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Aging dynamics of the Heisenberg spin glass
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We numerically study the nonequilibrium dynamics of the three-dimensional Heisenberg Edwards-Anderson
spin glass following a sudden quench to its low-temperature phase. The subsequent aging behavior of the
system is analyzed in detail, and the scaling behavior of various space-time correlation functions is investigated
for both spin and chiral degrees of freedom. We carefully compare our results with those obtained from
simulations of the more studied Ising version of the model, and with experiments on real spin glasses in which
the spins have vectorial character. Finally, the present dynamical study offers perspectives into the possibility
of spin-chirality decoupling at low temperature in vectorial spin glasses.
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[. INTRODUCTION However, the connection between simulations and experi-
ments is unclear because the spins in an experimental spin
Spin-glass physics has been widely studied over the lagllass have a vectorial character, so that a more natural
decades because spin glasses are considered as the paradigmmiltonian to consider is
for investigating the “glass” staté? In particular, the Ising
Edwards-Anderson spin-glass model defined by

~ 2 WSS, 2
{1
Hising= —E JiiSS, (1)  where theS are now three-component vectors of unit length.
&) The Heisenberg Edwards-Anderson model in E2). has

been far less studied than its Ising counterpart. Experimen-
has been very heavily studiéd® since it is the simplest tally, anisotropy induced by Dzyaloshinsky-Moriya interac-
model with the necessary ingredients of randomness aniibns allows the study of “Ising-like” or “Heisenberg-like”
frustration. Here, thes;=+1 are Ising spins on a regular samples, depending on its strength. Recent experiments per-
lattice interacting through nearest-neighbor interactidfjs formed on Ising and Heisenberg samples revealed that the
which are random variables drawn from a distribution ofdistinction indeed matteR%222% For instance, different
zero mean. The poor theoretical understanding of issues suslamples behave quite differently even if similar temperature
as the phase diagram of the Hamiltonian in EL), the na-  protocols are usetf:?> This emphasizes the need for large
ture of its low-temperature phase, or the extension of itsscale studies of the nonequilibrium dynanifosf the Hamil-
mean-field solution to finite dimensions shows that the probtonian in Eq.(2).
lem is indeed challenging. Also, due to the nature of the We have therefore performed detailed nonequilibrium
problem, experiments only probe nonequilibrium dynamicssimulations of the Heisenberg Edwards-Anderson spin-glass
of spin glasses at low temperature because the equilibratiamodel in three dimensions. In this paper we discuss results
time of a macroscopic sample is infinite in this region. Ex-obtained following the simplest, yet widely studied, experi-
periments therefore pertain to the field of nonequilibriummental protocol where the system is quenched at initial time
statistical mechanic® The variety of dynamic phenomena from a high-temperature state to its spin-glass phase. The
observed in experimentaging, rejuvenation, memory, etc. result of temperature shift and cycling experiments, and the
can be viewed as additional theoretical challerftiés. influence of finite cooling rates on the dynamics are the ob-

In recent years, several theoretical approaches to the sloject of a future paper

dynamics of spin glasses described the physics in terms of a The paper is organized as follows. In Sec. Il, we present
distribution of length scales whose time and temperatur¢he model and give technical details. The dynamics follow-
evolution depends on the specific experimental protocoling a quench is presented in Sec. lll. Scaling behavior of
leading to a good qualitative understanding of the dynamicslynamic functions is discussed in Sec. IV. We give a sum-
of spin glasse&71® Early numerical studié$ revealed the mary of our results in the conclusion of the paper in Sec. V.
existence of a corresponding dynamic correlation length
separating small quasiequilibrated and large nonequilibrated Il MODEL AND NUMERICAL DETAILS
length scales. The physical relevance of these length scales
was, however, critically discussed only more recently, both  We numerically study the model defined by the Hamil-
in simulationd®*°and in experiment¥?0-22 tonian in Eq.(2), in which the Heisenberg spins lie on the
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sites of a three-dimensional cubic lattice with=L3 sites -1.45 — T
periodic boundary conditions. The random couplings are

drawn from a Gaussian distribution of zero mean and stan- 155 L |
dard deviation unity. We use a heat-bath algorfthim which '
the updated spin has the correct Boltzmann distribution for___
the instantaneous local field. This method has the advantags<-1.65 .
that a change in the spin orientation is always made. Times ®
will be given in Monte Carlo sweeps, where one Monte

L P |

Carlo sweep represenité= L3 spin updates. We use a rather
large simulation box of linear size=60, and discuss below

in more detail this choice fok. We study several tempera- _1.85 Y R Y Y E
turesT=0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04, and 0.02. 10° 10' 10 10° 10° 10°
Although all the quantities we shall study are self-averaging, te
we average over several realizations of the disorder, typically Fig. 1. The time dependence of the energy density for tempera-
15, to increase the statistics of our data. turesT=0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04, and GfeEm top

In this paper, we simulate a single type of thermal historyio pottor reveals the aging of the system in its low-temperature
corresponding to “simple aging experiments,” as opposed tghase T<T,=0.16.
the increasingly complex thermal protocols which have been
proposed in recent yeats:” In a simple aging experiment,  (2) Comparison with the Ising spin glasés mentioned
the system is initially prepared in a high-temperature statébove, experiments have revealed quantitative differences
T>T, and suddenly quenched at initial tinig=0 in the  between Heisenberg and Ising samples. Therefore, we also
low-temperature phase<T.. The temperature is then kept want to compare our results with the many aging studies of
constant throughout the experiments, while dynamical meathe Ising Edwards-Anderson model, Hd).
surements are performed at various “waiting timeg after (3) The nature of the transition in the Heisenberg model
the quench. Some “two-time” quantities correlating the sys-Since some of the numerical works that support the spin-
tem att,, with that a timet later are also determined. We chirality decoupling scenario are performed in a dynamical
study the system for a total of 1@weepsthe largest value context, we shall discuss this issue in detail, investigating the
of t,,+1) with the following 20 values of,,, which are ina gradual freezing with time of both spin and chiral degrees of
roughly logarithmic progression: 2, 3, 5, 9, 16, 27, 46, 80,freedom. Following Ref. 29, we define chirality as
139, 240, 416, 720, 1245, 2154, 3728, 6449, 11 159, 19 307,
33405, 57 797. Xt =Se, (SXS-¢), ©)

Contrary to its Ising version, even the location and nature ) ) ) ) )
of the spin-glass transition of the model in E@) have been Whereu €{x,y,z}, ande, is a unit vector in the directiop..
a matter of debate, although the situation has clarified some-
what recently. Early simulations reported the existence of a . AGING DYNAMICS

zero-temperature critical poift, 2in plain contrast to ex- . . . . .
P P b In this section, we define and study the behavior of vari-

erimental finding$:> Kawamura proposed to resolve this ; ] . .
P g Prop ous dynamical quantities that are measured during the aging

discrepancy by introducing the spin-chirality decouplin . . : . . ;
scenaﬁc?g‘}”g b)ellsed on Viﬁain’s id%as that ynoncollir?eargOf the system. Their scaling properties are discussed in detall

ground states might exist in systems with vector spfns. " the following section.

