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Numerical Jordan-Wigner approach for two-dimensional spin systems
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We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for
two-dimensional spin systems. We apply it to the study of the well-known quantum (S51/2) antiferromagnetic
XXZ system as a function of the easy-axis anisotropyD on a periodic square lattice. For the SU(2) case the
method converges to a Ne´el ordered ground state irrespective of the input density profile used and in accor-
dance with other studies. This shows the potential utility of the proposed method to investigate more compli-
cated situations such as frustrated or disordered systems.
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I. INTRODUCTION

Quantum spin systems in two-dimensional~2D! lattices
have been the subject of intense research, mainly motiv
by their possible relevance in the study of high-temperat
superconductors.1 On the other hand, high-magnetic-field e
periments on materials with a 2D structure which can
described by the Heisenberg antiferromagnetic mode
frustrated lattices have revealed novel phases as plateau
jumps in the magnetization curves.2 In spite of the huge ef-
forts made, a general understanding of the phase diagra
such magnets is elusive and it is then worth trying to deve
new techniques to study these systems systematic
Among the many different techniques that have been use
study such systems, the generalization of the celebr
Jordan-Wigner ~JW! transformation3 to two spatial
dimensions4 has some appealing features. It allows one
write the spin Hamiltonian completely in terms of spinle
fermions in such a way that theS51/2 single-particle con-
straint is automatically satisfied due to the Pauli princip
while the magnetic field enters as the chemical potential
the JW fermions. The price one has to pay is the appeara
of complicated nonlocal interactions between fermions. T
method has been applied in Ref. 5~see also Ref. 6! to study
the XXZ Heisenberg antiferromagnet. These studies h
been reviewed in Ref. 7.

More recently this technique was used to obtain a th
retical magnetization curve for the Shastry-Sutherla
model, reproducing at the mean-field~MF! level some of the
experimentally observed features for the mate
SrCu2(BO3)2 which is assumed to be described by su
model.8 Also theJ1-J2 model, in relation to Li2VOSiO4 and
Li2VOGeO4 compounds,9 and theXY model10 were ana-
lyzed with the same technique. All the studies perform
have been based on a mean-field decoupling scheme a
starting point to deal with the nonlocal interactions intr
duced by the JW transformation. In Ref. 5 the mean-fi
procedure was further supplemented by the inclusion of fl
tuations in terms of an auxiliary gauge field with a leadi
Chern-Simons dynamics coupled to the lattice fermio
However, in spite of the partial success of the JW trans
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mation, many problems remain open, in particular in conn
tion to the study of frustrated systems such as the triang
lattice. In some cases, the results obtained via a direct m
field treatment lead to results that are believed to be inc
rect, such as the appearance of a spin gap in the triang
lattice case~see the discussion in Ref. 8!. The main problem
associated with the JW approach is related to the implem
tation of the above-mentioned mean-field decoupling, wh
renders the description approximate. Another highly no
trivial problem is the construction of the lattice description
the Chern-Simons theory, which has been carefully stud
for the square lattice case only.11

It is the purpose of the present paper to propose a sys
atic self-consistent mean-field method for exploring t
ground state~g.s.! of 2D lattice spin-12 systems, in a way tha
could be applied to arbitrary lattice topologies. The meth
can also be used in the presence of an external magn
field, at finite temperature and even be applied to disorde
systems.

II. JORDAN-WIGNER TRANSFORMATION IN TWO
DIMENSIONS

The Jordan-Wigner transformation in two spatial dime
sions was originally proposed in Ref. 4 as a generalization
the well-known transformation in 1D, and has been furth
developed in Refs. 5, 6. It maps a set of spin-1

2 operatorsSW p
on lattice sitesp into spinless fermion operatorscp by

Sp
25cpexpF i (

qÞp
uqpcq

†cqG ,
Sp

15cp
†expF2 i (

qÞp
uqpcq

†cqG ,
Sp

z5cp
†cp21/2, ~1!

whereS65Sx6 iSy are the usual spin raising and lowerin
operators anduqp is the argument of the vector drawn from
site p to site q. The transformation is nonlocal, and sets
preferred quantization axisz. The spin operators~1! satisfy
©2004 The American Physical Society25-1
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bosonic SU(2) commutation relations, while the Pauli pr
ciple ensures that they belong to the irreducible represe
tion S51/2. Indeed, the only necessary ingredient that
sures the SU(2) commutation relations is the assignmen
the phase factors which satisfies, for each pair of sitesp,q,

eiupqe2 iuqp521. ~2!

