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Edge modes, edge currents, and gauge invariance inpx¿ ipy superfluids and superconductors
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The excitation spectrum of a two-dimensionalpx1 ipy fermionic superfluid, such as a thin film of3He-A,
includes a gapless Majorana-Weyl fermion which is confined to the boundary by Andreev reflection. There is
also a persistent ground-state boundary current which provides a droplet containingN particles with angular
momentum\N/2. Both of these boundary effects are associated with bulk Chern-Simons effective actions. We
show that the gapless edge mode is required for the gauge invariance of the total effective action, but the same
is not true of the boundary current.

DOI: 10.1103/PhysRevB.69.184511 PACS number~s!: 74.20.De, 74.25.Fy, 74.25.Nf
en

io
po

.
g

d
et
t a
f a

at
an

ile
es
le

ic

t

lk
a
i

o
-
a

th

on
tic
m

os
ec
de

an
-

den-
ave

ff-

(2)
s is
the

ch

e
dard
-
ects

of
he
erm
to
r-
s
wn.
unt
sly

s.
i-

uge
lly

s
m-

-
e is
I. INTRODUCTION

Read and Green1 have pointed out close parallels betwe
two-dimensionalpx1 ipy chiral fermionic superfluids~a thin
film of 3He-A, for example! and then51/2 Pfaffian quan-
tum Hall state. The many-body ground-state wave funct
of both systems contains a Pfaffian factor, and both sup
gapless Majorana-Weyl edge modes.2 In addition, both sys-
tems can host vortex defects with non-Abelian statistics3,4

The px1 ipy superfluid also possesses an equilibrium ed
current that is consistent with an\-per-Cooper-pair intrinsic
angular momentum.5–7 This current is similar to that induce
by a confining potential at the boundary of a Hall dropl
and occurs because chiral fermionic superfluids manifes
analog of the quantum Hall effect, even in the absence o
external magnetic field.8

The principal differences between the Pfaffian Hall st
and the chiral superfluid are that, in addition to the Pfaffi
the Hall-state wave function includes a symmetricn51/2
Laughlin factor; also the Hall system is spin polarized, wh
the superfluid retains two active spin components. A l
significant difference is that the Hall fluid is incompressib
while a neutral superfluid like3He-A has a gapless acoust
mode. This acoustic mode will, however, be gapped in
charged superfluid state, such as that believed to exist in
layered Sr2RuO4 superconductors.9,10

In the quantum Hall effect, the lack of low-energy bu
degrees of freedom leads to the dynamics of the bound
and the bulk being intimately connected. Currents flowing
the bulk serve to soak up the anomalies of the edge-m
conservation laws,11 and, more profoundly, the bulk many
body wave function can be constructed from the conform
blocks of the edge conformal field theory.3 The existence of
the conformally invariant Majorana edge mode suggests
something similar is true for the superfluid.

Because of the interest of quantum systems with n
Abelian statistics, both for their intrinsic appeal as exo
physics and for their potential application to quantu
computing,12,13there is reason to search for the simplest p
sible description of their dynamics. Thus we seek an eff
tive action which captures all the essential low-energy
0163-1829/2004/69~18!/184511~12!/$22.50 69 1845
n
rt

e

,
n
n

e
,

s

a
he

ry
n
de

l

at

-

-
-
-

grees of freedom of the system. The construction of such
effective action for the fermionic Pfaffian Hall state is, how
ever, rather complicated.14 It is therefore worth examining
other systems with similar properties.

One such system is thebosonicPfaffian quantum Hall
state, which can perhaps be realized in rotating Bose con
sates. The bosonic Pfaffian state has a ground-state w
function consisting of the product of the antisymmetric Pfa
ian and an antisymmetricn51 Laughlin factor, making it
even under particle interchange. In this case14,15 the effective
action is an SU~2! Chern-Simons term at levelk52. This
means that the edge states form representations of an SU2
current algebra. Indeed, the space of low-energy state
spanned by wave functions consisting of polynomials in
complex coordinateszi that vanish when any three of thezi
coincide. The generating function for the number of su
polynomials is a character of the SU(2)2 algebra.16

The px1 ipy superfluid is also relatively easy to analyz
because its effective action has been computed by stan
gradient expansion methods.8,17 It is the purpose of this pa
per to explore some of the mathematical and physical asp
of the resulting expression. We will see that the response
the fluid to a non-Abelian gauge field which couples to t
spin degree of freedom is governed by a Chern-Simons t
of conventional form, but with a coefficient corresponding
level k5 1

2 . Since invariance under ‘‘large’’ gauge transfo
mations demands that the levelk be an integer, this mean
that the spin action cannot be gauge invariant on its o
Gauge invariance is restored only when we take into acco
the role of the spin-triplet order parameter in spontaneou
breaking of the SU~2! symmetry down to U~1!, and then by
the subsequent absorption of the residual U~1! gauge depen-
dence by the U~1! axial anomaly of the chiral edge state
The topological origin of the edge modes is therefore illum
nated. The response to an Abelian particle-number ga
field is governed by an action which looks superficia
Chern-Simons like, but is deficient in that it lacks the term
with time derivatives. In this case, gauge invariance is i
mediately manifest once we include the U~1! Goldstone
mode in the effective action.8 In particular, no boundary de
gree of freedom is required. Although this means that ther
©2004 The American Physical Society11-1
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no explicit coupling of the Abelian gauge field to the ed
modes, the Abelian part of the effective action does desc
the Hall-like edgecurrent, which therefore has a differen
origin from the edgemodes. It also reveals an essential di
ference between the real Hall effect and its field-free ana
In the Hall effect the current is proportional to the appli
electric field. In the superfluid, the absence of theȦ in the
action means that the induced current is proportional no
the electric field, but to the gradient of the fluid density. T
‘‘Hall current’’ should therefore be thought of as a two
dimensional analog of the Mermin-Muzikar current,6 which
is due to the intrinsic angular momentum of the fluid.