More recently, several papérs® contradicted this scenario

and argued, for both the Gaussian and versions of the A. Energy density

model(2), that spins and chiralities in fact order at the same |t js a central feature of glassy materials that they do not

critical temperaturd .>0. Very recent simulatiorf8involv-  reach thermal equilibrium on experimental time scales when

ing the most efficient tools used to study the Ising spinthey are quenched to their “glassy” phase. The main conse-

glass® conclude that the present model is characterized by guence is that physical quantities keep evolving with time as

phase transition af.~0.16, where both spins and chirality the system tries to reach equilibrium, which is known as

Simultaneously freeze. This motivates the choice Tof “aging," a term invented by the po|ymer g|a55 Commuﬁ'ﬂy_

=0.16 for the upper temperature in our simulations. An obvious manifestation of this out-of-equilibrium dy-
The present study has three main aims. namics is therefore the time dependence of physical observ-

(1) Comparison with experimenté\s explained above, ables. In our case, it is easy to follow the evolution of the
the model in Eq(2) is best suited to describe experimental energy density,

samples where the spins also have a vectorial character. We

want therefore to compare our numerical results to experi-

mental findings. Since our work is the first large scale simu- e(ty)= <NH> : 4)
lation of the Heisenberg spin glass in the aging regime, we

will intentionally display a wide range of numerical data That the system ages at all temperatures studied here is in-
covering the whole low-temperature phase and various obdeed clear from Fig. 1 where at each temperatire
servables. €[0.02,0.16 the time dependence eft,,) is evident.
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l—r—r———7T— This function is represented as a function of the time differ-
encet for various waiting timeg,, and various temperatures
in Fig. 2.

The first and main observation from Fig. 2 is that this
two-time quantity is not a function of the time difference
only, as it would be in an equilibrium syster@(t+t,,,t,,)

# C(t). This is just another way of saying that the system is
aging, but much more information can be extracted from this
correlator.

In more detail, the shape of the curves shown in Fig. 2 is
similar to what is commonly observed in many materials.
For small time difference$<t,, the curves for various,,
superpose, implying that the dynamics is time translationally

!l invariant in this time regime, reminiscent of some sort of
“local equilibrium” or “quasi equilibrium.” This will be
0.8 Naa- - clarified below. Moreover, we find that for all<0.10, the
. e 7 curves in this time regime are consistent with the existence
<3 0.6 L A of a “plateau.” At T=0.10, the plateau starts to be visible at
G time differences~10°-10" only, but its existence becomes
i‘ 04k clearer at lower temperatures. In mathematical terms, this
T means that the Edwards-Anderson parameter defined as
0.2 T =0.10 3
Y I T T B s e — Jea=lim lim lim C(t+t,,t,), (6)
100 10} 10? 108 10* 10° oty el =
t
1 J J T T is finite and positivegg,>0. It is important that the system
= S is large enough that it can be considered effectively infinite
0.8 T for the values oft andt,, used. If the system is not large
i enough, the overall direction of the spins will wander ran-
;0.6 i domly during the simulation, since there is no energy cost to
I a global rotation, with the result that Iimmlimtw_,wC(t
%0‘4 ] +t,,t,) =0 at fixedL. It is clear from Fig. 2 thatjg, is a
0.2 T — 004 | decreasing function of temperature, wipa(T—0)=1. At

higher temperatures, we do not observe a plateau, presum-

N R T ably because our timeT window is too small, as can be
100 10! 102 10° 10° 10° guesseq fr.om comparing the curves B&0.14 and T
¢ =0.10 in Fig. 2.
Although a plateau is expected, because equilibrium mea-
FIG. 2. Autocorrelation function of the spins, E(), for L syrements indicate spin-glass order belBw we recall that
=60, as a function of the time differentéor various waiting times 5 such plateau can be unambiguously observed in the Ising
t logarithmically spaced in the interva,[2,57 797 (from left g5y glass in three dimensions, where the short time regime
to right). The temperature i$=0.14, 0.10, and 0.04rom top to is well described by a pure power 13W!° A nonzerogg,
bottom. indicates the existence of spin-glass phase where spins are
B. Two-time autocorrelation functions frozen in random directions, and the observation of a plateau

The evolution with time of physical observables impliesin the spin autocorrelati_on function in I_:ig. 21is the fi_rst evi-
that the dynamics of the system is not time translationalI)}je.nC(:J of a St"’?pg?fd spmhglgss phe'\:se 'nhthf model_|r62‘;'|q.
invariant. Early studies on polymeric glasses showed thaSI"g nonequilibrium techniques. For the Ising spin glass,
two-time quantities reveal the aging behavior of the systen@n@logous evidence for a transition is currently missing. Ex-
much more strikingly® so that two-time correlation or re- Perimentally, plateaus are also hardly visible in two-time cor-
sponse functions are widely studied in aging glassy materitelation or response functions, but this is probably due to the
als. narrow experimental time window. The existence of a pla-

The simplest two-time quantity that has been studied nuteau can be, however, experimentally revealed through a
merically in spin glasses is the autocorrelation function ofscaling analysis of two-time quantitiés.

the spins defined by Turning to the large time regime>t,, we observe that
1 curves at various waiting times do not superpose at all in this
Clt+ty, ty)=— t41)-S(t), 5 regime at any temperature, fully reveallng thel aging nature
(-t tw) N 2.: (S(t+tw)-S(tw) © of the dynamics. As in many glassy materials, it is clear that
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FIG. 3. Autocorrelation function of the spins far=0.05 and
L =16 show that the use of too small a system size yields stationary
data fort,,>10%, not observed in the larger system used in Fig. 2.

the time decay ofC(t+t,,t,) becomes slower when the 2
waiting time increases. The physical interpretation is simple::_' 0.04
since the relaxation time of the sample is infinite, the only *
relevant time scale is the age of the santplevhich imposes ~ ¢°
an age-dependent relaxation time: the older the sample, th 0.02
slower its relaxation becomes. We shall discuss in the fol-
lowing section the scaling behavior of these curves.

