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Kondo effect in systems with dynamical symmetries
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This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the
low-energy spin excitations consist of a few different spin multipletsuSiMi&. Under certain conditions~to be
explained below!, some of the lowest energy levelsESi

are nearly degenerate. The dot in its ground state
cannot then be regarded as a simple quantum top, in the sense that beside its spin operator other dot~vector!
operatorsRn are needed~in order to fully determine its quantum states!, which have nonzero matrix elements
between states of different spin multiplets^SiMi uRnuSjM j&Þ0. These Runge-Lenz operators do not appear in
the isolated dot Hamiltonian~so in some sense they are ‘‘hidden’’!. Yet, they are exposed when tunneling
between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin
s with the operators of the dot then contains exchange termsJns•Rn besides the ubiquitous onesJis•Si . The
operatorsSi andRn generate a dynamical group@usually SO(n)]. Remarkably, the value ofn can be controlled
by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally
realizable. Moreover, when an external magnetic field is applied, under favorable circumstances the exchange
interaction involves solely the Runge-Lenz operatorsRn and the corresponding dynamical symmetry group is
SU(n). For example, the celebrated group SU(3) is realized in a triple quantum dot with four electrons.

DOI: 10.1103/PhysRevB.69.195109 PACS number~s!: 72.10.2d, 72.15.2v, 73.63.2b
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I. INTRODUCTION

Recently, studies of the physical properties of artificia
fabricated nano-objects turn out to be a rapidly develop
branch of fundamental and applied physics. Progress in th
fields is stimulated both by the achievements of nanotech
ogy and by the ambitious projects of information processi
data storage, molecular electronics, and spintronics. The
responding technological evolution enabled the fabricat
of various low-dimensional systems from semiconductor h
erostructures to quantum wires and constrictions, quan
dots ~QD!, molecular bridges and artificial structures wi
large molecules built in electric circuits.1 This impressive
experimental progress led to the development of nanop
ics, a new aspect and research direction in quantum phys2

Artificial nano-objects possess the familiar features
quantum-mechanical systems, but sometimes one may c
in artificially fabricated systems such conditions, which a
hardly observable ‘‘in natura.’’ For example, on
dimensional to two-dimensional (1D→2D) crossover may
be realized in quantum networks3 and constrictions.4 The
Kondo effect may be observed in nonequilibriu
conditions,5 at high magnetic fields,6 and at finite
frequencies.7 Moreover, a quantum dot in the Kondo regim
can be integrated into a circuit exhibiting the Aharono
Bohm effect.8

In this paper we focus on an intriguing challenge in th
context related to the specific symmetry of the nano-obje
under study. More precisely, one is interested in answe
questions pertaining to the nature of the underlying symm
try of the dot Hamiltonian and the algebra of operators
pearing in the exchange Hamiltonian. The investigation
this topic is intimately related with the geometric structu
and electron occupation of the quantum dot in its grou
state. We refer to a quantum dot composed of a single w
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and containing an odd numberN of electrons as asimple
quantum dot~SQD!. The dot Hamiltonian of a SQD~ in the
absence of an external magnetic field! is composed of two
degenerate levels and has a SU(2) symmetry. In that s
the symmetry is referred to as geometrical. The excha
Hamiltonian is expressed in terms of the generators of
group SU(2). On theother hand, quantum dots containing
single well with evenN or quantum dots containing sever
wells are referred to ascompositequantum dots~CQD!. The
low-energy states of an isolated CQD Hamiltonian are s
multiplets. In the generic case, the only degeneracy is tha
magnetic quantum numbers. Yet, as we argue below, dot-
tunneling results in level renormalization and the emerge
of an additional degeneracy, both generic and accidental
be more precise, we note that~1! The exchange part of the
Hamiltonian includes the generators of a noncompact
group @usually SO(n) or SU(n)] and ~2! The renormalized
low-energy spin-excitation levels of the CQD Hamiltonia
are almost degenerate~within a Kondo energy scale!. These
two aspects are gathered under the termdynamical symme-
try. A more quantitative exposition will be presented belo

Experimentally, resonance Kondo tunneling was obser
in QD with odd electron occupation number under stro
Coulomb blockade,9 and in individual atoms and molecule
deposited on metallic surfaces and on the edges of met
wires in break-junction geometry.10 According to the theory
of Kondo effect in QD,11 spin degrees of QD are involved i
Kondo resonance. In our notation these are SQD’s and
physics of Kondo tunneling in this case is similar to that
Kondo scattering in magnetically doped metals, at leas
the regime of linear response.

The Kondo physics seems to be richer in systems invo
ing tunneling through CQD. Our main purpose is to demo
strate that CQD possesses dynamical symmetries whos
alization in Kondo tunneling is experimentally tangibl
©2004 The American Physical Society09-1
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Such experimental tuning of dynamical symmetries is
possible in conventional Kondo scattering. In many ca
even the very existence of Kondo tunneling crucially d
pends on the dynamical spin symmetry of CQD. Seve
models dealing with Kondo tunneling in CQD’s possess
dynamical symmetry were considered in our previous pu
cations. The case of SO(4) symmetry in double quantum
~DQD! was studied in Refs. 12 and 13. A more complica
case of SO(n) symmetry with variablen in a triple quantum
dot ~TQD! ~composed of three potential valleys with in
trawell interaction and interwell tunneling! is introduced in
Ref. 14.

The main goal here is to develop the general approac
the problem of dynamical symmetries in Kondo tunneli
through CQD’s and illustrate it by numerous examples
TQD in various configurations, both in parallel and in ser
geometries. Within this framework, our earlier results14 fit
into an elegant pattern of classification of dynamical symm
try groups, which is expanded here in a somewhat m
complete and rigorous formalism. The main lesson to
learned is that Kondo physics in CQD suggests a pecu
and in some sense rather appealing aspect of l
dimensional physics of interacting electrons. It substantia
in a systematic way, that dynamical symmetry groups play
important role in mesoscopic physics. In particular, we
counter here some ‘‘famous’’ groups which appear in ot
branches of physics. Thus, the celebrated group SU(3)
enters here when a TQD is subject to an external magn
field. And the group SO(5) which plays a role in the theo
of superconductivity is found here when a certain tuning
the gate voltages in TQD is exercised.

The basic concepts are introduced in Sec. II. First,
Sec. II A, the necessary mathematical ingredients are in
duced, although we try to avoid much rigor. Then, in S
II B we explain how these abstract concepts can be real
in CQD. In Sec. III the special case of TQD in theparallel
geometry is discussed at some length. In Sec. III A we de
scaling equations for TQD with even occupation and cal
late Kondo temperatures for various dynamical symmetr
In Sec. IV we discuss the physics of TQD in aseriesgeom-
etry and point out similarities and differences betwe
Kondo physics in the two geometries~Sec. IV A!. In Sec.
IV B we concentrate on the case of even occupation. T
dynamical-symmetry phase diagram is displayed and the
perimental consequences are drawn. The case of odd o
pation is exposed in Sec. IV C. Finally, in Sec. Va Kondo
effect without a localized spinis discussed. The anisotrop
exchange interaction occurs between the metal electron
and the dot Runge-Lenz operator alone. In the conclus
we underscore the main results obtained here.

The derivation of the pertinent effective spin Hamilt
nians and the establishment of group properties~in particular
identification of the group generators and checking the c
responding commutation relations! sometimes require
lengthy mathematical expressions. These are collected in
appendixes.
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II. DYNAMICAL SYMMETRY OF COMPLEX QUANTUM
DOTS

A. Generalities

In this section we present in some details the concep
dynamical symmetry, and more particularly, its emergence
CQD. The termDynamical Symmetryimplies the symmetry
of eigenvectors of a quantum system forming an irreduci
representations of a certain Lie group. The main ideas
the relevant mathematical tools can be found, e.g., in R
15. Here they are formulated in a form convenient for o
specific purposes without much mathematical rigor. We h
in mind a quantum system with HamiltonianH whose eigen-
statesuL&5uMm& form ~for a givenM ) a basis to an irre-
ducible representation of some Lie groupG. The energies
EM do not depend on the ‘‘magnetic’’ quantum numberm.
For definiteness one may think ofM as an angular momen
tum and ofm as its projection, so thatG is just SU(2). Now
let us look for operators which induce transitions betwe
different eigenstates. An economic way for identifying the
is through the Hubbard operators16

XLL85uL&^L8u. ~1!

It is natural to divide this set of operators into two subse
The first one contains the operatorsuMm&^m8M u while the
second one includes operatorsuMm&^m8M 8u for which
uMm& anduM 8m8& belong to adifferentrepresentation spac
of G. A central question at this stage is whether these op
tors ~or rather, certain linear combinations of them! form a
close algebra. In some particular cases it is possible to f
linear combinations within each set and obtain two new s
of operators$S% and $R% with the following properties:~1!
For a givenM the operators$S% generate theM irreducible
representation ofG and commute withH. ~2! For a given set
Mi the operators$S% and $R% form an algebra~the dynamic
algebra! and generate a noncompact Lie groupA. The rea-
son for the adjectivedynamicis that, originally, the operators
$R% do not appear in the bare HamiltonianH and emerge only
when additional interaction~e.g., dot-lead tunneling! is
present. In the special caseG5SU(2) the operators in$S% are
the vectorS of spin operators determining the correspondi
irreducible representations, while the operators in the set$R%
can be grouped into a sequenceRn of vector operators de
scribing transitions between states belonging to different r
resentations of the SU(2) group.

Strictly speaking, the groupA is not a symmetry group o
the HamiltonianH since the operators$R% do not commute
with H. Indeed, let us expressH in terms of diagonal Hub-
bard operators,

H5 (
L5Mm

ELuL&^Lu5(
L

EMXLL, ~2!

so that

@XLL8,H#52~EM2EM8!X
LL8. ~3!
9-2
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As we have mentioned above, the symmetry groupG of the
Hamiltonian H, is generated by the operato
XL5Mm,L85Mm8. Remarkably, however, the dynamics
CQD in contact with metallic leads and/or an extern
magnetic-field leads to renormalization of the energies$EM%
in such a way that a few levels at the bottom of the spectr
become degenerate,EM1

5EM2
5 . . . EMn

. Hence, in this

low-energy subspace, the groupA generated by the operato
$S% and $R% is a symmetry group ofH referred to as the
dynamical symmetry group. The symbolR is due to the anal-
ogy with the Runge-Lenz operator, the hallmark of dynam
cal symmetry of the Kepler and Coulomb problems.17 Below
we will use the term dynamical symmetry also in cas
where the levels are not strictly degenerate, their differe
is bounded by a certain energy scale, which is the Kon
energy in our special case. In that sense, the symmetry
course not exact, but rather approximate.

Using the notions of dynamical symmetry, numerous
miliar quantum objects, such as hydrogen atom, quan
oscillator in d dimensions, quantum rotator, may be d
scribed in a compact and elegant way. We are interested
special application of this theory, when the symmetry of
quantum system is approximate and its violation may
treated as a perturbation. This aspect of dynamical symm
was first introduced in particle physics,18 where the classifi-
cation of hadron eigenstates is given in terms of noncomp
Lie groups. In our case, the rotationally invariant object is
isolated quantum dot, whose spin symmetry is violated
electron tunneling to and from the leads under the condi
of strong Coulomb blockade.

B. Realization in CQD

The special casesG5SU(2) andA5SO(n) or SU(n) is
realizable in CQD. Let us first recall the manner in which t
spin vectors appear in the effective low-energy Hamilton
of the QD in tunneling contact with metallic leads. Whe
strong Coulomb blockade completely suppresses charge
tuations in QD, only spin degrees of freedom are involved
tunneling via the Kondo mechanism.11 An isolatedSQD in
this regime is represented solely by its spin vectorS. This is
a manifestation of rotational symmetry which is of geome
cal origin. The exchange interactionJs•S (s is the spin op-
erator of the metallic electrons! induces transitions betwee
states belonging to the same spin@and breaks SU(2) invari
ance#. On the other hand, the low-energy spectrum of s
excitations in CQD is not characterized solely by its sp
operator since there are states close in energy, which be
to different representation spaces of SU(2). Incidentally,
these might have either the same spinS ~such as, e.g, in two
different doublets! or a different spin~such as, e.g., in the
case of singlet-triplet transitions!. The exchange interactio
must then also contain other operatorsRn ~the R operators
mentioned in the preceding sections! inducing transitions be-
tween states belonging to different representations. The
teresting physics occurs when the operatorsRn ‘‘approxi-
mately’’ commute with the HamiltonianHdot of the isolated
dot. In accordance with our previous discussion, theR op-
erators are expressible in terms of Hubbard operators
19510
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have only nondiagonal matrix elements in the basis of
eigenstates ofHdot . The spin algebra is then a subalgebra
a more general noncompact Lie algebra formed by the wh
set of vector operators$S,Rn%. This algebra is characterize
by the commutation relations,

@Si ,Sj #5 i t i jkSk , @Si ,Rn j#5 i t i jkRnk ,

@Rni ,Rn j#5 i t i jk
n Sk ~4!

with structure constantst i jk , t i jk
n ~herei jk are Cartesian in-

dices!. TheR operators are orthogonal toS,

S•Rn50. ~5!