One should notice that there is a large freedom in choos
phase factors satisfying condition~2!. For instance, one
could arbitrarily shiftupq→upq12kp with different integers
k for each pair of lattice pointsp,q, or even perform an
arbitrary simultaneous rotation forupq and uqp . Standard
plane angles2p,u<p measured from thex axis is just the
simplest translation invariant choice on the flat infinite pla
It should be stressed that this large freedom does not alte
physical results, as long as all degrees of freedom are tre
exactly. However, in any approximate treatment, this m
introduce ambiguities that should be handled carefully, as
discuss below.

One salient feature of the JW transformation is that
constraint is needed on the new variables~cf., for instance,
the Holstein-Primakoff or Schwinger bosons!, but nonlocal-
ity is the main stumbling block in the approach.

The success of the JW transformation in one spatial
mension, in spite of being nonlocal, resides on the fact
XY nearest-neighbor~NN! interactions become local in fer
mion variables; this is not the case in two dimensions.
deed, consider theXY Hamiltonian on a given 2D lattice,

HXY5J (
^p,q&

~Sp
xSq

x1Sp
ySq

y!, ~3!

whereJ is the exchange constant and the sum runs ove
nearest neighborŝp,q& on the lattice. In terms of fermion
variables the Hamiltonian reads

HXY5J (
^p,q&

S 1

2
cp

†ei â(p,q)cq1H.c.D , ~4!

where

â~p,q!5(
r

8
~u rq2u rp!cr

†cr ~5!

~the prime on the summation indicates thatu rr terms are
absent!. This phase is highly nonlocal; in the 1D case, t
same expression becomes local due to the fact that the
two actual values for the angles are 0 andp. The nonlocality
in 2D is usually overtaken by the introduction of an auxilia
gauge fieldAm , which on the one hand represents the pha
in Eq. ~4! as the usual minimal coupling on the lattice, a
on the other hand is governed by a Chern-Simons action.
Gauss law associated to the first-order Chern-Simons ac
imposes a constraint which in anyon language attaches h
quantum flux to each fermion, providing the statistical tra
mutation of fermions into bosons. Then, a mean-field tre
ment ~known asaverage field approximation! of the gauge
field can be done, leading in general to a quadratic NN
teraction between fermions.5 However, the Chern-Simon
18442
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approach has serious difficulties when one deals with a
trary lattice topologies~for example, the triangular lattice!,
and the associated mathematical problems are not yet so

We do not introduce such an auxiliary gauge field, b
keep working with fermion variables. In order to perfor
numeric computations, one has to set a finite-size lattice
impose suitable boundary conditions. We use perio
boundary conditions, thus leading to a lattice on the tor
Moreover, the lattice size should be compatible with possi
periodic configurations; in the case of a square lattice, s
must be even in order not to interfere with the possible N´el
order.

Now, it is not straightforward to define the JW transfo
mation on the torus,12 as the vector joining two differen
points is not unique. As one has to take care of condition~2!,
the vectors joiningp with r and r with p must have argu-
ments differing inp. We have to choose a unique segme
joining each pair of pointsp,r , and then draw both vector
along it. One can choose this segment by a criterion of m
mal distance. However, there exist pairs of points on
torus that can be joined by two or more different segme
with minimal distance and hence anad hoccriterion must be
added. Any such criterion unavoidably breaks translation
variance, by preferring one segment over the rest. Natura
we propose a criterion trying to minimize the violation
translation symmetry as follows: we set a principal finite-s
lattice and extend it on a plane by periodicity; for each po
on the principal lattice we consider also its periodic copi
Now, given a pair of sites, we look for the shortest segm
joining either the points or their copies; when such a segm
is unique, the procedure is translationally invariant. For th
pair of points where one can find more than one minim
distance segment, we choose the one with both ends bel
ing to the principal lattice, thus breaking translation inva
ance. Finally, the anglesupr and u rp are computed as the
arguments of the vectors joiningp and r along the chosen
segment. For convenience we also define thatupp50, in
order to handle the restriction on the sums in Eqs.~1! and
~5!.

