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Edge modes, edge currents, and gauge invariance my+ip, superfluids and superconductors
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The excitation spectrum of a two-dimensiomgh-ip, fermionic superfluid, such as a thin film SHe-A,
includes a gapless Majorana-Weyl fermion which is confined to the boundary by Andreev reflection. There is
also a persistent ground-state boundary current which provides a droplet contdipanicles with angular
momentunv:N/2. Both of these boundary effects are associated with bulk Chern-Simons effective actions. We
show that the gapless edge mode is required for the gauge invariance of the total effective action, but the same
is not true of the boundary current.
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[. INTRODUCTION grees of freedom of the system. The construction of such an
effective action for the fermionic Pfaffian Hall state is, how-
Read and Greérhave pointed out close parallels betweenever, rather complicatedd. It is therefore worth examining
two-dimensionap,+ip, chiral fermionic superfluidgéa thin  other systems with similar properties.
film of He-A, for examplé and they=1/2 Pfaffian quan- One such system is thieosonic Pfaffian quantum Hall
tum Hall state. The many-body ground-state wave functiorstate, which can perhaps be realized in rotating Bose conden-
of both systems contains a Pfaffian factor, and both supporates. The bosonic Pfaffian state has a ground-state wave
gapless Majorana-Weyl edge modes addition, both sys- function consisting of the product of the antisymmetric Pfaff-
tems can host vortex defects with non-Abelian statistits. ian and an antisymmetrie=1 Laughlin factor, making it
The py+ip, superfluid also possesses an equilibrium edgeeven under particle interchange. In this dadethe effective
current that is consistent with d@per-Cooper-pair intrinsic  action is an SI®) Chern-Simons term at levéd=2. This
angular momentur®.’ This current is similar to that induced means that the edge states form representations of an $U(2)
by a confining potential at the boundary of a Hall droplet,current algebra. Indeed, the space of low-energy states is
and occurs because chiral fermionic superfluids manifest aspanned by wave functions consisting of polynomials in the
analog of the quantum Hall effect, even in the absence of anomplex coordinateg; that vanish when any three of tlag
external magnetic field. coincide. The generating function for the number of such
The principal differences between the Pfaffian Hall statepolynomials is a character of the SUg23lgebrat®
and the chiral superfluid are that, in addition to the Pfaffian, The p,+ip, superfluid is also relatively easy to analyze
the Hall-state wave function includes a symmetrie 1/2  because its effective action has been computed by standard
Laughlin factor; also the Hall system is spin polarized, whilegradient expansion metho8t$’ It is the purpose of this pa-
the superfluid retains two active spin components. A lesper to explore some of the mathematical and physical aspects
significant difference is that the Hall fluid is incompressible of the resulting expression. We will see that the response of
while a neutral superfluid lik€He-A has a gapless acoustic the fluid to a non-Abelian gauge field which couples to the
mode. This acoustic mode will, however, be gapped in apin degree of freedom is governed by a Chern-Simons term
charged superfluid state, such as that believed to exist in thaf conventional form, but with a coefficient corresponding to
layered SsRuQ, superconductors®? level k=3. Since invariance under “large” gauge transfor-
In the quantum Hall effect, the lack of low-energy bulk mations demands that the levebe an integer, this means
degrees of freedom leads to the dynamics of the boundarat the spin action cannot be gauge invariant on its own.
and the bulk being intimately connected. Currents flowing inGauge invariance is restored only when we take into account
the bulk serve to soak up the anomalies of the edge-modihe role of the spin-triplet order parameter in spontaneously
conservation laws! and, more profoundly, the bulk many- breaking of the S(2) symmetry down to (1), and then by
body wave function can be constructed from the conformathe subsequent absorption of the residuél)\gjauge depen-
blocks of the edge conformal field thedrifhe existence of dence by the (I) axial anomaly of the chiral edge states.
the conformally invariant Majorana edge mode suggests thakhe topological origin of the edge modes is therefore illumi-
something similar is true for the superfluid. nated. The response to an Abelian particle-number gauge
Because of the interest of quantum systems with nonfield is governed by an action which looks superficially
Abelian statistics, both for their intrinsic appeal as exoticChern-Simons like, but is deficient in that it lacks the terms
physics and for their potential application to gquantumwith time derivatives. In this case, gauge invariance is im-
computingt?*3there is reason to search for the simplest posmediately manifest once we include the(1Y Goldstone
sible description of their dynamics. Thus we seek an effecmode in the effective actiohln particular, no boundary de-
tive action which captures all the essential low-energy degree of freedom is required. Although this means that there is
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no explicit coupling of the Abelian gauge field to the edge .
modes, the Abelian part of the effective action does describe hZ( - %VZ— Gf) L, (4)
the Hall-like edgecurrent which therefore has a different

origin from the edgemodes It also reveals an essential dif- where | is the identity operator in spin space aed the

ference between the real Hall effect and its field-free analogl.: ) F ducko b |
In the Hall effect the current is proportional to the applied erml energy. For a supercon uctocan be a more genera
function, e(p)!, of p=—iV.

electric field. In the superfluid, the absence of thén the h ¢ . i v b d ical field d
action means that the induced current is proportional not tg ' "¢ 9ap function will usually be a dynamical field, an

the electric field, but to the gradient of the fluid density. Thethe tOt?" a(_:tion will cc_mtain additiona_l terms that serve to
“Hall current” should therefore be thought of as a two- determine its value via a gap equation. We are, however,

dimensional analog of the Mermin-Muzikar currénghich interested only in the response of the fermions to prescribed

is due to the intrinsic angular momentum of the fluid. changes in the gap functiah, so we will not need to make

There have been several recent papers discussing tilaese terms explicit. Further, we are Qrimarily interested in
effective actions for chiral superfluids and supercon-topological effects, so the precise formMdfis not significant
ductorst®!® but our point of view differs from these in its as long as it produces the required symmetry breaking. For a
interpretation of the “Hall effect,” the magnitude and origin p,+ip,, spin-triplet superfluid, such adHe-A, we may
of the edge current, and in its emphasis on the role of gaugeke
invariance in establishing the bulk/edge connexion.