In the general case, CQD’s possess also other symmetr
ements~permutations, reflections, finite rotations!. Then, ad-
ditional scalar generatorsAp arise. These generators als
may be expressed via the bare Hubbard operators, and
commutation relations withR operators have the form

@Rni ,Rm j#5 igi j
nmpAp , @Rni ,Ap#5 i f i j

nmpRm j ~6!

with structure constantsgi j
nmp and f i j

nmp (nÞm). The opera-
tors obeying the commutation relations~4! and~6! form aon
algebra. The Casimir operator for this algebra is

K5S21(
n

Rn
21(

p
Ap

2 . ~7!

Various representations of all these operators via basic H
bard operators will be established in the following sectio
where the properties of specific CQD’s are studied.

Next, we show how the dynamical symmetry of a CQD
revealed in the effective spin Hamiltonian describing Kon
tunneling. This Hamiltonian is derived from the generaliz
Anderson Hamiltonian

HA5Hdot1Hlead1Htun . ~8!

The three terms on the right-hand side~RHS! are the dot,
lead, and tunneling Hamiltonians, respectively. In the gene
case, a planar CQD is a confined region of a semiconduc
with complicated multivalley structure secluded betwe
drain and source leads. The CQD contains several val
numbered by indexa. Some of these valleys are connect
with each other by tunnel channels characterized by coup
constantsWaa8 , and some of them are connected with t
leads by tunneling. The corresponding tunneling matrix e
ments areVab (b5s,d stands for source and drain, respe
tively!. The total number of electronsN in a neutralCQD as
well as the partial occupation numbersNa for the separate
wells are regulated by Coulomb blockade and gate volta
vga applied to these wells, withN5(aNa . It is assumed that
the capacitive energy for the whole CQD is strong enough
suppress charged states withN85N61, which may arise in
a process of lead-dot tunneling.

If the interwell tunnel matrix elementsWaa8 are larger
than the dot-lead onesVab ~or if all tunneling strengths are
comparable!, it is convenient first to diagonalizeHdot and
then considerHtun as a perturbation. In this caseHdot may
be represented as
9-3
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Hdot5 (
LPN

ELuL&^Lu1 (
lPN61

Elul&^lu. ~9!

Here all intradot interactions are taken into account. The k
uL&[uN,q& represent eigenstates ofHdot in the charge secto
N and quantum numbersq, whereas the ketsul&[uN61,p&
are eigenstates in the charge sectorsN61 with quantum
numbersp. All other charge states are suppressed by C
lomb blockade. Usually,q andp refer to spin quantum num
bers but sometimes other specifications are required~see be-
low!.

The lead Hamiltonian takes the form

Hlead5 (
k,a,s

«kacaks
† caks . ~10!

In the general case, the individual dots composing the C
are spatially separated, so one should envisage the situ
when each dot is coupled by its own channel to the le
electron states. So, the electrons in the leads are chara
ized by the indexa, which specifies the lead~source or
drain! and the tunneling channel, as well as by the wa
vectork and spin projections.

The tunnel Hamiltonian involves electron transfer b
tween the leads and the CQD, and thus couples statesuL& of
the dot with occupationN and statesul& of the dot with
occupationN61. This is best encoded in terms of nondiag
nal dot Hubbard operators, which intermix the states fr
different charge sectors

XLl5uL&^lu, XlL5ul&^Lu. ~11!

Thus,

Ht5(
kas

(
lPN11,LPN

~Vas
Llcaks

† uL&^lu1H.c.!

1 (
kaas

(
lPN21,LPN

~Vas
lLcaks

† ul&^Lu1H.c.!, ~12!

whereVas
lL5Va^ludasuL&.

Before turning to calculation of CQD conductance, t
relevant energy scales should be specified. First, we sup
that the bandwidth of the continuum states in the leads,Da ,
substantially exceeds the tunnel coupling constants,Da
@Waa8 ,Va ~actually, we consider leads made of the sa
material with Das5Dad5D0). Second, each wella in the
CQD is characterized by the ‘‘activation energy’’ defined
Da5EL(Na)2El(Na21), i.e., the energy necessary to e
tract one electron from the well containingNa electrons and
move it to the Fermi level of the leads~the Fermi energy is
used as the reference zero-energy level from now on!. Note
thatDa is tunable by applying the corresponding gate volta
vga . We are mainly interested in situations where the con
tion

Dc;D0 , Qc ~13!

is satisfied at least for one well, labeled by the indexc. Here
Qc is a capacitive energy, which is predetermined by
radius of the wellc. Eventually, this well with the larges
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charging energy is responsible for Kondo-like effects in tu
neling, provided the occupation numberNc is odd. The third
condition assumed in our model is a weak enough Coulo
blockade in all other wells except that witha5c, i.e., Qa
!Qc . Finally, we demand that

baa[
Va

Da
!1, ~14!

for those wells, which are coupled with metallic leads, an

ba5
Wac

Eac
!1. ~15!

HereEac are the charge transfer energies for electron tunn
ing from thec well to other wells in the CQD.

The interdot coupling under Coulomb blockade in ea
well generates indirect exchange interactions between e
trons occupying different wells. Diagonalizing the d
Hamiltonian for agiven N5(aNa , one easily finds that the
low-lying spin spectrum in the charge sectors with even
cupationN consists of singlet/triplet pairs~spin S50 or 1,
respectively!. In charge sectors with oddN the manifold of
spin states consists of doublets and quartets~spinS51/2 and
3/2, respectively!.

The resonance Kondo tunneling is observed as
temperature-dependent zero-bias anomaly in tun
conductance.9 According to existing theoretical understan
ing, the quasielastic cotunneling accompanied by the s
flip transitions in a quantum dot is responsible for th
anomaly. To describe the cotunneling through a neutral C
with given N, one should integrate out transitions involvin
high-energy states from charge sectors withN85N61. In
the weak-coupling regime atT.TK this procedure is done
by means of perturbation theory which can be employed
compact form within the renormalization group~RG! ap-
proach formulated in Refs. 19 and 20.

As a result of the RG iteration procedure, the energy l
els EL in the Hamiltonian~9! are renormalized and indirec
exchange interactions between the CQD and the leads a
The RG procedure is equivalent to summation of the per
bation series atT.TK , whereTK is the Kondo energy char
acterizing the crossover from a perturbative weak-coupl
limit to a nonperturbative strong-coupling regime. The lea
ing logarithmic approximation of perturbation theory corr
sponds to a single-loop approximation of RG theory. With
this accuracy the tunnel constantsW andV are not renormal-
ized, as well as the charge transfer energyDc ~13!. Reduction
of the energy scale from the initial valueD0 to a lower scale
;T results in renormalization of the energy levelsEL

→ĒL(D0 /T) and generates an indirect exchange interact
between the dot and the leads with an~antiferromagnetic!
exchange constantJ.

The rotational symmetry of asimplequantum dot is bro-
ken by the spin-dependent interaction with the leads, wh
arises in second order in the tunneling amplitudeVa . In
complete analogy, thedynamical symmetryof a composite
quantum dot is exposed~broken! as encoded in the effectiv
exchange Hamiltonian. In a generic case, there are, in f
9-4
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several exchange constants arranged within an exchange
trix J which is nondiagonal both in dot and lead quantu
numbers. The corresponding exchange Hamiltonian is
sponsible for spin-flip assisted cotunneling through the C
as well as for singlet-triplet transitions.

The precise manner in which these statements are qu
fied will now be explained. After completing the RG proc
dure, one arrives at an effective~or renormalized! Hamil-
tonianH̄ in a reduced energy scaleD̄,

H̄5H̄dot1H̄ lead1H̄cotun, ~16!

where the effective dot Hamiltonian~9! is reduced to

H̄dot5 (
LPN

ĒLXLL ~17!

written in terms ofdiagonalHubbard operators,

XLL5uL&^Lu. ~18!

At this stage, the manifold$L%PN contains only the renor
malized low-energy states within the energy interval com
rable with TK ~to be defined below!. Some of these state
may be quasidegenerate, with energy differencesuĒL

2ĒL8u,TK . However,TK itself is a function of these en
ergy distances~see, e.g., Refs. 6,21,22!, and all the levels,
which influenceTK , should be retained in Eq.~17!.

The effective cotunneling Hamiltonian acquires the for

Hcot5(
aa8

S J0
aa8S•saa81(

n
Jn

aa8Rn•saa8D . ~19!

Here S is the spin operator of CQD in its ground state, t
operatorssaa8 represent the spin states of lead electrons,

saa85
1

2 (
kk8

(
ss8

caks
† t̂ss8ca8k8s8 , ~20!

where t̂ is the vector of Pauli matrices. In the convention
Kondo effect the logarithmic divergent processes deve
due to spin reversals given by the first term containing
operatorS. In CQD possessing dynamical symmetry, allR
vectors are involved in Kondo tunneling. In the followin
sections we will show how these additional processes
manifested in resonance Kondo tunneling through CQ
Note that the elements of the matrixJ are also subject to

temperature dependent renormalizationJn
aa8→Jn

aa8(D0 /T).
The cotunneling Hamiltonian~19! is the natural generali

zation of the conventional Kondo HamiltonianJs•S for
CQD’s possessing dynamical symmetries. In many ca
there are several dot spin 1 operators depending on w
pair of electrons is ‘‘active.’’ In this pair, one electron sits
well c and the other one sits in some wella. The otherN
22 electrons are paired in singlet states. This scenario
plies if N is even. The spin 1 operator for the active pair
denoted asSa . @In some sense, the need to specify whi
pair couples toS51 while all other pairs are coupled toS
50 is the analog of the seniority scheme in atomic a
nuclear physics~see, e.g., Ref. 23!.# The cotunneling Hamil-
19510
a-

e-
D

ti-

-

l
p
e

re
.

es
ch

p-

d

tonian for CQD contains exchange termsJ0
aa8Sa•saa8. Then,

instead of a single exchange term@first term on the RHS of

Eq. ~19!#, one has a sum(aJa
aa8Sa•saa8. Additional symme-

try elements~finite rotations and reflections! turn the cotun-
neling Hamiltonian even more complicated. In the followin
sections we will consider several examples of such CQD’s
is seen from Eq.~19!, that in the generic case, both spin a
R vectors may be the sources of anomalous Kondo re
nances. The contribution of these vectors depends on
hierarchy of the energy states in the manifold. In principle
may happen that the main contribution to the Kondo tunn
ing is given not by the spin of the dot, but by one of theR
vectors.

Thus, we arrive at the conclusion that the regular pro
dure of reducing the full Hamiltonian of a quantum dot
junctions with metallic leads to an effective Hamiltonian d
scribing only spin degrees of freedom of this system reve
a rich dynamical symmetry of CQD. Strictly speaking, on
an isolated QD withN51 is fully described by its spin 1/2
operator obeying SU(2) symmetry without dynamical d
grees of freedom. Yet even the doubly occupied dot withN
52 possesses the dynamical symmetry of aspin rotatorbe-
cause its spin spectrum consists of a singlet ground state~S!
and a triplet excitation (T). Therefore, anR vector describ-
ing S/T transitions may be introduced, and the Kondo tu
neling through a dot of this kind may involve spin excitatio
under definite physical conditions, e.g., in an external m
netic field.6 A two-electron quantum dot under Coulom
blockade constitutes apparently the simplest nontrivial
ample of a nano-object with dynamical symmetry of a sp
rotator possessing a SO(4) symmetry.

Dynamical symmetries SO(n) of CQD’s are described by
noncompact semisimple algebras.24 This noncompactnes
implies that the corresponding algebraon may be presented
as a direct sum of subalgebras, e.g.,o45o3% o3. Therefore,
the dynamical symmetry group may be represented as a
rect product of two groups of lower rank. In case of sp
rotator the product is SO(4)5SU(2)^ SU(2). Generators of
these subgroups may be constructed from those of the o
nal group. The SO(4) group possesses a singleR operatorR,
and the direct product is realized by means of the trans
mation

K5
S1R

2
, N5

S2R

2
. ~21!

Both vectorsK andN generate SU(2) symmetry and may b
treated as fictitiousS51/2 spins.21 In some situations thes
vectors are real spins localized in different valleys of CQ
In particular, the transformation~21! maps a single-site
Kondo problem for a DQD possessing SO(4) symmetry t
two-site Kondo problem for spin 1/2 centers with a SU(
symmetry~see discussion in Refs. 12 and 13!. For groups of
higher dimensionality (n>4) one can use many differen
ways of factorization, which may be represented by mean
different Young tableaux~see Appendix D!.

Even in the casen54, the transformation~21! is not the
only possible two-spin representation. An alternative rep
9-5
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sentation is realized in an external magnetic field.13 When
the ground state of S/T manifold is a singlet~the energyd
5ET2ES.0), the Zeeman splitting energy of a triplet in a
external magnetic field may exactly compensate the
change splittingd. This occasional degeneracy is describ
by the pseudospin 1/2 formed by the singlet and the up p
jection of spin-1 triplet. Two other projections of the tripl
form the second pseudospin 1/2. The Kondo effect indu
by external magnetic field observed in seve
nano-objects,25 was the first experimental manifestation
dynamical symmetry in quantum dots.