The long time behavior found here is qualitatively very
different from the one reported by Kawamtitavho argues
that the spin autocorrelation function becomes stationary a4
large times, even at temperatures as lowTas0.05. This
fact was later corrected by Matsubargal 3> who noted that 0.08 T — 0.04
a global rotation or “drift” of the system could affect the B\ '
dynamics, and produced curves similar to ours by “subtract-wfO 06 \\
ing” by hand a global rotation of the spins. This is more &
simply interpreted as the system being too small for the ordeni‘ 0.04
of limits in Eq. (6) to apply. Our results for ah=16 system, =
plotted in Fig. 3, are consistent with those of Kawamifra,
and show stationary behavior at long times. By contrast, for
L=60, the spin autocorrelation function shown in Fig. 2, o L S :
does not reach stat_lonarlty in the same time window even for 109 10! 102 108 104 109
temperatures as high 8s=0.16 and without subtracting a t
global rotation of the spins. This shows that one of Kawa- ] ] o
mura’s numerical arguments in favor of a spin-chirality —F!G- 4. Autocorrelation function of the chirality, E(7), as a
decouplinﬁo stems from data on too small a size. Similar function of the time difference for various waiting times,, loga-

finite-size effects are most probably also at work in Refs/thmically spaced in the interva),=[2,57 797 (from left to righy.
P y The temperature i$=0.14, 0.10, and 0.04rom top to botton).

0.02

31-33.
We now present data for the autocorrelation function of o )
the chirality, window for T=<0.10, indicating the existence of a nonzero
Edwards-Anderson parameter for chirality,
1 . . .
Cultttu =35 2 2 ((tHtwxd(tn). (@) Ayea=lim lim lim C,(t+t,t), ®)

t*}@tW*)OCLHOC

Since the system is isotropi€,, does not depend op and  which also grows whefT decreases. This is expected since

we have also averaged the data over the three directions gfe have found above that spins freeze, which implies that
space. Our results are shown in Fig. 4 for the same paranghiralities freeze as well.

eters as for the spins. The main conclusion from Fig. 4 is that
chiralities have essentially the same behavior as the spins.
We observe a stationary decay at smalfollowed by a
slower, waiting time-dependent decay at large times. As for The key problem is to understand the subtle slow changes
the spins, the appearance of a plateau is clear within our timghat the system undergoes: what does “old” or “young” re-

C. Time is length
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ally mean for the sample? To answer this question, we turn to
a spatial description of the aging dynamics.

The decomposition of the decay of autocorrelation func-
tions into a fast stationary process and a slow nonstationary
one directly suggests the existence of some sort of local
equilibrium within the sample: a spin appears locally equili-
brated(short-time dynamigsalthough the sample as a whole
is still far from equilibrium and evolves towards equilibrium
(long-time dynamick

It is possible to illustrate this last statement, as was done
in the Ising casé’ Because of the disorder, the spin orienta-
tions in an equilibrium configuration are random, so that it is :
impossible to detect any domain growth by simply looking at i
the spin directions. However, two copies of the systamind

b, evolving independently but with the same realization of oL =

the disorder, will reachcorrelated equilibrium configura- e s S “:’
tions, because the spins have to satisfy the same constraints ' = =TGR
imposed by the same disorder in both copies. Hence, the spin N .§{$2 S =, 7

orientations in one copy can be compared with those in the
second copy. These spatial correlations are theoretically ex-
pected, as discussed in Sec. IV A below.

It is therefore useful to define the local relative orientation
of the spins as

C0S6;(ty) =S () - S(tw)- 9)

In Fig. 5 we present snapshots where this quantity is encoded
on a gray scale. Comparing three successive times, it be-
comes clear that aging is nothing but the growth with time of
a local random ordering of the spins imposed by the disorder
of the Hamiltoniar?*** Notice that the “domains” observed
in Fig. 5 have highly irregular boundaries, which will influ-
ence the behavior of the spatial correlators discussed below.
Next we focus on chiral degrees of freedom, and similarly
define a chiral local overlap as

04 (tw) = X2 () X1 (tw). (10)

In Fig. 6, we present snapshots where this quantity is en-

coded on a black and white scale. i.e.. we represent the quan- FIG. 5. The relative orientation of the spins in two copies of the
o P d system, Eq(9), is encoded on a gray scale in @660X 60 simu-

tity sgn(qﬁ(‘i) for w=x. Different space directions would give lation box at three different waiting timeg,=2, 27, and 57 797
similar plots. Although a chiral ordering must follow the Spin (from top to bottor at temperatur& =0.04. The growth of a local
ordering observed in Fig. 5, this is hardly visible by the eyerandom ordering of the spins is evident.

and the system appears much more disordered in this chiral

representation. We interpret this as stemming from the fact 1

that spins are actually not “very” correlated within the dy- Cylrty)= N Z <3a(tw)'$a+r(tw)3b(tw)‘§1)+r(tw)>-
namic correlation lengtlisee the following sectionand so (11)

the chiralities, which involve three spins, are even less cor-_ . . . . .
related This function measures correlations of the relative orienta-

tion of two spins separated by a distamcat timet,, , just as
the structure factor does in a pure ferromagnet. Note that
D. Four-point correlation functions Cy(r,t,,) is invariant under global rotation of the spins in

W b d litati . t black and whi either copy, and so is independent of the wandering of the
e now go beyond qualitative pictures of black and whitey, a4 spin orientation which can affect the two-time auto-

domains and measure the dynamic correlation length assoGiyrelation functions discussed in Sec. Il B. However, there
ated_ with the mean _domam size pbserved |n_F|gs. 5 ano! 6.will be a change of behavior i€,(r,t,) whent, is suffi-
First, we generalize the two-site, two-replica correlationgiently large that the dynamic correlation length becomes

funCtion(WhiCh is therefore a“four-point" Obje()tstudied in Comparab|e to the System S|z_e since the System then
the Ising cas¥ to the case of Heisenberg spins as equilibrates.
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FIG. 6. The sign of the chiral local overlaps in two copies of the 0 15 20

system, Eq(10), is encoded on a black and white scale in a 60
X 60X 60 simulation box at three different waiting timgs=2, 27,
and 57 797(from top to bottom. The temperature i$=0.04, and
we have chosep =x. The actual configurations are the same as in
Fig. 5, but the chiral ordering, corresponding to the spin orderin
observed there, is hardly visible.

