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Numerical Jordan-Wigner approach for two-dimensional spin systems
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We present a numerical self-consistent variational approach based on the Jordan-Wigner transformation for
two-dimensional spin systems. We apply it to the study of the well-known quarBsmi/R) antiferromagnetic
XXZ system as a function of the easy-axis anisotrapgn a periodic square lattice. For the SU(2) case the
method converges to a’Keordered ground state irrespective of the input density profile used and in accor-
dance with other studies. This shows the potential utility of the proposed method to investigate more compli-
cated situations such as frustrated or disordered systems.

DOI: 10.1103/PhysRevB.69.184425 PACS nunt®er75.10.Jm, 75.25.z, 75.50.Ee, 05.36.d

[. INTRODUCTION mation, many problems remain open, in particular in connec-
tion to the study of frustrated systems such as the triangular
Quantum spin systems in two-dimensiofaD) lattices lattice. In some cases, the results obtained via a direct mean-
have been the subject of intense research, mainly motivateftgld treatment lead to results that are believed to be incor-
by their possible relevance in the study of high-temperaturéect, such as the appearance of a spin gap in the triangular
superconductorsOn the other hand, high-magnetic-field ex- lattice casésee the discussion in Ref).8’he main problem
periments on materials with a 2D structure which can beassociated with the JW approach is related to the implemen-
described by the Heisenberg antiferromagnetic model ifiation of the above-mentioned mean-field decoupling, which
frustrated lattices have revealed novel phases as plateaux afghders the description approximate. Another highly non-
jumps in the magnetization curv&sn spite of the huge ef- trivial problem is the construction of the lattice description of
forts made, a general understanding of the phase diagram #fe Chern-Simons theory, which has been carefully studied
such magnets is elusive and it is then worth trying to develofior the square lattice case ortfy.
new techniques to study these systems systematically. Itis the purpose of the present paper to propose a system-
Among the many different techniques that have been used @tic self-consistent mean-field method for exploring the
study such systems, the generalization of the celebrateground statég.s) of 2D lattice spin systems, in a way that
Jordan-Wigner (JW) transformatiod to two spatial could be applied to arbitrary lattice topologies. The method
dimension$ has some appealing features. It allows one tocan also be used in the presence of an external magnetic
write the spin Hamiltonian completely in terms of spinlessfield, at finite temperature and even be applied to disordered
fermions in such a way that tH8=1/2 single-particle con- Systems.
straint is automatically satisfied due to the Pauli principle,
while the magnetic field enters as the chemical potential for 1I. JORDAN-WIGNER TRANSFORMATION IN TWO
the JW fermions. The price one has to pay is the appearance DIMENSIONS
of complicated nonlocal interactions between fermions. This

method has been applied in Ref(&e also Ref. )6t study The Jordan-Wigner transformation in two spatial dimen-

the XXZ Heisenberg antiferromagnet. These studies hav&ONS was originally proposed in Ref. 4 as a generalization of

been reviewed in Ref. 7. the well-known transformation in 1D, and has been further
More recently this technique was used to obtain a theodeveloped in Refs. 5, 6. It maps a set of spinperatorsS,

retical magnetization curve for the Shastry-SutherlandPn lattice siteg into spinless fermion operatocs, by

model, reproducing at the mean-figdF) level some of the

experimentally .obs.erved features for 'Fhe material S, =coex | E 0qung

SrCy,(BO3), which is assumed to be described by such a#p

model® Also theJ;-J, model, in relation to LiVOSiO, and

Li,VOGeQ, compounds, and theXY modef® were ana- Lt , .
; ; ; S, =c,ex —|2 04,CoC
lyzed with the same technique. All the studies performed P *p &, Taptaa)
have been based on a mean-field decoupling scheme as the
starting point to deal with the nonlocal interactions intro- Sf):c;cp—llz, (1)

duced by the JW transformation. In Ref. 5 the mean-field
procedure was further supplemented by the inclusion of flucwhere S*=S*+iSY are the usual spin raising and lowering

tuations in terms of an auxiliary gauge field with a leadingoperators and), is the argument of the vector drawn from