As mentioned in the Introduction, the JW transformati
is exact but the resulting Hamiltonian is highly nonlocal a
some kind of approximation is necessary to proceed.

We propose here a variational approach to deal with
nonlocal phases in Eq.~4! and the quartic terms that can aris
from Sz interactions. Working directly with fermion vari
ables, we replace the local fermionic occupation numb
n̂p5cp

†cp by their expectation values in an arbitrarily chos
variational state. This procedure leads to a multiparam
mean-field approach, which will in turn be evaluated se
consistently. This is the subject of the following section.

III. VARIATIONAL APPROACH, APPLIED TO THE XXZ
MODEL

To describe in full detail the method laid down above, w
apply it to a generalized quantum spin-1

2 Heisenberg antifer-
romagnet in a square 2D periodic lattice, defined by
Hamiltonian
5-2
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HXXZ5J (
^p,q&

~Sp
xSq

x1Sp
ySq

y1DSp
zSq

z!2h(
p

Sp
z , ~6!

whereSW p5(Sp
x ,Sp

y ,Sp
z) represents theS51/2 spin operator

at sitep, J.0 is the exchange constant, and 0,D,` the
‘‘ XXZ’’ anisotropy parameter. The first sum in Eq.~6! runs
over all nearest neighbors in the given lattice, while the l
term represents the interaction with a transverse exte
magnetic fieldh. We work on a periodic rectangular lattice o
sizeK5Nx3Ny .

Using the JW transformation defined in Eq.~1!, the
Hamiltonian can be written in terms of spinless fermions

HXXZ5J (
^p,q&

F1

2
~cp

†ei â(p,q)cq1H.c.!1DS cp
†cp2

1

2D
3S cq

†cq2
1

2D G2h(
p

S cp
†cp2

1

2D , ~7!

where the phaseâ(p,q) is defined in Eq.~5!. Notice that the
magnetic fieldh plays the roˆle of a chemical potential for the
JW fermions. In particular, we look for the ground state
the system~7! with fixed global magnetizationM50 ~corre-
sponding toh50).

We implement a self-consistent mean-field solution
starting with a given fermion distribution profile$np% ~which
can be random or guided by some ansatz! on the lattice,

^n̂p&5np , ~8!

which has to satisfy a global constraint to provide the giv
magnetization~here (np5K/2 corresponds toM50). We
then replace the operatorâ(p,q) by its expectation value

^â~p,q!&5(
r

~u rq2u rp!nr , ~9!

where the anglesupq are assigned following the criterio
presented in the preceding section. To be precise, the pr
pal lattice can be defined by indexing each site by a posi
pair (i , j ), and setting the rangei 50•••Nx21, j 50•••Ny
21. Periodic boundary conditions are then expressed
( i , j )[( i 1Nx , j )[( i , j 1Ny).

Regarding the Ising term

Sp
zSq

z5cp
†cpcq

†cq2 1
2 cp

†cp2 1
2 cq

†cq1 1
4 ~10!

in Eq. ~7!, it is quartic in fermion operators, so it require
some mean-field approximation. In order to estimate the
term in Eq.~10! with a quadratic expression we propose t
following:

cp
†cpcq

†cq→ 1
2 ~cp

†cp^cq
†cq&1cq

†cq^cp
†cp&!. ~11!

This should be contrasted with a more standard prop
in the literature, cp

†cpcq
†cq→cp

†cp^cq
†cq&1cq

†cq^cp
†cp&

2^cp
†cp&^cq

†cq&. While there is no first-principles reason
distinguish both proposals, we wave chosen the one s
ported by best results ina posteriori evaluation of the g.s
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energy~see Sec. IV!. Some other possibilities for handlin
the quartic term are discussed in Ref. 7.

