),|¥m(t))}.

In the resonance approximation, the pumped charge is ex-
pressed in terms of the resonanents where the pumping

when we discuss a two-terminal example. (2) Calculate the time-dependent decay widig(t)
=(Ym()|T (E=p)|m(t)) and shifted energy levels
C. Adiabaticity condition €1 (1) = €m(t) + (Um(D)|E(E= )| hm(1)).

One condition for the validity of the adiabatic picture re- (3) For eY?W’)" find all S,UCh t.|m.estm,j when the reso-
quires that an electron should have enough time to tunndlance conditiorey,(ty ) = is satisfied.
under the barriers while the system is at resonance. Thus, the (4) At €ach resonance time=t , cr:nompute the corre-
inverse tunneling raté/I" should be much smaller than the sponding partial chargeg"' =el'3/> /") .

duration of the resonance,=D/|E,|, yielding the adiaba- (5) Caleulate the total pumped charge as
ticity condition,

. N i
#i|Eo|<I'D. (21) Qa mEan SONEN(tmj), (22)

This condition implies that both the amplitude and the fre- R . .
quency of the pumping potential must be sufficiently small®" S€tQ,=0 if no resonances were found in step 3.

for an adiabatic pumf® The resonance duration can be Th_g appl_lcatlo_n of this "?"99”thm IS Justlfl_ed under the
extracted from measurements of the conductance as follow§2nditions listed in the beginning of this section. The most
measuring the variation of the conductance through the resgTPortant c%ndltlon is the consistency of the perturbation
nance, using a very low frequenay, would yield the reso- _eXpanS'%nfa(tm,j)<A(tm,1)v whereA(t) is the level spac-
nance widthr,, for that frequency. The value of relevant N9 Of H*(t) at the Fermi surface.

for the pumping experiments can then be found by rescaling The algorithm will fail for certain values of the adjustable
7= Towol @. (not pumping parameters of the model, for which the num-

At zero temperatureD =T and the conditior{21) can be ber of resonance points found in step 3 changes. This change
compared to the adiabaticity criterion for coherent pumping=°'T€SPonds to the appeararice annihilation) of a pair of
formulated recently by Moskalets and ker.3! They con- oad[ng/unloadlng resonances. Such a crossover is usually
sider the number of sidebands,., required to describe ad- Manifested by a sharp change step (Refs. 16,23 in the

equately the Fourier transform of the instantaneous scatteriffgt@/ Pumped charge, as function of the model parameters.

matrix. In our case the resonant peak of transmission in the
time domain has the width, , and the number of relevant
Fourier harmonic$,,,, is at least @7,) !, wherew is the
cyclic frequency of the pump. The adiabaticity criterion of e illustrate the resonance approximation by a simple
Ref. 31 states that the scattering matrix should vary littleexample of a single energy level with adiabatically varying
with energy over the rangé* f wny,. Since our character- couplings to the left and right reservoifsingle level turn-
istic energy scale for the scattering matriXisthe condition  stile mode).'® Applications to more complicated models,
of Ref. 31 takes the forn'>#%wny,=47 ', equivalent to  such as pumping by surface acoustic watesill be re-

Eq. (21). ported elsewhere.

IV. EXAMPLE: TURNSTILE MODEL

195301-5
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A. The turnstile pumping model X,

The single level turnstile model, discussed in Ref. 15, can Xy <
be described as a special case of the general Hamiltghian D Y. 5 4 —— Pumping contour
with N=1 site (and a single energli;;=¢) on the QD and / ---------- Resonance line
with L=2 leads, denoted bg=1,r. It is now convenient to f ™
use a slightly different notation: Consider an infinite chain of X
TB sites, enumerated byp=0,+1,.... The site n=0, A
which represents the QD, has a time-independent energy (@)
and definest %= ed'd, with eigenstatéy). The sites with
n>0 (n<0) form the right(left) single-mode TB lead:

+oo

Hy== 2 I(Cin=1+ChurC), (23

where the upper sign refers to=r. The coupling operators

areL,= \/Xa(t)JcT: ,d, with the two time-dependent pump-

ing parameter,=\2. (b) oy
The Hamiltonian of the lead®3) is characterized by the

dispersion relatiorE,= —2J coska and the retarded Green  FIG. 2. (Color onling (&) The pumping contouA-B-C-D-A
function and the resonance lirg-D for the single level turnstile modéRef.