In the following section we will discuss the Bogoliubov (AN
action for the planap,+ip, spin-triplet superfluid. In Sec. A= f(k_> e s Plel??, (5)
Il we will find the eigenfunctions of the corresponding f
Bogoliubov—de Gennes Hamiltonian in rigid walled contain- . . .
ers, and use them to compute the edge-mode spectrum aﬁi&r.e’{ .} denoteg an antlcommut_atdr,ls the magnlt.ude of
the magnitude of the persistent edge currents. In Sec. IV w € induced gap in the quasiparticle spectrum,' @nAd;.the
will describe the effective actions governing the response ofverall phase of the order parameter. The spin pais a
the fluid to external gauge fields that couple to particle numSymmetric 2<2 matrix with entries
ber and to spin. We then show how the existence of the
persistent boundary current and gapless edge modes can be 2 p=[i(o-d)os],p, (6)
deduced from the bulk effective action.

whered is a unit vector. The orbital part of the gap function

Il. BOGOLIUBOV —DE GENNES OPERATOR is contained in the operatcﬁ, which we will take to be
The fermionic part of the action describing a BCS super- . e A )
conductor can be written in Nambu two-component formal- P=—i(pxtipy)=—(dxFidy), (7)
ism as

corresponding to Cooper pairs with théir= 1 angular mo-

5 1 .. . mentum vector directed in the+z direction, i.e., perpen-
ng d*xdt E‘P (tg—H)W . (1) dicular to the plane of the fluid. This orientation faensures

that the entire Fermi surface is gapped. We will fix z
Here, throughout this paper. We will also take the magnitude of the
gap A to be a constant. Although this parameter should be
" : N determined self-consistently through a gap equation, its mag-
W= i V=, ¢l (2 nitude serves only to provide an upper limit for what we
“ mean by “low-energy” degrees of freedom, and so any

are Grassmann fields with a spinor index 1,1, andH is variation pas no role in the following discussion. .

the Bogoliubov—de Gennes Hamiltonian When, and® are constants, Ehe operator ordering of the
spin, phase, and orbital parts &f is unimportant. When
these quantities vary in space, however, we need the anti-

(3)  commutator of2 andP, and the symmetric distribution of
the overall phase'® about it, to ensure the antisymmetry

h A

AT —AT]

LA . . . of A.
The entries inH are smglle.-partmle operators acting on the_ In the sequel, our calculations will be strictly+2L dimen-
tensor product of the position and spinor spaces. The hermEional. They therefore apply to a single stratum of a layered

t|C|ty of |:| requil’es that the Sing|e-pal’tic|e Hami|t0niarbe Superconductor, or, for a thin film O?He_A' to the case
Hermitian, and Fermi statistics requires that the gap functiojyhen only a single transverse momentum mode lies below

A be skew symmetric, in this combined space. the Fermi surface. When transverse modes are occupied
For a Galilean invariant fluid of particles of mass the  but the order parameter remains independert ofir effec-
Hamiltonian is tive actions should be multiplied hy.
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IlIl. EDGE MODES AND BOUNDARY CURRENTS

We now suppose the superfluid to be confined by rigid
walls at which the wave function is required to vanish. We

vectord lies in the§/ direction, so tha® =il and the two
spin components decouple.

also assume, for the duration of this section, that the spirI y
X

A. Rectangular geometry

If we substitute

al . )
P = e|kxx+|kyy (8)

with constanta, b, into the Bogoliubov equationH¥
=EWV, the eigenvalue condition reduces to

elfA

k

B ©)

K\ e b)
(E)e A ek

Here 6 is the polar angle such thag =k cosé, k,=ksin6.
The plane-wave eigenstates are therefore

, 1 E+e(k)+A]
\I,E K= el o302 T e|k><x-¢—|kyy
’ 2JE(E+A)|E—€e(k)+A
(10)
with E= + \/e?(k) + A2(k?/k?), and
Ve k:ei03ﬁl2; [El-A—e(k) kX +ikyy
&l 2\[E[(JE[-A) LIE|-A+e(k)
(12

with E= — \/e2(k) + A%(k?/k%). We will restrict ourselves to
the case of weak coupling, whefe< ¢; ,

interest lie close to the Fermi surface where we can approxi

mate the energy as

E=+ Jui(k—ki)2+A2

12

FIG. 1. Geometry of specular and Andreev reflections from the
boundary.

lying above it. We seek solutions to the Bogoliubov equation
in the form

a,(y) ik . .
— £X cosO+iksy sin @
¥=C. b (y)
a_(y)} . .
-C_ elkfxcosa—lkfysmal 14
b_(y) 19

where nowa. andb. are allowed to vary withy—but
slowly on the scale dof; . We impose the boundary condition
thatW=0 aty=0. The resultant equations far. andb..
coincide with those derived in the Appendix for the solutions
of a one-dimensional Dirac Hamiltonian. The vanishing of
the wave function at the wall becomésecause of the minus
sign beforeC_) the continuity of the Dirac wave function at
x=0. The incoming particle therefore sees the reflecting
boundary only as an abrupt change in the phase of the orbital
part of the order parameter, which jumps fron¥ to + 6.