FIG. 7. The two-site two-replica correlator for the spins defined
in Eg. (11) as a function of for various waiting times logarithmi-
cally spaced in the interval, €[ 2,57 797 (from left to righ?. The
gtemperature i§=0.14, 0.10, and 0.04rom top to botton. Note

that the range of the axis changes with temperature as a result of

We present the space dependenc€g(r,t,,) for various @ slower growth of the dynamic correlation length at lower tempera-
t,, and three different temperatures in Fig. 7. These data oBure. A nonexponential decay is also evident from these curves.
viously confirm the visual impression of the snapshots in
Fig. 5. At a given temperature, the decay®f(r,t,,) withr  since much larger length scales can be equilibrated at
becomes slower at larggy, indicating the growth with time  =0.14 than atT=0.04. This is expected in a disordered
of a dynamic correlation length(T,t,,), sometimes also system where thermal activation is likely to play a role, and
referred to as a “coherence length.” Physically, this meansve shall quantify this statement in the following section. We
that an “older” system exhibits slower dynamics because ofalso note that much smaller length scales are reached in the
a larger dynamic correlation, very much as in standard coarssame time window in the Ising spin glass, both in three and
ening phenomend. four dimensions, where plots similar to Fig. 7 typically

A second piece information we get from Fig. 7 is that thestop"'°at r=5-10, instead of =20-30 used here.
growth of €(T,t,) is strongly dependent on temperature, A third piece of information is that the spatial decay of
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Cy(r,t,) is clearly not exponential, since the latter would
correspond to straight lines in the lin-log representation
adopted in Fig. 7. Moreover, a closer inspection of the data
shows that, as for the time decay of the autocorrelation func-
tions, they can be decomposed in a short-distance decay,
<{(T,t,) where the curves at variotig merge, and a long-
distance oner>¢(T,t,), which becomes slower at larger
tw - This confirms the intuition that spins are indeed in local
equilibrium on short length scales, but that the system as a
whole is not equilibrated. We note that even the local equi-
librium part of the decay seems to be nonexponential, which
might be connected to the strongly irregular nature of the
domains observed in Fig. 5.

Finally note that the correlator in Eqll) is symmetric
aboutlL /2= 30 due to periodic boundary conditions. A look at
Fig. 7 justifies our use of a system size= 60 since even for
the largest waiting time and the largest temperature studied
here, we are in the regime wheféT,t,,)<L/2, so that our
results are not affected by finite-size effects.

We now turn to the chiral degrees of freedom and define
corresponding two-site, two-replica spatial correlations of
the chirality as

1
Carlritw) =5 2 (X (L) X () X! (L) X7 (t)-
(12

In the following we distinguish between two correlators
Cay(ry,ty) andCy,(r, ,t,) if r is taken in a direction par-
allel or perpendicular ta, respectively.

Our results for the correlatofd2) are presented in Fig. 8.
As for the spins, the spatial decay becomes slower at larger
ty, indicating a gradual random ordering of the chiralities.
Although this ordering was not visible on the snapshots pre-
sented in Fig. 6, appropriate correlators not surprisingly per-
form better than the eye. Chiral ordering is anyway expected
since ordering of the spins implies the one of chiralities. In
agreement with the visual observations, however, we find
that spatial correlations of chiralities are much weaker than
for the spins and correlators are numerically indistinguish-
able from noise beyond~4. As a result, we did not attempt
to perform a detailed scaling analysis of spatial correlations
of the chirality. Again, we interpret this as being due to the
fact that chiralities are less correlated because they involve
three spins on a length scale=2.

Results for the spin and chiral two-site, two-replica corr-
elators for L=16, the size studied by Kawamuih,are
shown in Fig. 9. By comparing the top of Fig. 9 with Fig. 7
which is for L=60, we see that the behavior of the spin
function is very strongly size dependent. Physically this is
because the smaller system size comes to, or approaches,
equilibrium on the time scale of the simulation, whereas the
larger size does not. However, the data for the chiral function

107t

10724

qu(T‘” Wt

PHYSICAL REVIEW B9, 184423 (2004

1073 F

1079k

FIG. 8. The two-site two-replica correlator for the chiralities

for L=16 in the bottom part of Fig. 9 are not very different (12) a5 a function ofr for various waiting times logarithmically
from that forL=60 shown in Fig. 8. This observation ex- spaced in the intervat,c[2,57 797. The temperature isT
plains why Kawamur¥ found that chiral autocorrelation =0.14, 0.10, and 0.04rom top to bottor). For T=0.10 we show
does not stop aging while spin autocorrelation does. both Cy,(r,t,) and Cyy(r, ,t,) which exhibit similar behavior.
Although we have not been able to precisely estimate th@lote that the range of theaxis is much smaller than that for the
dynamic correlation length associated with chiral order, thespin correlator in Fig. 7.
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100 % T T T description of its aging dynamics, and compare the results
NG Y with numerical studies of the Ising spin glass and with ex-
- N periments.
= 107! 3 A. Spatial correlations
= . We start our scaling analysis with the study of spatial
& T correlations of the spins. This choice is dictated by theoreti-
1072 E cal considerations, since scaling theories of aging dynamics
- show that time correlations have natural scaling forms when
[ expressed as a function of the dynamical correlation length
s €,819- g0 that its knowledge is of primary importance in
1077, this study.
r Following the physical discussion of the preceding sec-
. tion, it is natural to suggest the following decomposition of
1077 F I T ] Cy(r,t,) between a “locally equilibrated” and an “aging”
i | part,
1072 r
< Cu(r,ty)=Caed 1) Caagin i) (13
=
= 10-3 With C4agind X— 0)~ constant, an@,agindX—*)=0. As in
O studies of the Ising spin glas$*? we found that the func-
tional forms
10~ Caedr)=r"", (14
and
7
Cuagind X)=exp(—xF), B>1, (15)

FIG. 9. Two-site, two-replica functions for spingop) and
chiralities (bottom at T=0.05 andL = 16. While the bottom figure  represent the data quite well, so that a plot at fidedf
is very similar to Fig. 8, the top figure is very differeote, in reC,(r,t,,) versus the scaling variable¢ should collapse
particular, the different range used in both cases the data for all times,,. Such scaling plots are indeed pre-

sented in Fig. 10. Although the data collapse is quite good,

fact that we cannot measure correlations beyord, while  small deviations can be observed in these scaling plots. This
we can estimate spin correlations ug to25 shows that spin - might be due to the fact that corrections to scaling arise at
correlations are much stronger in the whole temperaturemall waiting times where the coherence length is still small,
range that we have investigatefs=0.16. This implies that so that a scaling regime defined by 1 is not entered yet.
we find no temperature regime beldw=0.16 where chiral  Similar scaling plots were obtained for the Ising spin
order manifests itself unaccompanied by simultaneous spiglasst®*2although on a more restricted spatial range.
ordering as a spin-chirality decoupling scenario naturally The temperature variation of the exponen(T) in Eq.
predicts. Hence, although the present nonequilibrium ap¢14) is shown in Table I. At very low temperatures,
proach says nothing about equilibrium behavior in the ther=0.10, it seems to be roughly constant at about 0.8. The
modynamic limit, an important conclusion of this whole sec-same trend is also found in the Ising spin glass, although
tion is that, when a proper system size is used, dynamicahere the exponent sticks to the value 0.5.TAtthe scaling
studies of the Heisenberg spin glass are more simply inteforms in Eqs.(13) and(14) are also expected to hold with

preted in terms of a simultaneous phase transitioTat related to the anomalous exponepvia the relation
=0.16 for both spin and chiral degrees of freedom.

