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This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the
low-energy spin excitations consist of a few different spin multip|&§#1;). Under certain conditioné&o be
explained beloy some of the lowest energy Ieveﬂ:gl are nearly degenerate. The dot in its ground state
cannot then be regarded as a simple quantum top, in the sense that beside its spin operator (@e&pgiot
operatorsR,, are neededin order to fully determine its quantum statewhich have nonzero matrix elements
between states of different spin multiplé&Mi|Rn|Sij)¢O. These Runge-Lenz operators do not appear in
the isolated dot Hamiltoniagso in some sense they are “hiddgn’Yet, they are exposed when tunneling
between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin
s with the operators of the dot then contains exchange tdgsRR,, besides the ubiquitous onds- S . The
operatorsS andR,, generate a dynamical grofipsually SO()]. Remarkably, the value af can be controlled
by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally
realizable. Moreover, when an external magnetic field is applied, under favorable circumstances the exchange
interaction involves solely the Runge-Lenz operafRgsand the corresponding dynamical symmetry group is
SuU(n). For example, the celebrated group SU(3) is realized in a triple quantum dot with four electrons.

DOI: 10.1103/PhysRevB.69.195109 PACS nunider72.10-d, 72.15-v, 73.63-b

[. INTRODUCTION and containing an odd numb& of electrons as &imple
guantum do{SQD). The dot Hamiltonian of a SQDin the
Recently, studies of the physical properties of artificially absence of an external magnetic fiels composed of two
fabricated nano-objects turn out to be a rapidly developinglegenerate levels and has a SU(2) symmetry. In that sense
branch of fundamental and applied physics. Progress in theske symmetry is referred to as geometrical. The exchange
fields is stimulated both by the achievements of nanotechnoHamiltonian is expressed in terms of the generators of the
ogy and by the ambitious projects of information processinggroup SU2). On theother hand, quantum dots containing a
data storage, molecular electronics, and spintronics. The cosingle well with everN or quantum dots containing several
responding technological evolution enabled the fabricatiorwells are referred to asompositequantum dot§CQD). The
of various low-dimensional systems from semiconductor hetlow-energy states of an isolated CQD Hamiltonian are spin
erostructures to quantum wires and constrictions, quanturmultiplets. In the generic case, the only degeneracy is that of
dots (QD), molecular bridges and artificial structures with magnetic quantum numbers. Yet, as we argue below, dot-lead
large molecules built in electric circuitsThis impressive tunneling results in level renormalization and the emergence
experimental progress led to the development of nanophyf an additional degeneracy, both generic and accidental. To
ics, a new aspect and research direction in quantum phy/sicdoe more precise, we note thdl) The exchange part of the
Artificial nano-objects possess the familiar features ofHamiltonian includes the generators of a noncompact Lie
guantum-mechanical systems, but sometimes one may creajeoup [usually SOf) or SU(n)] and (2) The renormalized
in artificially fabricated systems such conditions, which arelow-energy spin-excitation levels of the CQD Hamiltonian
hardly observable “in natura.” For example, one- are almost degenerat@ithin a Kondo energy scaleThese
dimensional to two-dimensional (1B2D) crossover may two aspects are gathered under the telynamical symme-
be realized in quantum networksnd constriction. The  try. A more quantitative exposition will be presented below.
Kondo effect may be observed in nonequilibrium  Experimentally, resonance Kondo tunneling was observed
conditions’ at high magnetic field$, and at finite in QD with odd electron occupation number under strong
frequencie<.Moreover, a quantum dot in the Kondo regime Coulomb blockadé&,and in individual atoms and molecules
can be integrated into a circuit exhibiting the Aharonov-deposited on metallic surfaces and on the edges of metallic
Bohm effect wires in break-junction geomet§.According to the theory
In this paper we focus on an intriguing challenge in thisof Kondo effect in QD! spin degrees of QD are involved in
context related to the specific symmetry of the nano-object&ondo resonance. In our notation these are SQD’s and the
under study. More precisely, one is interested in answeringhysics of Kondo tunneling in this case is similar to that of
guestions pertaining to the nature of the underlying symmeKondo scattering in magnetically doped metals, at least in
try of the dot Hamiltonian and the algebra of operators apthe regime of linear response.
pearing in the exchange Hamiltonian. The investigation of The Kondo physics seems to be richer in systems involv-
this topic is intimately related with the geometric structureing tunneling through CQD. Our main purpose is to demon-
and electron occupation of the quantum dot in its groundstrate that CQD possesses dynamical symmetries whose re-
state. We refer to a quantum dot composed of a single weklization in Kondo tunneling is experimentally tangible.
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Such experimental tuning of dynamical symmetries is notll. DYNAMICAL SYMMETRY OF COMPLEX QUANTUM
possible in conventional Kondo scattering. In many cases DOTS

even the very existence of Kondo tunneling crucially de-
pends on the dynamical spin symmetry of CQD. Several ) ) ) )
models dealing with Kondo tunneling in CQD’s possessing In this section we present in some details the concept of

dynamical symmetry were considered in our previous pub”_dynamical symmetry, and more particularly, its emergence in

cations. The case of SO(4) symmetry in double quantum do(t:Q[.)' The termDynamical Symmetr'ynplies'the symmetry
f eigenvectors of a quantum system forming an irreducible

(DQD) was studied in Refs. 12 and 13. A more complicated0 : A o
case of SOf) symmetry with variable in a triple quantum representations of a certain Lie group. The main ideas and

: ... the relevant mathematical tools can be found, e.g., in Ref.
dot (TQ.D) (composed .Of three potenpa} \(alleys W'th. N* 15. Here they are formulated in a form convenient for our
trawell interaction and interwell tunnelipgs introduced in

Ref. 14 specific purposes without much mathematical rigor. We have

. . in mind a quantum system with Hamiltoni&hwhose eigen-
The main goal here is to develop the general approach tQtates|A>=|M,u> form (for a givenM) a basis to an irre-

the problem of dynamical symmetries in Kondo tunnelingq,ciple representation of some Lie grogp The energies
through CQD's and illustrate it by numerous examples ofg, do not depend on the “magnetic” quantum number
TQD in various Conﬁgurations, both in parallel and in SerieSFor definiteness one may think df as an angu'ar momen-
geometries. Within this framework, our earlier restfitit  tym and ofu as its projection, so thad is just SU2). Now
into an elegant pattern of classification of dynamical symmetet us look for operators which induce transitions between
try groups, which is expanded here in a somewhat morgiifferent eigenstates. An economic way for identifying them
complete and rigorous formalism. The main lesson to bés through the Hubbard operatdfs

learned is that Kondo physics in CQD suggests a peculiar

and in some sense rather appealing aspect of low- XAA’:|A><A1|_ (1)
dimensional physics of interacting electrons. It substantiates,

in a systematic way, that dynamical symmetry groups play an js natural to divide this set of operators into two subsets .
important role in mesoscopic physics. In particular, we en-The first one contains the operatdhd ) (' M| while the
counter here some “famous” groups which appear in othetsecond one includes operatofM u){u'M’| for which
branches of physics. Thus, the celebrated group SU(3) al§M x) and|M’x’) belong to adifferentrepresentation space
enters here when a TQD is subject to an external magnetief G. A central question at this stage is whether these opera-
field. And the group SO(5) which plays a role in the theorytors (or rather, certain linear combinations of theform a
of superconductivity is found here when a certain tuning ofclose algebra. In some particular cases it is possible to form
the gate voltages in TQD is exercised. linear combinations within each set and obtain two new sets
The basic concepts are introduced in Sec. Il. First, inof operators{S} and{R} with the following properties{1)
Sec. I A, the necessary mathematical ingredients are intrd=0r a givenM the operator§S} generate théV irreducible
duced, although we try to avoid much rigor. Then, in Secrepresentation of and commute wittH. (2) For a given set
Il B we explain how these abstract concepts can be realizeldl; the operatordS and{R} form an algebrathe dynamic
in CQD. In Sec. Il the special case of TQD in tparallel ~ algebra and generate a noncompact Lie gradp The rea-
geometry is discussed at some length. In Sec. Il Awe derivé0n for the adjectiveynamicis that, originally, the operators

scaling equations for TQD with even occupation and calcuiR do not appear in the bare Hamiltonieinand emerge only

late Kondo temperatures for various dynamical symmetries/n€n additional interaction(e.g., dot-lead tunnelingis

In Sec. IV we discuss the physics of TQD irsariesgeom- present. In the special ca§e= SU(2) the operators i} are

etry and point out similarities and differences betweenf[heC\i/ec.tgirsOf Spin otp(irators ?:_eltert?lnmg thf co_rretshp;ond;ng
Kondo physics in the two geometriéSec. IV A). In Sec. rreducible representations, while the operators in Re
. can be grouped into a sequeriRg of vector operators de-
IV B we concentrate on the case of even occupation. The . ° o . .
scribing transitions between states belonging to different rep-

dynamical-symmetry phase diagram is displayed and the &Xsentations of the SU(2) group.

perimental consequences are drawn. The case of odd occu- Strictly speaking, the groug is not a symmetry group of

pation IS exposed |n.Sec. lV..C' _F|naIIy, n Sec.a\/|-<ondo. the HamiltonianH since the operatorfR} do not commute
effect without a localized spiis discussed. The anisotropic with H. Indeed, let us express in terms of diagonal Hub-
exchange interaction occurs between the metal electron spigyq operators,

and the dot Runge-Lenz operator alone. In the conclusions
we underscore the main results obtained here.
The derivation of the pertinent effective spin Hamilto- H= 2 EA|A><A|=2 EpX A, 2
nians and the establishment of group propefiieparticular A=Mu A
identification of the group generators and checking the cor-
responding commutation relationssometimes require o that
lengthy mathematical expressions. These are collected in the
appendixes. [XM' H]=—(Ey—Epn ) XM, (3

A. Generalities
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As we have mentioned above, the symmetry grgupf the  have only nondiagonal matrix elements in the basis of the
Hamiltonian H, is generated by the operators eigenstates ofl .. The spin algebra is then a subalgebra of
XA=MuA'=Mu'  Remarkably, however, the dynamics of & more general noncompact Lie algebra formed by the whole

CQD in contact with metallic leads and/or an external-Set of vector operatofsS,R,}. This algebra is characterized
magnetic-field leads to renormalization of the energeg! Py the commutation relations,

in such a way that a few levels at the bottom of the spectrum . .

become degenerat&y =Ey,=...Ey . Hence, in this [Si,Sj]=itiSe, [S Rnjl=itijkRnk,

low-energy s_ubspace, the grodipgenerated by the operators [Rui,Raj]= iti”jksk (4)

{S and {R} is a symmetry group oH referred to as the - o
dynamical symmetry group. The symi®is due to the anal- With structure constants;,, ti“jk (hereijk are Cartesian in-
ogy with the Runge-Lenz operator, the hallmark of dynami-dices. The R operators are orthogonal &

cal symmetry of the Kepler and Coulomb probleth&elow

we will use the term dynamical symmetry also in cases S'R,=0. ®)
where the levels are not strictly degeneratg, th_eir differencen the general case, CQD’s possess also other symmetry el-
is bounded by a certain energy scale, which is the Kond@ments(permutations, reflections, finite rotationghen, ad-
energy in our special case. In that sense, the symmetry is @fitional scalar generatord,, arise. These generators also
course not exact, but rather approximate. may be expressed via the bare Hubbard operators, and their

Using the notions of dynamical symmetry, numerous fa-commutation relations witlR operators have the form
miliar quantum objects, such as hydrogen atom, quantum
oscillator in d dimensions, quantum rotator, may be de- [Rni,Rmil=igii""Ap, [Rni, Apl=ifi"Ry;  (6)
scribed in a compact and elegant way. We are interested in a