Chern-Simons dynamics coupled to the lattice fermionssite p to site g. The transformation is nonlocal, and sets a
However, in spite of the partial success of the JW transforpreferred quantization axis The spin operator§l) satisfy
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bosonic SU(2) commutation relations, while the Pauli prin-approach has serious difficulies when one deals with arbi-
ciple ensures that they belong to the irreducible representdrary lattice topologiegfor example, the triangular lattige
tion S=1/2. Indeed, the only necessary ingredient that enand the associated mathematical problems are not yet solved.
sures the SU(2) commutation relations is the assignment of We do not introduce such an auxiliary gauge field, but
the phase factors which satisfies, for each pair of gites keep working with fermion variables. In order to perform
, , numeric computations, one has to set a finite-size lattice and
e'fpag10ap= —1, (2 impose suitable boundary conditions. We use periodic

oundary conditions, thus leading to a lattice on the torus.

One should notice that there is a large freedom in choosin@I . . . . _
phase factors satisfying conditiof?). For instance, one oreover, the lattice size should be compatible with possible
: ' periodic configurations; in the case of a square lattice, size

could arbitrarily shift + 2k with different integers 4 ; ; .
K for each pa?/r of Ig?t(i]:e appgintspz or even perforrg an Mustbe even in order not to interfere with the possiblelNe
e order.

arbitrary simultaneous rotation fof,, and 6,,. Standard o . .
plane angles- w<<#< 7 measured from thr axis is just the Now, it is not straightforward to d?f'_”? the JW '_[ransfor-
mation on the toru® as the vector joining two different

simplest translation invariant choice on the flat infinite plane. oints is not unique. As one has to take care of condit®n

It should be stressed that this large freedom does not alter t)f o vectors ioinin with 1 andr with b must have arqu-
physical results, as long as all degrees of freedom are treat ors joiningp P . 9
ents differing inr. We have to choose a unique segment

exactly. However, in any approximate treatment, this may, inin h bair of point® 1 and then draw both vector.
introduce ambiguities that should be handled carefully, as w'Ning each pair ot pointy,r, a en draw both vectors
along it. One can choose this segment by a criterion of mini-

discuss below. . . . .
One salient feature of the JW transformation is that nomaI distance. However, there exist pairs of points on the

constraint is needed on the new variables, for instance, torus that can be joined by two or more different segments

the Holstein-Primakoff or Schwinger bosonbut nonlocal- with minimal distance and hence ad hoccriterion must be
ity is the main stumbling block in the approach added. Any such criterion unavoidably breaks translation in-

The success of the JW transformation in one spatial diyariance, by preferring one segment over the rest. Naturally,
y/e propose a criterion trying to minimize the violation of

mension, in spite of being nonlocal, resides on the fact th ) S T
XY nearest-nepighbo(n\lN) ?nteractions become local in fer- atranslatlon symmetry as follows: we set a principal finite-size
lattice and extend it on a plane by periodicity; for each point

mion variables; this is not the case in two dimensions. In-On the orincipal lattice we consider also its periodic cobies
deed, consider thEY Hamiltonian on a given 2D lattice, principal ‘attice w : IS periodi pIes.
Now, given a pair of sites, we look for the shortest segment

joining either the points or their copies; when such a segment
Hyy=J2, (SpSy+SISY. (3)  isunique, the procedure is translationally invariant. For those
(p.0) pair of points where one can find more than one minimal
whereJ is the exchange constant and the sum runs over affistance segment, we choose the one with both ends belong-

variables the Hamiltonian reads ance. Finally, the angle8,, and 6,, are computed as the

arguments of the vectors joining andr along the chosen

1. a(p) segment. For convenience we also define hgi=0, in
Hxv23<%> 5Cp€ P9cy+H.c., (4 order to handle the restriction on the sums in Ed3s.and
' 5.
where As mentioned in the Introduction, the JW transformation

is exact but the resulting Hamiltonian is highly nonlocal and
- ' + some kind of approximation is necessary to proceed.
a(p,q)=2 (Orq— Orp)Cr Gy ©) We propose here a variational approach to deal with the
' nonlocal phases in E¢4) and the quartic terms that can arise
(the prime on the summation indicates th@t terms are from S* interactions. Working directly with fermion vari-
absenk This phase is highly nonlocal; in the 1D case, theables, we replace the local fermionic occupation numbers