The transmitted Dirac wave with amplitudék,E) corre-
sponds to those particles that have been specularly reflected

and so all states of &t boundary, and the backscattered Dirac wave with ampli-

tude r(k,E) corresponds to those particles that have been
Andreev reflected, and so retrace their path. The only signifi-
cant differences between the two-dimensional geometry and
the one-dimensional problem solved in the Appendix are that
the coordinate X" in the Appendix is the distance along the

Wherevf is the Fermi velocity. We have considered only oneclassical trajectory, and that there we have set the Fermi
spin component. There are really two sets of such solutionsselocity v; to unity. Thus, expressions appearing in the ap-

one for spin up and one for spin down.

If we expand the quantized field operat&rin terms of
the plane-wave states

¥
ot

= ..|=2 ap Ve (13

E.k

then, in order for the upper and lower components to recon-

struct s and 3", respectively, the operatogg , must obey
the reality conditiorag ,=a' ¢ .

1. Edge states

pendix, such ase “ must here be
g~ «IYI/o sin@)]
On making the appropriate translations from the results in

the Appendix, we find that we have a bound state

replaced by

A 1

X% (k) =\ 53— < Usin(kqy sin g)e Y/
Zl)f 1
(15

with energy

E% (k) =— A cosf=— A(Ky/ks). (16)

We now investigate the effect of a boundary. Suppose, a$he associated edge excitations are theretbreal, or Wey|

shown in Fig. 1, that there is a wall =0, with the fluid

fermions, having group velocityE/dk, only in the —x di-
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rection. This motion is in the opposite sense to the anticlock-

wise orbital angular momentum of the Cooper pairs.

PHYSICAL REVIEW B 69, 184511 (2004

j=2%(]al?+|b|?)(kscosh, ks sin ). (22

These edge modes have a topological character. All that is The edge modes witk,>0 have negative energy, and so
required for them to exist is that the fluid density fall to zeroare occupied in the ground state where they make a positive

at the boundary.Indeed, the edge-mode spectriit6) for

contribution to the boundary momentum density. For a Gal-

our rigid wall boundary coincides with that obtained by Readilean invariant system, the momentum density is also the

and Greehin the opposite extreme of a very soft wall.

mass current. The edge modes therefore tend to produce a

The contribution of the edge modes to the field operatoboundary current that flows in the same sense as the Cooper-

¥ is

2 alxi (x—ct), (17
where c=—A/K¢, and, in order for the upper and lower
components to reconstrugt and ¢, respectively, we must
haveal”’=(a%)". The edge-mode field

\P{O}(x—ct)=fkf %ém} 2 (x—ct)
K 20 Ky ka

R

(18)

is thereforereal, W% (x) = (¥1%(x))T, or Majorana

pair rotation. The bound states, however, are not the only
contribution to this boundary current. The balance is pro-
vided by the phase-shifted scattering states, wifashthey
do in the theory of fractional charge?” partially cancel the
contribution of a bound state when it has negative energy and
is occupied, and partially make up for the absence of its
contribution when it has positive energy and is unoccupied.
The current in the direction perpendicular to the wall will

cancel between the incoming and outgoing weiidsjt thex
components will add. Using the results from the Appendix,
we find that the net mass current running near the boundary
is (for a single spin component

© 1
It is difficult for anything interact with a Majorana-Weyl J jxdy= J M i) ki cosd
particle. A Weyl particle can interact only via currents, and 0 0 2m 2m
no current operator can be constructed from a single Majo- 0 d(kicosd) [ 6 1
rana field. In our superfluid there are, howevéwo +J f—(———) k¢ cosé
Majorana-Weyl fields: one for spin up and one for spin -1 2w 2m 2

down. Out of these two real fields we can construct one

complex Weyl field:

N Rt
wczﬁ(ﬂom‘y{f}),
=L oo
\I,c (‘PT _I\Pl )! (19)

2

and from this we can construct a uniquélWcurrent opera-
tor

oo o 1. .
(PO {0 — {010 = SV 0o, W0,
(20)

The edge modes may therefore interact with édhecompo-
nent of a spin-coupled gauge field.

2. Boundary current

kK2 1
67 4"
(23)
where, in our weak-coupling approximatiqas: k?/477 is the
number density per spin component. If this current flows at

the edge of a disk-shaped region of radRsit provides
angular momentum

27

1d(ks cos#) 6
f o k¢ cosé=
0 aw

o r? P52 NS

L=27R 4)2 22.