There have been several recent papers discussing
effective actions for chiral superfluids and superco
ductors,18,19 but our point of view differs from these in it
interpretation of the ‘‘Hall effect,’’ the magnitude and origi
of the edge current, and in its emphasis on the role of ga
invariance in establishing the bulk/edge connexion.

In the following section we will discuss the Bogoliubo
action for the planarpx1 ipy spin-triplet superfluid. In Sec
III we will find the eigenfunctions of the correspondin
Bogoliubov–de Gennes Hamiltonian in rigid walled conta
ers, and use them to compute the edge-mode spectrum
the magnitude of the persistent edge currents. In Sec. IV
will describe the effective actions governing the response
the fluid to external gauge fields that couple to particle nu
ber and to spin. We then show how the existence of
persistent boundary current and gapless edge modes ca
deduced from the bulk effective action.

II. BOGOLIUBOV –DE GENNES OPERATOR

The fermionic part of the action describing a BCS sup
conductor can be written in Nambu two-component form
ism as

S5E d2xdtS 1

2
C†~ i ] t2Ĥ !C D . ~1!

Here,

C5Fca

ca
† G , C†5@ca

† ,ca#, ~2!

are Grassmann fields with a spinor indexa5↑,↓, andĤ is
the Bogoliubov–de Gennes Hamiltonian

Ĥ5F ĥ D̂

D̂† 2ĥTG . ~3!

The entries inĤ are single-particle operators acting on t
tensor product of the position and spinor spaces. The he
ticity of Ĥ requires that the single-particle Hamiltonianĥ be
Hermitian, and Fermi statistics requires that the gap func
D̂ be skew symmetric, in this combined space.

For a Galilean invariant fluid of particles of massm, the
Hamiltonian is
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ĥ5S 2
1

2m
¹22e f D I , ~4!

where I is the identity operator in spin space ande f the
Fermi energy. For a superconductorĥ can be a more genera
function, e(p̂)I , of p̂52 i“.

The gap function will usually be a dynamical field, an
the total action will contain additional terms that serve
determine its value via a gap equation. We are, howe
interested only in the response of the fermions to prescri
changes in the gap functionD̂, so we will not need to make
these terms explicit. Further, we are primarily interested
topological effects, so the precise form ofD̂ is not significant
as long as it produces the required symmetry breaking. F
px1 ipy , spin-triplet superfluid, such as3He-A, we may
take

D̂5
1

2 S D

kf
DeiF/2$Ŝ,P̂%eiF/2. ~5!

Here,$ , % denotes an anticommutator,D is the magnitude of
the induced gap in the quasiparticle spectrum, andF is the
overall phase of the order parameter. The spin partŜ is a
symmetric 232 matrix with entries

Sab5@ i ~s•d!s2#ab , ~6!

whered is a unit vector. The orbital part of the gap functio
is contained in the operatorP̂, which we will take to be

P̂52 i ~ p̂x1 i p̂y![2~]x1 i ]y!, ~7!

corresponding to Cooper pairs with theirl 51 angular mo-
mentum vectorl directed in the1 ẑ direction, i.e., perpen-
dicular to the plane of the fluid. This orientation forl ensures
that the entire Fermi surface is gapped. We will fixl5 ẑ
throughout this paper. We will also take the magnitude of
gap D to be a constant. Although this parameter should
determined self-consistently through a gap equation, its m
nitude serves only to provide an upper limit for what w
mean by ‘‘low-energy’’ degrees of freedom, and so a
variation has no role in the following discussion.

WhenŜ andF are constants, the operator ordering of t
spin, phase, and orbital parts ofD̂ is unimportant. When
these quantities vary in space, however, we need the a
commutator ofŜ and P̂, and the symmetric distribution o
the overall phaseeiF about it, to ensure the antisymmetr
of D̂.

In the sequel, our calculations will be strictly 211 dimen-
sional. They therefore apply to a single stratum of a laye
superconductor, or, for a thin film of3He-A, to the case
when only a single transverse momentum mode lies be
the Fermi surface. Whenn transverse modes are occupie
but the order parameter remains independent ofz, our effec-
tive actions should be multiplied byn.
1-2
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III. EDGE MODES AND BOUNDARY CURRENTS

We now suppose the superfluid to be confined by ri
walls at which the wave function is required to vanish. W
also assume, for the duration of this section, that the s
vector d lies in the ŷ direction, so thatŜ5 i I and the two
spin components decouple.

A. Rectangular geometry

If we substitute

C5Fa

bGeikxx1 ikyy ~8!

with constant a, b, into the Bogoliubov equation,ĤC
5EC, the eigenvalue condition reduces to

F e~k! S k

kf
DeiuD

S k

kf
De2 iuD 2e~k!

G Fa

bG5EFa

bG . ~9!