At this step, the Hamiltonian can be written as

HXXZ
(MF)~$np%!5(

p,q
cp

†Jpq~$np%!cq1C ~12!

where

Jpq

55
J

2
ei ^a(p,q)& if ^p,q& nearest neighbor

JD

2 S (
neighbors r

^nr&24D if p5q

0 otherwise

~13!

andC5KJD/2.
The main idea of the present paper is to provide a syst

atic way to compute an approximation to the true g.s.
first find the g.s. for the quadraticHXXZ

(MF)($np%) by solving
the one-particle~1P! spectrum and filling the system with th
lowest-energy 1P states, up to the proper filling fixed by
total magnetizationM. Then we compute from this approx
mate g.s. a new set of local densitiesnp85^g.s.ucp

†cpug.s.&,
which we use as a new input in Eq.~12! and iterate this
procedure looking for a fixed point configuration for the de
sity profile, i.e., a set of local densities$np* % satisfying

np8~$nq* %!5np* . ~14!

The existence of a fixed-point solution for this mapping a
its eventual dependence on a given initial configuration is
at all obvious and has to be studied numerically.

In order to proceed with the method,HXXZ
(MF)($np%) can be

written in diagonal form

HXXZ
(MF)~$np%!5 (

k51

K

e~k!dk
†dk1const, ~15!

where ek are the 1P eigenvalues of the quadratic part
HXXZ

(MF) . Notice thatk is just an integer index over the spe
trum, not to be confused with the lattice momentum. Mo
over, we order the eigenvalues ascendently.

The operatorsdk are related tocp by

dk5(
p

Qkp* cp , ~16!

whereQpk is the matrix of eigenvectors ofJpq . We compute
both ek andQpk numerically.Q being unitary, the set ofdk

operators satisfy fermion commutation relations$dk ,dk8
† %

5dkk8 . Moreover, the total fermion number operator sat
fies

N5 (
p51

K

cp
†cp5 (

k51

K

dk
†dk , ~17!
5-3
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D. C. CABRA AND G. L. ROSSINI PHYSICAL REVIEW B69, 184425 ~2004!
making it easy to control the filling in terms of the ne
fermions.

We now construct the approximation to the quantum g
as the half-filled state that minimizes the energy, namely

ug.s.&5)
k51

K/2

dk
†u0&. ~18!

Notice that this is a well-defined quantum state ofK/2 par-
ticles, except for casual degeneracy of the 1P spectrum a
Fermi level. This is not the case for theXXZ model on the
square lattice~see details below!.

From ug.s.& it is now easy to compute the approximate g
energy, as

Eg.s.5^g.s.uHXXZ
(MF)ug.s.&5 (

k,K/2
ek1C. ~19!

Also the local occupation numbers can be computed in
approximate g.s. as

np85^g.s.ucp
†cpug.s.&5 (

k,K/2
Qpk* Qpk . ~20!

With these occupation numbers we start again the proced
computeJpq in MF, diagonalize the newHXXZ

(MF) , etc.
We have found after thorough numerical investigatio

that a fixed-point solution for Eq.~14! always exists, but
metastable solutions can also appear, depending on the i
configuration one chooses. In any case, one can disting
metastable solutions from the best g.s. approximation sim
by comparing their energies. Moreover, we describe be
how this drawback can be naturally solved by introducin
thermal bath to kick the system out from the vicinity
metastable states.

Indeed, one can consider the effects of finite tempera
by replacing the proposed ground state~18! by a thermal
stateuCb&, compatible with the Fermi-Dirac 1P energy di
tribution at a given temperature,

n~e!5
1

11exp@b~e2 ē !#
, ~21!

whereē is the 1P Fermi energy at half filling andb51/kT is
the inverse temperature. In detail, this thermal stateuCb& is
constructed as

uCb&5 )
kPs

dk
†u0&, ~22!

where s is a set ofK/2 1P states chosen with probabili
n„e(k)… from some random simulation.