same expression becomes local due to the fact that the onfy = ¢/, by their expectation values in an arbitrarily chosen
two actual values for the angles are 0 andThe nonlocality  variational state. This procedure leads to a multiparameter
in2D is Usua”y overtaken by the introduction of an aUX|||ary mean-field approach' which will in turn be evaluated self-

gauge fieldA,, , which on the one hand represents the phasegonsistently. This is the subject of the following section.
in Eq. (4) as the usual minimal coupling on the lattice, and

on the other hand is governed by a Chern-Simons action. The

Gauss law associgted tq thg first-order Chern-Simons actiof] \ariATIONAL APPROACH. APPLIED TO THE ~ XXZ
imposes a constraint which in anyon language attaches half a MODEL

guantum flux to each fermion, providing the statistical trans-

mutation of fermions into bosons. Then, a mean-field treat- To describe in full detail the method laid down above, we
ment (known asaverage field approximatiorof the gauge apply it to a generalized quantum spgirHeisenberg antifer-
field can be done, leading in general to a quadratic NN infomagnet in a square 2D periodic lattice, defined by the
teraction between fermiortisHowever, the Chern-Simons Hamiltonian
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- ) , energy(see Sec. IY. Some other possibilities for handling
Hxxz=J 2 (SpSy+ S%S¥4+A3p5q)—hz S;, (6)  the quartic term are discussed in Ref. 7.
pw P At this step, the Hamiltonian can be written as

where S,= (S; ,S},Sp) represents th&=1/2 spin operator
at sitep, J>0 is the exchange constant, anetQ < the HP (nph = E Cidpg({nphicg+C (12
“ XXZ" anisotropy parameter. The first sum in E@) runs
over all nearest neighbors in the given lattice, while the 'aSWhere
term represents the interaction with a transverse external
magnetic fielch. We work on a periodic rectangular lattice of Jog
sizeK=N,XN,

Using the JW transformation defined in E¢L), the

— gifa(p.a)) i i
Hamiltonian can be written in terms of spinless fermions as € if (p.q) nearest neighbors

<nr>—4) if p=q

1 - 1 -
Hxxzz\](;]) E(cge'“(p"”cq—k H.c.)+A(c;Cp—§) 2 (neighborsr
0

otherwise

1
hZ ( —). (7 (13)

andC=KJA/2.
where the phase(p.q) is defined in Eq(5). Notice that the The main idea of the present paper is to provide a system-
magnetic fielch plays the rte of a chemical potential for the atic way to compute an approximation to the true g.s. We
JW fermions. In particular, we look for the ground state offirst find the g.s. for the quadratid&“ﬁ'é’({np}) by solving
the systen(7) with fixed global magnetizatioM =0 (corre-  the one-particlé1P) spectrum and filling the system with the
sponding toh=0). lowest-energy 1P states, up to the proper filling fixed by the
We implement a self-consistent mean-field solution bytotal magnetizatiotM. Then we compute from this approxi-

starting with a given fermion distribution profi{@p} (which  mate g.s. a new set of local densitie§=(g.slcgcp|g.s>,

X

CCq )

can be random or guided by some ansatz the lattice, which we use as a new input in E¢L2) and iterate this
A procedure looking for a fixed point configuration for the den-
(np)=ny, (8) ity profile, i.e., a set of local densiti¢a’} satisfying
which has to satisfy a global constraint to provide the given n.({n*})=n* (14)
p\lq p-

magnetization(here Xn,=K/2 corresponds tdi=0). We

then replace the operatef(p,q) by its expectation value The existence of a fixed-point solution for this mapping and
its eventual dependence on a given initial configuration is not

. at all obvious and has to be studied numerically.
(a(p,q))=2 (Orq= Orp)nr ©) In order to proceed with the methad (45 ({n,}) can be

written in diagonal form

where the angle®),, are assigned following the criterion

presented in the preceding section. To be precise, the princi- (MF) B N

pal lattice can be defined by indexing each site by a position Hixz ({np}) = kzl e(k)dyd+const, (19

pair (i,j), and setting the range=0---N,—1, j=0---N,

—1. Periodic boundary conditions are then expressed bwhere €, are the 1P eigenvalues of the quadratic part of