Hereu is the polar angle such thatkx5k cosu, ky5k sinu.
The plane-wave eigenstates are therefore

CE,k5eis3u/2
1

2AE~E1D!
FE1e~k!1D

E2e~k!1D
Geikxx1 ikyy

~10!

with E51Ae2(k)1D2(k2/kf
2), and

C2uEu,k5eis3u/2
1

2AuEu~ uEu2D!
F uEu2D2e~k!

uEu2D1e~k!
Geikxx1 ikyy

~11!

with E52Ae2(k)1D2(k2/kf
2). We will restrict ourselves to

the case of weak coupling, whereD!e f , and so all states o
interest lie close to the Fermi surface where we can appr
mate the energy as

E56Av f
2~k2kf !

21D2, ~12!

wherev f is the Fermi velocity. We have considered only o
spin component. There are really two sets of such solutio
one for spin up and one for spin down.

If we expand the quantized field operatorĈ in terms of
the plane-wave states

Ĉ5F ĉ

ĉ†G5(
E,k

âE,kCE,k ~13!

then, in order for the upper and lower components to rec
struct ĉ and c †̂, respectively, the operatorsâE,k must obey
the reality conditionâE,k5â2E,2k

† .

1. Edge states

We now investigate the effect of a boundary. Suppose
shown in Fig. 1, that there is a wall aty50, with the fluid
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lying above it. We seek solutions to the Bogoliubov equat
in the form

C5C1Fa1~y!

b1~y!
Geik fx cosu1 ik f y sin u

2C2Fa2~y!

b2~y!
Geik fx cosu2 ik f y sin u, ~14!

where nowa6 and b6 are allowed to vary withy—but
slowly on the scale ofkf . We impose the boundary conditio
that C50 at y50. The resultant equations fora6 and b6

coincide with those derived in the Appendix for the solutio
of a one-dimensional Dirac Hamiltonian. The vanishing
the wave function at the wall becomes~because of the minus
sign beforeC2) the continuity of the Dirac wave function a
x50. The incoming particle therefore sees the reflect
boundary only as an abrupt change in the phase of the or
part of the order parameter, which jumps from2u to 1u.
The transmitted Dirac wave with amplitudet(k,E) corre-
sponds to those particles that have been specularly refle
at boundary, and the backscattered Dirac wave with am
tude r (k,E) corresponds to those particles that have be
Andreev reflected, and so retrace their path. The only sign
cant differences between the two-dimensional geometry
the one-dimensional problem solved in the Appendix are t
the coordinate ‘‘x’’ in the Appendix is the distance along th
classical trajectory, and that there we have set the Fe
velocity v f to unity. Thus, expressions appearing in the a
pendix, such as e2kuxu, must here be replaced b
e2kuyu/[v f sin(u)].

On making the appropriate translations from the results
the Appendix, we find that we have a bound state

x$0%~kx!5A D

2v f
eik fx cosusin~kfy sinu!e2Dy/v fF1

1G
~15!

with energy

E$0%~kx!52D cosu52D~kx /kf !. ~16!

The associated edge excitations are thereforechiral, or Weyl,
fermions, having group velocity]E/]kx only in the 2 x̂ di-

FIG. 1. Geometry of specular and Andreev reflections from
boundary.
1-3
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rection. This motion is in the opposite sense to the anticlo
wise orbital angular momentum of the Cooper pairs.

These edge modes have a topological character. All th
required for them to exist is that the fluid density fall to ze
at the boundary.2 Indeed, the edge-mode spectrum~16! for
our rigid wall boundary coincides with that obtained by Re
and Green1 in the opposite extreme of a very soft wall.

The contribution of the edge modes to the field opera
Ĉ is

(
kx

âkx

$0%xkx

$0%~x2ct!, ~17!

where c52D/kf , and, in order for the upper and lowe
components to reconstructĉ and ĉ†, respectively, we mus
haveâkx

$0%5(â2kx

$0% )†. The edge-mode field

Ĉ$0%~x2ct!5E
2kf

kf dk

2p
âkx

$0%xkx

$0%~x2ct! ~18!

is thereforereal, Ĉ$0%(x)5(Ĉ$0%(x))†, or Majorana.
It is difficult for anything interact with a Majorana-Wey

particle. A Weyl particle can interact only via currents, a
no current operator can be constructed from a single M
rana field. In our superfluid there are, however,two
Majorana-Weyl fields: one for spin up and one for sp
down. Out of these two real fields we can construct o
complex Weyl field:

Ĉc5
1

A2
~Ĉ↑

$0%1 i Ĉ↓
$0%!,

Ĉc
†5

1

A2
~Ĉ↑

$0%2 i Ĉ↓
$0%!, ~19!

and from this we can construct a unique U~1! current opera-
tor

Ĉc
†Ĉc5

i

2
~Ĉ↑

$0%Ĉ↓
$0%2Ĉ↓

$0%Ĉ↑
$0%)5

1

2
Ĉ$0%s2Ĉ$0%.

~20!

The edge modes may therefore interact with thes2 compo-
nent of a spin-coupled gauge field.

2. Boundary current

The doubling of the number of degrees of freedom in
Bogoliubov formalism requires us, when computing groun
state expectation values of an operator, to sum the contr
tions of all occupied~negative energy! states, but then divide
by 2 to prevent overcounting—this division by 2 bein
equivalent to imposing the reality condition on theâE,k . The
mass current carried by the state

C5Fa

bGeik fx cosu1 ik f y sin u, ~21!

wherea, b are slowly varying compared tokf is therefore
18451
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2 ~ uau21ubu2!~kfcosu,kf sinu!. ~22!