a(Ty)=d—2+ 7. (16)
IV. SCALING OF DYNAMIC FUNCTIONS Our estimate fory is therefore
The study of several space-time correlators of the preced- 7~0.1. (17)

ing section leads to the conclusion that 16=0.16, spins of
the Heisenberg spin glass gradually freeze with time in ranwe cannot estimate error bars on this value since it results
dom orientations dictated by the quenched disorder, naturallﬂom a somewhat arbitrary Sca”ng procedure_

followed by chiral degrees of freedom. This behavior is  As for the Ising case, we find evidence that

qualitatively similar to that of the Ising spin glass. In this

section, we study the scaling behavior of dynamic functions lim lim lim Cy(r,t,)=0, (18)
defined for the spin degrees of freedom, to get a quantitative r ooty —sool
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100 T I T 3 nonzero value simply because the system has spin-glass or-
] der (see again Fig. )9
From the point of view of the droplet pictdtéwhich has
a single ground state plus those related by global symmetry

Eqg. (18) is puzzling since one expects UHJV,LH@CAMW)
0eos | =(0%)eq= gZ,. The data in Figs. 7 and 8 are clearly incon-
%o, ° ] sistent with the large limits being equal to(q2>eq as esti-
a=1.0 MAEHA = mated from the autocorrelations in Figs. 2 and 4. However,
] Eq. (18) has been justifiéd*? within the replica symmetry
breaking(many-state, “RSB’ picture!®*?The argumeritis
° that an equilibrium calculation of the correlaidl) within a
replica symmetry breaking approach predicts power-law be-
r/i(t) havior like Eq.(14) with a nonzerax in the “zero-overlap”
sector®®> However, this argument is really for equilibrium
T T T T fluctuations, and it is not obvious how to translate this result
] to the nonequilibrium situation of interest here. In particular,
a restricted average over the “zero-overlap” sector cannot be
justified by the soldtrivial) observation that the global over-
lap is zero in the aging reginte.

To distinguish between the single and many states pic-
tures, one should perform local measurements and show that
local properties ardin)consistent with the existence of a
single equilibrium stat&? The correlator in Eq(11) can do
this, using the(square of thgrelative spin orientation as a
10-3 1 1 1 L local physical observable. Although, as discussed above, it is
not clear to us that the argument often given for a power-law
r/(t) variation within RSB theory is correct, the droplet theory
makes the clear predictiBhat Eq.(11) tends to a constant,
qZ,, for t,—o0. Hence the results of our simulations, which
fit the power-law variation in Eq(14) with «>0, may be
closer to the RSB “many-states” picture, at least on the time
= and length scales being probed. Theoretical studies of the
] two-site, two-replica correlation functiorC, using the
Migdal-Kadanoff approximation in the spirit of Refs. 13 and
48, would be very valuable.
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AN B. Length scales

From the scaling behavior @,(r,t,,), we obtain a prac-
5 tical definition of the dynamical correlation length of the
spins as the quantity leading to the best collapse of the data

FIG. 10. Rescaled four-point functions of the spins according o Fig. 10. An obvious problem is that the results Bare

the scaling form(13), and using Eq.(14), for temperaturesT affected by the uncertainty in the value @f as is also the

=0.14, 0.10, and 0.04from top to botton. Parameters and sym- case_in the Ising spin glass. In particular, this makes it im-
bols are the same as in Fig. 7. possible to estimate error bars on our resultstfofhe evo-

lution with time of the coherence length at various tempera-
since a>0. HerelL has to be much larger thaf(T,t,,), tures is presented in Fig. 11, where a log-log representation
otherwise the system comes to equilibrium, and we get & used. We find thatf grows with time, in a temperature-
TABLE |. Temperature variation of the exponaenbf the power dependent manne_‘r, _as Was. .ant|C|pated.above.
law in Eq. (14) of the spatial correlations, and the exponent From noDZequmbnum Crltlcql'dynamlcs'arguments, one
which occurs in the scaling of the autocorrelation function, see EqEXPECtSt ~1y,”, wherezis the critical dynamic exponent. An
(26). activated scaling{ ~ (T Int,)*, is more naturally expected
at low temperatures, wheres is the so-called barrier
T 0.16 0.15 0.14 0.12 010 0.08 0.04 0.02 exponenf‘. Moreover, at a given temperatufes T, we ex-
a 1.1 105 1.0 0.9 0.8 0.8 0.8 0.8 pect a crossover from a criticgbower-law regime at short
u 097 098 098 10 101 1.03 107 1.09 timesto an activated regime at large times, which occurs at
shorter times for lower temperatures.

-3
10 0
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FIG. 11. Growth law of the coherence length at different tem- 1 12 Comparison of the growth of the dynamic correlation
peraf[ures. The data are represented by pomts_ and lines. The stralggﬁgth in Heisenbergdata from Fig. 11and Ising(published data
"“ellz's a power-law fit to the data at large times f6=0.16, ¢ fom Ref. 19 models. We use the experimental representation of
~t,", with z~5.0. Ref. 47, plotting vs (T/T.)In(t,). Heisenberg data are represented

with closed symbols forf =0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04,

All these theoretical expectations can successfully be obp.02 (from right to left, T.=0.16. Ising data are represented with
served in our numerical results in Fig. 11. FB+=0.16, a  open symbols fof =0.95, 0.855, 0.76, 0.665, 0.57, 0.476om
power-law behavior is consistent with the data at largeright to left), T,=0.95.
enough times, with