K

(1L))=+Ny,))=(i,j+Ny). HMP) . Notice thatk is just an integer index over the spec-
Regarding the Ising term trum, not to be confused with the lattice momentum. More-
over, we order the eigenvalues ascendently.
S} Sh=ChCpCicq— 3CCo—3ChCq T § (10 The operatorsi, are related te, by
in Eq. (7), it is quartic in fermion operators, so it requires
some mean-field approximation. In order to estimate the first de=> QFpCp. (16)
term in Eq.(10) with a quadratic expression we propose the P
following: whereQ, is the matrix of eigenvectors df,,. We compute
pk g p
both €, and Q,, numerically.Q being umtary, the set cxll
ChCaCaCq— 3 (Chep(Clcy) +cleq(cleo)). (12) ‘ i 5

operators satisfy fermion commutation relatiof, dk,}
This should be contrasted with a more standard proposeff Sk - Moreover, the total fermion number operator satis-
in the literature, cc cch—>c co{cleg) +clcg(clic,y  fies

—(c! cp><c Cg). While there is no first-principles reason to

K
dlStIthISh both proposals, we wave chosen the one sup- N= clc = did 1
ported by best results ia posteriori evaluation of the g.s. 2 P Z KTk @9
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making it easy to control the filling in terms of the new 0.5 ' . . . . . .
fermions. 045 L i
We now construct the approximation to the quantum g.s. . o9
as the half-filled state that minimizes the energy, namely, G H/)a//a/ |
035 < B
K12 n/a
03 t .
l9.5)=11 difo). (18 .
k=1 g 0257 :
Notice that this is a well-defined quantum statekd® par- 02 - 1
ticles, except for casual degeneracy of the 1P spectrum atthe ;5L _
Fermi level. This is not the case for th&XZ model on the o1 | 14x14 |
square latticésee details below o }gf}g
From|g.s) it is now easy to compute the approximate g.s. 0.05 - 2020 5
energy, as o Le ) . ) Scaling limit -
0 02 04 06 08 1 12 14

A

FIG. 1. Neel order parameter at fixed points as function of the
gnisotropyA. Several lattice sizes and the scaling limit are shown.

Eg.s.:<g-slHg(l\;l(';)|g-s>:k<EK/2 €.+ C. (19

Also the local occupation numbers can be computed in thi

approximate g.s. as o
The thermalization can be done through several steps at a

, . . given temperature, and then quenching to the pure quantum
”p:<9-SleCp|g-5>:k<zK/2 QpkQpk- (200 regime T=0), or it can be implemented by gradually low-
ering T (annealing,.
With these occupation numbers we start again the procedure: Besides, results at finit€ can also be achieved by con-
computeJ,, in MF, diagonalize the new ME) | etc. structing a statistical ensemble of microscopic states compat-
We have found after thorough numerical investigationsible with T. Observables should then be computed as aver-
that a fixed-point solution for Eq(14) always exists, but ages over the statistical ensemble. We do not attempt to
metastable solutions can also appear, depending on the initiePmplete this program in the present paper.
configuration one chooses. In any case, one can distinguish
metastable solutions from the best g.s. approximation simply
by comparing their energies. Moreover, we describe below
how this drawback can be naturally solved by introducing @ \We have tested the iterative approach described in the
thermal bath to kick the system out from the vicinity of preceding section with the well-known anisotrom@(z
metastable states. model on periodic 2D square lattices of size up tox2D
Indeed, one can consider the effects of finite temperaturgijtes, at zero total magnetization. The sizes of the lattice that
by replacing the proposed ground stdis3) by a thermal e explored are by no means an upper limit, as our compu-
state| W z), compatible with the Fermi-Dirac 1P energy dis- tations were made on a modest computer. The anisotropy

IV. RESULTS

tribution at a given temperature, parameteiA has been explored in a range from 0.05 to 1.5,
including the isotropic SU(2) caseAE1l, Heisenberg
n(e) 1 21) mode). As starting configurationgn,} we have used ran-