This result agrees with that of Kifaand Volovik® and is
exactly the angular momentum we would expect of a fluid of
tightly bound Cooper pairs, each pair having orbital angular

momentum ofiz. That the same result holds in the weak
coupling limit, where only the particles near the Fermi sur-
face are affected by the pairing, is more surprising, and it is
often referred to as the “angular momentum paradés€e
Kita Ref. 7 for a recent review of this

(24)

The doubling of the number of degrees of freedom in the  Qur result for the boundary current differs from that of

Bogoliubov formalism requires us, when computing ground-Fyrysakiet al,*® because they consider only the the bound
state expectation values of an operator, to sum the contribustate contributions. The boundary current arising from the
tions of all occupiednegative energystates, but then divide pound states alone iggain for a single spin componegnt

by 2 to prevent overcounting—this division by 2 being
equivalent to imposing the reality condition on r&,gk. The
mass current carried by the state 2

cosé (25

0 2 f 87 4w

1flo|(kf cos#) . k?

After multiplying by 2 to take into account the two spin
components, this coincides with Eq2.8) of Furusaki
et al,'® and differs from the actual persistent boundary cur-
rent by a factor of 2.

a
eikfx cosf+iksy sin @
1

\Ifzb

(21)

wherea, b are slowly varying compared t is therefore
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We have computed the boundary current only in the weak 1 (E+e+A)e (D03, (kr)
coupling limit, but the result that it precisely accounts for the Wg (r,0)= ———— o ,
#h-per-pair angular momentum should remain valid even as 2VE(E+A) [ (E—e+A)e""Jy(kr)
the coupling is increased. This is because, provided the (33

ground state evolves adiabatically, its total angular momenghere the energy eigenvalue is

tum cannot change as we alter parameters in the Hamil-

tonian. Adiabatic evolution may fail if there is spectral flow, E=+ Vei(k) + (k/ks)?AZ (34)
and such flow does occur and change the angular momentum

when we compute the angular momentum of some vorte”nd

configurations in bulk®He-A,2! and also when we consider

the dynamicalintrinsic angular momentum densf§but in W (F.60)= 1

the present case spectral f}low can o{g;y occur through the —IELR T 2\|E[(JE[-A)

gapless edge states and & (k,) = — E%(—k,) Majorana .

symmetry prevents the spectrum movieg masseawith re- (|E|[=A—e)e' 1%, 4 (kr)

spect to the chemical potential. For the same reason, the total X (|E|— A+ €| E|)e' 23, (kr) (35

boundary current should also not be affected by local devia-
tions of the order parameter away from its bulk form. Thewith energy
“fractional charge” interpretatioff~2° of the current ensures

this, because the total fractional charge depends only on the E=— e (k) + (kik;)*AZ. (36)
asymptotics of the order parameter, and is unaffected by lo-
cal variations.

As before, we are interested in momenta near the Fermi
surface where the energy can be approximated by

B. Disk geometry E=i\/m. 37)
When the fluid has disk geometry it is convenient to use
polar coordinates, #, and to work with angular momentum  When we confine the fluid by imposing rigid wall bound-
eigenstatesce''’. For example, we have ary conditions at =R, the eigenstates will be a linear com-

) N0 o o bination
-V (kr)e"’=k=J,(kr)e""’, (26)

whereJ;(kr) is a Bessel function. In polar coordinates, the V,=C,

. il
orbital part of the gap operatét= — (d,+id,) becomes by Ji(kyr)e
aJlJrl(kr)ei(IJrl)q

b_J,(k_r)e'?

a+J|+1(k+r)ei(l+l)0}

,\ I O A B
__ a0l 27 —C_ (38
P=-e (ar+ra0)’ @

and has a particularly simple action on the Laplace eigen®f unconfined states with slightly different momentum
=k;xk, but a common energy

functions,
Pell03,(kr)=ke+ 103, ; (kr). (28) E==+Jufk?+A% (39)
The adjoint operator To examine the consequences of the condition tHat
14 - PR =0 atr=R we use the WKB approximation for the Bessel
pt—_ | =% 0 Yoo e 2 0 T function,
P ( rarr+r¢90)e e( ar+r<90)'
(29 2
. ) Ji(kr)~\/ ———sinkx(r)—=16(r)— /4], r>b.
similarly acts to reduce the angular momentum eigenvalue mKX(r)
(40)
BT il 6 Lai(-1)0
Pre™J(kr)=ke Ji-a(kr). (30 Herex(r) andd(r) are functions of, defined in terms of the
We look for eigenstates in the form semiclassical impact parametér=1/k, by x=r sing andb

=r cosf. As illustrated in Fig. 2, the parametgrhas the

physical interpretation of being the distance along the
(3)  straight-line semiclassical trajectory. This approximation is

quite accurate onceexceedd by more than a few percent,

The Bogoliubov equatioi ¥’ = EW¥ then reduces to and is therefore reliable except for a few large values$ of
which correspond to classical trajectories grazing the bound-

aJI+l(kr)ei(|+l)9

bJ|(kr)e”0

e(k) (klks)A a ary. Using the WKB approximation and the explicit form of
(KIk)A  —e(K) =Bl (32)  the coefficientsa. andb. we we end up with exactly the
same equations for the bound state &dnatrix that we
The eigenstates are therefore found in the planar boundary case.
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IV. EFFECTIVE ACTIONS

We now discuss the effective action governing the low-
energy dynamics of the superfluid. We will obtain the action
by examining the response of the fluid to external gauge
fields that couple to the particle number and spin of the fluid.