The edge modes withkx.0 have negative energy, and s
are occupied in the ground state where they make a pos
contribution to the boundary momentum density. For a G
ilean invariant system, the momentum density is also
mass current. The edge modes therefore tend to produ
boundary current that flows in the same sense as the Coo
pair rotation. The bound states, however, are not the o
contribution to this boundary current. The balance is p
vided by the phase-shifted scattering states, which~as they
do in the theory of fractional charge23,24! partially cancel the
contribution of a bound state when it has negative energy
is occupied, and partially make up for the absence of
contribution when it has positive energy and is unoccupi

The current in the direction perpendicular to the wall w
cancel between the incoming and outgoing waves,26 but thex̂
components will add. Using the results from the Append
we find that the net mass current running near the bound
is ~for a single spin component!

E
0

`

j xdy5E
0

1d~kf cosu!

2p S u

2p D kf cosu

1E
21

0 d~kf cosu!

2p S u

2p
2

1

2D kf cosu

52E
0

1d~kf cosu!

2p

u

2p
kf cosu5

kf
2

16p
5

1

4
r,

~23!

where, in our weak-coupling approximation,r5kf
2/4p is the

number density per spin component. If this current flows
the edge of a disk-shaped region of radiusR, it provides
angular momentum

L52pR2S r

4D ẑ5
N

2
ẑ. ~24!

This result agrees with that of Kita,7 and Volovik20 and is
exactly the angular momentum we would expect of a fluid
tightly bound Cooper pairs, each pair having orbital angu
momentum of\ ẑ. That the same result holds in the wea
coupling limit, where only the particles near the Fermi s
face are affected by the pairing, is more surprising, and i
often referred to as the ‘‘angular momentum paradox’’~see
Kita Ref. 7 for a recent review of this!.

Our result for the boundary current differs from that
Furusakiet al.,19 because they consider only the the bou
state contributions. The boundary current arising from
bound states alone is~again for a single spin component!

1

2E0

1d~kf cosu!

2p
kf cosu5

kf
2

8p
5

e fm

4p
. ~25!

After multiplying by 2 to take into account the two spi
components, this coincides with Eq.~2.8! of Furusaki
et al.,19 and differs from the actual persistent boundary c
rent by a factor of 2.
1-4
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We have computed the boundary current only in the w
coupling limit, but the result that it precisely accounts for t
\-per-pair angular momentum should remain valid even
the coupling is increased. This is because, provided
ground state evolves adiabatically, its total angular mom
tum cannot change as we alter parameters in the Ha
tonian. Adiabatic evolution may fail if there is spectral flo
and such flow does occur and change the angular momen
when we compute the angular momentum of some vo
configurations in bulk3He-A,21 and also when we conside
the dynamicalintrinsic angular momentum density,22 but in
the present case spectral flow can only occur through
gapless edge states and theE$0%(kx)52E$0%(2kx) Majorana
symmetry prevents the spectrum movingen massewith re-
spect to the chemical potential. For the same reason, the
boundary current should also not be affected by local de
tions of the order parameter away from its bulk form. T
‘‘fractional charge’’ interpretation23–25 of the current ensure
this, because the total fractional charge depends only on
asymptotics of the order parameter, and is unaffected by
cal variations.

B. Disk geometry

When the fluid has disk geometry it is convenient to u
polar coordinatesr, u, and to work with angular momentum
eigenstates}eil u. For example, we have

2¹2Jl~kr !eil u5k2Jl~kr !eil u, ~26!

whereJl(kr) is a Bessel function. In polar coordinates, t
orbital part of the gap operatorP̂52(]x1 i ]y) becomes

P̂52eiuS ]

]r
1

i

r

]

]u D , ~27!

and has a particularly simple action on the Laplace eig
functions,

P̂eil uJl~kr !5kei ( l 11)uJl 11~kr !. ~28!

The adjoint operator

P̂†52S 2
1

r

]

]r
r 1

i

r

]

]u De2 iu52eiuS 2
]

]r
1

i

r

]

]u D ,

~29!

similarly acts to reduce the angular momentum eigenval

P̂†eil uJl~kr !5kei ( l 21)uJl 21~kr !. ~30!

We look for eigenstates in the form

c5FaJl 11~kr !ei ( l 11)u

bJl~kr !eil u G . ~31!

The Bogoliubov equationĤC5EC then reduces to

F e~k! ~k/kf !D

~k/kf !D 2e~k!
GFa

bG5EFa

bG . ~32!

The eigenstates are therefore
18451
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CE,l~r ,u!5
1

2AE~E1D!
F ~E1e1D!ei ( l 11)uJl 11~kr !

~E2e1D!eil uJl~kr !
G ,
~33!

where the energy eigenvalue is

E51Ae2~k!1~k/kf !
2D2 ~34!

and

C2uEu,l~r ,u!5
1

2AuEu~ uEu2D!

3F ~ uEu2D2e!ei ( l 11)uJl 11~kr !

~ uEu2D1euEu!eil uJl~kr !
G ~35!

with energy

E52Ae2~k!1~k/kf !
2D2. ~36!

As before, we are interested in momenta near the Fe
surface where the energy can be approximated by

E56Av f
2~k2kf !

21D2. ~37!

When we confine the fluid by imposing rigid wall bound
ary conditions atr 5R, the eigenstates will be a linear com
bination

C l5C1Fa1Jl 11~k1r !ei ( l 11)u

b1Jl~k1r !eil u G
2C2Fa2Jl 11~k2r !ei ( l 11)u

b2Jl~k2r !eil u G , ~38!

of unconfined states with slightly different momentumk6

5kf6k, but a common energy

E56Av f
2k21D2. ~39!

To examine the consequences of the condition thatC
50 at r 5R we use the WKB approximation for the Bess
function,

Jl~kr !'A 2

pkx~r !
sin@kx~r !2 lu~r !2p/4#, r @b.