We outlined in this section the features which appear
effective Kondo Hamiltonians due to the dynamical symm
try of CQD exhibiting Kondo tunneling. In the following
sections we will see how the additional terms in the Ham
tonian ~19! influence the properties of Kondo resonance
various structures of CQD’s.

III. TRIPLE QUANTUM DOT IN PARALLEL GEOMETRY

So far we have briefly mentioned a simple structure
CQD, i.e., double quantum dot with occupationN52 and
employed it to describe some generic properties of C
enumerated in the preceding section. This kind of an artifi
molecule is the analog of a hydrogen molecule in the Heit
London limit,12,13 and its SO(4) symmetry reflects the sp
properties of ortho/parahydrogen. A much richer artificial o
ject is a TQD, which can be considered as an analog o
linear moleculeRH2. The central~c! dot is assumed to hav
a smaller radius~and, hence, larger capacitive energyQc)
than the left~l! and right ~r! dots, i.e.,Qc@Ql ,r . Figure 1
illustrates this configuration in a parallel geometry, where
‘‘left-right’’ ( l -r ) reflection plane of the TQD is perpendicu
lar to the ‘‘source-drain’’ (s-d) reflection plane of metallic
electrodes.

FIG. 1. Triple quantum dot in parallel geometry and ener
levels of each dot«a5ea2vga ~bare energy minus gate voltage!.
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To regulate the occupation of TQD as a whole and
constituents in particular, there is a couple of gatesvgl ,vgr
applied to thel ,r dots. The energy levels of single- and tw
electron states in each one of the three constituent dots
shown in the lower panel of Fig. 1. Here the gate voltag
vgl,r are applied in such a way that the one-electron leveec
of a c dot is essentially deeper than those of thel ,r dots, so
that the condition~13! is satisfied for thec dot, whereas the
inequalities~14! and~15! are satisfied for the ‘‘active’’l and
r dots. Tunneling between the side dotsl ,r and the central
one c with amplitudesWl ,r determines the low energy spi
spectrum of the isolated TQD once its occupationN is given.
This system enables the exposure of much richer possibil
for additional degeneracy relative to the DQD setup m
tioned above due to the presence of two channels (l ,r ).

The full diagonalization procedure of the Hamiltonia
Hdot for the TQD is presented in Appendix A. When th
condition~15! is valid, the low-energy manifold forN54 is
composed of two singletsuSl&,uSr&, two triplets uTa&5uma&
(a5 l ,r ,ma51a,0a ,1̄a) and a charge transfer singlet excito
uEx& with an electron removed from thec well to the
‘‘outer’’ wells. Within the first order inba!1 the corre-
sponding energies are

ESa
5ec1ea12e ā1Qā22Waba ,

ETa
5ec1ea12e ā1Qā ,

EEx52e l12e r1Ql1Qr12Wlb l12Wrb r , ~22!

where the charge transfer energies in Eq.~15! ~for determin-
ing ba) are Eac5Qa1ea2ec ; the notationa5 l ,r and ā
5r ,l is used ubiquitously hereafter.

The completely symmetric configuration,« l5« r[«, Ql
5Qr[Q, Wl5Wr[W, should be considered separately.
this case the singlet states form even and odd combinat
in close analogy with the molecular statesS6 in axisymmet-
ric molecules. The odd stateS2 and two triplet states are
degenerate:

ES15«c13«1Q24Wb,

ES25ETa
5«c13«1Q,

EEx54e12Q14Wb. ~23!

Consideration of these two examples provide us with an
portunity to investigate the dynamical symmetry of CQD.

A. Derivation and solution of scaling equations

We commence with the case of TQD with even occup
tion N54 briefly discussed in Ref. 14. This configuration
a direct generalization of an asymmetric spin rotator, i.e.,
double quantum dot in a side-bound geometry.12 Compared
with the asymmetric DQD, this composite dot possesses
more symmetry element, i.e., thel -r permutation, which, as
will be seen below, enriches the dynamical properties
CQD.
9-6
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KONDO EFFECT IN SYSTEMS WITH DYNAMICAL . . . PHYSICAL REVIEW B 69, 195109 ~2004!
Following a glance at the energy level scheme~22!, one is
tempted to conclude outright that for finiteW, the ground
state of this TQD configuration is a singlet and conseque
there is no room for the Kondo effect to take place. A mo
attentive study of the tunneling problem, however, sho
that tunneling between the TQD and the leads opens the
for a rich Kondo physics accompanied by numerous dyna
cal symmetries.

Indeed, inspecting the expressions for the energy lev
one notices that the singlet statesESa

are modified due to

interwell tunneling, whereas the triplet statesETa
are left

intact. This difference is due to the admixture of the sing
states with the charge transfer singlet exciton~see Appendix
A!. As was mentioned in the preceding section, the Kon
cotunneling in the perturbative weak coupling regime
T,«.TK is excellently described within RG formalism.19,20

According to general prescriptions of this theory, the ren
malizable parameters of the effective low-energy Ham
tonian in a one-loop approximation are the energy levelsEL

and the effective indirect exchange verticesJLL8
aa8 .

To apply the RG procedure to the Kondo tunneli
through TQD, let us first specify the termsHlead andHtun in
the Anderson Hamiltonian~8!. The most interesting for us
are situations where the accidental degeneracy of spin s
is realized. So we consider geometries where the deviceas a
wholepossesses either complete or slightly violatedl -r axial
symmetry. Then the quantum numbera in Hlead ~10! con-
tains the lead index (s,d) and the channel index (l ,r ). The
two tunneling channels are not independent because of w
interchannel hybridization in the leads. This hybridization
characterized by a constantt lr !D0, which is small first due
to the angular symmetry, and second due to significant s
tial separation between the two channels. The wave vectk
is assumed to remain a good quantum number. Then, ha
in mind that in our modelekas5ekad[eka , the generalized
Hamiltonian~10! acquires the form

Hlead5(
ks

(
b5s,d

(
a5 l ,r

~ekanabks1t lr cabks
† cābks!. ~24!

The tunneling Hamiltonian~12! is written as

Htun5(
Ll

(
ks

(
ab

~Vabs
lL cabks

† XlL1H.c.!. ~25!

We assume belowVas5Vad[Va ~see Fig. 1!.
The iteration processes, which characterize the two-s

RG procedure contributing to these parameters are illustr
in Fig. 2. The intermediate states in these diagrams are
high-energy statesuq& near the ultraviolet cut-off energyD of
the band continuum in the leads~dashed lines! and the states
ul&PN21 from adjacent charge sectors, which are admix
with the low-energy statesuL&PN by the tunneling Hamil-
tonian Ht ~12! ~full lines!. For the sake of simplicity we
confine ourselves withN53 states in the charge sector.

In the upper panel, the diagrams contributing to the ren
malization ofHdot are shown. In comparison with the orig
nal theory,20 this procedure not only results in renormaliz
tion of the energy levels but also an additional hybridizat
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of the statesuLa& via channel mixing terms in the Hamil
tonian ~25!. Due to the condition~13!, the central dotc re-
mains ‘‘passive’’ throughout the RG procedure.

The mathematical realization of the diagrams displayed
Fig. 2~a! is encoded in the scaling equations for the ene
levelsEL ,

p dEL /dD5(
l

GL

D2ELl
. ~26!

Here ELl5EL2El , GL are the tunnel coupling constan
which are different for differentL,

GTa
5pr0~Va

212Vā
2!, GSa

5aa
2GTa

. ~27!

Hereaa5A122ba
2, andr0 is the density of electron state

in the leads, which is supposed to be energy independ
These scaling equations should be solved at some initial c
ditions

EL~D0!5EL
(0) , ~28!

where the index (0) marks the bare values of the mo
parameters entering the HamiltonianHA ~8!.

Besides, the diagram of Fig. 2~a! generates a new verte

Mlr
LL8 , where the statesL,L8 are either two singletsSl ,Sr

or two tripletsTl ,Tr . The third order Haldane iteration pro
cedure results in a scaling equation,

FIG. 2. RG diagrams for the energy levelsEL ~a! and the effec-

tive exchange verticesJLL8
aa8 ~b! ~see text for further explanations!.
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dMlr

dD
52

g

D2
~29!

with an initial condition Mlr (D0)50 and a flow rateg
5r0VlVrt lr . After performing the Haldane procedure w
formally come to the scaled dot Hamiltonian

H5(
La

ELa
XLaLa1 (

LaL ā

M lr X
LaL ā ~30!

with the parametersELa
andMlr depending on the running

variableD.
Due to the above mentioned dependence of tunne

rates on the indexL, namely, the possibility ofGT.GS and
GS2

.GS1
, the scaling trajectoriesEL(D) may cross at some

value of the monotonically decreasing energy parameteD.
The nature of level crossing is predetermined by the ini
conditions ~28! and the ratios between the tunneling ra
GL . As long as the inequalityuELlu!D is effective and all
levels are nondegenerate, the scaling equations~26! may be
approximated as

p dEL /d ln D5GL . ~31!

The scaling trajectories are determined by the scaling
variants for Eqs.~26!,

EL* 5EL~D !2p21GLln~pD/GL!, ~32!

tuned to satisfy the initial conditions. With decreasing ene
scaleD these trajectories flatten and becomeD independent
in the so called Schrieffer-Wolff~SW! limit, which is
reached when the activation energiesDa become comparable
with D. The corresponding effective bandwidth is denoted
D̄ ~we suppose, for the sake of simplicity, thatDa,Qa , so
that only the statesul& with N85N21 are relevant!. The
simultaneous evolution of interchannel hybridization para
eter is described by the solution of scaling equation~29!,

Mlr ~D̄ !5gS 1

D̄
2

1

D0
D . ~33!

If this remarkable level crossing occurs atD.D̄, we ar-
rive at the situation whereadding an indirect exchange in
teraction between the TQD and the leads changes the m
netic state of the TQD from singlet to triplet. Those states
EL , which remain close enough to the new ground state
involved in the Kondo tunneling. As a result, the TQD a
quires a rich dynamical symmetry structure instead of
trivial symmetry of spin singlet predetermined by the init
energy level scheme~22!. Appearance of the enhancement
the hybridization parameterMlr ~33! does not radically in-
fluence the general picture, provided the flow trajector
cross far from the SW line , due to a very small hybridizati
g!GL!D. However, we are interested just in cases wh
the accidental degeneracy occurs at the SW line. Vari
possibilities of this degeneracy are considered below.

The flow diagrams leading to a nontrivial dynamical sy
metry of TQD withN54 are presented in Figs. 3, 5, and
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The horizontal axis on these diagrams corresponds to
dimensionless energy scaleD/D0 for lead electrons, where
the vertical axes represent the energy levelsEL(D). The
dashed lineE52D establishes the SW boundary for the
levels.

Before turning to highly degenerate situations, where
system possesses specific SO(n) symmetry, it is instructive
to consider the general case, where all flow trajector
EL(D̄) are involved in Kondo tunneling in the SW limit
This happens when the whole octet of spin singlets and t
lets forming the manifold~22! remains within the energy
interval;TK in the SW limit. The level repulsion effect doe
not prevent formation of such multiplet, providedt lr is small
enough and the inequality

Mlr ~D̄ !,TK ~34!

is valid. At this stage, the SW procedure for constructing
effective spin Hamiltonian in the subspaceR8
5$Tl ,Sl ,Tr ,Sr% should be applied. This procedure exclud
the charged states generated byHt to second order in pertur
bation theory~see, e.g., Ref. 26!.

The effective cotunneling Hamiltonian can be derived u
ing Schrieffer-Wolf procedure27 ~see Appendix C!. To sim-
plify the SW transformation, one should first rationalize t
tunneling matrixV in the Hamiltonian~25!. This 434 ma-
trix is diagonalized in thes-d,l -r space by means of th
transformation to even/odd combinations of lead electrok
states and similar symmetric/antisymmetric combinations
l ,r electrons in the dots. The form of this transformation f
symmetric TQD can be found in Appendix B. Just as in t
case of conventional QD,11 this transformation eliminates th
odd combination ofs-d electron wave functions from tun
neling Hamiltonian.

It should be emphasized that this transformation does
exclude the odd component fromHtun in case of TQD in a
series geometry.28 The same is valid for the Hamiltonian
~24!, ~25! with t lr 50: in this case the rotation ins-d space

FIG. 3. Scaling trajectories forP3SO(4)3SO(4) symmetry in
the SW regime. Inset: Zoomed-in avoided-level-crossing patt
near the SW line.
9-8
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KONDO EFFECT IN SYSTEMS WITH DYNAMICAL . . . PHYSICAL REVIEW B 69, 195109 ~2004!
conformally maps the HamiltonianHA ~8! for TQD in par-
allel geometry onto that for TQD in series. Both these ca
will be considered in Sec. IV.