A. Particle-number symmetry

We begin by gauging the (@) symmetry corresponding to
particle-number conservation. We will again hold theec-
tor fixed in the§/ direction so we can treat each spin compo-
nent separately. We minimally couple the particle-number
current to an Abelian gauge fieldhg,A), whereA, is the
time component and\=(A,,A,) are the in-plane compo-
nents of the externally imposed field. This requires the re-
placement

FIG. 2. The geometry of the WKB approximation to the Bessel

function. io,—H—i9,—H(A,®), (43

There is some advantage of working with a circular con-Where
tainer, however. With a finite length boundary, the set of edge
modes becomes discrete—being labeled by the intedédre L (V-iA2-A |(£ Qi P12 i P12
angle 6 between the semiclassical trajectory and the bound-_ 2m o K¢
ary is A(R), andl =k;R cosé(R). In terms ofl, therefore, the H(AP)=
bound state has energy —j

e 1
—iPR2pTa—id/2 ; 2
kf)e P'e , 2m(V+|A) +Ag
(44)

E{O}(|)%_(I !

ma

X)A, (41)  The resulting action

wherel ,,.,= k;R. The WKB approximation is not quite good SA,D, ¥, ¥T= f d? dt W i(io,—H(A,®))¥ (45
enough to distinguish betweérand! + 3 in this expression,

but on general grounds we know that if,¢)" is an eigen-
state of the Bogoliubov Hamiltonian with enerds; then
(v*,u*)T is also an eigenstate with energyE. Under this

is then invariant under the local gauge transformation

i
transformation¥,—W¥ _, 4y, and so the correct equation wT N e_'zp, il (46)
must be 1 e 'y
provided we simultaneously transform
£10)]) I+ 1/2 45

M=-{7— (42) DD+2¢,
There is therefore no exact zero mode. If, however, the bulk A—A+V ¢,
fluid were to contain an odd number of vortices, and thus the
phase of the order parameter wind an odd humber of times as Ag— Ayt di . (47

we encircle the boundary, then this appearing in the upper

and lower components &f would differ by anevennumber.  Because the Grassmann measure in the path integral is left
In this case therwiill be a zero-energy edge state. Since eaclinvariant by the transformatio6), the effective action

vortex has a zero mode in its cdtéhere will be an unpaired

zero-energy core mode which can pair with the zero-energy = N ] .

edge state and so preserve the even dimension of the totaliSeir (A,®)=In f diW]d[ ¥ ]exdiS(A,®,¥,¥7)]
Bogoliubov-particle Hilbert space.

This dependence of the edge-mode spectrum on the num-
ber of the bulk vortex excitations is reminiscent of what hap-
pens in the quantum Hall effect. There the Hilbert space
sector of the edge conformal field theory also depends on theill be invariant under the transformatiqd7). If we com-
number and type of vortex quasiparticles that are present ipute Eq.(48) to second order in the gauge field and its gra-
the bulk. dients, we find®*® for a single spin component,

=%In Det[id,— H(A,®)] (48)
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po | 1 [o®/2 2 even while leaving it€anonicalangular momentum fixed at
Suf (A, @)= f d2xdt{2— —2(—— o) fi. In the absence of an exterrgy field, we therefore have a
Mlcg! mass flux
aP/2 . . -
—(V®/2—A)? —oxy(T—Ao (VXA), j=Mjoum=1V Xpz, (54)

and this is a planar analog of the Mermin-Muzikar curfent.
(&CD/Z A )} Whenp goes to zero slowly at a boundary we can use this
~Po — Ao (-

ot (49 Mermin-Muzikar expression to compute the equilibrium
boundary current. The resulting boundary momentum den-

Here,o,= 1/8, the parametets is the speed of sound, and sity coincides with that we computed for a rigid wall in Sec.
po the equilibrium number density. In the weak coupling Ill, and again provides ark-per-Cooper-pair total angular
limit the coefficient o, is proportional to a topological momentum for the fluid.
winding numbeP The other quantities depend on the details The agreement between the rigid-wall calculation of the
of the fluid. For a (2 1)-dimensional Galilean invariant boundary current and the gradient expansion when expressed
system of particles with mass we havep,=(m/27)e; and  in terms of the density, coupled with the physical interpreta-
cs=v/2. The action(49) is manifestly invariant under the tion in terms of the/i-per-Cooper-pair intrinsic angular mo-

transformation(47). mentum of the fluid, leads us to conjecture that the nontopo-
The term with coefficientr,, contains a Chern-Simons- logical corrections tar, that arise as we move away from
like part weak couplin§*® conspire with corrections to the compress-

ibility in such a manner that the total mass current is always
) proportional to the change in density, rather than to the ex-
Oxy | d°X dtegijAgdiA . (50 temnal force that causes the change.