. o : ; nmp nmp B
special application of this theory, when the symmetry of the/ith structure constantg;;™" and fi;™" (n#m). The opera

quantum system is approximate and its violation may bdOrs obeying the commutation relatio® and(6) form ao,
treated as a perturbation. This aspect of dynamical symmet/§l9ebra. The Casimir operator for this algebra is

was first introduced in particle physi&where the classifi-

cation of hadron eigenstates is given in terms of noncompact K=+ 2 R§+E Af,- (7)
Lie groups. In our case, the rotationally invariant object is an n p

isolated quantqm dot, whose spin symmetry is V'Olated. _b)Various representations of all these operators via basic Hub-
electron tunneling to and from the leads under the condition, .4 gnerators will be established in the following sections,
of strong Coulomb blockade. where the properties of specific CQD’s are studied.
Next, we show how the dynamical symmetry of a CQD is
B. Realization in CQD revealed in the effective spin Hamiltonian describing Kondo
The special case§=SU(2) andA=SO(n) or SU(n) is tunneling. This Hamiltonian is derived from the generalized

realizable in CQD. Let us first recall the manner in which theAnderson Hamiltonian
spin vectors appear in the effective low-energy Hamiltonian
of the QD in tunneling contact with metallic leads. When
strong Coulomb blockade completely suppresses charge flughe three terms on the right-hand sidRHS) are the dot,
tuations in QD, only spin degrees of freedom are involved inead, and tunneling Hamiltonians, respectively. In the generic
tunneling via the Kondo mechanisthAn isolatedSQD in  case, a planar CQD is a confined region of a semiconductor,
this regime is represented solely by its spin veQofhis is  with complicated multivalley structure secluded between
a manifestation of rotational symmetry which is of geometri-drain and source leads. The CQD contains several valleys
cal origin. The exchange interactidis- S (s is the spin op- numbered by indexa. Some of these valleys are connected
erator of the metallic electrohsnduces transitions between with each other by tunnel channels characterized by coupling
states belonging to the same spamd breaks SU(2) invari- constantsW,,, and some of them are connected with the
ancg. On the other hand, the low-energy spectrum of spirleads by tunneling. The corresponding tunneling matrix ele-
excitations in CQD is not characterized solely by its spinments areV,, (b=s,d stands for source and drain, respec-
operator since there are states close in energy, which beloniyely). The total number of electron$in a neutral CQD as

to different representation spaces of (Y. Incidentally, well as the partial occupation numbeéxs, for the separate
these might have either the same sBifsuch as, e.g, in two wells are regulated by Coulomb blockade and gate voltages
different doublets or a different spin(such as, e.g., in the vy, applied to these wells, witN=X3,N,. Itis assumed that
case of singlet-triplet transitionsThe exchange interaction the capacitive energy for the whole CQD is strong enough to
must then also contain other operat&s (the R operators  suppress charged states with=N=1, which may arise in
mentioned in the preceding sectidpmsducing transitions be- a process of lead-dot tunneling.

tween states belonging to different representations. The in- If the interwell tunnel matrix elementg/,, are larger
teresting physics occurs when the operatBgs “approxi-  than the dot-lead onég,, (or if all tunneling strengths are
mately” commute with the Hamiltoniahl 4,; of the isolated comparablg it is convenient first to diagonalizel4,; and

dot. In accordance with our previous discussion, fhep-  then consideH,,, as a perturbation. In this cast;,; may
erators are expressible in terms of Hubbard operators anoke represented as

Ha=Hgot+HieadT Hiun- (8
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charging energy is responsible for Kondo-like effects in tun-
Haor= 2 ElA)A[+ X BN (9 neling, provided the occupation numb¥g is odd. The third
AeN NeN=x1 T . .
condition assumed in our model is a weak enough Coulomb
Here all intradot interactions are taken into account. The ketblockade in all other wells except that with=c, i.e., Q,
|A)Y=]|N,q) represent eigenstatesidf,; in the charge sector <Q,.. Finally, we demand that
N and quantum numbeig whereas the ket\)=|N=1,p)
are eigenstates in the charge sectdrs 1 with quantum
numbersp. All other charge states are suppressed by Cou-
lomb blockade. Usuallyg andp refer to spin quantum num-
bers but sometimes other specifications are requised be- for those wells, which are coupled with metallic leads, and
low).
The lead Hamiltonian takes the form Wac

Ba=

Va
boe= 1" <1, (14)
a

o

<1. (15)

ac

H, = &k CTk C ko - (10) .
ead &, T aTaKeaka HereE,. are the charge transfer energies for electron tunnel-

o ) ing from thec well to other wells in the CQD.
In the general case, the individual dots composing the CQOD “The interdot coupling under Coulomb blockade in each

are spatially separated, so one should envisage the situatigpy| generates indirect exchange interactions between elec-
when each dot is coupled by its own channel to the leadyons™ occupying different wells. Diagonalizing the dot
electron states. So, the electrons in the leads are charactejzmiltonian for agiven N=3,N,, one easily finds that the
ized by the indexa, which specifies the lea@source or o |ying spin spectrum in the charge sectors with even oc-
drain and the _tunne_llng_ channel, as well as by the WaV€pationN consists of singlet/triplet pairgspin S=0 or 1,
vectork and spin projection. respectively. In charge sectors with odd the manifold of

The tunnel Hamiltonian involves electron transfer be'spin states consists of doublets and quarigii S=1/2 and
tween the leads and the CQD, and thus couples statesf 35 respectively

the dot with occupatiorN and stateg\) of the dot with The resonance Kondo tunneling is observed as a
occupatiolN = 1. This is best en<_:0d(_-)d in tgrms of ”O”d'ago'temperature—dependent zero-bias anomaly in  tunnel
nal dot Hubbard operators, which intermix the states from;onguctancd.According to existing theoretical understand-
different charge sectors ing, the quasielastic cotunneling accompanied by the spin-
flip transitions in a quantum dot is responsible for this
AN MA
XEE=[AYM, XER=IA)(A]. (11) anomaly. To describe the cotunneling through a neutral CQD
Thus, with given N, one should integrate out transitions involving
high-energy states from charge sectors With=N=1. In
_ ANt the weak-coupling regime at>Ty this procedure is done
H % AeN;l,AeN (VaoCako A)(M +H.C) by means of perturbation theory which can be employed in a
compact form within the renormalization groRG) ap-

+ 2 E (V)\ACT IN(A|+H.c), (12 proach formulated in Refs. 19 and 20.

Koo NeNTaen @0 ake As a result of the RG iteration procedure, the energy lev-
A elsE, in the Hamiltonian(9) are renormalized and indirect
whereV;; =V (\|dag|A). exchange interactions between the CQD and the leads arise.

Before turning to calculation of CQD conductance, theThe RG procedure is equivalent to summation of the pertur-
relevant energy scales should be specified. First, we suppog@tion series at>Ty, whereTy is the Kondo energy char-
that the bandwidth of the continuum states in the le&ds,  acterizing the crossover from a perturbative weak-coupling
substantially exceeds the tunnel coupling constalts, |imit to a nonperturbative strong-coupling regime. The lead-
>Waa ,V, (actually, we consider leads made of the sameng logarithmic approximation of perturbation theory corre-
material with D,s=D,4=D,). Second, each wehb in the  sponds to a single-loop approximation of RG theory. Within
CQD is characterized by the “activation energy” defined asthis accuracy the tunnel constaitsandV are not renormal-
Aa=Ex(Na) —Ey(Na—1), i.e., the energy necessary to ex- ized, as well as the charge transfer enekgy13). Reduction
tract one electron from the well containif, electrons and  of the energy scale from the initial valii, to a lower scale
move it to the Fermi level of the Ieadme Fermi energy is ~T results in renormalization of the energy |ev$\

used as the reference zero-energy level from noy Niote —E,(Do/T) and generates an indirect exchange interaction

thatA, is tunable by applying the corresponding gate VOItageoetween the dot and the leads with @ntiferromagnetic
vga- We are mainly interested in situations where the Condi'exchange constarit

tion The rotational symmetry of aimplequantum dot is bro-
A.~Dy, Q (13) ken by the spin-dependent interaction with the leads, which
¢ T e arises in second order in the tunneling amplitudg. In
is satisfied at least for one well, labeled by the indeikdere  complete analogy, theynamical symmetrpf a composite
Q. is a capacitive energy, which is predetermined by thequantum dot is exposethroken as encoded in the effective
radius of the wellc. Eventually, this well with the largest exchange Hamiltonian. In a generic case, there are, in fact,
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several exchange constants arranged within an exchange Mgz ian for COD contains exchanae terdf€’s. - s Then
trix J which is nondiagonal both in dot and lead quantum. Q ge tertys S, ' i

) o A instead of a single exchange teffirst term on the RHS of

numbers. The corresponding exchange Hamiltonian is re- o o -,

sponsible for spin-flip assisted cotunneling through the cQD=d- (19)], one has a surli,J;* S,-s** . Additional symme-

as well as for singlet-triplet transitions. try elementg(finite rotations and reflectiongurn the cotun-
The precise manner in which these statements are quanff€ling Hamiltonian even more complicated. In the following

fied will now be explained. After completing the RG proce- sections we will consider several examples of such CQD’s. It

dure, one arrives at an effectiver renormalizeyi Hamil- IS Seen from Eq(19), that in the generic case, both spin and
L — R vectors may be the sources of anomalous Kondo reso-
tonianH in a reduced energy scal,

nances. The contribution of these vectors depends on the
hierarchy of the energy states in the manifold. In principle, it

H=Haort Hieao™ Heotun: (16) may happen that the main contribution to the Kondo tunnel-
where the effective dot Hamiltonia®) is reduced to ing is given not by the spin of the dot, but by one of Re
vectors.
Hoo= E. XA 1 Thus, we arrive at the conc_luspn that the regular proce-
dot AEE:N A 17 dure of reducing the full Hamiltonian of a quantum dot in

junctions with metallic leads to an effective Hamiltonian de-
scribing only spin degrees of freedom of this system reveals
XA = | A YA (18) a rich dynamical symmetry of CQD. Strictly speaking, only
an isolated QD witiN=1 is fully described by its spin 1/2
At this stage, the manifol]A} € N contains only the renor- operator obeying SU(2) symmetry without dynamical de-
malized low-energy states within the energy interval compagrees of freedom. Yet even the doubly occupied dot With
rable with T (to be defined beloyv Some of these states =2 possesses the dynamical symmetry span rotatorbe-
may be quasidegenerate, with energy differendBs  cause its spin spectrum consists of a singlet ground &Bate
—E,/|<Tk. However, Ty itself is a function of these en- and a triplet excitationT). Therefore, arR vector describ-
ergy distancessee, e.g., Refs. 6,21,22and all the levels, ng S/T transitions may be introduced, and the Kondo tun-
which influenceTy , should be retained in E417). neling through a dot of this kind may involve spin excitation

The effective cotunneling Hamiltonian acquires the form under definite physical conditions, e.g., in an external mag-
netic field® A two-electron quantum dot under Coulomb

, , , blockade constitutes apparently the simplest nontrivial ex-
HcotZZ Jg* S5 +; R Rn-s™ . (19 ample of a nano-object with dynamical symmetry of a spin
o rotator possessing a SO(4) symmetry.
Here S is the spin operator of CQD in its ground state, the Dynamical symmetries S@J of CQD’s are described by
operatorss*®’ represent the spin states of lead electrons, honcompact semisimple algebfdsThis noncompactness
implies that the corresponding algelora may be presented
W1 A as a direct sum of subalgebras, eays05® 05. Therefore,
s =3 % g ClicoToo Carkio (20 the dynamical symmetry group may be represented as a di-
rect product of two groups of lower rank. In case of spin
where T is the vector of Pauli matrices. In the conventional rotator the product is SO(4ASU(2)® SU(2). Generators of
Kondo effect the logarithmic divergent processes develoghese subgroups may be constructed from those of the origi-
due to spin reversals given by the first term containing thenal group. The SO(4) group possesses a siRgiperatorR,
operatorS. In CQD possessing dynamical symmetry, Rll  and the direct product is realized by means of the transfor-
vectors are involved in Kondo tunneling. In the following mation
sections we will show how these additional processes are
manifested in resonance Kondo tunneling through CQD. S+R S-R
Note that the elements of the matrixare also subject to Ks—— N=——. (21

temperature dependent renormalizaﬂlﬁﬁ'eJﬁ“'(DO/T).