Unlike the case of DQD studied in Refs. 12 and 13, wh
the spin operators are the total spinS and a singleR operator,
describingS/T transitions, the TQD is represented by seve
spin operators corresponding to different Young tablea
~see Appendix D!. To orderO(uVu2), then,

Hcot5(
La

ĒLa
XLaLa1 (

LaL ā

M̄ lr X
LaL ā

1(
ks

(
b5s,d

(
a5 l ,r

~ekanabks1t lr cabks
1 cābks!

1 (
a5 l ,r

Ja
TSa•sa1Jlr P̂ (

a5 l ,r
Sa•sāa1 (

a5 l ,r
Ja

STRa•sa

1Jlr (
a5 l ,r

R̃a•saā . ~35!

FIG. 4. Variation ofTK with parametersd andMlr ~see text for
further details!.

FIG. 5. Scaling trajectories resulting in a SO(5) symmetry
the SW regime. Inset: Zoomed-in avoided-level-crossing pat
near the SW line.
19510
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Here we recall thatĒLa
5ELa

(D̄), M̄ lr 5Mlr (D̄), and the
effective exchange constants are

Ja
T5

Va
2

eF2ea
, Ja

ST5aaJa
T ,

Jlr 5
VlVr

2 S 1

eF2e l
1

1

eF2e r
D . ~36!

The vector operatorsSa ,Ra ,R̃a and the permutation operato
P̂ manifest the dynamical symmetry of TQD in a subspa
R8. The permutation operator

P̂5 (
a5 l ,r S XSaSā1 (

m51,0,1̄

Xmam āD ~37!

commutes withSl1Sr andRl1Rr .
The spherical components of these vectors are defined

Hubbard operators connecting different states of the octe

Sa
15A2~X1a0a1X0a1̄a!, Sa

25~Sa
1!†,

Sa
z5X1a1a2X1̄a1̄a

Ra
15A2~X1aSa2XSa1̄a!, Ra

25~Ra
1!†,

Ra
z52~X0aSa1XSa0a!,

R̃a
15A2~a āX1aSā2aaXSa1̄ā!, R̃a

25~R̃a
1!†,

R̃a
z52~a āX0aSā1aaXSa0ā!. ~38!

In addition to the spin operator~20! for conduction electrons
new spin operators are required,

saā5
1

2 (
kk8

(
ss8

caks
† t̂ss8cāk8s8 . ~39!n

FIG. 6. Scaling trajectories for SO(7) symmetry in the SW
gime. Inset: Zoomed-in avoided-level-crossing pattern near the
line.
9-9
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An extra symmetry element (l -r permutation! results in more
complicated algebra which involves newR operatorR̃ and
the permutation operatorP̂ interchangingl andr components
of TQD.

One can derive from the generic Hamiltonian~35! more
symmetric effective Hamiltonians describing partly degen
ate configurations illustrated by the flow diagrams of Figs
5, and 6. These are the cases when the level crossing o
in a nearest vicinity of the SW line in the flow diagram. It
important to distinguish between the cases of generic
accidental symmetry. In the former case the device posse
intrinsic l -r ands-d symmetry, i.e., the left and right dots a
identical, the corresponding tunnel parameters are equal,
left and right leads also mirror each other, namely,ekl5ekr
[ek . In the latter case the gate voltages violatesl -r symme-
try, e.g., makee lÞe r , VlÞVr , etc. The level degeneracy
achieved due to competition between thel -r interdot tunnel-
ing and the lead-dot tunneling without changing the symm
try of the Hamiltonian.

The basic spin Hamiltonian~35! acquires a more compac
form, when a TQD possesses generic or accidental de
eracy. In these cases the operators~38! form close algebras
which predetermine the dynamical symmetry of Kondo tu
neling. We start the discussion of the pertinent SO(n) sym-
metries with the most degenerate configuration~Fig. 3!,
where the TQD possesses genericl -r axial symmetry, i.e.,
the left and right dots are completely equivalent. Then
energy spectrum of an isolated TQD is given by Eqs.~23!.
The four-electron wave functions are calculated in Appen
A. Such TQD is a straightforward generalization of the
calledT shaped DQD introduced in Refs. 12, 13, and 29. I
clear, that attachment of a third dot simply adds one m
element to the symmetry group SO(4), namely thel -r per-
mutationP̂, which is parity sensitive.

To reduce the Hamiltonian~35! into a more symmetric
form, we rewrite the Hubbard operators in terms of n
eigenstatesĒL , recalculated with account of generic dege
eracy ~23! and l -r mixing M̄ lr . In assuming that the latte
coupling parameter is the smallest one, it results in insign
cant additional renormalization;7uM̄ lr u2/(«1Q2«c) of
the statesES1 and EEx . Besides, it intermixes the triple
states and changes their nomenclature from left/right to e
odd. The corresponding energy levels are

ET6~D̄ !5ETa
7M̄ lr . ~40!

The flow trajectories for two pairs of states (T1 ,T2) and
(S1 ,S2) diverge slowly with decreasingD. If this diver-
gence is negligible in the scale ofTK , then three nearly
coincident trajectoriesET6 ,ES2

cross the fourth trajectory

ES1 at some point, since the inequalityGS1
,GT65GS2

with GT653proV2, GS1
5aGT6 is valid (a5A124b2).

If this level crossing happens near the SW line, we arrive
a case of complete degeneracy of the renormalized spect
and the whole octetR8 is involved in the dynamical symme
try ~Fig. 3!. The fine structure of the flow diagram in th
region of avoided level crossing is shown in the inset.
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Since the tunneling occurs in even and odd channels
dependently, the parity is conserved also in indirect SW
change. As a result, the effective spin Hamiltonian~35! ac-
quires the form

Hcot5(
Lh

ĒLh
XLhLh1(

ks
(

h5g,u
ekhchks

† chks

1 (
h5g,u

J1h
T Sh•sh1 (

h5g,u
J1h

STRh•sh1J2
T(

h
Shh̄•shh̄

1(
h

~J2h
STRhh̄

(1)1J2h̄
STRhh̄

(2)!•shh̄ . ~41!

Hereekg5ek2t lr , eku5ek1t lr and the lead operatorschks

(h5g,u) are defined in Appendix B. The operatorsSh , Rh
are defined analogously toSa , Ra in Eq. ~38!, and the vector
operatorsShh̄ , Rhh̄

(1) , Rhh̄
(2) are defined as

Shh̄5Xhh̄Sh̄ , Rhh̄
(1)1Rhh̄

(2)5Xhh̄Rh̄ . ~42!

The spherical components of the operatorsRhh̄
(1) andRhh̄

(2) are
given by

Rhh̄
(1)152A2XSh1̄h̄, Rhh̄

(1)25~Rhh̄
(1)1!†,

Rhh̄
(2)15A2X1hSh̄, Rhh̄

(2)25~Rhh̄
(2)1!†,

Rhh̄
(1)z52XSh0h̄, Rhh̄

(2)z52X0hSh̄. ~43!

The spin operators for the electrons in the leads are in
duced by the obvious relations

sg5
1

2 (
kk8

(
ss8

cgks
† t̂ss8cgk8s8 ,

su5
1

2 (
kk8

(
ss8

cuks
† t̂ss8cuk8s8 ,

sgu5
1

2 (
kk8

(
ss8

cgks
† t̂ss8cuk8s8 , sug5~sgu!

†, ~44!

instead of Eq.~20!. Now the operator algebra is given by th
closed system of commutation relations which is a gener
zation of theo4 algebra,

@Sh j ,Sh8k#5 iejkmdhh8Shm ,

@Rh j ,Rh8k#5 iejkmdhh8Shm ,

@Rh j ,Sh8k#5 iejkmdhh8Rhm . ~45!

The operatorsSh are orthogonal toRh , and the Casimir
operators in this case areKh5Sh

21Rh
253. This justifies the

qualification of such TQD as adouble spin rotatorwhich is
obtained from the spin rotator considered in Refs. 12 and
by a mirror reflection. The symmetry of such TQD isP
3SO(4)3SO(4).
9-10
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Four additional vertices appear in the effective sp
Hamiltonian ~41! at the second stage of Haldane-Anders
scaling procedure.19 As a result, the exchange part of th
Hamiltonian~41! takes the form

Hcot5 (
h5g,u

J1h
T Sh•sh1 (

h5g,u
J1h

STRh•sh1J2
T(

h
Shh̄•shh̄

1(
h

~J2h
STRhh̄

(1)1J2h̄
STRhh̄

(2)!•shh̄1(
h

J3h
T Sh•sh̄

1(
h

J3h
STRh•sh̄ . ~46!

The coupling constants in the Hamiltonian~46! are sub-
ject to renormalization. Their values atD5D̄ are taken as a
boundary conditions

J1h
T ~D̄ !5J2

T~D̄ !5J1u
ST~D̄ !5J2u

ST~D̄ !5
V2

eF2e
,

J3h
T ~D̄ !5J3u

ST~D̄ !50, Jig
ST~D̄ !5aJig

T ~D̄ ! ~ i 51,2,3!
~47!

for solving the scaling equations. These can be written in
following form:

d j1h
T

d ln d
52F ~ j 1h

T !212~21!hmlr j 1h
T 1~ j 1h

ST!21
~ j 2

T!2

2

1
~ j 2h̄

ST!2

2 G ,

d j2
T

d ln d
52

1

2 F (
h5g,u

$ j 2
T~ j 1h

T 1 j 3h
T !1 j 2h

ST~ j 1h
ST1 j 3h

ST!%G ,
d j3h

T

d ln d
52F ~ j 3h

T !212~21!hmlr j 3h
T 1~ j 3h

ST!21
~ j 2

T!2

2

1
~ j 2h̄

ST!2

2 G ,

d j1h
ST

d ln d
52@2 j 1h

T j 1h
ST12~21!hmlr j 1h

ST1 j 2
Tj 2h

ST#,

d j2h
ST

d ln d
52

1

2 F(
h

j 2
T~ j 1h

ST1 j 3h
ST!12 j 2h

ST~ j 1h̄
T 1 j 3h̄

T !G ,
d j3h

ST

d ln d
52@2 j 3h

T j 3h
ST12~21!hmlr j 3h

ST1 j 2
Tj 2h

ST#, ~48!

where j ih5r0Jih ( i 51,2,3), d5r0D and mlr 5r0Mlr . It
should be noted that the terms proportional tomlr arise in
Eqs. ~48! since the dot Hamiltonian@the first term in Eq.
~41!# is not proportional to the unit matrix, and thus it do
not commute with the exchange terms~46!. As can be seen
from Eq. ~40!, the deviation from the unit matrix is propo
tional to Mlr .
19510
n

e

Solution of Eqs.~48! yields the Kondo temperature

TK05D̄S 12
8mlr

~A311!~3 j 1g
T 1 j 1g

ST!
D 1/2mlr

. ~49!

The limiting value of this relation for independentl, r chan-
nels is

lim
mlr →0

TK05D̄ expS 2
4

~A311!~3 j 1g
T 1 j 1g

ST!
D . ~50!

Here and below the coupling constantsj i(D) in all equations
for TK are taken atD5D̄. We see that avoided crossin
effect in the case of slightly violatedl -r symmetry of TQD
turns the Kondo temperature to be a function of the le
splitting ~40!. Similar situation has been noticed in previo
studies of DQD~Refs. 12 and 13! and planar QD with even
occupation,6 whereTK turned out to be a monotonically de
creasing function ofS/T splitting energyd5ĒS2ĒT with a
maximum atd50. Now the Kondo temperature is a functio
of two parameters,TK(Mlr ,d).

Looking at Fig. 3~which corresponds tod50) we note
that for large enoughMlr , when the inequality~34! is vio-
lated,Mlr @TK , the symmetry of TQD is reduced to SO(4
symmetry ofS/T manifold with the Kondo temperature

TK15D̄ expH 2
1

j 1
T1 j 1

STJ . ~51!

Additional S/T splitting induced by the gate voltage (e l
Þe r) results in further decrease ofTK as a function ofd.
The asymptotic form of the functionTK(d) is

TK

TK1
'S TK1

d D a

~52!

~cf. Refs. 6 and 21!. In the limit of d→D̄ the singlet state
should be excluded from the manifold, and the symmetry
the TQD with spin one in this case is SO(3). The general
shape ofTK(Mlr ,d) surface is presented in Fig. 4. Thus th
Kondo effect for the TQD with mirror symmetry is chara
terized by the stable infinite fixed point characteristic for t
underscreenedspin one dot, similar to that for DQD.12,13

Now we turn to asymmetric configurations whereElc
ÞErc , GTr

ÞGTl
. In this case the system loses thel -r sym-

metry, and it is more convenient to return to the initial va
ables used in the generic Hamiltonian~35!.

When the Haldane renormalization results inaccidental

degeneracy of two singlets and one triplet,ĒSl
'ĒTl

'ĒSr

,ĒTr
~Fig. 5!, the TQD acquires an SO(5) symmetry of

manifold $Tl ,Sl ,Sr%. In this case the SW Hamiltonian~35!
transforms into
9-11
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H5 (
L5Tl ,Sl ,Sr

ĒLXLL1Mlr ~XSlSr1XSrSl !