~40!

Herex(r ) andu(r ) are functions ofr, defined in terms of the
semiclassical impact parameter,b5 l /k, by x5r sinu andb
5r cosu. As illustrated in Fig. 2, the parameterx has the
physical interpretation of being the distance along
straight-line semiclassical trajectory. This approximation
quite accurate oncer exceedsb by more than a few percent
and is therefore reliable except for a few large values ol
which correspond to classical trajectories grazing the bou
ary. Using the WKB approximation and the explicit form o
the coefficientsa6 and b6 we we end up with exactly the
same equations for the bound state andS matrix that we
found in the planar boundary case.
1-5



n
g

nd

d

n

u
th
s
r

ac

rg
to

u
p
c
t
t

w-
on
ge
id.

o-
er

-
re-

left

ra-

se

MICHAEL STONE AND RAHUL ROY PHYSICAL REVIEW B 69, 184511 ~2004!
There is some advantage of working with a circular co
tainer, however. With a finite length boundary, the set of ed
modes becomes discrete—being labeled by the integerl. The
angleu between the semiclassical trajectory and the bou
ary isu(R), andl 5kfR cosu(R). In terms ofl, therefore, the
bound state has energy

E$0%~ l !'2S l

l max
DD, ~41!

wherel max5kfR. The WKB approximation is not quite goo
enough to distinguish betweenl and l 1 1

2 in this expression,
but on general grounds we know that if (u,v)T is an eigen-
state of the Bogoliubov Hamiltonian with energyE, then
(v* ,u* )T is also an eigenstate with energy2E. Under this
transformationC l→C2( l 11) , and so the correct equatio
must be

E$0%~ l !52S l 11/2

l max
DD. ~42!

There is therefore no exact zero mode. If, however, the b
fluid were to contain an odd number of vortices, and thus
phase of the order parameter wind an odd number of time
we encircle the boundary, then thel ’s appearing in the uppe
and lower components ofC would differ by anevennumber.
In this case therewill be a zero-energy edge state. Since e
vortex has a zero mode in its core,4 there will be an unpaired
zero-energy core mode which can pair with the zero-ene
edge state and so preserve the even dimension of the
Bogoliubov-particle Hilbert space.

This dependence of the edge-mode spectrum on the n
ber of the bulk vortex excitations is reminiscent of what ha
pens in the quantum Hall effect. There the Hilbert spa
sector of the edge conformal field theory also depends on
number and type of vortex quasiparticles that are presen
the bulk.

FIG. 2. The geometry of the WKB approximation to the Bes
function.
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IV. EFFECTIVE ACTIONS

We now discuss the effective action governing the lo
energy dynamics of the superfluid. We will obtain the acti
by examining the response of the fluid to external gau
fields that couple to the particle number and spin of the flu

A. Particle-number symmetry

We begin by gauging the U~1! symmetry corresponding to
particle-number conservation. We will again hold thed vec-
tor fixed in theŷ direction so we can treat each spin comp
nent separately. We minimally couple the particle-numb
current to an Abelian gauge field (A0 ,A), whereA0 is the
time component andA[(A1 ,A2) are the in-plane compo
nents of the externally imposed field. This requires the
placement

i ] t2Ĥ→ i ] t2Ĥ~A,F!, ~43!

where

Ĥ~A,F!5F 2
1

2m
~“2 iA!22A0 , i S D

kf
DeiF/2P̂eiF/2

2 i S D

kf
De2 iF/2P̂†e2 iF/2,

1

2m
~“1 iA!21A0

G .

~44!

The resulting action

S~A,F,C,C†!5E d2x dt C†
„i ] t2Ĥ~A,F!…C ~45!

is then invariant under the local gauge transformation

Fc

c†G→Feifc,

e2 ifc†G , ~46!

provided we simultaneously transform

F→F12f,

A→A1“ f,

A0→A01] tf. ~47!

Because the Grassmann measure in the path integral is
invariant by the transformation~46!, the effective action

iSeff
num~A,F!5 lnH E d@C#d@C†#exp@ iS~A,F,C,C†!#J

5
1

2
ln Det@ i ] t2Ĥ~A,F!# ~48!

will be invariant under the transformation~47!. If we com-
pute Eq.~48! to second order in the gauge field and its g
dients, we find,8,18 for a single spin component,

l

1-6
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Seff
num~A,F!5E d2xdtH r0

2mF 1

cs
2 S ]F/2

]t
2A0D 2

2~¹F/22A!2G2sxyS ]F/2

]t
2A0D ~“3A!z

2r0S ]F/2

]t
2A0D J . ~49!

Here,sxy51/8p, the parametercs is the speed of sound, an
r0 the equilibrium number density. In the weak couplin
limit the coefficient sxy is proportional to a topologica
winding number.8 The other quantities depend on the deta
of the fluid. For a (211)-dimensional Galilean invarian
system of particles with massm we haver05(m/2p)e f and
cs5v f /2. The action~49! is manifestly invariant under the
transformation~47!.

The term with coefficientsxy contains a Chern-Simons
like part

sxyE d2x dte0i j A0] iAj . ~50!

This is not a complete Chern-Simons action, however,
cause there is noe i0 jAi ] tAj term. It does, nonetheless, imp
the existence of a Hall-like response to the external field.
find for the particle-number current

jnum[
dSeff

num

dA
5

r0

m
~“ F/22eA!1sxy~ ẑ3¹!S ]F/2

]t
2A0D

5r0vs1sxy~ ẑ3“ !S ]F/2

]t
2A0D . ~51!