The cotunneling Hamiltoniafil9) is the natural generali- Both vectorsK andN generate SU(2) symmetry and may be
zation of the conventional Kondo Hamiltonials-S for  treated as fictitiou$=1/2 spins’! In some situations these
CQD’s possessing dynamical symmetries. In many casegectors are real spins localized in different valleys of CQD.
there are several dot spin 1 operators depending on whicim particular, the transformatiori2l) maps a single-site
pair of electrons is “active.” In this pair, one electron sits in Kondo problem for a DQD possessing SO(4) symmetry to a
well ¢ and the other one sits in some well The otherN  two-site Kondo problem for spin 1/2 centers with a SU(2)
—2 electrons are paired in singlet states. This scenario apymmetry(see discussion in Refs. 12 and)1Bor groups of
plies if N is even. The spin 1 operator for the active pair ishigher dimensionality rf=4) one can use many different
denoted asS,. [In some sense, the need to specify whichways of factorization, which may be represented by means of
pair couples toS=1 while all other pairs are coupled ® different Young tableauxsee Appendix D
=0 is the analog of the seniority scheme in atomic and Even in the cas@=4, the transformationi21) is not the
nuclear physicgsee, e.g., Ref. 33 The cotunneling Hamil- only possible two-spin representation. An alternative repre-

written in terms ofdiagonalHubbard operators,
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To regulate the occupation of TQD as a whole and its
constituents in particular, there is a couple of gatgsv,
applied to thd,r dots. The energy levels of single- and two-
WV, v, electron states in each one of the three constituent dots are
shown in the lower panel of Fig. 1. Here the gate voltages

f . vg,r are applied in such a way that the one-electron leyel

;' -==- " === |; of ac dot is essentially deeper than those of kiredots, so

gl c gr that the condition(13) is satisfied for thec dot, whereas the
ly v inequalities(14) and (15) are satisfied for the “activel and

d 1 1'r r dots. Tunneling between the side dbots and the central

one c with amplitudesW, , determines the low energy spin
spectrum of the isolated TQD once its occupafibis given.
This system enables the exposure of much richer possibilities
g 4, —— for additional degeneracy relative to the DQD setup men-
o tioned above due to the presence of two chanriel9 (

The full diagonalization procedure of the Hamiltonian
Hqot for the TQD is presented in Appendix A. When the
¢ m— — ¢, condition(15) is valid, the low-energy manifold fal=4 is
' composed of two singletsS),|S;), two triplets|T,)=|uxa)

g, (a=1,r,uz=1,,0,,1,) and a charge transfer singlet exciton
|Ex) with an electron removed from the well to the
“outer” wells. Within the first order inB8,<<1 the corre-
sponding energies are

0, — 5,

FIG. 1. Triple quantum dot in parallel geometry and energy
levels of each dot,=€,— v, (bare energy minus gate voltgge

sentation is realized in an external magnetic fféldvhen Es,=€ct €at2eatQa—2WaBa,

the ground state of S/T manifold is a singléte energys

=E;—Eg>0), the Zeeman splitting energy of a triplet in an Er,=eteat26a1Qq,

external magnetic field may exactly compensate the ex-

change splittingd. This occasional degeneracy is described Ec,=2€+26+Q+Q,+2W,B8,+2W,3,, (22

by the pseudospin 1/2 formed by the singlet and the up pro-

jection of spin-1 triplet. Two other projections of the triplet Where the charge transfer energies in Bd) (for determin-

form the second pseudospin 1/2. The Kondo effect inducethg 8,) are E,.=Q,+€,— €.; the notationa=I,r and a

by external magnetic field observed in several=r,| is used ubiquitously hereafter.

nano-object$® was the first experimental manifestation of  The completely symmetric configuration,=¢,=¢, Q,

dynamical symmetry in quantum dots. =Q,=Q, W,=W,=W, should be considered separately. In
We outlined in this section the features which appear inthis case the singlet states form even and odd combinations

effective Kondo Hamiltonians due to the dynamical symme-n close analogy with the molecular staf&s$ in axisymmet-

try of CQD exhibiting Kondo tunneling. In the following ric molecules. The odd stat®_ and two triplet states are
sections we will see how the additional terms in the Hamil-degenerate:

tonian (19) influence the properties of Kondo resonance in
various structures of CQD'’s. Eg, =e.+3e+Q—4W3,

Ill. TRIPLE QUANTUM DOT IN PARALLEL GEOMETRY Es_= ETa: g.t3e+Q,

So far we have briefly mentioned a simple structure of _
CQD, i.e., double quantum dot with occupatibl=2 and Eex=4e+2Q+4WgS. (23

employed it to describe some generic properties of CQR-qnsideration of these two examples provide us with an op-

enumerated in the preceding section. This kind of an artiﬁdabortunity to investigate the dynamical symmetry of CQD.
molecule is the analog of a hydrogen molecule in the Heitler-

London limit!**®and its SO(4) symmetry reflects the spin
properties of ortho/parahydrogen. A much richer artificial ob-
ject is a TQD, which can be considered as an analog of a We commence with the case of TQD with even occupa-
linear moleculeRH,. The centralc) dot is assumed to have tion N=4 briefly discussed in Ref. 14. This configuration is
a smaller radiugand, hence, larger capacitive enerQy) a direct generalization of an asymmetric spin rotator, i.e., the
than the left(l) and right(r) dots, i.e.,Q.>Q, ,. Figure 1  double quantum dot in a side-bound geométr@ompared
illustrates this configuration in a parallel geometry, where thewith the asymmetric DQD, this composite dot possesses one
“left-right” ( 1-r) reflection plane of the TQD is perpendicu- more symmetry element, i.e., the permutation, which, as

lar to the “source-drain” §-d) reflection plane of metallic will be seen below, enriches the dynamical properties of
electrodes. CQD.

A. Derivation and solution of scaling equations
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Following a glance at the energy level sche{2®), one is

tempted to conclude outright that for fini, the ground q
state of this TQD configuration is a singlet and consequently >
there is no room for the Kondo effect to take place. A more 7 7N \

attentive study of the tunneling problem, however, shows

that tunneling between the TQD and the leads opens the way

for a rich Kondo physics accompanied by numerous dynami- A A X

cal symmetries. (a)
Indeed, inspecting the expressions for the energy levels,

one notices that the singlet stateg_are modified due to

interwell tunneling, whereas the triplet statBg_ are left

intact. This difference is due to the admixture of the singlet o~ . g, o
. . . . ~

states with the charge transfer singlet exci(eee Appendix | « 7 . . A
A). As was mentioned in the preceding section, the Kondo EY N TN
cotunneling in the perturbative weak coupling regime at - - -
T,e>Ty is excellently described within RG formalist?® A Aq A
According to general prescriptions of this theory, the renor-
malizable parameters of the effective low-energy Hamil-
tonian in a one-loop approximation are the energy leizg|s o ~ q _-a
and the effective indirect exchange vertic}é]g', . T~ o 7"

To apply the RG procedure to the Kondo tunneling > - Z 5 - >
through TQD, let us first specify the termi. 4 andH;,, in A v A X
the Anderson Hamiltoniaii8). The most interesting for us N
are situations where the accidental degeneracy of spin states
is realized. So we consider geometries where the dedce (b)
wholepossesses either complete or slightly violdtedaxial
symmetry. Then the quantum numberin Hcaq (10) con- FIG. 2. RG diagrams for the energy levéls (a) and the effec-

tains the lead indexs(d) and the channel indexX ). The e exchange vertice&Xj‘\’, (b) (see text for further explanations
two tunneling channels are not independent because of weak

interchannel hybridization in the leads. This hybridization isOf the statedA,) via channel mixing terms in the Hamil-
characterized by a constaift<D,, which is small first due  y,nian (25, Due to the conditior(13), the central dot re-

to the angular symmetry, and second due to significant SP&,2ins “passive” throughout the RG procedure

tial separation between the two channels. The wave véctor The mathematical realization of the diagrams displayed in

is assumed to remain a good quantum number. Then, havingq o) is encoded in the scaling equations for the energy
in mind that in our modek, ;= €= €xa, the generalized

S . levelsk, ,
Hamiltonian(10) acquires the form A
i dE, /dD=3 — (26)
Hiearm 2 2 20 (€kaNabko+irChpksCabko)- (29) TEEAEET < DTE
ko b=s,d a=Ir
The tunneling Hamiltoniari12) is written as HereE,,=E,—E,, I', are the tunnel coupling constants

which are different for differenf\,

Hun=> 2 > (VA el XM +He). (25
R G 7 =mpo(Vit2Vd), Tg=allt. (27

We assume below .=V, 4=V, (see Fig. L ) )

The iteration prgrszessaeds, which chagr’acterize the two-stefl€r€ @a=v1—28;, andpg is the density of electron states
RG procedure contributing to these parameters are illustratefl the leads, which is supposed to be energy independent.
in Fig. 2. The intermediate states in these diagrams are th‘g_h_ese scaling equations should be solved at some initial con-
high-energy statels)) near the ultraviolet cut-off energy of ~ ditions
the band continuum in the leadidashed lingsand the states
IN) e N—1 from adjacent charge sectors, which are admixed EA(Do)=EY, (28
with the low-energy states\ ) e N by the tunneling Hamil- )
tonian H, (12) (full lines). For the sake of simplicity we Where the index (0) marks the bare values of the model
confine ourselves withi=3 states in the charge sector. ~ Parameters entering the Hamiltonigi, (8).

In the upper panel, the diagrams contributing to the renor- Besides, the diagram of Fig(& generates a new vertex
malization ofH 4,; are shown. In comparison with the origi- M where the stated, A’ are either two singlet§, ,S,
nal theory?® this procedure not only results in renormaliza- or two tripletsT,,T, . The third order Haldane iteration pro-
tion of the energy levels but also an additional hybridizationcedure results in a scaling equation,

195109-7
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dMm,, y 9 E o 02 0.4 06 08 1
= 5 '4.1\vnv||w|w|wvllll\l\l\VleD/D
db D? L | 0.22 0.25 0.28 0.31 0.34 0.37 0.4 0
with an initial condition M,;(Dy)=0 and a flow ratey 434 :::Z; ‘ 7 ST, T,
=poV,V,t|, . After performing the Haldane procedure we r -4.98 £
formally come to the scaled dot Hamiltonian C : S
-45 4 *
H=> E, Xtalat D> M XAala (30)
Ay a AAy 47 1
with the parameterg , andM,, depending on the running i
variableD. 49 4
Due to the above mentioned dependence of tunneling i »
rates on the indeX, namely, the possibility of t>T'g and 51 L |