1(
ks

(
a5 l ,r

ekacaks
1 caks1t lr (

ks
(

a5 l ,r
caks

1 cāks

1J1Sl•sl1J2Rl•sl1J3~R̃1•srl 1R̃2•slr !, ~53!

whereJ15Jl
T , J25Jl

ST and J35a rJlr . The spherical com-

ponents of the vector operatorsR̃1 and R̃2 are given by the
following expressions,

R̃1
152A2XSr 1̄l, R̃1

25A2XSr1l, R̃1z52XSr0l,

R̃2
15~R̃1

2!†, R̃2
25~R̃1

1!†, R̃2z5R̃1z
† . ~54!

The group generators of theo5 algebra are thel vectors
Sl ,Rl from Eq. ~38! and the operators intermixingl and r

states, namely the vectorR̃5R̃11R̃2,

R̃15A2~X1lSr2XSr 1̄l !, R̃25~R̃1!†,

R̃z52~X0lSr1XSr0l !, ~55!

and a scalarA interchangingl ,r variables of degenerate sin
glets

A5 i ~XSrSl2XSlSr !. ~56!

The commutation relations~4!, ~6! in this particular case
acquire the form

@Sl j ,Slk#5 iejkmSlm , @Rl j ,Rlk#5 iejkmSlm ,

@R̃j ,Slk#5 iejkmR̃m , @R̃j ,R̃k#5 iejkmSlm ,

@Rl j ,Slk#5 iejkmRlm , @Rl j ,R̃k#5 id jkA,

@R̃j ,A#5 iRl j , @A,Rl j #5 iR̃j , @A,Sl j #50. ~57!

The operatorsRl and R̃ are orthogonal toSl in accordance
with ~5!. Besides,Rl•R̃53XSlSr, and the Casimir operator i
K5Sl

21Rl
21R̃21A254.

Like in the case of double SO(4) symmetry studi
above, the second step of RG procedure generates addit
vertices in the exchange part of the interaction Hamilton
~53!,

Hcot5J1Sl•sl1J2Rl•sl1J3~R̃1•srl 1R̃2•slr !1J4Sl•sr

1J5R̃•sl1J6~R1l•srl 1R2l•slr !1J7Sl•~slr 1srl !

1J8~R̃1•slr 1R̃2•srl !1J9Rl•sr1J10R̃•sr1J11Rl•~slr

1srl !1J12~R1l•slr 1R2l•srl !, ~58!

where R1l5XSlSrR̃1 , R2l5R̃2XSrSl. The scaling properties
of the system are determined by a system of 12 scaling e
tions with initial conditions
19510
nal
n

a-

J1~D̄ !5Jl
T , J2~D̄ !5Jl

ST,

J3~D̄ !5a rJlr , Ji~D̄ !50 ~ i 54212! ~59!

@see Eq.~36! for definitions# specifically

d j1
d ln d

52F j 1
21 j 2

21 j 5
21 j 7

21 j 11
2 1 j 11~ j 61 j 12!

1
j 3
21 j 6

21 j 8
21 j 12

2

2 G ,
d j2

d ln d
52@2~ j 1 j 21 j 7 j 11!1 j 7~ j 61 j 12!2mlr j 5#,

d j3
d ln d

52@ j 3~ j 11 j 4!1 j 7~ j 51 j 10!2mlr ~ j 61 j 11!#,

d j4
d ln d

52F j 4
21 j 7

21 j 9
21 j 10

2 1 j 11
2 1 j 11~ j 61 j 12!

1
j 3
21 j 6

21 j 8
21 j 12

2

2 G ,
d j5

d ln d
52@2 j 1 j 51 j 7~ j 31 j 8!2mlr j 2#,

d j6
d ln d

52@ j 6~ j 11 j 4!2mlr j 3#,

d j7
d ln d

52F ~ j 31 j 8!~ j 51 j 10!1~ j 21 j 9!~ j 61 j 12!

2
1 j 7~ j 1

1 j 4!1 j 11~ j 21 j 9!G ,
d j8

d ln d
52@ j 8~ j 11 j 4!1 j 7~ j 51 j 10!2mlr ~ j 111 j 12!#,

d j9
d ln d

52@2~ j 4 j 91 j 7 j 11!1 j 7~ j 61 j 12!2mlr j 10#,

d j10

d ln d
52@2 j 4 j 101 j 7~ j 31 j 8!2mlr j 9#,

d j11

d ln d
52@ j 11~ j 11 j 4!1 j 7~ j 21 j 9!#,

d j12

d ln d
52@ j 12~ j 11 j 4!2mlr j 8#. ~60!

Here the terms proportional tomlr arise because the secon
term in the Hamiltonian~53! contains nondiagonal terms.

From Eqs.~60!, one deduces the Kondo temperature,
9-12



nt

to

ng

he

up
rs

-
s-
u

a
i

p-

s
ed
or-
ted

(7)

ndo

,
ex-

m-
res
al

us
in

pin

ds
be

ical
el-

to

KONDO EFFECT IN SYSTEMS WITH DYNAMICAL . . . PHYSICAL REVIEW B 69, 195109 ~2004!
TK25D̄S 12
2A2mlr

j 11 j 21A~ j 11 j 2!212 j 3
2D 1/A2mlr

. ~61!

Similarly to the previous case, this equation transforms i
the usual exponential form when thel and r channels are
independent,

lim
mlr →0

TK25D̄expS 2
2

j 11 j 21A( j 11 j 2)212 j 3
2D . ~62!

Upon increasingmlr , the symmetry reduces from SO(5)
SO(4). Thesame happens at smallmlr but with increasing
d̄ l5ĒSl

2ĒTl
. In the latter case the energyĒSl

is quenched,

and atd̄ l@TK2 Eq. ~61! transforms intoTK5 d̄ lexp$2@ j1(d̄l)
1j3(d̄l)#

21% ~cf. Ref. 14!. On the other hand, upon decreasi
d̄ r5ĒTr

2ĒSl
the symmetryP3SO(4)3SO(4) is restored

at d̄ r,TK0. The Kondo effect disappears whend̄ l changes
sign ~the ground state becomes singlet!.

The next asymmetric configuration is illustrated by t
flow diagram of Fig. 6.

In this case, the manifold$Tl ,Sl ,Tr% is involved in the
dynamical symmetry of TQD. The relevant symmetry gro
is SO(7). It isgenerated by six vectors and three scala
These are spin operatorsSa (a5 l ,r ) andR operatorRl @see
Eq. ~38!# plus three vector operatorsR̃i and three scalar op
eratorsAi involving l -r permutation. Here are the expre
sions for the spherical components of these vectors via H
bard operators,

R̃1
15A2~X1r0l1X0l 1̄r !, R̃1

z5X1l1r2X1̄r 1̄l,

R̃2
15A2~X1l0r1X0r 1̄l !, R̃2

z5X1r1l2X1̄l 1̄r,

R̃3
15A2~X1rSl2XSl 1̄r !, R̃3

z52~X0rSl1XSl0r !. ~63!

The scalar operatorsA1 , A2 , A3 now involve thel -r permu-
tations for the triplet states. They are defined as

A15
iA2

2
~X1r 1̄l2X1l 1̄r1X1̄r1l2X1̄l1r!,

A25
A2

2
~X1l 1̄r2X1r 1̄l1X1̄r1l2X1̄l1r !,

A35 i ~X0l0r2X0r0l !. ~64!

The ~somewhat involved! commutation relations ofo7 alge-
bra for these operators and various kinematic constraints
presented in Appendix D. The SW transformation results
the effective cotunneling Hamiltonian
19510
o

.
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n

Hcot5 (
L5Tl ,Sl ,Tr

ĒLXLL1Mlr ~XTlTr1XTrTl !

1(
ks

(
a5 l ,r

ekacaks
1 caks1t lr (

ks
(

a5 l ,r
caks

1 cāks

1 (
a5 l ,r

J1aSa•sa1J2 (
a5 l ,r

Saā•saā1J3~R̃3
(1)
•srl

1R̃3
(2)
•slr !1J4Rl•sl , ~65!

where J1a5Ja
T , J25Jlr , J35a lJlr , J45a lJl

T and Saā

5(mXmam āSā . The spherical components of the vector o
eratorsR̃1 and R̃2 are

R̃3
(1)15A2X1rSl, R̃3

(1)252A2X1̄rSl,

R̃3
(2)15~R̃3

(1)2!†, R̃3
(2)25~R̃3

(1)1!†,

R̃3z
(1)52X0rSl, R̃3z

(2)5~R̃3z
(1)!†. ~66!

It is easy to see thatSlr 1Srl 5R̃11R̃2 and R̃35R̃3
(1)

1R̃3
(2) .

Like in the case of SO(5) symmetry, the tunneling term
Mlr X

TaTā generate additional vertices in the renormaliz
HamiltonianHcot . The number of these vertices and the c
responding scaling equations is too wide to be presen
here. We leave the description of RG procedure for SO
group for the following section~as well as the case of TQD
with odd occupation!, where the case ofMlr 50 is consid-
ered. In that case the scaling equations describing the Ko
physics of TQD with SO(n) symmetry are more compact.

B. Section summary

The basic physics for all SO(n) symmetries is the same
and we summarize it here. We have analyzed several
amples of TQD with even occupation in the parallel geo
etry ~Fig. 1!. Our analysis demonstrates the principal featu
of Kondo effect in CQD in comparison with the convention
SQD composed of a single well. These examples teach
that in Kondo tunneling through CQD, not only the sp
rotation but also the ‘‘Runge-Lenz’’ type operatorsR andR̃
are involved. Physically, the operatorsR̃ describe left-right
transitions, and different Young schemes give different s
operators in the effective co-tunneling Hamiltonians~see
Appendix E!.

IV. TRIPLE QUANTUM DOT IN SERIES

A. Motivation

It was mentioned already in Sec. III that a TQD with lea
l and r representing independent tunneling channels can
mapped onto a TQD in a series by means of geometr
conformal transformation. Indeed, if the interchannel tunn
ing amplitudet lr in the Hamiltonian~24! is zero, one may
apply the rotation in the source-drain space separately
each channel and exclude the odds-d combination of lead
9-13
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states both in thel and r channel.11 Since now each lead i
coupled to its own reservoir, and one arrives at the se
configuration shown in Fig. 7.

It is virtually impossible to conceive an addition
transformation after which the odd combination of le
states are excluded from the tunneling Hamiltonian.28 As a
result, the challenging situation arises in case of o
occupationN53, where the net spin of TQD isS51/2, and
the two leads play part of two channels in Kondo tunnel
Hamiltonian. Unfortunately, despite the occurrence of t
electron channels in the spin Hamiltonian, the compl
mapping on the two-channel Kondo problem is not attain
because there is an additional cotunneling termJlr S•slr
1H.c. @slr is determined by Eq.~39!# which turns out
to be relevant, and the two-channel fixed point cannot
reached. And yet, from the point of view of dynamic
symmetry the series geometry offers a new perspec
which we analyze in the present section for cases of even
odd occupation.

B. Even occupation

Consider then a TQD in series~Fig. 7! with four electron
occupationN54. The Hamiltonian of the system can b
written in the form,

H5(
La

ELa
XLaLa1(

l
ElXll1(

ks
(

b5s,d
ekbcbks

1 cbks

1(
Ll

(
ks

@~Vls
lLcsks

1 1Vrs
lLcdks

1 !XlL1H.c.#. ~67!

HereuL&, ul& are the four- and three-electron eigenfunctio
~A5! and ~A9!, respectively; EL ,El are the four- and
three-electron energy levels, respectively;XlL5ul&^Lu are

FIG. 7. Triple quantum dot in series. Left~l! and right~r! dots
are coupled by tunnelingWl ,r to the central~c! dot and by tunneling
Vl ,r to the source~s! ~left! and drain~d! ~right! leads.
19510
s

d

e
d

e

e
nd

s

number changing dot Hubbard operators. The tunne
amplitudesVas

lL5Va^ludasuL& (a5 l ,r ) depend explicitly
on the respective 3-4 particle quantum numbersl, L.
Note that direct tunneling through the TQD is suppress
due to electron level mismatch and Coulomb blocka
so that only cotunneling mechanism contributes to th
current.

The generic Hamiltonian~35! simplifies in this case to

Hcot5(
La

ĒLa
XLaLa1(

ks
(

b5 l ,r
ekbcbks

† cbks

1 (
a5 l ,r

Ja
TSa•sa1Jlr P̂ (

a5 l ,r
Sa•sāa

1 (
a5 l ,r

Ja
STRa•sa1Jlr (

a5 l ,r
R̃a•saā , ~68!

~the notationl ,r is used for the electron states both in t
leads and in the TQD!. The antiferromagnetic coupling con
stants are defined by Eq.~36!. The vectorsSa , Ra , andR̃a

are the dot operators~38!, P̂ is the permutation operator~37!,
and the components of the vectorssa , saā are determined in
Eqs. ~20! ~with a5a5 l ,r ) and ~39!. The vector operators
Sa , Ra , R̃a and the permutation operatorP̂ manifest the
dynamical symmetry of the TQD.