- 1+exgB(e—e€)] dom, uniform, and different amplitude staggered distribu-
tions. We performed several iterations and analyzed the evo-

wheree is the 1P Fermi energy at half filling ang=1/kTis lution of the local fermion profile and the approximate g.s.

the inverse temperature. In detail, this thermal spdtg) is ~ energy. We report the results in terms of spin variables, not-
constructed as ing that the local fermion occupation represents the local
magnetization asn,(p)=n,— 3.
+ Working at T=0, we have found that in general, from
|‘I’B>:kH dy|0), (22 different starting configurations, the system rapidly finds a
= Neel order as stable ground-state approximation, after 15—20
where o is a set ofK/2 1P states chosen with probability iterations. The Nel order parameter, usually defined as the
n(e(k)) from some random simulation. staggered or sublattice magnetizationy, depends on the
An exploration of the Hilbert space of the system by con-anisotropy parametek. Fluctuations around this staggered
structing a thermal state from a starting fermion distribution,magnetization are typically of order 18. In Fig. 1 we plot
computing from it the new local fermion distribution and the Neel order parametem, of the fixed-point solution for
again constructing a thermal state should be considered astifferent values ofA, for several lattice sizes. Finite-size
thermalization at the given temperature. It provides a sourceffects are noticeable for lower values/of so we also show
of thermal noise that has proven to help the system in findinghe results of a finite-size scaling,() of our data, fitted
lower-energy fixed points. with a power lawm,(K)=m,(«) + ¢/K*. The corresponding
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g.s. energies per site are shown in Fig.2wher¢oneobserves6969‘?6?6?;?5?‘9‘96?
that scaling with the system size is clearly less important. We 6,6’6,6,6?6?696’6’6’
have observed that the 1P spectrum ofthe mean-fieldHamil- - @ - ® - ® - ® - ® - ® - ® - @ - ® - @
tonian(12) presents a gapra,JA for Neel ordered configu- © 0% 0% 0% ¢%¢%¢%0%0%%
rations, at the half-filling Fermi level. This is in agree- @ - ® - ® - @ - @® - ® - ©® -0 0 0 -

ment with Ref. 5 and makes the construction|gfs) in
Eg. (18) unambiguous. Limiting cases for the anisotropy FIG. 3. Occupation patterns for a metastable configuration,
have also been considered: t& model (A=0) presents where antiferromagnetic domains appear. The size of the points is
uniform filling (m,=0), with ground-state energy per site propor.tional to the local fermion oc.cupati.on number. These con-
Eqs=—0.403), while the Ising model £ —) presents figurations occurred_on a 220 lattice, withA=1.1, after ten
full filing of one sublattice M,=0.5) and energyE, s steps of thermalization af=0.2), and 10 (upper panegl or 20
= —0.5AJ. Had we used the more standard MF proposal for!2Wer Panel more steps of g.s. search Bt=0. The smaller do-
the Ising term, commented on after Ed1), we would have main is seen to decrease in size under the simulated evolution.
got higher g.s. energies for the whole rangeAof

In the case of random initial distributions, metastable confandom configuration, under thermalization with different
figurations can show up; a detailed inspection of the locatemperatures, is shown in Fig. 4.
magnetization in these cases reveals the formation of antifer- The results of the present MF computation show all the
romagnetic domains, that is, the presence of the two possibleatures expected for the Heisenberg antiferromagnet on the
Neel configurations in different regions. In Fig. 3 we show square lattice. They are of course not comparable to accurate
an example of such domains, at two different stages of @umerical techniques but are in qualitative agreement with
sample evolution. It is natural to expect that larger latticesesults from previous studies. In particular, in the scaling
favor the formation of these domains, as it indeed is objimit we obtain no Nel order for small anisotropgs, where

served. These configurations have higher energy than thge system presumably ha€Y order. We can estimate a
uniform Neel state and correspond then to metastable cons

. S : T ritical value A*~0.2, above which N& order develops.
flglératlons, correspondingly, they are not presented in Figs. Iior the isotropic Heisenberg poiat=1 we obtain a sublat-
and 2.