I's >I's , the scaling trajectorieis, (D) may cross at some

value of the monotonically decreasing energy paramBter FIG. 3. Scaling trajectories fd? X SO(4)x SO(4) symmetry in
The nature of level crossing is predetermined by the initiathe SW regime. Inset: Zoomed-in avoided-level-crossing pattern
conditions (28) and the ratios between the tunneling rateshear the SW line.
I',. As long as the inequalitjE ,,| <D is effective and all
levels are nondegenerate, the scaling equati@ésmay be  The horizontal axis on these diagrams corresponds to the
approximated as dimensionless energy scal®¥ D, for lead electrons, where
the vertical axes represent the energy levelgD). The
mdE,/dInD=T". (1) dashed lineE= —D establishes the SW boundary for these
. . . . .. levels.
The scaling trajectories are determined by the scaling in- Before turning to highly degenerate situations, where the
variants for Eqs(26), o N :
system possesses specific 8Dgymmetry, it is instructive
E*=E,(D)— 7 T,In(wDIT,), (32) to cgnsider the general case, where all flow trajectories
. o . . ) E,(D) are involved in Kondo tunneling in the SW limit.
tuned to satisfy the initial conditions. With decreasing energyrhis happens when the whole octet of spin singlets and trip-
scaleD these trajectories flatten and becoMéndependent |ets forming the manifold22) remains within the energy
in the so called Schrieffer-WolIff(SW) limit, which is  interval~T, in the SW limit. The level repulsion effect does
reached when the activation energiesbecome comparable ot prevent formation of such multiplet, providggis small
Mth D. The corresponding effective bandwidth is denoted a%nough and the inequality
D (we suppose, for the sake of simplicity, the{<Q,, so
that only the state$\) with N’=N—1 are relevant The _
simultaneous evolution of interchannel hybridization param- M (D)<Tg (34)
eter is described by the solution of scaling equati®9,

is valid. At this stage, the SW procedure for constructing the
_ (33 effective spin Hamiltonian in the subspacelig
={T,,S,T,,S;} should be applied. This procedure excludes
o the charged states generatedHyyto second order in pertur-
If this remarkable level crossing occurs@t>D, we ar-  bation theory(see, e.g., Ref. 26
rive at the situation wheradding an indirect exchange in- The effective cotunneling Hamiltonian can be derived us-
teraction between the TQD and the leads changes the magag Schrieffer-Wolf proceduré (see Appendix € To sim-
netic state of the TQD from singlet to triplethose states plify the SW transformation, one should first rationalize the
E, , which remain close enough to the new ground state artunneling matrixV in the Hamiltonian(25). This 4x4 ma-
involved in the Kondo tunneling. As a result, the TQD ac-trix is diagonalized in thes-d,|-r space by means of the
quires a rich dynamical symmetry structure instead of thdransformation to even/odd combinations of lead eleciton
trivial symmetry of spin singlet predetermined by the initial States and similar symmetric/antisymmetric combinations of
energy level schem@2). Appearance of the enhancement of |,r electrons in the dots. The form of this transformation for
the hybridization parametévl,, (33) does not radically in- symmetric TQD can be found in Appendix B. Just as in the
fluence the general picture, provided the flow trajectoriexase of conventional Q#,this transformation eliminates the
cross far from the SW line , due to a very small hybridizationodd combination ofs-d electron wave functions from tun-
v<I',<D. However, we are interested just in cases whemeling Hamiltonian.
the accidental degeneracy occurs at the SW line. Various It should be emphasized that this transformation does not
possibilities of this degeneracy are considered below. exclude the odd component froh,, in case of TQD in a
The flow diagrams leading to a nontrivial dynamical sym-series geometr§? The same is valid for the Hamiltonians
metry of TQD withN=4 are presented in Figs. 3, 5, and 6. (24), (25) with t,,=0: in this case the rotation is-d space

My (D)=

11
D Do
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FIG. 4. Variation of T with parameters$ andM,, (see text for
further details.

conformally maps the HamiltoniaH 5 (8) for TQD in par-

PHYSICAL REVIEW B 69, 195109 (2004

1
— D/Dy

394

414

434

-45 1

47+

494

FIG. 6. Scaling trajectories for SO(7) symmetry in the SW re-
gime. Inset: Zoomed-in avoided-level-crossing pattern near the SW
line.

allel geometry onto that for TQD in series. Both these cases

will be considered in Sec. IV.

Unlike the case of DQD studied in Refs. 12 and 13, where

the spin operators are the total s@and a singleék operator,

describingS/T transitions, the TQD is represented by several
spin operators corresponding to different Young tableaux

(see Appendix 2 To orderO(|V|?), then,

Hcot:E EA XAatat 2 MIrXAaAg
@ A

a‘*a

+
+2 > > (€kaNabke T tir CabksCabke)
ko b=s,d a=Ir

T2 SsthP 2 Sesmt X LRas

a=lIr

(39

344

3.8 T

42+

46 L

FIG. 5. Scaling trajectories resulting in a SO(5) symmetry in

the SW regime. Inset: Zoomed-in avoided-level-crossing pattern

near the SW line.

Here we recall thaEAa=EAa(5), M,,=M|,(5), and the
effective exchange constants are

Va
WV, 1 1
Ir— + : (36)
2 \lec—€¢ e€—¢

The vector operatorS, ,R, ,R, and the permutation operator

P manifest the dynamical symmetry of TQD in a subspace
Rg. The permutation operator

b= S

a=Ir

XSSy D | Xkata
©=101

(37

commutes with§+ S, andR,+R, .
The spherical components of these vectors are defined via
Hubbard operators connecting different states of the octet,

S;=\2(Xala+ X0%la), 5 =(S))T,

SZ — Xlala— XTaTa
a
RY = 2(XkaS%— X%, R;=(RH)T,

R2= — (X%aSa+ X5a0a),

ﬁ; = \/E( a§X1a87_ aaXSaTE)- ﬁa

Ri-—

2= — (azX%%+ @ X5a0%), (38

In addition to the spin operatd20) for conduction electrons,
new spin operators are required,

E 2 C;krr;m)”cgk’u" .

kk" oo’

1
Saa= 5 (39

195109-9
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An extra symmetry element+{ permutationresults in more Since the tunneling occurs in even and odd channels in-
complicated algebra which involves neRvoperatorR and ~ dependently, the parity is conserved also in indirect SW ex-

the permutation operat& interchangind andr components chqnge. As a result, the effective spin Hamilton{a8) ac-
of TQD. quires the form

One can derive from the generic Hamiltonié8b) more

symmetric effective Hamiltonians describing partly degener- Hcot_z =N XAnArz—i-E > EknCI,k,rana

ate configurations illustrated by the flow diagrams of Figs. 3, Ay ko 7=g.u

5, and 6. These are the cases when the level crossing occurs

@n a nearest vigin_ity o_f the SW line in the flow diagram..lt is + 2 JL}SW.SWJF z ‘]an'Sﬁ JTZ S, Syy
important to distinguish between the cases of generic and 7=g,u 7=g,u

accidental symmetry. In the former case the device possesses

intrinsicl-r ands-d symmetry, i.e., the left and right dots are +2 (I5 RN+ 05IRA) .5 (41)
identical, the corresponding tunnel parameters are equal, and n

left and right leads also mirror each other, namely= €,

= ¢ . In the latter case the gate voltages violdtessymme-
try, e.g., makee #¢,, V,#V,, etc. The level degeneracy is
achieved due to competition between theinterdot tunnel-

ing and the lead-dot tunneling without changing the symme-
try of the Hamiltonian.

The basic spin Hamiltonia(85) acquires a more compact
form, when a TQD possesses generic or accidental dege
eracy. In these cases the operat@® form close algebras,
which predetermine the dynamical symmetry of Kondo tun-
neling. We start the discussion of the pertinent 80gym- RO — \/EXSWTZ
metries with the most degenerate configuratigig. 3), '
where the TQD possesses gendric axial symmetry, i.e.,

Here ey g= €x— 1), , €= €t and the lead operatocs,,,
(7=g,u) are defined in Appendix B. The operat@s, R,
are defined analogously &, R, in Eq. (38), and the vector
operatorsS, -, R(l) R%) are defined as

S;=X"S;, RE+RE=x7R. (42)

Fhe spherical components of the operaﬂa% and R(Z) are
given by

(- _ p(L)+\t
Rm] (Rm/ ) !

< . )+ _ 1,8, (2~ _ (p@+yt
the left and right dots are completely equivalent. Then the Ry =2X"%, Ry _(Rm; )
energy spectrum of an isolated TQD is given by EGS). ) 8 ) 8
The four-electron wave functions are calculated in Appendix R(,Y;)Z= — X507, R(”;)Z= — X%, (43

A. Such TQD is a straightforward generalization of the so

calledT shaped DQD introduced in Refs. 12, 13, and 29. Itis The spin operators for the electrons in the leads are intro-
clear, that attachment of a third dot simply adds one moreéluced by the obvious relations

element to the symmetry group $0, namely thel-r per-

mutationP, which is parity sensitive. . E E Cgko Two'Cold o’ »
To reduce the Hamiltoniag35) into a more symmetric 200 =

form, we rewrite the Hubbard operators in terms of new

eigenstateEA, recalculate_d with account of generic degen- Z z of .

eracy(23) andl-r mixing M, . In assuming that the latter 24 & ke Toorukia! s

coupling parameter is the smallest one, it results in insignifi-
cant additional renormalizatior-+|M,|?/(e +Q—¢.) of

the statesEg, and Eg,. Besides, it intermixes the triplet %(:, E ChkoToo'Cukror s Sug=(Sp0)s  (44)
states and changes their nomenclature from left/right to even/ oo’
odd. The corresponding energy levels are instead of Eq(20). Now the operator algebra is given by the
o o closed system of commutation relations which is a generali-
Ero(D)=Er, M. (400  zation of theo, algebra,
The flow trajectories for two pairs of states(,T_) and [Syi Sy =1€jkmS Sym
(S, ,S.) diverge slowly with decreasin®. If this diver- .
gence is negligible in the scale dfx, then three nearly [Ryj Ryd=1€jkmbyy Sym

coincident trajectorie€r. ,E5 cross the fourth trajectory

Es:+ at some point, since the inequalifys <I'r.=I's_ [R
with T'r.=3mp,V?, I's =al'y. is valid (a=y1- 48?). The operatorsS, are orthogonal taR,, and the Casimir

If this level crossing happens near the SW line, we arrive apperators in thls case ate,= SZ+ Rf] 3. This justifies the

a case of complete degeneracy of the renormalized spectrumyalification of such TQD as double spin rotatowhich is

and the whole octelRg is involved in the dynamical symme- obtained from the spin rotator considered in Refs. 12 and 13
try (Fig. 3. The fine structure of the flow diagram in the by a mirror reflection. The symmetry of such TQD s
region of avoided level crossing is shown in the inset. XS0(4)<XS0(4).

Sn/k]:iej'kmtsn.,]/an. (45)

7)1
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Four additional vertices appear in the effective spin

PHYSICAL REVIEW B 69, 195109 (2004

Solution of Egs.(49) yields the Kondo temperature

Hamiltonian (41) at the second stage of Haldane-Anderson

scaling procedur®’ As a result, the exchange part of the
Hamiltonian(41) takes the form

STR

_ T T e
Heot= Z J1,5,°8,+ _2 J1, n'sn+‘]22 Syn” Sn
7=g.u 7=g.u 7

1 STH(2
+2 (B3R 03R4 > TS, s
U] Ui

STR

+2 B3R, s, (46)
7

The coupling constants in the Hamiltoniéh6) are sub-
ject to renormalization. Their values Bt=D are taken as a

boundary conditions

T /[ T~ ST/~ ST/~ V2
Jln(D):Jz( )=J1,(D)=35,(D)= )

EE— €

J3,(D)=331(D)=0, JZ(D)=ady(D) (i=1,23
(47)

1/2m,
T —5( 1— 8y (49)
KO™ . .
(V3+1)(3j1g+iTy)
The limiting value of this relation for independént chan-
nels is
lim Txo=D p( 4 (50)
im Txo=Dexp — - -
0 (V3+1)(3j1g+ity

Here and below the coupling constapi) in all equations

for Tx are taken aD=D. We see that avoided crossing
effect in the case of slightly violateldr symmetry of TQD
turns the Kondo temperature to be a function of the level
splitting (40). Similar situation has been noticed in previous
studies of DQD(Refs. 12 and 18and planar QD with even
occupatiorf, whereT turned out to be a monotonically de-
creasing function o/T splitting energys=Eg— E with a
maximum até=0. Now the Kondo temperature is a function

for solving the scaling equations. These can be written in th&f two parametersT (M, , ).

following form:

iy _ |7 e, (D2
Tind = | 1)+ 2= D) My g, + (17,)%+ ——
(i5y)?
2 1
_dj; ! (T T 45T ST ST, ST
dind 2 WZ;«U{Jzu1n+13,,>+12,,<11,7+13,7>} :
j-|3—7] T 2 7 - T .ST\2 (J;)z
dind =~ | Uap)* 2= 1) "mycjg, +(j3,)%+——
+<j§%>2
2 1
i3y
g = LALIT 2= m TS,
diS? 1l 1 oer.snLostiT L
o||n:;|:_§[2,7 203,13+ 212,015t 5 |
djs, - o e
ding~ _[2lsgiz,t2(=D)" My iz, tiziz,), (49

Wherejin:po\]i” (| = 1,2,3), d:poD and m|r :poM” . It
should be noted that the terms proportionalntp arise in
Egs. (48) since the dot Hamiltoniafithe first term in Eq.
(41)] is not proportional to the unit matrix, and thus it does
not commute with the exchange terit#6). As can be seen
from Eq. (40), the deviation from the unit matrix is propor-
tional toM, .