This is not a complete Chern-Simons action, however, be-

cause there is ne;A; d;A; term. It does, nonetheless, imply

the existence of a Hall-like response to the external field. We The fields in
find for the particle-number current

B. Spin-rotation symmetry

Jnum= SA :E(V (I)/Z_eA)+O'Xy(ZXV) T_AO) . .
can also be coupled to an &) gauge field which acts on
B - ad/2 the spin indices. To do this we replace the derivativesS liry
=PoVst Oxy(ZX V)| ———Ag (51 covariant derivatives
Although the term witho,, contains a gradient A, it is d,—d,+A,, (56)

not equal tooy,(EXz), whereE=VA,—A, as it would be

in the Hall effect.(Observe thalv®/2 cannot beA in dis- where

guise, because the former is necessarily curl-fréé note, ) a

however, that the combinatio@(P/2— Ay) occurs in the the Ay=ioa A, (57)

expression for the density is an externally imposed gauge field. Under a local gauge

transformation the Fermi fields transform as

SSHm po [9DI2
p= =po— —| ———Ao| T o, VXA. (52
6Aq mcﬁ ot W Uy
_ . = sl et Y=L l=[TUT U,
Consequently, it seems preferable to write '] U=y -
1 . . N
ium™ PoVs— m(z>< V)(p— 0B, (53 whereU € SU(2). Thecovariant derivatives transform as

whereB,=(V X A),, and so recognize that the “Hall”’ cur-  9utA,—~U 1 (d,+A,)U=3,+(U "4, U+U"1g,U).
rent depends on the external field primarily through its effect (59)

in modifying the density. The natural analogy is then with o i )
the bound currenfyoui= VXM in a magnet with varying AWhen considering how the transformation act in the

magnetizationM. In the superfluid, the magnetic-moment —h' entry inH, we need to recognize that derivative opera-
density M is replaced by the intrinsic angular momentum tors appearing there are the transpége —d,, of those in
density %h(p—axsz)i. The oy,B, term is presumably h, and so the covariant derivatives will be also be the trans-
present because a diamagnetic response to the external figidse 9}, + A}, =—d,+ A . Using U*=(U ") T=(UT),

will reduce thekinetic angular momentum of a Cooper pair we have
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UT(3;+A;)(UT)—1=—(9M+ UTA;(UT)—l Here, Q is the region occupied by the fluid and) its
B " boundary. The last term is zero whéhis closed manifold,
—Ui(U’) 9, U (U") or if we restrict the gauge transformation to those constant

_ 1 1 T on the boundary. The second term
=—d,+(U "A,U+U""9,U)

_ -1 -1 T 1
Lo (UEAUFUTOT W)= - | tri(g 'dg)’] (69)
(60) mJ)Q
and the effect of the transformation is consistent for both'as no reason to vanish, however. Itis the pull-bac tof
entries: an element 01H3DR(G,Z), the third de-Rham cohomology
group of G. It can be nonzero whenever the gauge transfor-
AMHAEEUflAMUJrU’l&MU_ (61) mation g(x) maps ) into a homologically nontrivial three-

) manifold in G. In particular, wher() is S® and the groupG
Note that (4")¥=.4"". For the off diagonal terms we have s sU2), then

U B U*=UYi(o-d)o,]U*=[iU Yo -d)Uo,]. 1
[(0' 0'2] [ (0' 0'2](62) E Qtr[(g_ldg)3]=27m, (70)

The net result is that the gauged action is invariant under the

; - ; wheren is the degree of the map fro®—SU(2)=S3. In
transformation(58), provided we simultaneously transform this casek has o be an integer so that the gauge ambiguity in

(d-0)—U(o-d)U1, C(A) is 2wkn and expikC(A)] is well defined.

The Chern-Simons action found by Volovik and Yak-
ovenko has a coefficient correspondingke 1/2, and so
violates the quantization condition da It cannot be gauge
. invariant on its own. The complete effective action will be
Volovik and Yakovenko computed the low-energy effec- . . . "

] ) ) o . gauge invariant, of course, but we must include additional
tive action for the case of d vector fixed to lie in they  gegrees of freedom to make this manifest. One of these is the
direction:” They found this to be Chern-Simons term direction of the vectod, which we must therefore allow to
vary. We parametrized in terms of a group elemen¥
_ (64) e SU(2) by setting

A,—AY  =UA4,U UG, UL (63

SHd=y,A)= if tr| Ada+ 247
ef AT 3

— -1
Here we are using use differential-form notation in which (d-0)=VaV"". (7
AEiaaAde“ is a matrix valued one-form. For any com- Then,
pact simple gauge grou@, the Chern-Simons action is de- _ _
fined to be SHN(d,A) =Sy, AV)=3C(AY). (72)

1 2 This expression is clearly invariant under the simultaneous
C(A)= Efﬂtr(AdAJf §A3>, (65  replacementd—.AY andV—U~V. This is good, but not
perfect. The problem is that is not unique. The vectat is
WhereAEi)\aAdeu is a Lie(G)-algebra-valued one-form, more correctly parametrized by elements of the coset
and, as is customary, we normalize the trace and the HermiBU(2)/U(1), since we can replac¥ by Ve'72? without
ian generators., by tr (\g\,) =28,,. When such a term is changingd. This substitution dOQS aﬁ‘e@(AV), however.
to appear in a functional integral, Compensating for the effects ef?2¢ requires yet another
degree of freedom. We will write this a&/=¢€'?2X. A com-

. letely gauge invariant action is then
z=J o[ AJelc), 69 Y9
SR, A ) =3C(AY™Y). (73
then coefficienk must be quantized. This is because under a
gauge transformation This is manifestly invariant under the simultaneous replace-
ment
A—A%=g 'Ag+g 'dg (67)
A—AY,
we have
1 VU tvdoz?,
C(A)—C(A%)=C(A) — | tr[(g”*dg)’]
127,19 740 X—x—o. (74)
_ i f tr(dgg tA). (69) What is the physical interpretation of this extra figl@
4] o0 This question is easiest to answer if we 8t| on the
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boundary, so thabl=§/ there. Then, using the Polyakov-