We now discuss possible realization ofP3SO(4)
3SO(4), SO(5) and SO(7)symmetries arising in the TQD
with N54. Due to the absence of interchannel mixing, t
avoided crossing effect does not arise in the series geom
As a result, all cases of high symmetry are characterized
the same flow diagram of Figs. 3, 5, and 6 butwithout
avoided crossing effects shown in the insets.

Let us commence the analysis of the Kondo effect
the series geometry with the caseP3SO(4)3SO(4)
where Elc5Erc and GTr

5GTl
~Fig. 3!. In this case the

exchange part of the Hamiltonian~68! is a simplified version
of the Hamiltonian ~46! with the boundary conditions
~47!. The scaling equations are the same as Eq.~48!
with mlr 50. Solving them one gets Eq.~50! for the Kondo
temperature.

When ĒSl
'ĒTl

'ĒSr
,ĒTr

~Fig. 5!, the TQD possesse

the SO(5) symmetry. In this case the interaction Hamilton
has the form

Hcot5J1Sl•sl1J2Rl•sl1J3~R̃1•srl 1R̃2•slr !, ~69!

which is the same as in Eq.~53! with R̃1 , R̃2 determined by
Eq. ~54!. Respectively, the effective Hamiltonian for th
Anderson scaling is a reduced version of the Hamilton
~58!

Hcot5J1Sl•sl1J2Rl•sl1J3~R̃1•srl 1R̃2•slr !1J4Sl•sr
~70!

with the boundary conditions~59! for Ji , i 5124.
The scaling equations have the form
9-14
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d j1
d ln d

52F j 1
21 j 2

21
j 3
2

2 G ,
d j2

d ln d
522 j 1 j 2 ,

d j3
d ln d

52 j 3~ j 11 j 4!,

d j4
d ln d

52F j 4
21

j 3
2

2 G . ~71!

Of course, Eqs.~71! for the Kondo temperature yield th
limiting value ~62!.

WhenĒTl
'ĒTr

,ĒSl
,ĒSr

~Fig. 6!, the TQD possesses th

SO(7) symmetry. In this case the Anderson RG proced
adds three additional vertices in the exchange part of
basic SW Hamiltonian~65!,

Hcot5 (
a5 l ,r

J1aSa•sa1J2 (
a5 l ,r

Saā•saā1J3~R̃3
(1)
•srl

1R̃3
(2)
•slr !1J4Rl•sl1 (

a5 l ,r
J5aSa•sā1J6Rl•sr .

~72!

The boundary conditions for solving the scaling equatio
are

J1a~D̄ !5Ja
T , J2~D̄ !5Jlr , J3~D̄ !5a lJlr ,

J4~D̄ !5a lJl
T , J5a~D̄ !5J6~D̄ !50 ~a5 l ,r !. ~73!

The system of scaling equations

d j1l

d ln d
52F j 1l

2 1
j 2
2

2
1 j 4

2G ,
d j1r

d ln d
52F j 1r

2 1
j 2
2

2
1

j 3
2

2 G ,
d j2

d ln d
52

j 2~ j 1l1 j 1r1 j 5l1 j 5r !1 j 3~ j 41 j 6!

2
,

d j3
d ln d

52@ j 2~ j 41 j 6!1 j 3~ j 1r1 j 5r !#,

d j4
d ln d

52@2 j 1l j 41 j 2 j 3#,

d j5l

d ln d
52F j 5l

2 1
j 2
2

2
1 j 6

2G ,
d j5r

d ln d
52F j 5r

2 1
j 2
2

2
1

j 3
2

2 G ,

19510
re
e

s

d j6
d ln d

52@2 j 5l j 61 j 2 j 3# ~74!

is now solvable analytically, and the Kondo temperature

TK5D̄ expH 2
4

2 j 11A4 j 2
2 13~ j 21 j 3!2J , ~75!

where j 15 j 1l1 j 41 j 1r , j 25 j 1l1 j 42 j 1r .
Just as in the cases considered above, the Kondo temp

ture and the dynamical symmetry itself depend on the le
splitting. On quenching theSl state ~increasing d̄ lr 5ĒSl

2ĒTr
), the pattern is changed into aP3SO(3)3SO(3)

symmetry of two degenerate triplets with a mirror reflecti
axis. Changing the sign ofd lr one arrives at a singlet regim
with TK50.

The results of calculations described in this section
summarized in Fig. 8. The central domain of sizeTK0 de-
scribes the fully symmetric state where there is left-rig
symmetry. Other regimes of Kondo tunneling correspond
lines or segments in the$x,y% plane. These lines correspon
to cases of higher conductance~ZBA!. On the other hand, a
some regions, the TQD has a singlet ground state and
Kondo effect is absent. These are marked by the vertic
hatched domain. Both the tunneling rates which enter
ratio x and the relative level positions which determine t
parametery depend on the applied potentials, so the ph
diagram presented in Fig. 8 can be scannedexperimentally
by appropriate variations ofVa andvga . This is a rare occa-
sion where an abstract concept such as dynamical symm
can be felt and tuned by experimentalists. The quantity t
is measured in tunneling experiments is the zero-b
anomaly~ZBA! in tunnel conductanceg.9 The ZBA peak is
strongly temperature dependent, and this dependenc
scaled byTK . In particular, in a high-temperature regionT
.TK , where the scaling approach is valid, the conducta
behaves as

FIG. 8. Phase diagram of TQD. The numerous dynamical sy
metries of a TQD in the series geometry are presented in the p
of experimentally tunable parametersx5G l /G r andy5Elc /Erc .
9-15
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g~T!; ln22~T/TK!. ~76!

As it has been demonstrated above,TK in CQD is a nonuni-
versal quantity due to partial break down of dynamical sy
metry in these quantum dots. It has a maximum value in
point of highest symmetryP3SO(4)3SO(4), anddepends
on the parametersda in the less symmetric phases@see, e.g.,
Eqs. ~50!, ~52!, ~62!, and ~75!#. Thus, scanning the phas
diagram means changingTK(da).

These changes are shown in Fig. 9 which illustrates
evolution of TK with d rl for x50.96, 0.8 and 0.7 corre
sponding to a symmetry change fromP3SO(4)3SO(4),
SO(7) to P3SO(3)3SO(3) and from SO(5) to SO(4),
respectively. It is clear that the conductance measure
given T should follow variation ofTK in accordance with
Eq. ~76!.

C. Odd occupation

We now turn our attention to investigation of the dynam
cal symmetries of TQD in series with odd occupationN
53, whose low-energy spin multiplet contains two spin 1
doubletsuB1,2& and a spin quartetuQ&,

EB1
5«c1« l1« r2

3
2 @Wlb l1Wrb r #,

EB2
5«c1« l1« r2

1
2 @Wlb l1Wrb r #,

EQ5«c1« l1« r . ~77!

There are also four charge-transfer excitonic counterpart
the spin doublets separated by the charge transfer gaps;« l
2«c1Ql and« r2«c1Qr from the above states~see Appen-
dix A!.

Like in the four-electron case, the scaling equations~31!
may be derived with different tunneling rates for differe
spin states@GQ for the quartet andGBi

( i 51,2) for the dou-
blets#.

GQ5pr0~Vl
21Vr

2!,

GB1
5g1

2GQ , GB2
5g2

2GQ , ~78!

with

FIG. 9. Variation of Kondo temperature withd rl [vgr2vgl .
Increasing this parameter removes some of the degeneracy an
ther ‘‘breaks’’ or reduces the corresponding dynamical symmet
19510
-
e

e

at

of

g15A12
3

2
~b l

21b r
2!, g25A12

1

2
~b l

21b r
2!.

~79!

SinceGQ.GB1
,GB2

, the scaling trajectories cross in a uniqu
manner: This is the complete degenerate configuration wh
all three phase trajectoriesEL intersect @EQ(D!)
5EB1(D!)5EB2(D!)# at the same pointD!. This happens
at bandwidthD5D! ~Fig. 10! whose value is estimated as

D!5D0 expS 2
pr

GQ
D , ~80!

where

r 5
Wl

2Erc1Wr
2Elc

Wl
2Erc

2 1Wr
2Elc

2
ElcErc .

If this degenerate point occurs in the SW crossover
gion, i.e., if D!'D̄, the SW procedure involves all thre
spin states, and it results in the following cotunneling Ham
tonian:

Hcot5 (
a5 l ,r

~Ja
TS1Ja

STR!•sa , ~81!

whereS is the spin 1 operator andR is the R operator de-
scribingS/T transition similar to that for spin rotator.13 The
coupling constants are

Ja
T5

4g1uVau2

3~eF2«a!
, Ja

ST5g2Jlr
T . ~82!

This is a somewhat unexpected situation where Kon
tunneling in a quantum dot withodd occupation demon-
strates the exchange Hamiltonian of a quantum dot witheven
occupation. The reason for this scenario is the specific st
ture of the wave function of TQD withN53. The corre-
sponding wave functionsuL& ~see Appendix A! are vector
sums of states composed of a ‘‘passive’’ electron sitting
the central dot and singlet/triplet (S/T) two-electron states in
the l ,r dots. Constructing the eigenstatesuL& using certain
Young tableaux~see Appendix D!, one concludes that the
spin dynamics of such TQD is represented by the spi
operatorS corresponding to thel -r triplet, the corresponding
R operatorR and the spin-1/2 operatorsc of a passive elec-
tron in the central well. The latter does not enter the effect

ei-

FIG. 10. Scaling trajectories resulting in SO(4)3SU(2) sym-
metry of TQD withN53.
9-16
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Hamiltonian Hcot ~81! but influences the kinematic con
straint via Casimir operatorK5S21M21sc

25 15
4 . The dy-

namical symmetry is therefore SO(4)3SU(2), andonly the
SO(4) subgroup is involved in Kondo tunneling.

The scaling equations have the form,

d j1a

d ln d
52@ j 1a

2 1 j 2a
2 #,

d j2a

d ln d
522 j 1aj 2a , ~83!

where j 1a5r0Ja
T , j 2a5r0Ja

ST (a5 l ,r ). From Eqs.~83! we
obtain the Kondo temperature,

TK5max$TKl ,TKr%, ~84!

with TKa5D̄ exp@21/( j 1a1 j 2a)#.
An additional dynamical symmetry arises in the ca

when D!.D̄. In this case the ground state of TQD is
quartetS53/2, and we arrive at a standard underscree
Kondo effect for SU(2) quantum dot as an ultimate limit
the above highly degenerate state.

D. Section summary

To conclude this section, it might be useful here to und
score the following points:~1! The difference between serie
and parallel geometries of TQD coupled to the leads by
channels exists only at nonzero interchannel mixing in
leads,t lr Þ0. ~2! One may control the dynamical symmet
of Kondo tunneling through TQD by varying the gate vo
age and/or lead-dot tunneling rate.~3! In the case of odd
electron occupation (N53) when the ground state of th
isolated TQD is a doublet and higher-spin excitations can
neglected, the effective low-energy Hamiltonian of a TQD
series manifests a two-channel Kondo problem albeitonly in
the weak-coupling regime.28 To describe the flow diagram in
this case, one should go beyond the one-loop approxima
in RG flow equations.30 ~4! The nominal spin of CQD doe
not necessarily coincide with that involved in Kondo tunn
ing. A simple albeit striking realization of this scenario
this context is the case of TQD withN53, which manifests
itself as a dot with integer or half-integer spin depending
gate voltages.

V. ANISOTROPIC KONDO TUNNELING THROUGH TQD
IN SERIES GEOMETRY

A. Generalities

In all examples of CQD’s considered in the precedi
sections the cotunneling problem is mapped on the spe
spin Hamiltonian where bothS andR vectors are involved in
resonance cotunneling. There are, however, more exotic
ations where the effective spin Hamiltonian is in fact
‘‘Runge-Lenz’’ Hamiltonian in the sense that the vectorsR
alone are responsible for Kondo effect. Actually, just th
aspect of dynamical symmetry in Kondo tunneling was c
sidered in the theoretical papers cited in Ref. 6 and obse
19510
e
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experimentally in Ref. 25, in which the Kondo effect in pl
nar and vertical QD’s induced by external magnetic fieldB
has been observed. In this section we lay down the theo
ical basis for this somewhat unusual kind of Kondo effec

Consider again the case of TQD in series geometry w
N54. In the preceding sections the variation of spin sy
metry is due to the interplay of two contributions to indire
exchange coupling between the spinsSa . One source of such
an exchange is tunneling within the CQD~amplitudesWa)
and another one is the tunneling between the dots and
leads~amplitudesVa). An appropriate tuning of these tw
contributions results in occasional degeneracy of spin st
~elimination of exchange splitting!, and various combina-
tions of these occasional degeneracies lead to the rich p
diagram presented in Fig. 8. A somewhat more crude
proach, yet more compliant with experimental observation
such interplay is provided by the Zeeman effect. This mec
nism is effective for CQD which remains in a singlet grou
state after all exchange renormalizations have taken pl
The negative exchange energyda may then be compensate
by the Zeeman splitting of the nearest triplet states, a
Kondo effect arises once this compensation is comple6

From the point of view of dynamical symmetry, the dege
eracy induced by magnetic field means realization of o
possible subgroup of the noncompact group SO(n) @see Eq.
~21! and corresponding discussion in Sec. II#. The transfor-
mation SO(4)→SU(2) for DQD in magnetic field was dis
cussed in Ref. 13.