An exploration of the Hilbert space of the system by co
structing a thermal state from a starting fermion distributio
computing from it the new local fermion distribution an
again constructing a thermal state should be considered
thermalization at the given temperature. It provides a sou
of thermal noise that has proven to help the system in find
lower-energy fixed points.
18442
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The thermalization can be done through several steps
given temperature, and then quenching to the pure quan
regime (T50), or it can be implemented by gradually low
ering T ~annealing!.

Besides, results at finiteT can also be achieved by con
structing a statistical ensemble of microscopic states com
ible with T. Observables should then be computed as a
ages over the statistical ensemble. We do not attemp
complete this program in the present paper.

IV. RESULTS

We have tested the iterative approach described in
preceding section with the well-known anisotropicXXZ
model on periodic 2D square lattices of size up to 20320
sites, at zero total magnetization. The sizes of the lattice
we explored are by no means an upper limit, as our com
tations were made on a modest computer. The anisotr
parameterD has been explored in a range from 0.05 to 1
including the isotropic SU(2) case (D51, Heisenberg
model!. As starting configurations$np% we have used ran
dom, uniform, and different amplitude staggered distrib
tions. We performed several iterations and analyzed the e
lution of the local fermion profile and the approximate g
energy. We report the results in terms of spin variables, n
ing that the local fermion occupation represents the lo
magnetization asmz(p)5np2 1

2 .
Working at T50, we have found that in general, from

different starting configurations, the system rapidly finds
Néel order as stable ground-state approximation, after 15
iterations. The Ne´el order parameter, usually defined as t
staggered or sublattice magnetizationmz , depends on the
anisotropy parameterD. Fluctuations around this staggere
magnetization are typically of order 1028. In Fig. 1 we plot
the Néel order parametermz of the fixed-point solution for
different values ofD, for several lattice sizes. Finite-siz
effects are noticeable for lower values ofD, so we also show
the results of a finite-size scalingmz(`) of our data, fitted
with a power lawmz(K)5mz(`)1c/Ka. The corresponding

FIG. 1. Néel order parameter at fixed points as function of t
anisotropyD. Several lattice sizes and the scaling limit are show
5-4
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NUMERICAL JORDAN-WIGNER APPROACH FOR TWO- . . . PHYSICAL REVIEW B 69, 184425 ~2004!
g.s. energies per site are shown in Fig. 2 where one obse
that scaling with the system size is clearly less important.
have observed that the 1P spectrum of the mean-field Ha
tonian~12! presents a gap 2mzJD for Néel ordered configu-
rations, at the half-filling Fermi level. This is in agre
ment with Ref. 5 and makes the construction ofug.s.& in
Eq. ~18! unambiguous. Limiting cases for the anisotro
have also been considered: theXY model (D50) presents
uniform filling (mz50), with ground-state energy per si
Eg.s.520.403J, while the Ising model (D→`) presents
full filling of one sublattice (mz50.5) and energyEg.s.
520.5DJ. Had we used the more standard MF proposal
the Ising term, commented on after Eq.~11!, we would have
got higher g.s. energies for the whole range ofD.

In the case of random initial distributions, metastable c
figurations can show up; a detailed inspection of the lo
magnetization in these cases reveals the formation of ant
romagnetic domains, that is, the presence of the two poss
Néel configurations in different regions. In Fig. 3 we sho
an example of such domains, at two different stages o
sample evolution. It is natural to expect that larger lattic
favor the formation of these domains, as it indeed is
served. These configurations have higher energy than
uniform Néel state and correspond then to metastable c
figurations; correspondingly, they are not presented in Fig
and 2.