(19 It is nevertheless possible to compare these results with
the Ising spin glass. In Fig. 12, we replot the data of Fig. 11
Here again, we did not attempt to define error bars on théogether with published data obtained in the Ising Edwards-
value of the exponent. The valae=7.0 was found using the Anderson model? We use the representation adopted in Ref.
same method in the Ising spin glddt is the smaller value 47 to compare similar experimental data in Heisenberg and
of the dynamic exponent which allows larger length scales tdsing samples, and plof versus T/T¢)In(ty) in a lin-log
be reached in the Heisenberg model than in the Ising modegcale. In this representation, data at different times and tem-
as was noted above. peratures collapse i€~t§VT/T°, a growth law advocated in
Clearly, at lowT, the long-time behavior is not consistent some early studie$*?*®We recognize from Fig. 12 that this
with a power law and the bending of the curves is indeedunctional form indeed reasonably accounts for the Ising data
compatible with a logarithmic growth law. Note that even atbut not at all for the Heisenberg ones. Also, Fig. 12 clearly
the lowest temperature we have simulaf€e;0.02, the first  confirms that larger length scales can be studied in the
two decades of waiting times give a growth law very similar Heisenberg model than in the Ising model in three dimen-
to the one obtained af=0.16, indicating that the “true” sions. Further, we find in the Heisenberg model clear evi-
activated behavior is entered in the last three decades of thidence of an activated, logarithmic growth law, shown by the
simulations only. This is consistent with the corrections todownward curvature in the data in Figs. 11 and 12 at low
scaling observed in the spatial correlators, recall Fig. 10. Fotemperature. This effect is not observed in the Ising model,

z~5.0.

: (20

this reason, our data do not allow a precise determination afee Fig. 12.
the barrier exponeng from a logarithmic fit to the growth Turning to experiments, direct measurements of the dy-
law which contains too many free parameters. Likewise, théamical correlation length are obviously impossible since the
interpolation law between critical and activated correlator in Eqg.(11) cannot be measured experimentally.
regimes:?1920:45 The least indirect method we are aware of was first suggested
in Ref. 46 and used more recently in a variety of samples.
e\ [Yol €Y It consists of a dynamic estimate of the number of spins that
tw~to o) T e relax in a coherent manner probed through a magnetic per-
turbation. Resulf€ on both Heisenberg-like and Ising-like
which was used in earlier studies, does not account for theystems were gathered in the same representation as Fig. 12
crossover seen in our data. In this expressidgn;|T (see Fig. 4 in Ref. 47 Our results are useful to understand
—T.|~” wherew is the critical exponent for the equilibrium the trends found in experiments. In particular, in Ising
correlation length, and,, t,, and Y, are microscopic samples, the dynamical correlation length is experimentally
length, time, and energy scales, respectively. found to be smaller but to grow faster with increasing time
The conclusion is that larger time scales need to be studhan in Heisenberg sampl&sWe will now see that this can
ied to establish a more quantitative description of the growtlbe understood from the data in Fig. 12.
law for €, but this is difficult because it would require a huge  The Ising spin glass has a larger dynamical expomzent
amount of computer time, as one would have to work withwhich means that its dynamical correlation length initially
even larger system sizes. grows more slowly, since the straight-line dataTat T, in
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Figs. 11 and 12 have slopezl/At intermediate temperatures dynamics wheref (t)«t'?. Furthermore, exactly solvable
where experiments are usually carried out, the system leavesodels have demonstrated the possibility of more general

the critical regime after a crossover time scalgiven by scaling form&°°®that we also discuss below.
. In analysis of experimental data, deviations frdi,,
te~|T=Te| ™. (21)  scaling are often described phenomenologically by the re-
For the Gaussian Ising and Heisenberg Edwards-Andersd@cement

models in three dimensions, it is found thaf . .
——>t1_”f<—), 24
ZVllsingz 10.5, ZV|Heisenberé:5-5v (22 tw W tw (24)
in fair agreement with the experimental values reported imys the scaling variable i6,4,g, Whereu is an exponentin
Ref. 47: 10.5 for the Ising system gn, sTiO3, and 7 and  practice, close to unijyandf a scaling function. The simplest

5, respectively, for the Heisenberg systems GdlDpsS;  choice would bef(x)=x, but it is more common to take
and Ag:Mn 2.7%. Equation@1) and(22) show that Heisen-

berg systems leave the critical region at much earlier times

than Ising samples. Fde>t, there is a crossover, visible in f(x)= H[(1+x)1‘*‘—1], (25)
Fig. 11 and the Heisenberg data in Fig. 12, to presumably

activated behavior = (Int)*”, wherey is the barrier expo- so Eq.(24) becomes

nent. It can be arguédithat this crossover rationalizes the
apparenfl-dependent dynamic exponent/T. observed in t 1 1w d-n
the Ising model. Hence, in the experimental time window, a_’u(tw’t)_m[(tﬂw) —ty "1, (26)
Heisenberg samples lie deeper in the activated regime where

large length scales have been reached but further growth Bince this attempts to take into account the fact that the real
extremely slow. In the range of times available in the simu-age of the sample during the measurement+is,, rather
lations, we do not see the phenomenon observethant,, see,e.g., Ref. 52. This functiart,, ,t) corresponds
experimentall§’ that ¢ increases more slowly for Heisen- to

berg systems than for Ising systems. However, at longer

times, such as those in the experiments, we expect this would h(t)= ex;{ t
occur since the Heisenberg model is clearly entering the ac- 1—u
tivated region wheré increases only logarithmically with

Hence our data provide a consistent explanation of the réD Eq. (23), and reduces te, “(t/t,) for t<t,,.

sults of Ref. 47. Contrary to the Ising spin glass, we find that the initial

decay of the correlation function is better described by a
logarithmic behavior than by a power law, and we take

1-u

(27)