15). (b) Interpretation of the pumping cycle on an energy diagram.
elkaln—m| _ gikajm+n| (a) The effective energy level, is above the chemical potential,
- - , (24 the dot is empty(b) Loading process with preference to the left-
12J sinka coming electrons(c) The levelE, is below u, the dot is occupied.
wherea is the nearest-neighbor distance. The self-energy Op(_d) Unloading process with preference to the right-goi_ng_electrons.
erator[Eq. (8)] is S = — (XX )Je”‘ade The asymmetry betweeB an_dD_ creates the _nonvanlsh_lng Fotal
) ' r ; umped charge. The arrows indicate schematically the direction and

We CanIder the zero-temperature limit and par_ametnz%e relative magnitude of the current pulses caused by each reso-
the on-site energy as= (— 2+ 6)J coska, where the dimen-

[Gla]nm:

nance.
sionless paramete is a measure of the detuning of the
isolated levele from the Fermi energyu=—2 J coska in At the lower left part of the contoud< 8,= (8, + 55)/2
the leads. Near the band bottom one Bas(e— w)/J. =X,+X,, the resonance points aByX;,5—X,) andB(8

The resonance parameters at the Fermi surface are ~X,,X,). The partial charges pumped from the Igting
I, =2X,Jsinka, Egs.(16) and(25)] are

b 2X,Jsinka X1
Eo=(—24 6—X,—X,)J coska. (25) AQ :_82(X|+X)Jsinxa:_e?’ (27
r
BothT", andE, depend on time via the time-dependent cou-
plings X,,, which span the parameter spag¢ ,X,}. The AQB— 06— X (28)
resonance conditiofty=u defines the resonance lin¥; Qr=e 5

+X,=46. For an explicit calculation, we next choose the )

pumping contour to be a square with corners at pointsvhere we have used sgp=sgn@/dt)(—X,—X;)=+1 for
A(X1;X;) andC(X,;X,), as used in Ref. 15This is shown point D. The net pumped charge is thus

in Fig. 2(a), which forms an explicit example of Fig..1

The necessary conditions of Sec. I, for having distinct QRle=Qf/e=(AQP+AQP)/e=—Qr/
resonances, are satisfied only at the bottom of the TB band :

; ’ . =1—-(6,106), if 6;<5<6,. 29
(sinka<coska). As we gradually increasé from zero, the € (o1/0), it 6, 2 29
resonance line in Fig.(d moves in the direction indicated A similar analysis for crossing aiD(5—X,,X,) and
by the small arrow. The resonance line crosses the contolB(X,,5—X,) (when §,< §< &3) yields
only if 2X;=6,<8<8;3=2X,. Therefore, within the reso- _
nance approximation we have QRle=(6316)—1, if 6,<6<6;. (30

QRe=0, if <8, or 6>6;. (26) Our resonance approximation results @F/e are shown
for some typical parameteftogether with the exact results,
For the direction of the contour shown by the arrows insee belowin Fig. 3. These results agree qualitatively with
Fig. 2(a), the resonance poilft corresponds to loading of the those of Refs. 11 and 1&%e reaches its maximum value
dot mostly from the left [,>1",). Its complementary reso- (X,—X1)/(X;+X,) at 6= J,, where the resonance poirks
nance pointD is associated with unloading mostly to the andD are farthest away from the resonance pdihtwhich
right (I')<I",). This interpretation is illustrated in Fig (1. occurs atX;=X,=6/2. Note thatQR/e approaches the
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FIG. 3. (Color onling Pumped chargén units ofe) as a func- - A ' é ' A 5
tion of & for X;=1/50, X,=1/5, andka= /20, calculated within Time along the contour

the resonance approximatio®¢, blue continuous lineand exactly

(Q, dashed ling Thick bars on thes axis mark the resonance FIG. 4. Time traces of the transmission coeffici@ptalong the

widths £T'/J around the special points; ,; where deviations pumping contour for six values af, increasing with constant in-

from the exact result are anticipated. Inset: Absolute error of theervals from top to bottom. Two complementary resonaresd

resonance approximatio®@f— Q)/e for the same values of. The D (marked with arrows are observed fors; <5< §8; when the

thick dotted line corresponds QR calculated from the transmis- pumping contour crosses the resonance Jitfe Fig. 2a@)]. Thick

sion maxima, see text for details. bars on thes axis mark the regions where the loading/unloading
pumping mechanism fails.