. 1 1 c
pi _- - < -1
Wiegmann identity(68) we can write Seif (A A x) = 5 C(A) = V) + 47-J dxd{axxl(c™a

1
) 1 1 +dy + -— | dxdt Ai-&- 2 Iy
§e'f)f'n(d’“4’x):EC(AVW):EC(A) )x1} > f xdf{(c AZ)dxt

1
7 tr[(v—ldv)3] - gJ‘ dthtr{(CAX+ AI)AX} (80)
A Q

The terms containingg now constitute the action for a chiral
_ ij tr{dWWlA}_ (75) boson interacting with the appropriate chiral component of
87 J s the gauge field. The entire expression is invariant under
gauge transformatiorls which reduce to the forne'?2% on
The second term the boundary, and so maintaih=y there. We note that the
factor of 1/2 in the “level”k is compensated for by a factor
1 1 2 coming from tr @g) =2, so as to give the correct scale for
NWNV)=— | tr[(V 1dV)3] (76) @ chiral boson representing a Weyl fermion.
2 24w J o Since the actions of the () and SU2) gauge groups
commute with one another, the complete gauge invariant ef-
is precisely the Hopf index found by Volovik and Yak- fective action containing all the low-energy degrees of free-
ovenko. On a closed manifold, or whehis fixed at the dom is the sum
boundary, it is equal ton# where n labels the homotopy

class of the mam:S*—S?. The Berry phase provided by SUA,D,d, A, x)=2SMMA,®)+SENd, A, x). (81)
this term makes a skyrmion soliton in thk field into a

fermion. The third term Here the “2”in front of S(™ comes from the two spin com-

ponents.
1 1
“ ) o lAWW A 77 V. CONCLUSIONS
We have investigated the gauge invariance of the low-

is equal to energy effective action for a (21)-dimensional chiral su-

perfluid coupled to external gauge fields. When the order
: 1 parameter completely breaks the gauge group, as in the case
—— | tfdvo.A :_J' dxdtf A29, x— Aoy}, of Abelian paftlcle—number §ymmetry, the effective a}ctlon
87TLQ {dxoad} 4 (A odxx Kk becomes manifestly gauge invariant as soon as we include
(78 the bulk Goldstone modes among the dynamical fields.
When the gauge symmetry is not completely broken, as in

and represents the coupling of tyefield current to thes, the case of spin-rotation symmetry, we found th.at additional_,
component ofA. This interaction takes place only on the Non-Goldstone, degrees of freedom were required for mani-
boundary, which we have taken to be thexis as in Sec. fest gauge invariance. These were identified as being the
Il A. This suggests that thg field is the bosonized form of SPin-up and spin-down Majorona-Weyl edge fermions,
the complex Weyl fermion?’ . that we constructed out of the which cogk_j be combined to produce a current that soaks up
two Majorana-Weyl edge modes in Sec. Il A. As we notedthe remaining gauge dependence. _ _
there, ¥ naturally couples to the-, component ofA. T.he consequences of the effectlve actions for spin- and
Gauge invariance tells us that the edge modes must exigt@rticle-number currents also differ. The former has a true
but it does not determine their dynamics. We can, howevesSPin-Hall effect, with a dissipationless spin current propor-
add a manifestly gauge invariant boundary term that ensurétonal to the spin “electric” field. The latter, we have argued,

that the y field propagates unidirectionallly at speee=  Nas only a “mock” Hall effect, the induced current being
— A/k; . This term id! proportional to the change in density, and not to the external

field causing the change.

C
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APPENDIX: DIRAC EQUATION 1
t(k,E)= . - )
The twisted-mass Dirac equation that results from our (k.E) cog®/2)—(iE/k)sin(D/2)
two-dimensional problem is a standard illustration of the
theory of fractional charg® We review it here so as to make B i(A/K)sin(®/2)
clear the contribution of the extended scattering states to the rk.E)= cog ®/2) — (iE/K)sin(®/2) (A7)

boundary current. _
We consider the one-dimensional Dirac Hamiltonian ~ Here® is shorthand forp, — ¢ .
In addition to the continuum states, there is also a single

. I R Ae'¢™ bound state
H=—ir3dt+Ame 3% = Ae 1400 g _
x AL _ EO+ik+A
(A1) ,p{o}oce'03¢R/2 o e X x>0
. EO —ik+A
whereA is a constant.
We will compute the extra particle number that is accu- ) EO —jk+A
mulated in the vicinity ofx=0 when ¢ is discontinuous, xgloadLl2 E0) 41t A e, x<0.
jumping abruptly from¢= ¢, whenx<0 to ¢= ¢r when
x>0. Suppose the eigenstatestbfare y,, with energyE,, . The bound-state enerd® is also determined by continuity
The ground-state number density is atx=0, which requires
E{%=A cog®/2),
(WY =2 [xa(X)I?, (A2)

. . _ . k=Asin(®/2).
where the sum is over occupied states, i.e., those wijth

<0. Because the sum ¢f,|? overall states is independent These formulas are valid for<0® <2, wherex is posi-
of ¢ by completeness, we can equally well write tive, and extend outside that interval with period.2At ®
=0 there is no bound state. AB increases, a bound state
" _ _ 9 peels off the upper continuum. It passes thro&gh0 at ®
{#"9(x))=const: En§>:o (1% (A3) =, and merges with the lower continuum €s reaches
) o ) _ 2m. If ® increases beyond2, the process repeats with
and this form is Sllghtly more convenient. We will show that another state pee"ng off the upper continuum. Thus each 2
twist in @ results in the net transfer of one state from the
Q:f Ty(x))dx upper continuum Fo the lower. _
(W190) Using the relation betweeB!® and x, we can write the
normalized bound state as