C. Autocorrelation functions

Finally, we study the scaling behavior of the spin autocor- Cedt)=a—blIn(t)=g(t), (28
relation function. This function has been much studied in
Ising spin glasses, and has recently been measured wiherea andb are two temperature dependent parameters
experiment® which have usually focused on the more easilydescribes the data very well. This can be recognized from the
accessible thermoremanent magnetizatidp®oth functions  initial linear aspect of the data in Fig. 2 where a log-lin
are believed to exhibit similar scaling behavior. representation was used. Experimentally also, an initial
As we did for the spatial correlations, it is natural to de-power-law decay of the data is generally adopted, but the
composeC(t+t,,t,,) into an equilibrium and an aging part, humerical value of this exponent is extremely small, typi-
cally <0.10, so that differences from a logarithmic behavior
are probably small.
' (23 Although the low-temperature data in Fi@) show evi-
dence for a plateau, i.e., a nonzero value at ldjgandt,
whereh(t) is an unknown function increasing with time, and Egs. (23) and (28) do not lead to a true plateau. However,
the scaling functiorC,gng has the following limitsC.gin{X  Eq. (23) is sufficient to fit the data and has one less param-
—0)=const andC4i,{ x—)=0. Two simple expectations eter than a function with a plateau. Also, as discussed many
for the aging part are the followingi) h(t)=t leading to a times in the Ising casE:®>>the use of an additive scaling in
simple t/t,, scaling of the aging part of the datéi) h(t)  Eg.(23) is in principle more appropriate, but it too contains
={(t), the dynamical correlation length, which is the basicone more free parameter. In practice, data taken over a lim-
outcome of scaling theori€sand is also obtained in coars- ited time window are usually not sufficient to independently
ening phenomena. It is important to notice that althoughfix all free parameters when such an additive scaling is
popular, t/t,, is not theoretically expected to hold in spin used® We find indeed that our data can be equally well fitted
glasses, as already emphasizédihe natural choice of with an additive and a multiplicative form and both lead to
h(t)=¢(t) does not lead ta/t,, scaling if the dynamics in- similar results as far as the scaling properties of the aging
volves barrier activation because thé(t) grows logarith-  part are concerned. Here, we shall present results with a mul-
mically with time, thought/t,, scaling is obtained for critical tiplicative scaling only.

h(t+t,)
C(t+ty :tw)zceq(t)caginim
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LI L L I with two temperature-dependent exponeRisa,>0. We
10° E - find for instance thah (T=0.14)~0.5, A\{(T=0.12)=0.4,
C 3 No(T=0.04)~2, and\,(T=0.02)~1.5. The existence of

&:‘ two different scaling forms is another evidence that the dy-
& T =014 namics crosses over from a critical to an activated regime
+ ) whenT is decreased fror, down to 0. Again, this is not
% 1071 F p=10.98 E the case in the Ising spin glass which is well described by a
= F 1 power law of the autocorrelation at large times in the whole
= low-temperature phase<T,.%’

An outcome of the scaling procedure of Fig. 13 is there-

N T T T fore an estimate of the temperature dependence of the expo-
10 10-3 10-2 10~ 100 101 102 nentw, and we report this in Table I. We observe a system-
atic increase ofu when the temperature decreases. For
=T., we findu<1, a behavior which has been called “sub-

L RS B B A L L R R S aging.” When decreasing the temperature, howeyehe-
10° k 4 comes equal to 1 arouni=0.12, and “superaging,” corre-
i 3 sponding tou>1, is found at still lower temperatures.

In the Ising spin glass, the situation is again different
since data in three dimensions indicate that the scaling vari-
T'=0.10 1 ablet/t,, can be used, corresponding #o=1, in the whole
=101k =101 4 low temperature phasé>*In four dimensions, however, the

3 3 same tendency as here is found wjth=1 close toT. but
w>1 at lower temperaturés.More puzzling is the experi-
mental situation, since there one has.1 and the tempera-
ture dependence is the opposite withdecreasing when the
e Y B — temperature is loweretiAs discussed in Refs. 19 and 52,
10 10 10 1 however, experimental quenches involve a finite cooling rate,
u(tu,t) so that laboratory aging experiments are in fact temperature-
—r— shift protocols. We will therefore come back to subaging
0 behavior found in experiments in our future pafrer.
10 3 E This multiplicity of experimental and numerical behaviors
: ] obviously requires some discussion. As described above,
1 there is no obvious theoretical reason to expect a petfggt
T =0.04 1 scaling in spin glasses aging at low temperatures, so that
deviations from this simple behavior should not come as a
surprise. Moreover, the rescaling obtained in Fig. 13 is
purely phenomenological, and must be interpreted as an ef-
fective description of the data rather than a fundamental one.
This is consistent with Kurchan’s work showing that persis-
1T R R R B R— tent superaging encoded by E¢®3) and (27) with u>1 is
0% 1002 107! 10° 10! 1(  strictly impossible’®
u(ty,t) For T=T,., however, critical scaling witht ~t¥2 natu-
) . ) ) rally implies the use of (t+t,,)/€(t,,) and therefore/t,, as

FIG. 13. Spin autocorrelation functions rescaled using B8,  gcgjing variables. Hence, it is somewhat surprising that the
_(26), and_(28). The temperatur@ and the exponent are indicated .\ arics indicate instegd(T=0.16)=0.98. Sinceu~1 is
in each figure. found at a slightly lower temperature, a possible interpreta-

tion could be that the value df. determined in Ref. 38 is

With (a,b,u) as free parameters, we have been able talightly larger than the real one. An indication that this is
get a satisfactory collapse of the numerical data at all waitingyossible stems from a recent watkvhere it is argued that
times and temperatures by plottirgft)C(t+t,,t,) as a the finite-size scaling analysis of Ref. 38 systematically over-
function of the scaling variabla(t,,,t). Representative re- estimates the critical temperature. A second plausible expla-

u(ty,t

+ tw> tw)

g(t)C

1072 ——dl—
1073 1072

~— 10_1 3 o= 1.07 E

sults are shown in Fig. 13. _ nation is that our data are plagued by unknown corrections to
We find that the scaling functiolC 4, {X) behaves at scaling in our limited time window &af=0.16.
largex as An increasingu when temperature is decreased can be
rationalized as follows. It is convenient to define an effective
Cagnd¥)~X M1, T=T,, (29  relaxation timé*® by h(t,)/h’(ty), see Eq.(23). When