B. Quantum dot with SU„3… dynamical symmetry

In similarity with DQD, the Kondo tunneling may be in
duced by external fieldB in the nonmagnetic sector of th
phase diagram of Fig. 8. A very peculiar Kondo tunneling
induced by an external magnetic fieldB in the nonmagnetic
sector of the phase diagram of Fig. 8 close to the SO(5) l
In this case, a remarkable symmetry reduction occurs w
the Zeeman splitting compensates negatived l ,r5ESl ,r

2ETl
. Then we are left in the subspace of stat

$T1l ,Sl ,Sr%, and the interaction Hamiltonian has the form

H̃cot5~J1R1
z1J2R2

z!sl
z1

A2

2
J3l~R1

1sl
21R1

2sl
1!

1
A2

2
J3r~R2

1slr
21R2

2srl
1!1J4~R3slr

z 1R4srl
z !1~J5R1

z

1J6R2
z!sr

z1J7~R1
1sr

21R1
2sr

1!. ~85!

Here

J1~D̄ !5J2~D̄ !5
2Jl

T

3
, J3l~D̄ !5Jl

ST,

J3r~D̄ !5a rJlr , Ji~D̄ !50 ~ i 5427!. ~86!

The operatorsR1 , R2 , R3 andR4 are defined as,
9-17
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R1
z5

1

2
~X1l1l2XSlSl !, R1

15X1lSl, R1
25~R1

1!†,

R2
z5

1

2
~X1l1l2XSrSr !, R2

15X1lSr, R2
25~R2

1!†,

R35
A3

2
XSlSr, R45

A3

2
XSrSl. ~87!

We see that the anisotropic Kondo Hamiltonian~85! is quite
unconventional. There are several different terms respons
for transverse and longitudinal exchange involving theR op-
erators which generate bothSa /T andSa /Sā transitions.

The operators~87! obey the following commutation rela
tions,

@R1 j ,R1k#5 iejkmR1m , @R2 j ,R2k#5 iejkmR2m ,

@R1 j ,R2k#5
A3

6
~R32R4!d jk~12d jz!1

i

2
ejkmS R1mdkz

1R2md jz2
A3

3
dmz~R31R4! D ,

@R1 j ,R3#52
1

2
R3d jz1

A3

4
~R2x1 iR2y!~d jx2 id jy!,

@R1 j ,R4#5
1

2
R4d jz2

A3

4
~R2x2 iR2y!~d jx1 id jy!,

@R2 j ,R3#5
1

2
R3d jz2

A3

4
~R1x1 iR1y!~d jx1 id jy!,

@R2 j ,R4#52
1

2
R4d jz1

A3

4
~R1x1 iR1y!~d jx2 id jy!,

@R3 ,R4#5
3

2
~R2

z2R1
z!. ~88!

These operators generate the algebrau3 in the reduced spin
space$T1l ,Sl ,Sr% specified by the Casimir operator

R1
21R2

21R3R3
†1R4R4

†5 3
2 .

Therefore, in this case the TQD possesses SU(3) symm
TheseR operators may be represented via the familiar G
Mann matricesl i ( i 51, . . . ,8) for the SU(3)group,

R1
15

1

2
~l11 il2!, R1

25
1

2
~l12 il2!,

R1
z5

l3

2
, R2

z5
1

4
~l31A3l8!,

R2
15

1

2
~l41 il5!, R2

25
1

2
~l42 il5!,
19510
le

ry.
l-

R35
A3

4
~l61 il7!, R45

A3

4
~l62 il7!.

As far as the RG procedure for the Runge-Lenz excha
Hamiltonian ~85! the poorman scaling procedure is app
cable also for theR operators. The scaling equations have t
form,

d j1
d ln d

522 j 3l
2 ,

d j2
d ln d

52 j 3r
2 ,

d j3l

d ln d
52F j 3l S j 11

j 2

2 D2
A3

4
j 3r j 4G ,

d j3r

d ln d
52

j 3r~ j 112 j 21 j 512 j 6!2A3 j 4~ j 3l1A2 j 7!

4
,

d j4
d ln d

5 j 3r SA3

3
j 3l1

A2

2
j 7D ,

d j5
d ln d

524 j 7
2 ,

d j6
d ln d

52 j 3r
2 ,

d j7
d ln d

52F j 5 j 71
j 6 j 7

2
2

A6

8
j 3r j 4G , ~89!

where j 5r0J. We cannot demonstrate analytical solution
this system, but the numerical solution shows that stable
finite fixed point exists in this case as in all previous co
figurations.

Another type of field induced Kondo effect is realized
the symmetric case ofd5ESg

2ETg,u
,0. Now the Zeeman

splitting compensates negatived. Then the two component
of the triplets, namely,ET1g,u

cross with the singlet state

energyESg
, and the symmetry group of the TQD in magne

field is SU(3) as in the case considered above.

C. Section summary

It has been demonstrated that the loss of rotational inv
ance in external magnetic field radically changes the dyna
cal symmetry of TQD. We considered here two examples
symmetry reduction, namely, SO(5)→SU(3) and P
3SO(4)3SO(4)→SU(3). In allcases the Kondo exchang
is anisotropic, which, of course, reflects the axial anisotro
induced by the external field. These examples as well as
SO(4)→SU(2) reduction considered earlier12,13describe the
magnetic-field-induced Kondo effect owing to the dynamic
symmetry of complex quantum dots. Similar reducti
SO(n)→SU(n8) induced by magnetic field may arise also
more complicated configurations, and in particular in the p
allel geometry. The immense complexity of scaling proc
dure adds nothing new to the general pattern of the fie
induced anisotropy of Kondo tunneling, so we confi
ourselves with these two examples.

Although the anisotropic Kondo Hamiltonian was intr
duced formally at the early stage of Kondo physics,31 it was
9-18
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KONDO EFFECT IN SYSTEMS WITH DYNAMICAL . . . PHYSICAL REVIEW B 69, 195109 ~2004!
rather difficult to perceive how such Hamiltonian is deri
able from the generic Anderson-type Hamiltonian. It w
found that the effective anisotropy arises in cases where
pseudospin degrees of freedom~such as a two-level system!
are responsible for anomalous scattering. Another possib
is the introduction of magnetic anisotropy in the generic s
Hamiltonian due to spin-orbit interaction~see Ref. 32 for a
review of such models!. One should also mention the re
markable possibility of magnetic-field-induced anisotrop
Kondo effect on a magnetic impurity in ferromagnetic ra
earth metals with easy plane magnetic anisotropy.33 This
model is close to our model from the point of view of effe
tive spin Hamiltonian, but the sources of anisotropy are d
ferent in the two systems. In our case the interplay betw
singlet and triplet components of spin multiplet is an eve
tual source both of Kondo effect itself and of its anisotro
in external magnetic field. Previously, the manifestation
SU(3) symmetry in anisotropic magnetic systems were
tablished in Ref. 34. It was shown, in particular, that th
dynamical symmetry predetermines the properties of col
tive excitations in anisotropic Heisenberg ferromagnet. In
presence of single-ion anisotropy the relation between
Hubbard operators forS51 and Gell-Mann matricesl were
established. It is also worth mentioning in this context t
SU(4).SO(5) algebraic structure of superconducting a
antiferromagnetic coherent states in cuprate HighTc
materials.35

VI. CONCLUSIONS

We have analyzed the occurrence of dynamical sym
tries in complex quantum dots. These symmetries eme
when the dot is coupled with metallic electrodes under
conditions of strong Coulomb blockade and nearly degen
ate low-energy spin spectrum. It can be achieved either b
application of an external magnetic field or due to dot-le
tunneling which, as we have seen, results in level renorm
ization and the emergence of an additional symmetry.
though the main focus in this paper is related to the study
triple quantum dots, the generalization to other quantum
structures is indeed straightforward.

Since we were interested in a symmetry aspect of Ko
tunneling Hamiltonian, we restricted ourselves by derivat
of RG flow equations and solving them for obtaining t
Kondo temperature. In all cases the TQD’s possess str
coupling fixed-point characteristic for spin-1/2 and/or spin
case. We did not calculate the tunnel conductance in det
because it reproduces the main features of Kondo-type
bias anomalies studied extensively by many authors~see,
e.g., Refs. 6, 11–14, 21, and 22!. The feature is the possibil
ity of changingTK by scanning the phase diagram of Fig.
Then the zero-bias anomaly follows all symmetry crossov
induced by experimentally tunable gate voltages and tun
ing rates.

The main message of our work is that symmetry ent
the realm of mesoscopic physics in a rather nontrivial m
ner. Dynamical symmetry in this context is not just a ge
metrical concept but, rather, intimately related with the ph
ics of strong correlations and exchange interactions.
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relation with other branches of physics makes it even m
attractive. The groups SO(n) play an important role in Par
ticle Physics as well as in model building for high tempe
ture superconductivity@especially SO(5)]. The role of the
group SU(3) in Particle Physics cannot be overestimated
its role in Nuclear Physics in relation with the interactin
Boson model is well recognized. This paper extends the
of these Lie groups in Condensed Matter Physics.
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APPENDIX A: DIAGONALIZATION OF THE DOT
HAMILTONIAN

Here we describe the diagonalization procedure of
Hamiltonian of the isolated TQD’s occupied by four an
three electrons. The dot Hamiltonian has the form,

Hd5 (
a5 l ,r ,c

(
s

eadas
† das1(

a
Qana↑na↓

1 (
a5 l ,r

~Wadcs
† das1H.c.!. ~A1!

~i! Four-electron occupation: The Hamiltonian~A1! can be
diagonalized by using the basis of four-electron wave fu
tions

uta ,1&5dc↑
† da↑

† dā↑
†

dā↓
† u0&,

uta ,1̄&5dc↓
† da↓

† dā↑
†

dā↓
† u0&,

uta ,0&5
1

A2
~dc↑

† da↓
† 1dc↓

† da↑
† !dā↑

†
dā↓

† u0&,

usa&5
1

A2
~dc↑

† da↓
† 2dc↓

† da↑
† !dā↑

†
dā↓

† u0&,

uex&5dl↑
† dl↓

† dr↑
† dr↓

† u0&, ~A2!

where a5 l ,r ; l̄ 5r , r̄ 5 l . The Coulomb interaction
quenches the states with two electrons in the central dot
we do not take them into account. The states~A2! form a
basis of two triplet and three singlet states. In this basis,
Hamiltonian~A1! is decomposed into triplet and singlet m
trices,

Ht5S «̃ l 0

0 «̃ r
D , ~A3!

and
9-19
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Hs5S «̃ l 0 A2Wl

0 «̃ r A2Wr

A2Wl A2Wr «̃ex

D , ~A4!

where «̃ l5ec1e l12e r1Qr , «̃ r5ec1e r12e l1Ql , and
«̃ex52e l12e r1Ql1Qr . We are interested in the limitba
!1 @ba are defined by Eq.~15!#. So the secular matrix ma
be diagonalized in lowest order of perturbation theory inba .
The eigenfunctions corresponding to the energy levels~22!
are

uSa&5A122ba
2usa&2A2bauex&,

uTa&5uta&,

uEx&5A122b l
222b r

2uex&1A2b l usl&1A2b r usr&.
~A5!

In completely symmetric case,« l5« r[«, Ql5Qr[Q,
Wl5Wr[W, the eigenfunctions corresponding to the en
gies ~23! are

uS1&5A124b2
usl&1usr&

A2
22buex&,

uS2&5
usl&2usr&

A2
,

uT6&5
ut l&6ut r&

A2
,

uEx&5A124buex&1A2b~ usl&1usr&), ~A6!

whereb5W/(«1Q2ec).
~ii ! Three electron occupation: In this case the Ham

tonian~A1! can be diagonalized by using the basis of thr
electron wave functions

ub,s&5
~@dc↑

1 dl↓
12dc↓

1 dl↑
1#drs

1 1@dc↓
1 dr↑

1 2dc↑
1 dr↓

1 #dls
1 !u0&

A6
,

ubc ,s&52
1

A2
~dl↑

1dr↓
1 2dl↓

1dr↑
1 !dcs

1 u0&,

Uq,6
3

2L 5dc6
1 dr 6

1 dl 6
1 u0&,

Uq,6
1

2L 5
~dc6

1 dr 6
1 dl 7

1 1dc6
1 dr 7

1 dl 6
1 1dc7

1 dr 6
1 dl 6

1 !u0&

A3
,

ublc ,s&5dl↑
1dl↓

1dcs
1 u0&, ubrc ,s&5dr↑

1 dr↓
1 dcs

1 u0&,

ubl ,s&5dr↑
1 dr↓

1 dls
1 u0&, ubr ,s&5dl↑

1dl↓
1drs

1 u0&, ~A7!
19510
-

-
-

wheres5↑,↓. The three-electron statesuL& of the TQD are
classified as a ground-state doubletuB1&, low-lying doublet
uB2& and quartetuQ& excitations, and four charge-transfe
excitonic doubletsBac andBa (a5 l ,r ). In the framework of
second-order perturbation theory with respect toba ~15!, the
energy levelsEL are

EB1
5ec1e l1e r2

3
2 @Wlb l1Wrb r #,

EB2
5ec1e l1e r2

1
2 @Wlb l1Wrb r #,

EQ5ec1e l1e r ,

EBac
5ec12ea1Qa2Wāb ā ,

EBa
5ea12e ā1Qā1Waba12Wāb ā . ~A8!