{0} _ \ﬁ
X 2

A complete set of states comprisg® together with

1
:ﬂ(@?_d’l_): 0<(¢r— L)<, ol (91 + dR)l4

oG+ o€ (A8)

1
:Z(d’R_d’L)_l: T<(pr— ¢ )<2m. (A4)

When ¢ is constant we have a continuum of positive and

¢ ¢

negative energy eigenfunctions ~ P e Tr(KGE) YT £, x<O,
XkE™ t(k E)¢¢R x>0k>0 (A9)

Y =il 1 Erk+A) o (A5) R ’

:e g e ,

. 2VE(E+A)[E-k+A t(kE) it x<0,
, . o = ’ k<0. (Al0
whereE (k) = + Jk?+ AZ. With the discontinuity present, we Xk.E YR+ (KE) Y™ ., x>0, (A10)

will have scattering solutions
These basis states therefore switch from a wave incident

= a(Lin)l/f(kbLEJr a(LOUt) ‘/’fi £, X<0, from the left to one incident from the right &xhanges sign.
- ’ After using|r|?+|t|?>=1, and the explicit form of the free
:ag“)lp‘ka‘EJr a(R"“t)zplfFé, x>0. eigenfunctions, we find
The functiony must be continuous at=0, and from this , 7 dk 5
condition we obtain th&matrix relation > Ixe)] :f 2—|XE,|<(X)|
E>A — T
(out) (in)
ay t rilag = dk A
— ) , A6 — _ _ Zik‘X‘
ag;ut) [I‘ t a(Lm) (AB) const+ J_wZWr(k'E)( k)e .
where (A11)
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Imk This expression extends to arderiodic function of®, and
the integral is therefore discontinuous at odd multiplesrof
After we include the pole contribution, which is discontinu-
ous atall multiples of 7, we find that the total continuum

r 4 contribution is discontinuous only d=0 (mod 2m). Thus
4
. = dk D
iA f — |xex(X)|?=const+ =—, 0<d<27.
iAsin®/2 —w2m T 2m
(A14)

» Refk The discontinuity alb=0 (mod 27) is due to the sudden

loss of the bound state from the upper continuum. As the

bound state makes its way to the lower continuum, the spec-

tral weight in the upper continuum is gradually recovered.
We can now apply these results to compute

—iAsIin®/2

FIG. 3. The contoul’, showing the cut starting ak=A. When

0<d <7 thereis a pole ét=iA sin®/2, and a pole on the second
sheet ak=—iA sin®/2. Q=f EZO [ (X)]2dx. (A15)

Here the “const.” refers to terms that are independent ofwe observe that our sum over the positive continuum is
¢rL- We can improve the numerical convergence of thegqual to minus the sum over the negative continuum together
integral by using Jordan’s lemma to push the contour of inwith the bound state. The bound state has negative energy,
tegrationI” into the upper half plane, as shown in Fig. 3. nowever, ifm<®<2# (mod 2). If we are computing the
We observe that the reflection coefficient has a cut runyround-state charge, and i&0b < (mod 2ir), we should
ning fromk=iA toic, and that for 6<® < there isa pole reduce the sum by unity. We also note that the constant in
in the upper half plane &=iA sin®/2. At ® = the pole  Eq. (A14) is fixed by the requirement that the the accumu-

merges with the cut. Forr<d <2 the pole is apparently |ated charge be zero whef = ¢r. Thus
returning towards the real axis again, but a more careful

investigation shows that it is now on the second sheet, and 1

no longer contributes.(At the same time a pole at Q= 2—(¢R— b)), 0<(pr— o )<m,

—iA sin®/2 has emerged onto the first sheet in the lower ™

half plane. This is below the real axis, however, and also 1

does not contribute. =5 (¢r=d)—1 7<(dr—d) <27 (AL
The integral in Eq(A11) then becomes

_ A sind/2e—2Alsin®/2)|x| This result repeats with 2 periodicity.
This expression fo is consistent with the basic result of
Goldstone and Wilczef that a total charge of

»dk AZ%sin® 1 B
+f _— Ke 2K|X|.
A 2T 12— A2SirA(D/2) kZ—A L .
(A12) J 57 xpUx=5—(dr= 1) (A17)
The first term, the pole contribution, is only present if 0

is drawn into a region as the phageis slowly twisted. The
difference between Eq$A16) and (A17) arises because the
Qhtter does not keep track of individual particles that are lost
o the reservoir when their energy exceeds the chemical po-

<db<7.

There does not seem to be a closed-form expression f
the integral in Eq(A12), but if we first integrate ovex to t
get the total charge, we end up with an elementary integralt

ential.
2 In a superfluid the role of charge and current is inter-
fm% A%sin® . — 2 —m<®<a changed. The fractional charge, multiplied lkyyand divided
A 27 )2 AZSiRA(D/2) kP—AZ 27’ ' by 2, gives the momentum density, or equivalently, the mass
(A13)  current®®
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