Looking at Fig. 3(which corresponds té=0) we note
that for large enougM,, , when the inequality34) is vio-
lated,M,, > Tk, the symmetry of TQD is reduced to SO(4)
symmetry ofS/T manifold with the Kondo temperature

1

TK]_:BGXF{ - —} .
iz’

Additional S/T splitting induced by the gate voltages(
#¢€,) results in further decrease @ as a function ofé.
The asymptotic form of the functiofi,(J) is

|

(cf. Refs. 6 and 2L In the limit of 5—D the singlet state
should be excluded from the manifold, and the symmetry of
the TQD with spin one in this case is §8). Thegeneral
shape ofTx(M,, , ) surface is presented in Fig. 4. Thus the
Kondo effect for the TQD with mirror symmetry is charac-
terized by the stable infinite fixed point characteristic for the
underscreenedpin one dot, similar to that for DQ:®

Now we turn to asymmetric configurations whelg,
#Ee, I't #I'7,. In this case the system loses the sym-

metry, and it is more convenient to return to the initial vari-
ables used in the generic Hamiltonié3b).
When the Haldane renormalization resultsaiccidental

degeneracy of two singlets and one triplE ~E7 ~Eg

(51)

Tk

TKl

5 (52

<ETr (Fig. 5), the TQD acquires an SO(5) symmetry of a
manifold{T,,S,,S;}. In this case the SW Hamiltonia35)
transforms into
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_ ST = ST
H= 2 EAXAA+M|r(XS|S'+XSrS|) Jl(D)_‘] ) ‘JZ(D)_‘]l )
A=TrS s,
J3(D)=edy;, Ji(D)=0 (i=4-12) (59
+ CavoCako Tt CavoCal
kEU azzl,r Ckaakoako IrkZ(r a:zm akeako [see Eq.(36) for definitiong specifically

+3:1§-5+ R 5+ 3Ry 51+ Ry 50), (53 div [ o 0 20 et
whereJ;=J], J,=J3°" andJ;=,J;; . The spherical com- dind rlarls it ulle™h
ponents of the vector operatdRs andR, are given by the P2+i2+j2+]2,

following expressions,

Ri=—2X3, R=DX¥, Ry =X,

’

2

dj,
- - - - - =—[2(Jad2ti7j1) tiz(Je+ 12 —Mijs],
R;=(R)", R, =R, R,=Rl,. (59 dind
The group generators of thes algebra are thé vectors djs S o
S ,R, from Eq. (38) and the operators intermixingand r ding~ HsUiFia+iz(isti—mMi(jet+iw],
states, namely the vect®=R;+R,,
~ o = dia |50, 5, 2,2 0, o -
R*=\2(x¥%—x5h), R™=(R"T, dind Jatig+istitotiiitin(ietin
R?= — (XS + X50), (55) . 5tistiztit
and a scalaA interchangind,r variables of degenerate sin- 2 ,
glets _
djs L .
A=i(XSS—X5%), (56) ding - [2ladstiz(s+ie) = M2l

The commutation relationg}), (6) in this particular case di
acquire the form Jo

dlnd:_[je(j1+j4)_m"j3]’
[Sj.Skl=i€jkmSm, [Rij.Rik]=i€jkmSm,

B B o djs _ (js+js)(j5+110)+(jz+19)(16+j12)+. (
[Rj,Sk]=iejxmRm, [Rj,Rd=i€jxmSm, dind 2 71
[Ryj,Si=i€jmRim,  [Rij ,RI=18)A, +in+iuliatie)l,
[R; Al=iRjj, [AR;]=iR;, [AS;]=0. (57 dj
The operatordR; and R are orthogonal t& in accordance dind =—[ig(J1tja)Ti7(jsTj10 =My (J1at+]12) ],
with (5). BesidesR,- R=3X%%, and the Casimir operator is
K=S+Ri+R?+A?=4. dio _ o _
Like in the case of double SO(4) symmetry studied din = —[2(ajo+izla) +iz(ie+ 112 = Mirjaol,
above, the second step of RG procedure generates additional
vertices in the exchange part of the interaction Hamiltonian djo
(53, ding~ [laotizliatis) =Mijel,
Heot=31S S+ R 5+ J3(Ry- s+ Ry 5, ) +34S s dj
11 . . . . .
+JsR-5+Jg(Ryy-S1+ Ry -5,) + 375 (8, +51) ding - Hu(atia+izlat]io)l,
+Ja(Re s +Rpr 1)+ JoRi- 5+ 1R 5+ 1R+ (s dis,
+51) + 1Ry -+ Rz 1), (58) ding Halatla) = Mide] (60

where Ry =X3%R;, Ry =R,X>%. The scaling properties Here the terms proportional tm,, arise because the second
of the system are determined by a system of 12 scaling equéerm in the Hamiltoniar{53) contains nondiagonal terms.
tions with initial conditions From Eqgs.(60), one deduces the Kondo temperature,
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— 2\/Ernlr 1N§m|r = E E, AA TITr TrTI
Tko=D| 1—- - - — = (61) HCOt_A*T Lo EAX? 2+ M (X +X )
j1tiatV(i1+ia)?+2i5 S
Similarly to the previous case, this equation transforms into +k2,; a:zlr fkaC;k(rCako+tlrk2U a:E” CakoCako
the usual exponential form when theandr channels are ' '
independent, ~
2 JaSa st dy 2 S st (R
_ 2 -
lim TKzzDexp(—_ : — _2). (62 +RP.5,)+ 4R S, (65)
my —0 Jitia+tV(U1tTi2) +2j3

where J;,=J), J,=J,, Js=aJ;, Js=aJ] and S;z

Upon increasingn,, , the symmetry reduces from SO(5) to = >»X“**3Sz. The spherical components of the vector op-
SO(4). Thesame happens at smatl, but with increasing eratorsR; andR; are

5= ESQ ETI' In the latter case the ener@gl_ls quencrfd, )+ _ \/§x1r5| B \/ExTrSI
and até;>Ty, Eq. (61) transforms intoT x = &jexp{—[j(4) 3 ' s '
+j3(a)]‘1} (cf. Ref. 14. On the other hand, upon decreasing
o=E7 —Eg the symmetryP X SO(4)x SO(4) is restored

at3r<TKo. The Kondo effect disappears Wha’l changes RW= _x0S  RE@— (RWHT 66
sign (the ground state becomes singlet 3 o Riz=(Rsz) (66)
The next asymmetric configuration is illustrated by theIt is easvy to see thaS.+S =R.+R, and R.=RB®
flow diagram of Fig. 6. LB y St Si=RitR S
3.

In this case, the manifoldlT,,S,;,T,} is involved in the 3 i
dynamical symmetry of TQD. The relevant symmetry group '—'kTeTT the case of SO(5) symmetry, the tunneling terms
M, X'a'a generate additional vertices in the renormalized

is SO(7). It isgenerated by six vectors and three scalars: T !
These are spin operato8s (a=1,r) andR operatorR, [see HamiltonianH.,;. The number of these vertices and the cor-

~ responding scaling equations is too wide to be presented
Eq. (38)] plus three vector operatof and three scalar op- herg We iqeave thg dgscription of RG procedure fcr))r SO(7)
eratorsA; involving |-r permutation. Here are the expres- .

sions for the spherical components of these vectors via Hu jroup for the following sectiortas well as the case of TQD
P P ith odd occupatioy) where the case df1, =0 is consid-
bard operators,

ered. In that case the scaling equations describing the Kondo
physics of TQD with SOf) symmetry are more compact.

ﬁgZ)Jr:(ﬁ(gl)*)T, 'ﬁ(sZ)fz(ﬁgl)Jr)T,

Ry =V2(XM%+ X0, Ri=XUtr—Xh, B. Section summary
_ _ The basic physics for all S@f symmetries is the same,
Ry = 2(XM0r+ X0l RZ=xIrhi— XUl and we summarize it here. We have analyzed several ex-
amples of TQD with even occupation in the parallel geom-
_ _ _ etry (Fig. 1). Our analysis demonstrates the principal features
R =V2(XuS—x5%), RE=—(XS+X%%). (63  of Kondo effectin CQD in comparison with the conventional
SQD composed of a single well. These examples teach us
The scalar operators; , A,, Az now involve thel-r permu-  that in Kondo tunneling through CQD, not only the spin
tations for the triplet states. They are defined as rotation but also the “Runge-Lenz” type operatd®sand R

are involved. Physically, the operatdisdescribe left-right
iV2 - T transitions, and different Young schemes give different spin
AlzT(Xlrll—Xlllr*X XA, operators in the effective co-tunneling Hamiltoniafsee
Appendix B.

2 — — — —
Azz\/T—(Xlllr—Xlrll—FXlrll iy, IV. TRIPLE QUANTUM DOT IN SERIES

A. Motivation

It was mentioned already in Sec. Il that a TQD with leads
Ag=i (X0 —X%0). (64) | andr representing independent tunneling channels can be
mapped onto a TQD in a series by means of geometrical
The (somewhat involvedcommutation relations of, alge-  conformal transformation. Indeed, if the interchannel tunnel-
bra for these operators and various kinematic constraints aieg amplitudet;, in the Hamiltonian(24) is zero, one may
presented in Appendix D. The SW transformation results irapply the rotation in the source-drain space separately to
the effective cotunneling Hamiltonian each channel and exclude the osldl combination of lead
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number changing dot Hubbard operators. The tunneling
amplitudesVi2 =V (\|d,,/A) (a=I,r) depend explicitly
on the respective 3-4 particle quantum numbgrs A.

Note that direct tunneling through the TQD is suppressed
\A W, W, Vv, due to electron level mismatch and Coulomb blockade,
- ““"'“' T so that only cotunneling mechanism contributes to the
c current.
To To
S gl gr d

The generic Hamiltoniaf35) simplifies in this case to

_S' B xhad t
Hoor= 2 Ep Xata+ > > €rCiisCoko
vt ko b=Tr

£ +Q,——

e + >, s, 5+, P :
40, —_—c 0, azzl,r aSarSatJir azEI,r S, S
N — +a;r JgTRa'%+J'fa;r R, Sia (68)
& (the notationl,r is used for the electron states both in the

leads and in the TQD The antiferromagnetic coupling con-
FIG. 7. Triple quantum dot in series. Lef) and right(r) dots stants are defined by E(6). The vectorsS,, R,, and"F'Qa

are coupled by tunneling/, , to the_ centrg(c) dot and by tunneling are the dot operator8s), P is the permutation operat¢8?),
Vi, to the sourcds) (left) and drain(d) (right) leads. and the components of the vectas s,z are determined in
Egs. (20) (with a=a=1,r) and (39). The vector operators

states both in thé andr channef* Since now each lead is - . - .
, Ra, R, and the permutation operaté? manifest the

coupled to its own reservoir, and one arrives at the serie :
configuration shown in Fig. 7. ynamical symmetry of the TQD.