The eigenfunctions corresponding to the energy lev
~A8! are the following combinations,

uB1 ,s&5g1ub1 ,s&2
A6

2
b l ubr ,s&1

A6

2
b r ubl ,s&,

uB2 ,s&5g2ub2 ,s&2
A2

2
b l ubr ,s&2

A2

2
b r ubl ,s&,

uQ,sz&5uq,sz&, sz56 3
2 ,6 1

2 ,

uBac ,s&5A12b ā
2ubac ,s&2b āubā ,s&,

uBr ,s&5A122b l
22b r

2ubr ,s&1b r ublc ,s&

1
A2

2
b l~A3ub1 ,s&1ub2 ,s&),

uBl ,s&5A122b r
22b l

2ubl ,s&1b l ubr ,c,s&

2
A2

2
b r~A3ub1 ,s&2ub2 ,s&), ~A9!

whereg1 andg2 are determined by Eq.~79!.

APPENDIX B: ROTATIONS IN THE SOURCE-DRAIN
AND LEFT-RIGHT SPACE

In the generic case, the transformation which diagonali
the tunneling Hamiltonian~25! has the form

S cleks

cloks

creks

croks

D 5S ul v l 0 0

2v l ul 0 0

0 0 ur v r

0 0 2v r ur

D S clsks

cldks

crsks

crdks

D ~B1!

with ua5Vas /Va , va5Vad /Va ; Va
25uVasu21uVadu2 (a

5 l ,r ). In a symmetric caseVas5Vad5V, this transforma-
tion simplifies to
9-20
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caeks5221/2~casks1cadks!,

caoks5221/2~2casks1cadks!, ~B2!

and only the even~e! combination survives in the tunnelin
Hamiltonian

Htun5V(
aks

~caeks
† das1H.c.!. ~B3!

So the odd combination~o! may be omitted.
If, moreover, the whole system ‘‘TQD plus leads’’ po

sessesl -r symmetry,« l5« r , the second rotation inl -r space

S cgks

cuks

dgs

dus

D 5
1

A2 S 1 1 0 0

21 1 0 0

0 0 1 1

0 0 21 1

D S cleks

creks

dls

drs

D ~B4!

transformsHlead1Htun into

Hlead1Htun5(
hks

@ekhnhks1V~chks
† dhs1H.c.!#

~B5!

with ekg5ek2t lr , eku5ek1t lr .

APPENDIX C: EFFECTIVE SPIN HAMILTONIAN

The spin Hamiltonian of the TQD withN54 occupation
in series geometry~Fig. 7! is derived below. The system i
described by the Hamiltonian~67!. The Schrieffer-Wolff
transformation27 for the configuration of four electron state
of the TQD projects out three electron statesul& and maps
the Hamiltonian~67! onto an effective spin HamiltonianH̃
acting in a subspace of four-electron configuratio
^Lu . . . uL8&,

H̃5eiSHe2 iS5H1(
m

~ i !m

m!
@S,@S . . . @S,H## . . . #,

~C1!

where

S52 i(
Ll

(
^k&s,a

Vas
Ll

ĒLl2eka

XLlcaks1H.c. ~C2!

Here^k& stands for the electron or hole states whose ener
are secluded within a layer6D̄ around the Fermi level
ĒLl5EL(D̄)2El(D̄) and the notationa5 l ,r is used. The
effective Hamiltonian with three-electron statesul& frozen
out can be obtained by retaining the terms to orderO(uVu2)
on the right-hand side of Eq.~C1!. It has the following form:
19510
s

es

H̃5(
L

ĒLXLL1 (
^k&s,a

ekacaks
1 caks

2 (
LL8l

(
kk8ss8

(
a5 l ,r

Jkk8a
LL8XLL8caks

1 cak8s8

2 (
LL8l

(
kk8ss8

~Jkk8 lr
LL8 XLL8crks

1 clk8s81H.c.!, ~C3!

where

Jkk8a
LL85

~Vas
lL!* Vas8

lL8

2 S 1

ĒLl2eka

1
1

ĒL8l2ek8a
D ,

Jkk8 lr
LL8 5

~Vls
lL!* Vrs8

lL8

2 S 1

ĒLl2ekl

1
1

ĒL8l2ek8r
D . ~C4!

The constraint(LXLL51 is valid. Unlike the conventiona
case of doublet spin 1/2 we have here an octetL
5$L l ,L r%5$Sl ,Tl ,Sr ,Tr%, and the SW transformationin-
termixes all these states. The effective spin Hamiltonian~C3!
to orderO(uVu2) acquires the form of Eq.~68!.

APPENDIX D: SO„7… SYMMETRY

The operatorsSl , Sr , Rl , R̃1 , R̃2 , R̃3 and Ai ( i
51,2,3) @see Eqs.~33!, ~63!, and ~64!# obey the commuta-
tion relations of theo7 Lie algebra,

@Sa j ,Sa8k#5 iejkmdaa8Sam , @Rl j ,Rlk#5 iejkmSlm ,

@Rl j ,Slk#5 iejkmRlm , @Rl j ,Srk#5@R̃3 j ,Slk#50,

@R̃3 j ,R̃3k#5 iejkmSrm , @R̃3 j ,Srk#5 iejkmR̃3m ,

@R̃1 j ,R̃1k#5 iejkmSrm~12d jz!~12dkz!1
i

2
ejkmSlm~d jz

1dkz!2
1

2
~Sl j dkz2Slkd jz!,

@R̃2 j ,R̃2k#5 iejkmSlm~12d jz!~12dkz!1
i

2
ejkmSrm~d jz

1dkz!2
1

2
~Sr j dkz2Srkd jz!,

@R̃1 j ,R̃2k#5
i

2
ejkm~Srmd jz1Slmdkz!1

1

2
@Sl j dkz2Srkd jz

1~Slz2Srz!d jzdkz#,

@R̃3 j ,R̃1k#5 iejkmRlmS 12d jz2
dkz

2 D2
dkz

2
~12d jz!Rl j ,

@R̃3 j ,R̃2k#5 iejkmRlmS d jz1
dkz

2 D1
dkz

2
~12d jz!Rl j ,
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@R̃1 j ,Rlk#5 iejkmR̃3mS dkz1
d jz

2 D2
d jz

2
~12dkz!R̃3k ,

@R̃2 j ,Rlk#5 iejkmR̃3mS 12dkz2
d jz

2 D1
d jz

2
~12dkz!R̃3k ,

@A1 ,Sl j #5 iA2d jz1
iA2

2
~R̃1xd jx2R̃1yd jy!,

@A2 ,Sl j #52 iA1d jz2
iA2

2
~R̃1yd jx1R̃1xd jy!,

@A1 ,Sr j #5 iA2d jz2
iA2

2
~R̃2xd jx2R̃2yd jy!,

@A2 ,Sr j #52 iA1d jz1
iA2

2
~R̃2yd jx1R̃2xd jy!,

@A3 ,Sl j #52 iR̃2 j~12d jz!, @A3 ,Sr j #5 iR̃1 j~12d jz!,

@A1 ,Rl j #52
iA2

2
~R̃3xd jx2R̃3yd jy!,

@A2 ,Rl j #5
iA2

2
~R̃3yd jx1R̃3xd jy!,

@A1 ,R̃3 j #5
iA2

2
~Rlxd jx2Rlyd jy!,

@A2 ,R̃3 j #52
iA2

2
~Rlyd jx1Rlxd jy!,

@A3 ,Rl j #52 iR̃3zd jz , @A3 ,R̃3 j #5 iRlzd jz ,

@A1 ,R̃1 j #52
iA2

2
~Slxd jx2Slyd jy!,

@A2 ,R̃1 j #5
iA2

2
~Slyd jx1Slxd jy!,

@A3 ,R̃1 j #52 i ~Srxd jx1Sryd jy!,

@A1 ,R̃2 j #5
iA2

2
~Srxd jx2Sryd jy!,

@A2 ,R̃2 j #52
iA2

2
~Sryd jx1Srxd jy!,

@A3 ,R̃2 j #5 i ~Slxd jx1Slyd jy!,

@A1 ,A2#52 i ~Slz1Srz!, @A1 ,A3#5@A2 ,A3#50,

@Sa j ,R̃mk#5t jkm
amnR̃mm1a jk

amnAn ,
19510
@R̃3 j ,Rlk#5b jkm
m R̃mm1ã jk

n An . ~D1!

Here j ,k,m are Cartesian indices,a5 l ,r ; m,n51,2; n

51,2,3; t jkm
amn , a jk

amn , ã jk
n and b jkm

m are the structural con

stants,t jkm
lmn5t jkm

r m̄n̄ , a jk
lmn52a jk

r m̄n (1̄52, 2̄51). Their non-
zero components are

txxz
l115txzx

l115tyyz
l115tyzy

l115
1

2
,

txzx
l215tyzy

l215txxz
l125tyyz

l1252
1

2
,

txyz
l115txyz

l125tyzx
l215

i

2
,

txzy
l115tyxz

l115tyxz
l125txzy

l2152
i

2
,

tzzz
l1151, tzzz

l22521, tzxy
l225 i , tzyx

l2252 i ,

axy
l115ayx

l115
A2

2
, axy

l125ayx
l1252

A2

2
,

axx
l115axx

l125
iA2

2
, ayy

l115ayy
l1252

iA2

2
,

axx
l235ayy

l2352 iA2,

bxxz
1 5byyz

2 52
1

2
, bxxz

2 5byyz
1 5

1

2
,

bxyz
1 5bxyz

2 5
i

2
, byxz

1 5byxz
2 52

i

2
,

bxzy
1 5bzyx

2 52 i , byzx
1 5bzxy

2 5 i ,

ãxx
1 5ãzz

3 5 iA2, ãxy
2 5ãyx

2 5ãyy
1 52 iA2.

The following relations hold:

Sa•Rl5Sa•R̃350, A1A35A2A350,

Sa
252Xmama, R̃1•R̃1

†1R̃2•R̃2
†52 (

a5 l ,r
Xmama,

Rl
25Xm lm l13XSlSl, R̃3

25Xmrmr13XSlSl,

A1A1
†1A2A2

†1A3A3
†5Xm lm l1Xmrmr. ~D2!

Therefore, the vector operatorsSl , Sr , Rl , R̃i and scalar
operatorsAi ( i 51,2,3) generate the algebrao7 in a repre-
sentation specified by the Casimir operator

Sl
21Sr

21Rl
21(

i 51

2

R̃i•R̃i
†1R̃3

21(
i 51

3

Ai Ai
†56. ~D3!
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APPENDIX E: YOUNG TABLEAUX CORRESPONDING
TO VARIOUS SYMMETRIES

A TQD with ‘‘passive’’ central dot and ‘‘active’’ side dots
reminds an artificial atom with inner core and external v
lence shell. The many-electron wave functions in this
noobject may be symmetrized in various ways, so that e
spin state ofN electrons in the TQD is characterized by
own symmetrization scheme. One may illustrate th
schemes by means of the conventional graphic presenta
of the permutation symmetry of multi-electron system
Young tableau.36 For instance, triplet state of two electron
which is symmetric with respect to the electron permutat
is labeled by a row of two squares, whereas the singlet
which is antisymmetric with respect to the permutation
labeled by a column of two squares. Having this in mind
can represent the singlet and triplet four electron states o
TQD ~A5! by the four tableaux shown in Fig. 11. The ta
leauxSl (Sr) andTl (Tr) correspond to the singlet and triple

FIG. 11. Young tableaux corresponding to the singlet (Sa) and
triplet (Ta) four electron states of the TQD. The gray column d
note two electrons in the same dot~right or left!.
h
,

.

i,

m
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.
e
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states in which the right~left! dot contains two electrons
~gray column in Fig. 11! whereas electrons in the left~right!
and central dots form singlet and triplet, respectively.

The Young tableaux corresponding to various SO(n)
symmetries discussed in Sec. III can be obtained by com
ing the appropriate tableaux~Fig. 12!. The highest possible
symmetry P3SO(4)3SO(4) is represented by four tab
leaux Tl , Tr , Sl , andSr since all singlet and triplet state
are degenerate in this case. The symmetryP3SO(3)
3SO(3) occurs when two tripletsTl and Tr are close in
energy and these are represented by the couple of Yo
tableaux in the second line. Following this procedure,
SO(7) symmetry can be described in terms of two tripl
Tl , Tr diagrams and one singletSl diagram. Moreover,
SO(5) symmetry is represented by two singletSl , Sr dia-
grams and one tripletTl diagram and, finally, one triplet an
one singlet tableaux correspond to the SO(4) symmetry.

-

FIG. 12. Young tableaux corresponding to SO(n) symmetries.
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