When a thermal bath is simulated on random initial con-tl.Ce magnetizatiom, = 0.3453, with ground-state energy per

figurations, we have observed that metastable configuratiorit Ea.s/K d:' —0.5683, 1o be compalr ed, flo ' mst?nce, with g
are less likely to appear. After thermalization we let the syscorresponding quantum Monte Carlo values of 0.307 an

tem to cool down by either quenching or annealing as de- 0.6694.¢ One can compare also with MF descriptions of
scribed in Sec. lll, and complete the iterationsTat0. In  the usual statistical gauge field, which depending on the
fact, a few steps £ 10) of thermalization with sufficiently Symmetry ansatz give magnetizations ranging from 0.39 to
high T completely avoid domain formation and lead to a0.44 and ground-state energies ranging frer.48) to
unique fixed-point mean-field configuration; the required—0.648).>°

temperature is higher for larger lattices, being of the order of We must stress that our MF results are obtained witla no

J for the lattice of 20x 20. We have checked that under gen- priori assumption on any kind of order. They thus provide at
eral circumstances, quenching provides the fastest conveleast an educated ansatz that could be refined by analytical
gence method to the minimum-energy state. An example cfdjustment of the relevant parameters and by the inclusion of
the evolution of the Nel order parameter from an initial fluctuations.
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rate data are available. Moreover, we have found that the

045 L T_ODI et | sublattice magnetization as a function of X Z anisotropy
oal T=Ral 2w ] shows the correct qualitative behavior, expected from a spin-
: Cnnnaaal wave analysis.
035 R N The present approach has a more general scope than pre-
03+ 3 A‘ S | lllo: vious MF computations, in the sense that it can be applied to
N | il I I 14t et ' any lattice topology, irrespective of the appearance of frus-
g 0 | I ; T o o : léet? trating units, a fact that prevents the applicability of one of
02 | u» 1+t : leetllii 1 the most powerful numerical techniques such as quantum
015 | * aF; IR _ Monte Carlo. A magnetic field can be trivially added as a
o1 b H led1 A id | chemical potential for the JW fermions and hence magneti-
: TI Flatif s zation curves could be obtained. Since the method is not
00511sa? i 1 based on any periodicity of couplings, it can be well suited to
ol Az ax, axd ; : . study disordered quantum spin systems, at the only price of
0 5 10 15 20 25 30 increasing the CPU time. Last but not the least, the approach
Steps is naturally well suited for the study of the thermodynamics

FIG. 4. Example of the evolution of the Kleorder parameter a;‘at;lese systems, since temperature can be added in a simple

from a sample initial random configuration. Data corresponds to the A th ituati it Id be int ting t |
system depicted in Fig. 3, with a vertical line separating the thermal mong other situations, It wou € interesting 1o apply

evolution and theT=0 evolution. Error bars indicate the standard this technique to th_e Heisenberg quffiml_Jm antiferromagnetic
deviation of local magnetization from Neorder (reduced by a  ©" the triangular lattice, where there is disagreement between

factor of 5 for clarity. Insufficient thermalization can lead to meta- Chern-Simons MF predictiofind numerical data about a
stable configurations or to very slow convergence, while highefMagnetization plateaux at zero magnetization. Another case

temperature dramatically improves convergence towards an ordere?f interest is the kagomiattice, where a quantum spin liquid
configuration. is believed to be realizéd(see also Ref. 16 This issue will

be investigated elsewhere.
V. CONCLUSIONS

We have presented a self-consistent MF procedure for ex-
ploring the quantum ground state of aBy 1/2 spin system
on a 2D lattice. When tested on tie&XZ model on a square We are especially grateful to M. Grynberg and A. Ho-
lattice, the method provides the correct qualitative descripnecker for useful discussions and computational help. We
tion of the system, with na priori ansatz for any kind of also thank C. Balseiro, W. Brenig, J. Drut, and E. Fradkin for
order. We computed the values for the sublattice magnetizatseful comments. We acknowledge CONICET and Funda-
tion and g.s. energy for a wide range of values of the anisoteion Antorchas(Grants Nos. 14116-11 and 14022)7@r
ropy parameter, which compare qualitatively well with the financial support and the Ecole Normale Stigere de Lyon,
available numerical data, at least foe=1 where most accu- where part of this work was done.
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