It is virtually impossible to conceive an additional We now discuss possible rea_1I|zat|c_>n_ CF?XSO(A')
transformation after which the odd combination of lead X_SO(4)’ SO(5) and SO(?s)ymmetr-les arising in the.TQD
states are excluded from the tunneling Hamiltorfaas a  With N=4. Due to the absence of interchannel mixing, the
result, the challenging situation arises in case of oddfvoided crossing effect do_es not arise in the series gepmetry.
occupationN =3, where the net spin of TQD 8= 1/2, and As a result, all cases of high symmetry are charac_tenzed by
the two leads play part of two channels in Kondo tunnelingthe same ﬂOV_V diagram of Flgs. 3, 5.’ and 6 twathout
Hamiltonian. Unfortunately, despite the occurrence of two2v0ided crossing effects shown in the insets. .
electron channels in the spin Hamiltonian, the complete Let us commence the_ analysis of the Kondo effect in
mapping on the two-channel Kondo problem is not attainedN® Series geometry with the casexSO(4)xSO(4)
because there is an additional cotunneling teips.s,  Whereé Eic=Er and I't =I'y, (Fig. 3. In this case the
+H.c. [s, is determined by Eq(39)] which turns out €xchange part of the Hamiltonid68) is a simplified version
to be relevant, and the two-channel fixed point cannot b&®f the Hamiltonian (46) with the boundary conditions
reached. And yet, from the point of view of dynamical (47). The scaling equations are the same as Ef)
symmetry the series geometry offers a new perspectiv&ith m;=0. Solving them one gets E0) for the Kondo
which we analyze in the present section for cases of even ari@mperature.

odd occupation. When Eg~E7 ~Es <Er_(Fig. 5, the TQD possesses
the SO(5) symmetry. In this case the interaction Hamiltonian
B. Even occupation has the form

Consider then a TQD in seri€Big. 7) with four electron _ _
occupationN=4. The Hamiltonian of the system can be Heor=J1S 5+ IoR-§+J3(Ry1- 51+ Rz 5,), (69
written in the form, o

which is the same as in EJ) with R;, R, determined by
Eq. (54). Respectively, the effective Hamiltonian for the
— Agh AN +
H_Aza Ea X" aJ“; ExX +% b;d €kbCokoCoker Anderson scaling is a reduced version of the Hamiltonian
’ (58)

+ Videl, +Viied )XM+Hel. (6 - -
2 2 Vi es Vi) b7 Hcot=J1$-s+JzR|-s+J3(R1~Sr|+Rz-s|r)+J4S'SE7o)

Here|A), |\) are the four- and three-electron eigenfunctions

(A5) and (A9), respectively;E, ,E, are the four- and with the boundary condition&9) for J;, i=1—4.

three-electron energy levels, respectivet);* =|\)(A| are The scaling equations have the form

195109-14



KONDO EFFECT IN SYSTEMS WITH DYNAMICA. . .. PHYSICAL REVIEW B 69, 195109 (2004

dj, D i3 2.5 —
dind__|I1H27 ) S
2 @ ¢
djz 2i ! § SO4)
dind l1)2, 15_.30(3) 2
= jalist i) B e
dind : s0)
djs .2 J% 0.5 S0(4) 39(7)
dind {J‘ﬁ 20 (71) i PxSO(3)xSO(3) S0®)
Of course, Eqs(71) for the Kondo temperature yield the 0 ‘
limiting value (62). 0.5 1 15 ) 2

WhenEr ~E; <Es,Es (Fig. 6), the TQD possesses the
SO(?) Symmetry. In this case the Anderson RG procedure FIG. 8. Phase diagram of TQD. The numerous dynamical sym-

adds three additional vertices in the exchange part of th@etries of a TQD in the series geometry are presented in the plane
basic SW Hamiltoniari65) of experimentally tunable parametets-I', /", andy=E,./E, .

~ dj o
Heot= 2 J1aSa-Satd2 D Sia St Ja(RY: s % = [2]sijet]2is] (74)
a=Ir a=Ir dind

= is now solvable analytically, and the Kondo temperature is,
+R§32)'S|r)+‘]4RI'SI+a:2|r ‘J5aSa'S,a_+J6R|‘S'- Yy Yy P

(72 Tk= Sexp{ 4 (75)

The boundary conditions for solving the scaling equations 2+ + V42 +3(jotjs)?
are

wherej =jy+jstiy, -=jutia=]ur-
Just as in the cases considered above, the Kondo tempera-
ture and the dynamical symmetry itself depend on the level

splitting. On quenching thes, state (increasingE,zES1
—Ez), the pattern is changed into RX SO(3)x SO(3)

symmetry of two degenerate triplets with a mirror reflection
axis. Changing the sign of;, one arrives at a singlet regime
The results of calculations described in this section are
summarized in Fig. 8. The central domain of sikg, de-
scribes the fully symmetric state where there is left-right
) symmetry. Other regimes of Kondo tunneling correspond to
lines or segments in thix,y} plane. These lines correspond
; Lo ; : ; T to cases of higher conductan@GBA). On the other hand, at
dia _ ]2(11'+]”+J5'+J5r)+13(14ﬂ6), some regions, the TQD has a singlet ground state and the
dind 2 Kondo effect is absent. These are marked by the vertically
hatched domain. Both the tunneling rates which enter the

J1a(D)=3], 3D)=Jy, JIs(D)=J;,

JuD)=ad], Jsa(D)=36(D)=0 (a=l,r). (73

The system of scaling equations

i3

2

djy

dind

2 2
It 5 tla

N
ﬁ+§+§

djar _
dind

djs
dind

=—[j2(jatje) +is(jartis)]s

dis oy
dind ~ JaJaT 23l

ratio x and the relative level positions which determine the
parametety depend on the applied potentials, so the phase
diagram presented in Fig. 8 can be scanagderimentally

by appropriate variations &f, andv4,. This is a rare occa-
sion where an abstract concept such as dynamical symmetry
can be felt and tuned by experimentalists. The quantity that
is measured in tunneling experiments is the zero-bias
anomaly(ZBA) in tunnel conductancg.’ The ZBA peak is
strongly temperature dependent, and this dependence is
scaled byTy . In particular, in a high-temperature regidn
>Tx, where the scaling approach is valid, the conductance
behaves as

195109-15



T. KUZMENKO, K. KIKOIN, AND Y. AVISHAI PHYSICAL REVIEW B 69, 195109 (2004

Tx /Txo E
1 PxSO (4) xSO (4)

-3.8
-39

-4

PxSO (3) xS0 (3)
4.1
-4 -3 =2 - 1 2 3 4 Ora/ o FIG. 10. Scaling trajectories resulting in SO¢$U(2) sym-

_ . metry of TQD withN=3.
FIG. 9. Variation of Kondo temperature with,=vg,—vy) .

Increasing this parameter removes some of the degeneracy and ei- 3 1
ther “breaks” or reduces the corresponding dynamical symmetry. yi=1\/1— E(BI2+:8r2)u Y=\ 1- 5(13|2+ Brz)'
g(T)~In"(T/T). (76) (79

As it has been demonstrated aboVg,in CQD is a nonuni- SinceFQ>F,Bl_’FBZ‘ the scaling trajectories cro.f,s in é unique

versal quantity due to partial break down of dynamical sym-mnanner: This is the com_plete_degene_rate configuration where

metry in these quantum dots. It has a maximum value in th&ll  three  phase trajectoriesE, intersect [Eq(D")

point of highest symmetr x SO(4)x SO(4), anddepends = Es1(D")=Eg2(D")] at the same poirD*. This happens

on the parameters, in the less symmetric phasgsee, e.g., at bandwidthD=D" (Fig. 10 whose value is estimated as

Egs. (50), (52), (62), and (75)]. Thus, scanning the phase T

diagram means changinig(d,)- D*=D, eXF{ - _) , (80)
These changes are shown in Fig. 9 which illustrates the Iq

evolution of Ty with &, for x=0.96, 0.8 and 0.7 corre- \here

sponding to a symmetry change froR<X SO(4)x SO(4),

SO(7) to PXSO(3)xXS0O(3) and from SO(5) to S@), W|2Erc+Wr2EIc

respectively. It is clear that the conductance measured at =

r=——"—"""">5->5 EicErc-
2=2 22
given T should follow variation ofTx in accordance with WiEre+WrEic
Eq. (76). If this degenerate point occurs in the SW crossover re-
gion, i.e., if D*~D, the SW procedure involves all three
C. Odd occupation spin states, and it results in the following cotunneling Hamil-

. . S . tonian:
We now turn our attention to investigation of the dynami- tonia

cal symmetries of TQD in series with odd occupatiin
=3, whose low-energy spin multiplet contains two spin 1/2 Heot= Z (J38+I3R) - s, (82)
doublets|B; ) and a spin quartdQ), azlr
s whereS is the spin 1 operator andl is the R operator de-
Eg,=ecteite —2[WiB+W 5], scribing S/T transition similar to that for spin rotatdf. The
. coupling constants are
E82:8c+gl+8r_E[WIBI+WrBr]v 2
T 4'Yl|va|

=== 35T=,3". 82
Eg=ect e te;. (77 2 3(ep—e,) a = Y2dir (82

There are also four charge-transfer excitonic counterparts of This is a somewhat unexpected situation where Kondo
the spin doublets separated by the charge transfer gaps tunneling in a quantum dot witlodd occupation demon-
—e.+ Q) ande, —e.+ Q, from the above statgsee Appen- strates the exchange Hamiltonian of a quantum dot exgn
dix A). occupation. The reason for this scenario is the specific struc-
Like in the four-electron case, the scaling equati@®®  ture of the wave function of TQD wittN=3. The corre-
may be derived with different tunneling rates for different sponding wave functionfA) (see Appendix A are vector
spin stategI'q for the quartet and’g (i=1,2) for the dou-  sums of states composed of a “passive” electron sitting in
blets). the central dot and singlet/tripleS(T) two-electron states in
the |,r dots. Constructing the eigenstate’s) using certain
To=mpo(VE+V?), Young tableaux(see Appendix I one concludes that the
spin dynamics of such TQD is represented by the spin-1
rBl: yer, 1“82: ygrQ, (79 operatorS corresponding to ther triplet, the corresponding
R operatorR and the spin-1/2 operatsg of a passive elec-
with tron in the central well. The latter does not enter the effective
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Hamiltonian H.,; (81) but influences the kinematic con- experimentally in Ref. 25, in which the Kondo effect in pla-
straint via Casimir operatok=S?+M?2+s2=2%. The dy- nar and vertical QD’s induced by external magnetic fiBld
namical symmetry is therefore SO(4BU(2), andonly the  has been observed. In this section we lay down the theoret-
SO(4) subgroup is involved in Kondo tunneling. ical basis for this somewhat unusual kind of Kondo effect.
The scaling equations have the form, Consider again the case of TQD in series geometry with
N=4. In the preceding sections the variation of spin sym-

djia metry is due to the interplay of two contributions to indirect

dind [ifatiZal, exchange coupling between the sp8is One source of such
an exchange is tunneling within the CQBmplitudesw,)
djsa o and another one is the tunneling between the dots and the
dnd —2j1a) 2a> (83 Ieadg(amplltudesva) . An app.ropnate tuning of thesc_a two
contributions results in occasional degeneracy of spin states
wherej .= poJl, j2a=podS’ (a=1,r). From Egs.83) we (glimination of exch'ange splitting and various com'bina—
obtain the Kondo temperature, tions of these occasional degeneracies lead to the rich phase
diagram presented in Fig. 8. A somewhat more crude ap-
Te=maxX Tk, Tk} (84) proach, yet more compliant with experimental observation of
- such interplay is provided by the Zeeman effect. This mecha-
with Ty,=D exd —1/(j1at]2a) - nism is effective for CQD which remains in a singlet ground

An additional dynamical symmetry arises in the casestate after all exchange renormalizations have taken place.
when D*>D. In this case the ground state of TQD is a Ihe negative exchange energy may then be compensated

quartetS=3/2, and we arrive at a standard underscreene@y the Zeeman splitting of the nearest triplet states, and

Kondo effect for SU(2) quantum dot as an ultimate limit of Kondo effect arises once this compensation is comflete.
the above highly degenerate state. From the point of view of dynamical symmetry, the degen-

eracy induced by magnetic field means realization of one
possible subgroup of the noncompact group ©d&ee Eq.
(21) and corresponding discussion in Sed. TMhe transfor-

To conclude this section, it might be useful here to undermation SO(4)-SU(2) for DQD in magnetic field was dis-
score the following pointsi1) The difference between series cussed in Ref. 13.
and parallel geometries of TQD coupled to the leads by two
channels exists only at nonzero interchannel mixing in the
leads,t;, #0. (2) One may control the dynamical symmetry
of Kondo tunneling through TQD by varying the gate volt-  In similarity with DQD, the Kondo tunneling may be in-
age and/or lead-dot tunneling rat®) In the case of odd duced by external field in the nonmagnetic sector of the
electron occupationN=3) when the ground state of the phase diagram of Fig. 8. A very peculiar Kondo tunneling is
isolated TQD is a doublet and higher-spin excitations can béduced by an external magnetic fieidin the nonmagnetic
neglected, the effective low-energy Hamiltonian of a TQD insector of the phase diagram of Fig. 8 close to the SO(5) line.
series manifests a two-channel Kondo problem aleliy in  In this case, a remarkable symmetry reduction occurs when
the weak-coupling regin?@ To describe the flow diagram in the Zeeman splitting compensates negative, = E51 r

this case, one should go beyond the one-loop approximationETl_ Then we are left in the subspace of states

in RG flow equations® (4) The nominal spin of CQD does - , e
not necessarily coincide with that involved in Kondo tunnel-{T1I 'S,S}, and the interaction Hamiltonian has the form

ing. A simple albeit striking realization of this scenario in
this context is the case of TQD witi=3, which manifests
itself as a dot with integer or half-integer spin depending on
gate voltages.