quantized value 1 wheK,/X;—, i.e., when the transmis-

sion at the resonance poirfielated to &;X,/(X1+X,)%  In our example, Eq.(25 yields dT',/dE,=T",/E,=

via Eqg.(18)] vanishes. This is consistent with Ref. 11, which —2 tan(xa) when the resonance is on an edge of the contour

required that “a large part of the resonance line” be sur-curve where onlyX,, varies. Thus, the integral in E¢33) is

rounded by the pumping contour. negligibly small as long as the distance between the reso-
nance point and a corner of the square contour is larger than
B. Comparison with exact results I'/J3. Indeed, this agrees with Fig. 3, where the regions

|6— 8| <T'1J are indicated by horizontal bars on theaxis.
Figure 4 shows the Breit-Wigner transmission coefficient
7., , calculated from Eq918) and(25) as a function of time
(defined homogeneously along the pumping conttarrsev-
eral values ofs. As § is increased from zero, a single peak
e develops até= &7, then splits into two independent reso-
Q= ;f dX[F(X,X1) =F(X,X3)], (31)  nances andD, which move along the pumping contour and
finally merge ats= 63 and disappear. By comparing Fig. 4 to
where Fig. 3 one can follow the correlation between the presence of
separate well-defined transmission peaks and the validity of
(6—2Z)sinkacoska the resonance approximation for the pumped charge.

. (32
(6—X—2Z)%coska+ (X+Z)%sirf«ka 32

The formula(13) for the resonance current is exact in our
case. Substitution of Ed25) into Eqg. (13) and integration
over the contouA-B-C-D gives the total pumped charge in
the form

F(X,Z2)=
C. Relation to transmission
This result was obtained in Ref. 15 using the time derivatives 11,4 quantitative relation between the pumped charge and

of the scattering matrix. _ the transmissior(conductancehas been discussed in Sec.
Jn Fig. 3 we compare the exaQ and the approximate ;g |n order to illustrate this discussion, let us assume that

Q". As the resonance line in Fig(@ moves from poinAto e transmission tracebig. 4) are theonly available data for

C, the pumped charge rises from zero to a maximum, Closg,r tyy terminal system. One observes two resonances in the

0 (X;=X1)/(Xo+X,), and then falls back towards zero. r5nqe 5 < 5< 5,—both giving the same value of the peak

Excehpt for the viciniltly of the specialbpointk 61,65, and  ransmissiort;,,,. One of the resonances represents loading,
43, there is an excellent agreement between E2f, (29), contributingAQ!*>>0, while the other one necessarily rep-

and(30), and Eq.(31). esents unloadingwith AQ*°<0). If we make a mistake at

The most significant source for deviations of the exact,[his stage and take the wrong sign in E47), it will only
pumped charg€® from the separated resonance refftis change the assumed pumping directi@?—>’—QR. Let Us

the term proportional td',, in the expression of the pumping (et the first resonance as loading and calculate the partial

current(13): charge pumped from the left reservaliQ[®>>0. Solution of
Egs. (17 and (19 gives two roots, AQ™=e(1