Although the term withsxy contains a gradient ofA0, it is
not equal tosxy(E3 ẑ), whereE5“A02Ȧ, as it would be
in the Hall effect.~Observe that“Ḟ/2 cannot beȦ in dis-
guise, because the former is necessarily curl-free.! We note,
however, that the combination (] tF/22A0) occurs in the the
expression for the density

r[
dSeff

num

dA0
5r02

r0

mcs
2 S ]F/2

]t
2A0D1sxy“3A. ~52!

Consequently, it seems preferable to write

jnum5r0vs2
1

4m
~ ẑ3“ !~r2sxyBz!, ~53!

whereBz5(“3A)z , and so recognize that the ‘‘Hall’’ cur
rent depends on the external field primarily through its eff
in modifying the density. The natural analogy is then w
the bound currentjbound5“3M in a magnet with varying
magnetizationM . In the superfluid, the magnetic-mome
density M is replaced by the intrinsic angular momentu
density 1

2 \(r2sxyBz) ẑ. The sxyBz term is presumably
present because a diamagnetic response to the externa
will reduce thekinetic angular momentum of a Cooper pa
18451
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even while leaving itscanonicalangular momentum fixed a
\. In the absence of an externalBz field, we therefore have a
mass flux

j5m jnum5 1
4“3r ẑ, ~54!

and this is a planar analog of the Mermin-Muzikar curren6

Whenr goes to zero slowly at a boundary we can use t
Mermin-Muzikar expression to compute the equilibriu
boundary current. The resulting boundary momentum d
sity coincides with that we computed for a rigid wall in Se
III, and again provides an\-per-Cooper-pair total angula
momentum for the fluid.

The agreement between the rigid-wall calculation of t
boundary current and the gradient expansion when expre
in terms of the density, coupled with the physical interpre
tion in terms of the\-per-Cooper-pair intrinsic angular mo
mentum of the fluid, leads us to conjecture that the nonto
logical corrections tosxy that arise as we move away from
weak coupling8,18 conspire with corrections to the compres
ibility in such a manner that the total mass current is alwa
proportional to the change in density, rather than to the
ternal force that causes the change.

B. Spin-rotation symmetry

The fields in

S5E d2xdt@C†~ i ] t2Ĥ !C# ~55!

can also be coupled to an SU~2! gauge field which acts on
the spin indices. To do this we replace the derivatives inSby
covariant derivatives

]m→]m1Am , ~56!

where

Am5 isaA m
a ~57!

is an externally imposed gauge field. Under a local gau
transformation the Fermi fields transform as

C5Fc

c†G→FUc

U* c†G , C†5@c†,c#→@c†U21,cUT#,

~58!

whereUPSU(2). Thecovariant derivatives transform as

]m1A m→U21~]m1Am!U5]m1~U21AmU1U21]mU !.
~59!

When considering how the transformation act in th
2ĥT entry in Ĥ, we need to recognize that derivative oper
tors appearing there are the transpose]m

T52]m of those in

ĥ, and so the covariant derivatives will be also be the tra
pose ]m

T1A m
T52]m1A m

T . Using U* 5(U21)T5(UT)21,
we have
1-7
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UT~]m
T1A m

T !~UT!2152]m1UTA m
T~UT!21

2UT~UT!21]mUT~UT!21

52]m1~U21AmU1U21]mU !T

5@]m1~U21AmU1U21]mU !#T,

~60!

and the effect of the transformation is consistent for b
entries:

Am→Am
U[U21AmU1U21]mU. ~61!

Note that (A U)V5A UV. For the off diagonal terms we hav

U21ŜU* 5U21@ i ~s•d!s2#U* 5@ iU 21~s•d!Us2#.
~62!

The net result is that the gauged action is invariant under
transformation~58!, provided we simultaneously transform

~d•s!→U~s•d!U21,

Am→A m
U21

5UA mU211U]mU21. ~63!

Volovik and Yakovenko computed the low-energy effe
tive action for the case of ad vector fixed to lie in theŷ
direction.17 They found this to be Chern-Simons term

Seff
spin~d5 ŷ,A!5

1

8pE tr S AdA1
2

3
A 3D . ~64!

Here we are using use differential-form notation in whi
A[ isaA m

a dxm is a matrix valued one-form. For any com
pact simple gauge groupG, the Chern-Simons action is de
fined to be

C~A!5
1

4pEV
tr S AdA1

2

3
A 3D , ~65!

whereA[ ilaA m
a dxm is a Lie(G)-algebra-valued one-form

and, as is customary, we normalize the trace and the Her
ian generatorsla by tr (lalb)52dab . When such a term is
to appear in a functional integral,

Z5E d@A#eikC(A), ~66!

then coefficientk must be quantized. This is because unde
gauge transformation

A→A g[g21Ag1g21dg ~67!

we have

C~A!→C~A g!5C~A!2
1

12pEV
tr @~g21dg!3#

2
1

4pE]V
tr ~dgg21A!. ~68!
18451
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Here, V is the region occupied by the fluid and]V its
boundary. The last term is zero whenV is closed manifold,
or if we restrict the gauge transformation to those const
on the boundary. The second term

W~g!5
1

12pEV
tr @~g21dg!3# ~69!

has no reason to vanish, however. It is the pull-back toV of
an element ofHDR

3 (G,Z), the third de-Rham cohomolog
group ofG. It can be nonzero whenever the gauge trans
mation g(x) mapsV into a homologically nontrivial three-
manifold in G. In particular, whenV is S3 and the groupG
is SU~2!, then

1

12pEV
tr @~g21dg!3#52pn, ~70!

wheren is the degree of the map fromS3→SU(2).S3. In
this casek has to be an integer so that the gauge ambiguity
C(A) is 2pkn and exp@ikC(A)# is well defined.