D. Section summary

B. Quantum dot with SU(3) dynamical symmetry

- 2
Heor=(J1RI+ 32R§)5|Z+\/7—33|(Rf5|_ +Rys")

V2 o
+ 5 da(Res +R, S1)+Ja(Ras. + Rysy) + (JsRE
V. ANISOTROPIC KONDO TUNNELING THROUGH TQD
IN SERIES GEOMETRY

+JgR%)s?+J(Ry s, +R1s)). (85)
A. Generalities
In all examples of CQD’s considered in the precedingHere
sections the cotunneling problem is mapped on the specific
spin Hamiltonian where botf andR vectors are involved in 2J|T

resonance cotunneling. There are, however, more exotic situ- J1(D)=3,(D) = 3 J3(D)=J7",

ations where the effective spin Hamiltonian is in fact a

“Runge-Lenz” Hamiltonian in the sense that the vect&s _ _

alone are responsible for Kondo effect. Actually, just this J3(D)=«ad;,, Ji(D)=0 (i=4-7). (86)
aspect of dynamical symmetry in Kondo tunneling was con-

sidered in the theoretical papers cited in Ref. 6 and observetihe operatorfk;, R,, R; andR, are defined as,
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1 _ 3 3
Ri=>5 (XUU=X3%), Ry =X"9, R =(R;)", R3=\/T_()\6+i)\7), R4=\/T—()\6—i)\7).
, 1o < s B it As far as the RG procedure for the Runge-Lenz exchange
Rp=5 (X" =X ), Ry=X"%, R, =(R;)", Hamiltonian (85) the poorman scaling procedure is appli-
cable also for th&® operators. The scaling equations have the
form
V3 V3 !
Ry=—-X5%, R,=—X5%, (87) _ .
32 ) di. ., djiz _ 2
3l - " Jars
We see that the anisotropic Kondo Hamiltoni@3) is quite dind dind r
unconventional. There are several different terms responsible ) )
for transverse and longitudinal exchange involving hep- dja _ | +J_2 _\/_5. .
erators which generate bo8 /T andS,/S; transitions. dind a1 )T g el
The operatorg87) obey the following commutation rela-
tions, disw  alist2iatist2je) = V3ialia+2i7)
. . dind 4 ’
[Ryj ,Rud=i€jxmRim: [Raj,Rak]=i€jkmRom,
V3 i &:j (\/_§] +\/—§J )
[Ry; yRZkJZF(R3_R4)5jk(1_5jz)+ Eejkm( Rimdkz dind % 378" 277p)
V3 ds ., djsg
+R2m5jz_?5mz(R3+R4) ) dlnd__ 17 dlnd__JSr’
1 N _ diz [ el7 V&
[Ryj.Ra]= = 5Radj,+ 1 (Rax iRz () —15y), dind -~ slvt %~ —gJala)s (89
wherej = poJ. We cannot demonstrate analytical solution of
_ 1 _\/_§ . ; this system, but the numerical solution shows that stable in-
[Ryi,R4]==R,6, (Roy— iR (8 +i68:)
I 2 471 g YT TRy finite fixed point exists in this case as in all previous con-
figurations.
J3 . . Another type of field induced Kondo effect is realized in
[Rzj,Rs]= 5 Radjz = (Rix iRy (6 16y ), the symmetric case of=Es —Er <0. Now the Zeeman
splitting compensates negative Then the two components
J3 of the triplets, namerETlgu cross with the singlet state
[RajRal= = 5 Radjz+ 7 (Rix iRy ) (65— ), energyEs , and the symmetry group of the TQD in magnetic

field is SU(3) as in the case considered above.

3
[R3.Ra]= E(RE_ D (88) C. Section summary
It has been demonstrated that the loss of rotational invari-
ance in external magnetic field radically changes the dynami-
cal symmetry of TQD. We considered here two examples of
2, p2 T t_3 symmetry reduction, namely, SO(H)SU(3) and P
RiTR T ReRs+RaRs =3 X SO(4)x SO(4)—SU(3). In allcases the Kondo exchange
Therefore, in this case the TQD possesses SU(3) symmetrig anisotropic, which, of course, reflects the axial anisotropy
TheseR operators may be represented via the familiar Gellinduced by the external field. These examples as well as the
Mann matrices\; (i=1, .. .,8) for the SU(3)group, SO(4)—SU(2) reduction considered earfigtdescribe the
magnetic-field-induced Kondo effect owing to the dynamical
L1 ) 1 ) symmetry of complex quantum dots. Similar reduction
Ri=5(\1tiky),  Ry=5(A1~iky), SO()—SU(n’) induced by magnetic field may arise also in
more complicated configurations, and in particular in the par-
1 allel geometry. The immense complexity of scaling proce-
R§=Z(A3+ V3\s), dure adds nothing new to the general pattern of the field-
induced anisotropy of Kondo tunneling, so we confine
ourselves with these two examples.
R+=E()\ +ike) R_=E()\ “iNe) Although the anisotropic Kondo Hamiltonian was intro-
2 A Insh 2 o e IS duced formally at the early stage of Kondo physit#,was

These operators generate the algalyan the reduced spin
space{T1,,S,S;} specified by the Casimir operator
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rather difficult to perceive how such Hamiltonian is deriv- relation with other branches of physics makes it even more
able from the generic Anderson-type Hamiltonian. It wasattractive. The groups S@J play an important role in Par-
found that the effective anisotropy arises in cases where thiicle Physics as well as in model building for high tempera-
pseudospin degrees of freeddsuch as a two-level system ture superconductivityespecially S@5)]. The role of the

are responsible for anomalous scattering. Another possibilitgroup SU(3) in Particle Physics cannot be overestimated and
is the introduction of magnetic anisotropy in the generic spinits role in Nuclear Physics in relation with the interacting
Hamiltonian due to spin-orbit interactidisee Ref. 32 for a Boson model is well recognized. This paper extends the role
review of such modejs One should also mention the re- of these Lie groups in Condensed Matter Physics.
markable possibility of magnetic-field-induced anisotropic

Kondo effect on a magnetic impurity in _ferromagnetic_rare- ACKNOWLEDGMENTS

earth metals with easy plane magnetic anisotropyhis
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tive spin Hamiltonian, but the sources of anisotropy are dif-Science Foundations, the United States Israel Binational Sci-
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in external magnetic field. Previously, the manifestation of

SU(3) symmetry in anisotropic magnetic systems were es-  APPENDIX A: DIAGONALIZATION OF THE DOT

tablished in Ref. 34. It was shown, in particular, that this HAMILTONIAN

dynamical symmetry predetermines the properties of collec- . ) o

tive excitations in anisotropic Heisenberg ferromagnet. In the Here we describe the diagonalization procedure of the
presence of single-ion anisotropy the relation between thelamiltonian of the isolated TQD’s occupied by four and
Hubbard operators fd8=1 and Gell-Mann matrices were three electrons. The dot Hamiltonian has the form,
established. It is also worth mentioning in this context the

SU(4)DSO(5) algebraic structure of superconducting and H.,= df d. + .
antiferromagnetic coherent states in cuprate High- d a:IE,r,cg €aactar ; QaNaiNay
materials®®
N
+ > (Wud! da,+H.c). (A1)

a=Ir

VI. CONCLUSIONS
(i) Four-electron occupation: The HamiltonigAl) can be
ediagonalized by using the basis of four-electron wave func-
ons

We have analyzed the occurrence of dynamical symm
tries in complex quantum dots. These symmetries emer
when the dot is coupled with metallic electrodes under the
conditions of strong Coulomb blockade and nearly degener-
ate low-energy spin spectrum. It can be achieved either by an
application of an external magnetic field or due to dot-lead _ -
tunneling which, as we have seen, results in level renormal- |ta,1>=dzld;ldg1dgl|0>,
ization and the emergence of an additional symmetry. Al-
though the main focus in this paper is related to the study of 1
triple quantum dots, the generalization to other quantum dot |ta,0)= —=(df,df +dl df)dl ol [0),
structures is indeed straightforward. V2

Since we were interested in a symmetry aspect of Kondo
tunneling Hamiltonian, we restricted ourselves by derivation 1 bttt
of RG flow equations and solving them for obtaining the |Sa)= E(dmdal_dcldaT)d;dam%
Kondo temperature. In all cases the TQD’s possess strong
coupling fixed-point characteristic for spin-1/2 and/or spin-1

Tt
|ta11>:led;Td d_l|0>,

alVa

At g4t 4t 4t

case. We did not calculate the tunnel conductance in details, |ex>—d”dudmdrl|0>, (A2)

because it reproduces the main features of Kondo-type zero — — . .
where a=I,r; |=r, r=Il. The Coulomb interaction

bias anomalies studied extensively by many authsee,

e.g., Refs. 6, 11-14, 21, and)2Zhe feature is the possibil- we do not take them into account. The stata®) form a
ity of changingT by scanning the phase diagram of Fig. 8. asis of two triplet and three singlet states. In this basis, the

Then the zero-bias anomaly follows all symmetry crossover iitonian(AL) is d d into trivlet and sinalet
induced by experimentally tunable gate voltages and tunne _r_aml onian IS decomposed Into triplet and singiet ma-

quenches the states with two electrons in the central dot and

ing rates. ces,
The main message of our work is that symmetry enters ~ )
the realm of mesoscopic physics in a rather nontrivial man- H.— €l
. S : : = ~ | (A3)
ner. Dynamical symmetry in this context is not just a geo- 0 %

metrical concept but, rather, intimately related with the phys-
ics of strong correlations and exchange interactions. Thand
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P 0 2w,
Hs= 0 ; r \/EWF ) (A4)
\/EWI \/E\Nr €ex

where g, =€.+€+26+Q,, & =€+€+2¢+Q,, and
Cox=2€+26,+Q,+Q,. We are interested in the limjs,
<1 [ B, are defined by Eq.15)]. So the secular matrix may
be diagonalized in lowest order of perturbation theorBin

The eigenfunctions corresponding to the energy leV2®
are

|Sa) = V1-282s2) — V2Balex),

|Ta>:|ta>v
|Ex)=1—2B87—2B%eXy+\2B/[s)+ V2B|s:).

(A5)

In completely symmetric case, =¢,=¢, Q=0Q,=Q,

W,=W,=W, the eigenfunctions corresponding to the ener-

gies(23) are

1S.)= Jl——w@—zmm,

\/_
|s)—Isr)

|S—>_ \/E ’
[t)=]tr)

|Tt> \/E ’

[Ex)=\1-4Blex)+\2B(Is)+]s)),
where=W/(e+Q—¢€.).