When a thermal bath is simulated on random initial co
figurations, we have observed that metastable configurat
are less likely to appear. After thermalization we let the s
tem to cool down by either quenching or annealing as
scribed in Sec. III, and complete the iterations atT50. In
fact, a few steps (;10) of thermalization with sufficiently
high T completely avoid domain formation and lead to
unique fixed-point mean-field configuration; the requir
temperature is higher for larger lattices, being of the orde
J for the lattice of 20320. We have checked that under ge
eral circumstances, quenching provides the fastest con
gence method to the minimum-energy state. An example
the evolution of the Ne´el order parameter from an initia

FIG. 2. g.s. energy as a function of the anisotropyD. Data
correspond to configurations plotted in Fig. 1.
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random configuration, under thermalization with differe
temperatures, is shown in Fig. 4.

The results of the present MF computation show all
features expected for the Heisenberg antiferromagnet on
square lattice. They are of course not comparable to accu
numerical techniques,13 but are in qualitative agreement wit
results from previous studies. In particular, in the scal
limit we obtain no Ne´el order for small anisotropyD, where
the system presumably hasXY order. We can estimate
critical value D* '0.2, above which Ne´el order develops.
For the isotropic Heisenberg pointD51 we obtain a sublat-
tice magnetizationmz50.3453, with ground-state energy p
site Eg.s./K520.5683J, to be compared, for instance, wit
corresponding quantum Monte Carlo values of 0.307 a
20.6694J.14 One can compare also with MF descriptions
the usual statistical gauge field, which depending on
symmetry ansatz give magnetizations ranging from 0.39
0.44 and ground-state energies ranging from20.48J to
20.648J.5,6

We must stress that our MF results are obtained with na
priori assumption on any kind of order. They thus provide
least an educated ansatz that could be refined by analy
adjustment of the relevant parameters and by the inclusio
fluctuations.

FIG. 3. Occupation patterns for a metastable configurati
where antiferromagnetic domains appear. The size of the poin
proportional to the local fermion occupation number. These c
figurations occurred on a 20320 lattice, with D51.1, after ten
steps of thermalization atT50.2J, and 10 ~upper panel! or 20
~lower panel! more steps of g.s. search atT50. The smaller do-
main is seen to decrease in size under the simulated evolution
5-5
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V. CONCLUSIONS

We have presented a self-consistent MF procedure for
ploring the quantum ground state of anyS51/2 spin system
on a 2D lattice. When tested on theXXZ model on a square
lattice, the method provides the correct qualitative desc
tion of the system, with noa priori ansatz for any kind of
order. We computed the values for the sublattice magnet
tion and g.s. energy for a wide range of values of the ani
ropy parameter, which compare qualitatively well with t
available numerical data, at least forD51 where most accu

FIG. 4. Example of the evolution of the Ne´el order parameter
from a sample initial random configuration. Data corresponds to
system depicted in Fig. 3, with a vertical line separating the ther
evolution and theT50 evolution. Error bars indicate the standa
deviation of local magnetization from Ne´el order ~reduced by a
factor of 5 for clarity!. Insufficient thermalization can lead to met
stable configurations or to very slow convergence, while hig
temperature dramatically improves convergence towards an ord
configuration.
T.

.

18442
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rate data are available. Moreover, we have found that
sublattice magnetization as a function of theXXZ anisotropy
shows the correct qualitative behavior, expected from a s
wave analysis.5

The present approach has a more general scope than
vious MF computations, in the sense that it can be applie
any lattice topology, irrespective of the appearance of fru
trating units, a fact that prevents the applicability of one
the most powerful numerical techniques such as quan
Monte Carlo. A magnetic field can be trivially added as
chemical potential for the JW fermions and hence magn
zation curves could be obtained. Since the method is
based on any periodicity of couplings, it can be well suited
study disordered quantum spin systems, at the only pric
increasing the CPU time. Last but not the least, the appro
is naturally well suited for the study of the thermodynam
of these systems, since temperature can be added in a si
way.

Among other situations, it would be interesting to app
this technique to the Heisenberg quantum antiferromagn
on the triangular lattice, where there is disagreement betw
Chern-Simons MF predictions8 and numerical data about
magnetization plateaux at zero magnetization. Another c
of interest is the kagome´ lattice, where a quantum spin liqui
is believed to be realized15 ~see also Ref. 16!. This issue will
be investigated elsewhere.
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