The Chern-Simons action found by Volovik and Ya
ovenko has a coefficient corresponding tok51/2, and so
violates the quantization condition onk. It cannot be gauge
invariant on its own. The complete effective action will b
gauge invariant, of course, but we must include additio
degrees of freedom to make this manifest. One of these is
direction of the vectord, which we must therefore allow to
vary. We parametrized in terms of a group elementV
PSU(2) by setting

~d•s!5Vs2V21. ~71!

Then,

Seff
spin~d,A!5Seff

spin~ ŷ,A V!5 1
2 C~A V!. ~72!

This expression is clearly invariant under the simultane
replacementA→A U and V→U21V. This is good, but not
perfect. The problem is thatV is not unique. The vectord is
more correctly parametrized by elements of the co
SU(2)/U(1), since we can replaceV by Veis2f without
changingd. This substitution does affectC(A V), however.
Compensating for the effects ofeis2f requires yet anothe
degree of freedom. We will write this asW5eis2x. A com-
pletely gauge invariant action is then

Seff
spin~d,A,x!5 1

2 C~A VW!. ~73!

This is manifestly invariant under the simultaneous repla
ment

A→A U,

V→U21Veis2f,

x→x2f. ~74!

What is the physical interpretation of this extra fieldx?
This question is easiest to answer if we setV5I on the
1-8
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boundary, so thatd5 ŷ there. Then, using the Polyakov
Wiegmann identity~68! we can write

Seff
spin~d,A,x!5

1

2
C~A VW!5

1

2
C~A!

2
1

24pEV
tr @~V21dV!3#

2
1

8pE]V
tr $dWW21A%. ~75!

The second term

1

2
W~V!5

1

24pEV
tr @~V21dV!3# ~76!

is precisely the Hopf index found by Volovik and Yak
ovenko. On a closed manifold, or whend is fixed at the
boundary, it is equal tonp where n labels the homotopy
class of the mapd:S3→S2. The Berry phase provided b
this term makes a skyrmion soliton in thed field into a
fermion. The third term

2
1

8pE]V
tr $dWW21A% ~77!

is equal to

2
i

8pE]V
tr $dxs2A%5

1

4pE dxdt$A 0
2]xx2A x

2] tx%,

~78!

and represents the coupling of thex field current to thes2
component ofA. This interaction takes place only on th
boundary, which we have taken to be thex axis as in Sec.
III A. This suggests that thex field is the bosonized form o
the complex Weyl fermionCc that we constructed out of th
two Majorana-Weyl edge modes in Sec. III A. As we not
there,Cc naturally couples to thes2 component ofA.

Gauge invariance tells us that the edge modes must e
but it does not determine their dynamics. We can, howe
add a manifestly gauge invariant boundary term that ens
that the x field propagates unidirectionallly at speedc5
2D/kf . This term is11

2
c

8pE dxdt tr $@W21~]x1Ax!W#@W21~]x1c21] t1Ax

1c21At!W#%. ~79!

Including it, and writingW5eis2x, the effective action be-
comes
18451
st,
r,
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Seff
spin~d,A,x!5

1

2
C~A!2

1

2
W~V!1

c

4pE dxdt$]xx@~c21] t

1]x!x#%1
1

2pE dxdt$~cA x
21A t

2!]xx%

2
1

8pE dxdt tr $~cAx1At!Ax%. ~80!

The terms containingx now constitute the action for a chira
boson interacting with the appropriate chiral component
the gauge field. The entire expression is invariant un
gauge transformationsU which reduce to the formeis2f on
the boundary, and so maintaind5 ŷ there. We note that the
factor of 1/2 in the ‘‘level’’k is compensated for by a facto
2 coming from tr (s2

2)52, so as to give the correct scale fo
a chiral boson representing a Weyl fermion.

Since the actions of the U~1! and SU~2! gauge groups
commute with one another, the complete gauge invariant
fective action containing all the low-energy degrees of fre
dom is the sum

Seff
tot~A,F,d,A,x!52Seff

num~A,F!1Seff
spin~d,A,x!. ~81!

Here the ‘‘2’’ in front of Seff
num comes from the two spin com

ponents.

V. CONCLUSIONS

We have investigated the gauge invariance of the lo
energy effective action for a (211)-dimensional chiral su-
perfluid coupled to external gauge fields. When the or
parameter completely breaks the gauge group, as in the
of Abelian particle-number symmetry, the effective acti
becomes manifestly gauge invariant as soon as we inc
the bulk Goldstone modes among the dynamical fiel
When the gauge symmetry is not completely broken, as
the case of spin-rotation symmetry, we found that addition
non-Goldstone, degrees of freedom were required for m
fest gauge invariance. These were identified as being
spin-up and spin-down Majorona-Weyl edge fermion
which could be combined to produce a current that soaks
the remaining gauge dependence.

The consequences of the effective actions for spin-
particle-number currents also differ. The former has a t
spin-Hall effect, with a dissipationless spin current prop
tional to the spin ‘‘electric’’ field. The latter, we have argue
has only a ‘‘mock’’ Hall effect, the induced current bein
proportional to the change in density, and not to the exter
field causing the change.
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APPENDIX: DIRAC EQUATION

The twisted-mass Dirac equation that results from
two-dimensional problem is a standard illustration of t
theory of fractional charge.23 We review it here so as to mak
clear the contribution of the extended scattering states to
boundary current.