Q_QR%i dl'o(Eo— ) _ (33 +1-7,ad/2, and one must decide which of the two cor-

2] (u—Ey)%+(T'/2)? responds taAQ[**. The same dilemma holds for the second
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resonance. Considering all four options yields three possible APPENDIX: FORMULA FOR THE PUMPED CURRENT

answersQR=+Q’ and 0, whereQ’' =e\/1— 7, The cor- . . .
rect result QR=Q') may be chosen as the one which gives In this appendix, we use standard scattering theory

the best fit to the data of the pumping calculation/relaﬁon§127to derive Eq.(6) from Eq. (5). The scattering

experiment. Once the uncertain signs have been chosen coates|xi) can be obtained from the Lippman-Schwinger

rectly, there is no need to repeat this “trial-and-error” pro- equation
cedure, since the contour changes continuously. Of course, if

some features of the pumping contour design are known | Xka) = (1+GL) [Wy,), (Al)
(such as which coupling is dominant in different regiprise ' . _
sign uncertainties are much easier to resolve. where G=(E+i0—H) ! is the retarded Green function

The result of the above calculatip® — QR|/e is shown in  taken at energfE=E,,. The timet enters Eq.(Al) as a
the inset of Fig. 3 by a thick dotted line. One can see thaparameter.
both ways of calculatingdR [from the analytic expressions Defining projection operatord® andP,, onto the QD and
(26), (29), and (30) and from using the peak transmissjon onto leada, one has
give similar small deviations from the exact valQeof the
pumped charge.

We now leave our specific example, and consider(B8).
for a general resonance. As seen in the example, the integral
in Eq. (33) becomes nonzero whenever=1I",/E, is not a L,=L, Pi=P HPY PYw,,)=0, (A2)
time-independent constant during the whole resonance. For
nonconstanty,,, the largest deviatiohQ—QR| arises when and therefore
v, changes sign exagtly %t the resonance pBipt u; one
then finds that(Q— QF)/QR|<xmaxy,|, wherex is a num- d_ L d _ fide 1
ber of order unity, which depends on the details of the con- M= Xl P X = (Wil L oGt "Gl o Wi (A3)
tour. These considerations justify conditi@®) in the begin-
ning of Sec. IlI.

HI=PIHIPI, Gu=PIG4PY, P, HP, =6,,H la '

To derive Eq.(7), we start from E—H)G=1, multiply
V. CONCLUSIONS from the right byP? and from the left byP, and—using the
. . ad A . : B Bd
. . . + =|—
We have considered a general model of adiabatic quantur'rqer}tlty P EP“ I O_bt?m ) the  relation E’§GP
pumping of spinless noninteracting electrons, in the coherenrt Cak«Gd - A similar multiplication from the left byP™ then
resonant tunneling regime. In the limit of distinct transmis-Yields Eq.(7), with
sion resonances along the pumping contour, the pumped
charge is given by a sum of individual contributions due to
each resonance. During each resonance one electron either
enters or leaves the system, with the probability distribution
between different reservoirs given by the corresponding tungpich is equivalent to Eq(8).

neling rates’, /#i. Similarly, the time dependance of the coupling strengths

We have clarified the role of quantum coherence in the\ (1) contributes to the currert, via the matrix element
resonance-assisted pumped charge quantization by showing, =3 ||-_ Ive) +H.c. Using the trivial relations
that quantization arises due to population of discrete resonant @~ < @' \Xkalt-a’IXka e 9

states with preference to a single reservoir in each resonandee= (Ma/No)La @Nd P i W) = Saar|Wig), @ straightfor-

A quantitative and experimentally verifiable relation betweenvard calculation gives

the pumped charge and the peak conductance has been pro-

posed. The resonance approximation also provides a simple R A

calculational algorithm for analyzing complex pumping po- M'a=<wka|La{GgSGdLl+ )\—“(Gd+G:§) LT wia).

tentials. @
Our results remain valid if1) the spacingA between

different resonant levels is much larger tHap, kT; (2) the L .

relative magnitude of the couplind, to different reservoirs The normalization to the unit flux (Wy,| Wi )

does not change much during a resonaii@ethe condition = (27/vk,) o(k—K") implies that Pa=f(dk|/

#E,<max(,KT) is not violated. 27) U o Wia){Wio| . Using also the standard relatioG,,

; ) _— Ity : ;
Systematic extension of the resonance approximation t6 Gu)=|Wka)(Wka|/7, we find the relation
situations when electron-electron interactions play an essen-
tial role is a topic for further future study. AT = LT Wi ) (Wia| L o (AB)
a .

=2 LIG,L., (A4)

(A5)
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