h(t) ~In(t) this becomed,In(t,), which is greater thanm,,,
leading to an effective superaging behavior since the effec-
CagindX)~(In X) M2, T<T,, (30 tive relaxation time grows faster thdy. The conclusion is
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LI B B B B caling of two-time quantities has successfully been employed
in a spin-glass simulation. This result is important because
— 10 _ one of the salient predictions of the scaling approach to spin
o3 [ ] glasses is the prediction of activated dynamics and logarith-
It mic scaling in the aging regime of finite-dimensional spin
+ glasse$. Experimentally, a logarithmic rescaling of the ther-
> moremanent magnetization does not collapse theZdafat
= does, however, rescale data for the out-of-phase susceptibil-
= ity at different frequenciess,?>” but in a much more re-
stricted time regimegpt,>1.
Theoretical insights are also provided by the exact solu-
10—t tion of the nonequilibrium dynamics of mean-field spin
10~ 10 o 10 I( glasses which has revealed the existence of dynamic
[t ultrametricity®®>1-*8Physically, ultrametricity implies the ex-
— T istence of a broad distribution of relaxation times organized
in a hierarchical manner, in the very precise sense described
0 in Ref. 50. Technically, this generalizes E3) to a con-
E 10 F E tinuum of scaling functionsC,,q associated with a con-
5 tinuum of functionsh(t). Interestingly, dynamic ultrametric-
:_ ity also arises in another mean-field solvable model which
- has the advantage that an exact form for the time decay can
O be worked ouf?® There it was found that two-time correlators
% scale with the variable It(In(t,). This is subtly different
from the logarithmic rescaling used above but the two scal-
ing variables are not compatible, and only the latter leads to
10-1 NPT R BT BT dynamic ultrametricity. We have applied this alternative res-
1073 102 107! 100 1 caling in the lower frame in Fig. 14, which shows that it is
log(t + tu)/ log(t,) — 1 marginally superior to the logarithmic rescaling used above.
Note, however, that this alternative scaling variable “com-
' ' ' presses” slightly more the numerical data, so that we regard
both scalings as being of equally good quality. Note too that
< 10°F —_ they are both compatible, in a restricted time window, with
lad [ ] an effective description in terms of a superaging behavior.
W3 This is again the first time, to our knowledge, that aging data
+ so directly hint at the possible existence of dynamic ultra-
:S/ metricity in a three-dimensional spin glass.
x
V. SUMMARY AND CONCLUSION
Y NN T L We have performed the first large scale numerical simu-
10 10! 100 lations of the aging dynamics of the three-dimensional
log(t)/log(t.) Heisenberg spin glass. We have measured and discussed in

detail the behavior of several space-time correlators related
FIG. 14. Spin autocorrelation functions &t=0.04 rescaled us- poth to spin and chiral degrees of freedom. We now summa-
ing t/t,,, In(t+t,)/In(t,) or In(t)/In(t,) as scaling variables for the rize our main results.
aging part(from top to bottom. We only display the 12 largest  \ve find that the nonequilibrium dynamics of spins and
waiting times, i.e.f, €[139,57 797. chiralities are qualitatively very similar in the range
€[0.02,0.16 that we have investigated in detail. Two-time
that a crossover towards activated behavior at Towatu-  autocorrelation functions show the existence of nonzero
rally implies an apparent superaging behavior well consisteriedwards-Anderson parameters for spins and chiralities, and
with our numerics. This argument was already used in Refthe large time behavior is qualitatively similar and exhibit
19 to interpret data in the four-dimensional Ising spin glassaging behaviorC(t+t,,,t,) # C(t), indicating the simulta-
A purely activated behavior together with a simple scalingneous freezing of both spins and chiralities in this tempera-
of the aging part of the decorrelation would imply that theture window.
use of In-+t,)/In(t,) can rescale the data at large tinfaske Appropriate spatial correlation functions show that aging
test this idea in the middle frame in Fig. 14. A comparisonis due to the development with time of a spin dynamical
with the top frame wheré/t,, is used shows that a logarith- correlation length, so that aging in spin glasses can be
mic rescaling of the data is much better at large times. To outhought of as a sort of coarsening, as proposed long ago by
knowledge, this is the first time that a pure logarithmic res-Fisher and HusB.All our results are consistent with the
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growth with time of a random ordering of the spins imposedmake the aging dynamics of the Heisenberg model much
by the quenched disorder. The chiralities naturally follow thecloser to the experimental situation where results are gener-
spins but display weaker correlations. This is because spiraly more naturally interpreted in terms of thermally acti-
correlations falloff with power of distance in the nonequilib- vated dynamics and logarithmically slow relaxatiéisAs
rium regime, so that the correlations of the chiralities, eacHar as simple aging protocols are concerned, we have clearly
of which involves three spins, probably falloff with a faster established that aging behavior has to be interpreted in terms
power law. of the slow growth with time of a spin-glass dynamic corre-

The system'’s behavior can be simply accounted for with4ation length which then dictates scaling behavior of physical
out invoking any decoupling between spins and chiralitiesproperties. Although direct experimental accesd (q,) is
and we have explicitly shown that some of the numericahard?® recent comparative studf€f Ising and Heisenberg
evidence apparently supporting such a decoupling suffersamples are in full agreement with our findings that Ising
from strong finite-size effects. samples display faster growth of a smaller dynamic correla-

We find that the growth law of the spin dynamical corre-tion length on the time scales of interest, see Fig. 12. How-
lation length changes from a critical power-law regime forever, despite these similarities, we have noted that the loga-
temperatures close td, to a slower activated regime at rithmic scalings found in this work at low temperatures and
lower temperatures. This crossover naturally influences th&arge times are not necessarily observed in experiments be-
scaling behavior of two-time quantities, and we have founctause of the finite cooling rates used in experiméhté Fi-
evidence that the low-temperature behavior of two-time aunally, our observation that the Heisenberg model, as opposed
tocorrelations is more naturally interpreted in terms of loga-to the Ising version, displays a clear crossover towards acti-
rithmic rescalings than the standaid,, scaling commonly vated dynamics is in qualitative agreement with a series of
used. In particular, predictions from both droplet or meansecent studi€8?24’ showing that memory effects and the
field approaches to spin-glass dynamics are equally able tafluence of temperature shifts are much stronger in Heisen-
rationalize the time scaling of dynamical functions. berg samples.

Although qualitatively similar at first sight, we have  These conclusions, as well as our preliminary resilts,
found that the Heisenberg Edwards-Anderson model in threpoint to the correctness of the initial intuition which moti-
dimensions behaves quantitatively differently from its Isingvated this work that the present model is better suited to

cousin in several ways. study and understand from a microscopic viewpoint also
(1) The Heisenberg model clearly displays an Edwardsimore complex thermal protocols leading to further nonequi-
Anderson parameter in the dynamics, see (Bpand Fig. 2,  librium effects.

whereas the Ising model does not.

(2) The growth of the coherence length is not described
by a power law but exhibits a rapid crossover towards acti-
vated dynamics, see Figs. 11 and 12. We thank J.-P. Bouchaud, |I. Campbell, E. Vincent for dis-

(3) Crossover to activated dynamics is also observed irtussions, and A. Dupuis for his kind help during the prepa-
the scaling of two-time quantities which are not described byation of the manuscript. The work of L.B. was supported by
t/t,, scaling in the low-temperature phase, see Fig. 14. the EU through a Marie Curie Grant No. HPMF-CT-2002-

(4) Much larger length scales are involved in the dynam-01927, CNRS France, and Worcester College Oxford. The
ics at large times and low temperatures, due to the smallevork of A.P.Y was supported by the NSF through grants
value of the productv of critical exponents, see E(Q2). Nos. DMR 0086287 and 0337049. The simulations were per-

Interestingly, the features listed above that distinguish théormed at the Oxford Supercomputing Center, Oxford Uni-
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