We consider the one-dimensional Dirac Hamiltonian

Ĥ52 i t3]x1Dt1e2 i t3f(x)5F2 i ]x Deif(x)

De2 if(x) i ]x
G ,

~A1!

whereD is a constant.
We will compute the extra particle number that is acc

mulated in the vicinity ofx50 when f is discontinuous,
jumping abruptly fromf5fL when x,0 to f5fR when
x.0. Suppose the eigenstates ofĤ arexn with energyEn .
The ground-state number density is

^c†c~x!&5( uxn~x!u2, ~A2!

where the sum is over occupied states, i.e., those withEn
,0. Because the sum ofuxnu2 overall states is independen
of f by completeness, we can equally well write

^c†c~x!&5const.2 (
En.0

uxn~x!u2, ~A3!

and this form is slightly more convenient. We will show th

Q5E ^c†c~x!&dx

5
1

2p
~fR2fL!, 0,~fR2fL!,p,

5
1

2p
~fR2fL!21, p,~fR2fL!,2p. ~A4!

When f is constant we have a continuum of positive a
negative energy eigenfunctions

ck,E
f 5eis3f/2

1

2AE~E1D!
FE1k1D

E2k1D
Geikx, ~A5!

whereE(k)56Ak21D2. With the discontinuity present, w
will have scattering solutions

c5aL
( in)ck,E

fL 1aL
(out)c

2k,E
fL , x,0,

5aR
( in)c

2k,E
fR 1aR

(out)ck,E
fR , x.0.

The functionc must be continuous atx50, and from this
condition we obtain theS-matrix relation

FaL
(out)

aR
(out)G5F t r

r t GFaR
( in)

aL
( in)G , ~A6!

where
18451
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t~k,E!5
1

cos~F/2!2~ iE/k!sin~F/2!
,

r ~k,E!5
i ~D/k!sin~F/2!

cos~F/2!2~ iE/k!sin~F/2!
. ~A7!

HereF is shorthand forfL2fR .
In addition to the continuum states, there is also a sin

bound state

c$0%}eis3fR/2FE$0%1 ik1D

E$0%2 ik1D
Ge2kx, x.0

}eis3fL/2FE$0%2 ik1D

E$0%1 ik1D
Gekx. x,0.

The bound-state energyE$0% is also determined by continuity
at x50, which requires

E$0%5D cos~F/2!,

k5D sin~F/2!.

These formulas are valid for 0,F,2p, wherek is posi-
tive, and extend outside that interval with period 2p. At F
50 there is no bound state. AsF increases, a bound stat
peels off the upper continuum. It passes throughE50 at F
5p, and merges with the lower continuum asF reaches
2p. If F increases beyond 2p, the process repeats wit
another state peeling off the upper continuum. Thus eachp
twist in F results in the net transfer of one state from t
upper continuum to the lower.

Using the relation betweenE$0% andk, we can write the
normalized bound state as

x$0%5Ak

2 Fei (fL1fR)/4

e2 i (fL1fR)/4Ge2kuxu. ~A8!

A complete set of states comprisesx$0% together with

xk,E5H ck,E
fL 1r ~k,E!c2k,E

fL , x,0,

t~k,E!ck,E
fR , x.0,

k.0. ~A9!

xk,E5H t~k,E!ck,E
fL , x,0,

ck,E
fR 1r ~k,E!c2k,E

fR , x.0,
k,0. ~A10!

These basis states therefore switch from a wave incid
from the left to one incident from the right ask changes sign.

After usingur u21utu251, and the explicit form of the free
eigenfunctions, we find

(
E.D

uxE~x!u25E
2`

` dk

2p
uxE,k~x!u2

5const.1E
2`

` dk

2p
r ~k,E!S D

k De2ikuxu.

~A11!
1-10
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Here the ‘‘const.’’ refers to terms that are independent
fR,L . We can improve the numerical convergence of
integral by using Jordan’s lemma to push the contour of
tegrationG into the upper half plane, as shown in Fig. 3.

We observe that the reflection coefficient has a cut r
ning fromk5 iD to i`, and that for 0,F,p there is a pole
in the upper half plane atk5 iD sinF/2. At F5p the pole
merges with the cut. Forp,F,2p the pole is apparently
returning towards the real axis again, but a more care
investigation shows that it is now on the second sheet,
no longer contributes.~At the same time a pole at
2 iD sinF/2 has emerged onto the first sheet in the low
half plane. This is below the real axis, however, and a
does not contribute.!

The integral in Eq.~A11! then becomes

2D sinF/2e22Dusin F/2uuxu

1E
D

` dk

2p

D2sinF

k22D2sin2~F/2!

1

Ak22D2
ke22kuxu.

~A12!

The first term, the pole contribution, is only present if
,F,p.

There does not seem to be a closed-form expression
the integral in Eq.~A12!, but if we first integrate overx to
get the total charge, we end up with an elementary integ

E
D

` dk

2p

D2sinF

k22D2sin2~F/2!

1

Ak22D2
5

F

2p
, 2p,F,p.

~A13!
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This expression extends to a 2p periodic function ofF, and
the integral is therefore discontinuous at odd multiples ofp.
After we include the pole contribution, which is discontin
ous atall multiples of p, we find that the total continuum
contribution is discontinuous only atF50 ~mod 2p). Thus

E
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tral weight in the upper continuum is gradually recovered
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1
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5
1
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1
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