(AB)

(ii) Three electron occupation: In this case the Hamil-
tonian(Al) can be diagonalized by using the basis of three-

electron wave functions

([d:let_dglle%]drtr'i_[da r+T_

V6

d;,d"1d,")|0
|b,0’>= cl rl] Ia')| >,

1

V2

|be,oy=— (d,*T a—dﬁdﬁ)d&m},

3
445 =4.0..0% )

+= r:dl-‘—t+d;—1d;‘—tdri)|o>
_2 \/§ i)

|brc 10'> = drﬁdrtd::ro|0>1

1> (dg.didiz+did”

|bic o) =dy}df}d,{O),

lby,o)=d,;d/ d,|0), [b;,0)=d/d)\d/,|0), (A7)

PHYSICAL REVIEW B 69, 195109 (2004

whereo=1,]|. The three-electron states ) of the TQD are
classified as a ground-state doubiBt), low-lying doublet
|IB,) and quartefQ) excitations, and four charge-transfer
excitonic doublet8,. andB, (a=1,r). In the framework of
second-order perturbation theory with respecBta(15), the
energy level€E, are

Eg,=ectete—3[WB+WB],
Eg,=ectete—z[WB+W,B],
Eo=€ct € +e,

Ep, = €ct2€a+Qa—Waf,
EBa: €.+ 26+ Qa+W,oB,+2W 85 (A8)

The eigenfunctions corresponding to the energy levels
(A8) are the following combinations,

V6
7Br|b|,0'>,

V2

V2 2
|Bz,0>:72|b2-0>_7,3||br70>_7/3r|b| ),

V6
|Bl,0’>:71|b1,0>—7,8||br,o->+

Q.50 =ld.s,),
|Baca0'>: vl—ﬁgbac,@—ﬁﬂb;ﬂ%

|Br ’0'>: V1—2,8|2—ﬂ|?|br 10'>+ﬂr|blc ’0'>
2
+ = Bi(\3lby,0)+[bz,0)),
B, a)=1-28;— Bf|b o)+ Bi|b; .Cc,0)

2
—\/7—/3r(\/§|b1v‘7>_|b2’0>)’

3 41
—+3 +1
S;=*2, %3

(A9)
wherey; and vy, are determined by Ed79).

APPENDIX B: ROTATIONS IN THE SOURCE-DRAIN
AND LEFT-RIGHT SPACE

In the generic case, the transformation which diagonalizes
the tunneling Hamiltoniai25) has the form

Cleke

ur v 0 0} /Ciske
Cloks —vu; U Cldke
Creio | 0 0 u- o Crske (B1)
Croko 0 0 —vu u Crdke

With Ua=Vas/Va, v4=Vag/Va; V§:|Vas|2+|vad|2 (a
=1,r). In a symmetric cas¥,=V,4=V, this transforma-
tion simplifies to
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Caekr™ 2_1/2(Caska+ Cadke)

Caok<r:271/2(_Caslqr+cadko)1 (B2)
and only the everie) combination survives in the tunneling
Hamiltonian

Htunzv;k (¢l odaytH.C). (B3)

So the odd combinatiofo) may be omitted.
If, moreover, the whole system “TQD plus leads” pos-
sesses-r symmetry,e,=¢,, the second rotation ikr space

Coko 1 1 0 0 /Ciek

Cukor 1(-11 O Creks
=— B4
deo | "2| 0 O 1| di, B4

dus o0 -1 1/\d,

transformsH g+ Hiyn iNt0
Hlead+Htun 2 [6k7] 7]k(]’+V(C7]k(J'd7]U'+HC)]
nko

(B5)

with Ekg: Ek_t“- y Eku= Ek+tlr .

APPENDIX C: EFFECTIVE SPIN HAMILTONIAN

The spin Hamiltonian of the TQD withN=4 occupation
in series geometryFig. 7) is derived below. The system is
described by the Hamiltoniai67). The Schrieffer-Wolff
transformatiof’ for the configuration of four electron states
of the TQD projects out three electron stafg$ and maps

the Hamiltonian(67) onto an effective spin HamiltoniaH
acting

(A] ... JA",

(™

H= e'SHe—'S—H+Z—[$[5 JISHIT.. .1,

(Cy
where

AN
ao

S=—i>,

= XM+ H.C.
AN (k)o,a EA)\_

€ka

(C2

in a subspace of four-electron configurations
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H=2 ExX™M+ X €aCaioCako
A (kyo,a
-2 X D XM
AA'N Kk oo’ @=1T

- 2 2 (‘]/k\k[}IrXAA

akacak’ 4

CrkoCikr o +H.C), (C3)

AA'N KK oo’
where
AA
AA’_(VQQ)*V 1 1
kk'a™ 2 = _ += _ i
Exn—€a Ean—é€wa
A’
. (IDHFV 1
AA ro’
KK'Ir = 2 = t= (C4
Exv—ea Ean—ecr

The constraint ,X**=1 is valid. Unlike the conventional
case of doublet spin 1/2 we have here an ocfet
={A,A;}={S,T,,S;,T,}, and the SW transformatioim-
termixes all these stateshe effective spin HamiltoniafC3)
to orderO(|V|?) acquires the form of Eq68).

APPENDIX D: SO(7) SYMMETRY
The operatorsS, S, R, Ry, R,, Rz and A; (i

=1,2,3)[see Eqs(33), (63), and(64)] obey the commuta-
tion relations of theo, Lie algebra,
[SsjSark]=1€jkmbaarSams  [Rij \Rik]=1€jkmSim

[Rij.Skl= [Rij .Sl =[Raj,Sk]=0,

i€jkmRim >
[Nst aﬁSk]:iejkermv [ﬁsj ,Srk]:iejkmﬁsm,

- o~ ) i

[Raj Rud=1€jmSm(1 = 6j2) (1= 8k + 5 €jkmSim( 9},

1
+ 5kz)_§(51j Okz— Sikdiz),

- o~ ) i
[Roj,Rak] =i€jkmSim(1— 6j) (1= 6 + Eejkmsrmwjz

1
+0ka) =5 (S Oz Sdja).

[R1]:R2k] ejkm(srm5]z+slm5kz)+ [Slj5kz Srk jz

+ (Slz_ Srz) 5j25kz]i

Here(k) stands for the electron or hole states whose energies

are secluded within a Iaye:ttS around the Fermi level.
Exn=EA(D)—E,(D) and the notatiora=1,r is used. The
effective Hamiltonian with three-electron states frozen
out can be obtained by retaining the terms to of@¢V|?)
on the right-hand side of E4CY). It has the following form:

S . Oz Oz

[Raj,Ri]=i€jkmRim| 1= 8j,— N —(1 9i2)Ryj
~ ~ . 5k 5kz
[Rsj,Rok]=i€jkmRim| 6+ > (1 BLIE
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5kz+¥

[ﬁlj vRIk]:iejkmﬁ3m

- ) ~ O
[Ryj,Ri]= |ejka3m( 1- 5kz_?J

\/_
[Al,S”] |A25]z+ (Rlx JX R1y ]y)

iV2

[A2,81= —iA18;;— ——(Ruy 8+ Ruxdyy),

[A1,Sj]1=1A%6,—

e

[A27Srj]_ iA 5JZ+ (R2y8]x+R2x Jy)

[A3,S;1=—iRy(1-6;,), [As,S]1=iRy(1-5,,),

iV2

[A1,Rij]=— T(ﬁ3x5jx_ﬁ3ygjy),

iV2 -
[AZvRIj]= T(R3y5jx+ R3x5jy)a

iv2

[Aq ,ﬁsj] = T(R|x5jx_ RiySiy),

iV2

[Az.Rg]= = =~ (Riy 8+ Rixdyy),

[A3.Rij]1=—iR3,8;,, [A3,Ry]=iR;5;,

iV2

[A1Ry]= = 5 (Sx8jx— Sy ),

- iV2
[A2,Ryj]= T(Sly5jx+51x5jy),

[As.Ryj]1=—i(S8jx+ Sy dyy),

iV2

[A1 ,~R2j] = T(er5jx_ StySjy)s

iV2

[Az.ﬁzj]Z - T(Sry5jx+srx5jy),

[As,Ryj1=1(SxSjx+Sydiy),

[A1A]=—i(S:+S,), [A1,A3]=[A2,A3]=0,

[Saj vﬁﬂk] ka R;Lm+ aa#nAn ’

52 y
—7(1— Sk2) Rk

O -
‘) + 7’2(1— Ok2) Raks

2 - ~
T(R2x5jx_ R2y‘sjy)v
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[RsjRi]= BlkmRum* afiAn (D1)

Here j,k,m are Carte5|an indicesa=1,r; u,v=12; n
=1,2,3; 7w, aff'", aj} and | Bfim are the structural con-
stants, ity = {4, alf"=—alf" (1=2, 2=1). Their non-
zero components are

111 111 I11 |1l E

Txxz— Txzx— yyz yzy 2’

121 _ 121 _ 112 _ IlZ__E

Txzx— yzy Txxz— 7-yyz_ 2!

JREETREY ST B
Txyz~ Txyz— Tyzx_zv

|11_7_|ll_ 112 _ 121 _

xzy~ Tyxz— Tyxz~ Txzy~ — 2
|ll 122 122 __ 122 _
Tz27- 1 Tz27- 1’ szy_ I szx_ I

111_ 111 E |12 112_ E
Qyy = Ayy = 2 Qyy = Ayy = 2
111_ 112_ if 1_ g1z ! V2
Qyx = Oy = 2 Qyy = Qyy 2’
123_ |23
Qyx = —i \/—

1 1
Bixz: :8)2/yz: - E! :8)2(xz: ﬁiyz:§1

| |
:8>1<yz: Biyzziy B)l/xz: Bixz: T
ﬁizy: Bgyx: -1, B)l/zx: ngy:i )
WmiE, a—ad—al— iyl
The following relations hold:

S R|=Sa~§3=0, A1Az=AA3=0,

S2=2X*rata, R;-RI+R,-RI=2 D, Xtaka,

a=I,r
R?= XM +3X3S, R3=XrrHr43XSS,
ALAT+ALAT+ AGAT= XHm 4 Xt (D2)
Therefore, the vector operato&, S, R;, R, and scalar

operatorsA; (i=1,2,3) generate the algebeg in a repre-
sentation specified by the Casimir operator

2 3
S+ P+ R+ Z,l R-RI+R2+ 2,1 AAl=6. (D3
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PxSO(4)x SO(4) [ ][]

S] Tl PxSO(3)xS0O(3) | | | |
500 [ [
sl‘ TI‘ SO(5) l |
FIG. 11. Young tableaux corresponding to the sing&{) (and o
triplet (T,) four electron states of the TQD. The gray column de- | |
note two electrons in the same doight or left). S0(4)
APPENDIX E: YOUNG TABLEAUX CORRESPONDING FIG. 12. Young tableaux corresponding to $pEymmetries.

TO VARIOUS SYMMETRIES states in which the rightleft) dot contains two electrons

A TQD with “passive” central dot and “active” side dots (gray column in Fig. 1lwhereas electrons in the Iefight)
reminds an artificial atom with inner core and external va-and central dots form singlet and triplet, respectively.
lence shell. The many-electron wave functions in this na- The Young tableaux corresponding to various B)JO(
noobject may be symmetrized in various ways, so that eachymmetries discussed in Sec. Il can be obtained by combin-
spin state ofN electrons in the TQD is characterized by its ing the appropriate tableau¥ig. 12. The highest possible
own symmetrization scheme. One may illustrate thessymmetry PXSO(4)xSO(4) is represented by four tab-
schemes by means of the conventional graphic presentatideauxT,, T,, S, andS; since all singlet and triplet states
of the permutation symmetry of multi-electron system byare degenerate in this case. The symmeK SO(3)
Young tableatt® For instance, triplet state of two electrons X SO(3) occurs when two triplet$; and T, are close in
which is symmetric with respect to the electron permutationenergy and these are represented by the couple of Young
is labeled by a row of two squares, whereas the singlet ontableaux in the second line. Following this procedure, the
which is antisymmetric with respect to the permutation isSO(7) symmetry can be described in terms of two triplets
labeled by a column of two squares. Having this in mind weT,, T, diagrams and one singleé diagram. Moreover,
can represent the singlet and triplet four electron states of th8O(5) symmetry is represented by two singBet S, dia-
TQD (A5) by the four tableaux shown in Fig. 11. The tab- grams and one tripleE; diagram and, finally, one triplet and
leauxS, (S;) andT, (T,) correspond to the singlet and triplet one singlet tableaux correspond to the SO(4) symmetry.
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