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Aging dynamics of the Heisenberg spin glass
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We numerically study the nonequilibrium dynamics of the three-dimensional Heisenberg Edwards-Anderson
spin glass following a sudden quench to its low-temperature phase. The subsequent aging behavior of the
system is analyzed in detail, and the scaling behavior of various space-time correlation functions is investigated
for both spin and chiral degrees of freedom. We carefully compare our results with those obtained from
simulations of the more studied Ising version of the model, and with experiments on real spin glasses in which
the spins have vectorial character. Finally, the present dynamical study offers perspectives into the possibility
of spin-chirality decoupling at low temperature in vectorial spin glasses.
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I. INTRODUCTION

Spin-glass physics has been widely studied over the
decades because spin glasses are considered as the par
for investigating the ‘‘glass’’ state.1,2 In particular, the Ising
Edwards-Anderson spin-glass model defined by

H Ising52(
^ i , j &

Ji j SiSj , ~1!

has been very heavily studied,1–3 since it is the simples
model with the necessary ingredients of randomness
frustration. Here, theSi561 are Ising spins on a regula
lattice interacting through nearest-neighbor interactionsJi j
which are random variables drawn from a distribution
zero mean. The poor theoretical understanding of issues
as the phase diagram of the Hamiltonian in Eq.~1!, the na-
ture of its low-temperature phase, or the extension of
mean-field solution to finite dimensions shows that the pr
lem is indeed challenging. Also, due to the nature of
problem, experiments only probe nonequilibrium dynam
of spin glasses at low temperature because the equilibra
time of a macroscopic sample is infinite in this region. E
periments therefore pertain to the field of nonequilibriu
statistical mechanics.4,5 The variety of dynamic phenomen
observed in experiments~aging, rejuvenation, memory, etc!
can be viewed as additional theoretical challenges.4–7

In recent years, several theoretical approaches to the
dynamics of spin glasses described the physics in terms
distribution of length scales whose time and temperat
evolution depends on the specific experimental proto
leading to a good qualitative understanding of the dynam
of spin glasses.6–16 Early numerical studies17 revealed the
existence of a corresponding dynamic correlation len
separating small quasiequilibrated and large nonequilibra
length scales. The physical relevance of these length sc
was, however, critically discussed only more recently, b
in simulations15–19 and in experiments.10,20–22
0163-1829/2004/69~18!/184423~15!/$22.50 69 1844
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However, the connection between simulations and exp
ments is unclear because the spins in an experimental
glass have a vectorial character, so that a more nat
Hamiltonian to consider is

H52(
^ i , j &

Ji j Si•Sj , ~2!

where theSi are now three-component vectors of unit leng
The Heisenberg Edwards-Anderson model in Eq.~2! has
been far less studied than its Ising counterpart. Experim
tally, anisotropy induced by Dzyaloshinsky-Moriya intera
tions allows the study of ‘‘Ising-like’’ or ‘‘Heisenberg-like’’
samples, depending on its strength. Recent experiments
formed on Ising and Heisenberg samples revealed that
distinction indeed matters.20,22,23 For instance, different
samples behave quite differently even if similar temperat
protocols are used.20,22 This emphasizes the need for larg
scale studies of the nonequilibrium dynamics24 of the Hamil-
tonian in Eq.~2!.

We have therefore performed detailed nonequilibriu
simulations of the Heisenberg Edwards-Anderson spin-g
model in three dimensions. In this paper we discuss res
obtained following the simplest, yet widely studied, expe
mental protocol where the system is quenched at initial ti
from a high-temperature state to its spin-glass phase.
result of temperature shift and cycling experiments, and
influence of finite cooling rates on the dynamics are the
ject of a future paper.25

The paper is organized as follows. In Sec. II, we pres
the model and give technical details. The dynamics follo
ing a quench is presented in Sec. III. Scaling behavior
dynamic functions is discussed in Sec. IV. We give a su
mary of our results in the conclusion of the paper in Sec

II. MODEL AND NUMERICAL DETAILS

We numerically study the model defined by the Ham
tonian in Eq.~2!, in which the Heisenberg spins lie on th
©2004 The American Physical Society23-1
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L. BERTHIER AND A. P. YOUNG PHYSICAL REVIEW B69, 184423 ~2004!
sites of a three-dimensional cubic lattice withN5L3 sites
periodic boundary conditions. The random couplings
drawn from a Gaussian distribution of zero mean and s
dard deviation unity. We use a heat-bath algorithm26 in which
the updated spin has the correct Boltzmann distribution
the instantaneous local field. This method has the advan
that a change in the spin orientation is always made. Tim
will be given in Monte Carlo sweeps, where one Mon
Carlo sweep representsN5L3 spin updates. We use a rath
large simulation box of linear sizeL560, and discuss below
in more detail this choice forL. We study several tempera
turesT50.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04, and 0.
Although all the quantities we shall study are self-averagi
we average over several realizations of the disorder, typic
15, to increase the statistics of our data.

In this paper, we simulate a single type of thermal histo
corresponding to ‘‘simple aging experiments,’’ as opposed
the increasingly complex thermal protocols which have b
proposed in recent years.4,5,7 In a simple aging experiment
the system is initially prepared in a high-temperature s
T@Tc and suddenly quenched at initial timetw50 in the
low-temperature phaseT,Tc . The temperature is then kep
constant throughout the experiments, while dynamical m
surements are performed at various ‘‘waiting times’’tw after
the quench. Some ‘‘two-time’’ quantities correlating the sy
tem at tw with that a timet later are also determined. W
study the system for a total of 105 sweeps~the largest value
of tw1t) with the following 20 values oftw , which are in a
roughly logarithmic progression: 2, 3, 5, 9, 16, 27, 46, 8
139, 240, 416, 720, 1245, 2154, 3728, 6449, 11 159, 19 3
33 405, 57 797.

Contrary to its Ising version, even the location and nat
of the spin-glass transition of the model in Eq.~2! have been
a matter of debate, although the situation has clarified so
what recently. Early simulations reported the existence o
zero-temperature critical point,26–28 in plain contrast to ex-
perimental findings.1,2 Kawamura proposed to resolve th
discrepancy by introducing the spin-chirality decoupli
scenario,29–33 based on Villain’s ideas that noncollinea
ground states might exist in systems with vector spin34

More recently, several papers35–38 contradicted this scenari
and argued, for both the Gaussian and6J versions of the
model~2!, that spins and chiralities in fact order at the sa
critical temperatureTc.0. Very recent simulations38 involv-
ing the most efficient tools used to study the Ising s
glass39 conclude that the present model is characterized b
phase transition atTc.0.16, where both spins and chiralit
simultaneously freeze. This motivates the choice ofT
50.16 for the upper temperature in our simulations.

The present study has three main aims.
~1! Comparison with experiments: As explained above

the model in Eq.~2! is best suited to describe experimen
samples where the spins also have a vectorial character
want therefore to compare our numerical results to exp
mental findings. Since our work is the first large scale sim
lation of the Heisenberg spin glass in the aging regime,
will intentionally display a wide range of numerical da
covering the whole low-temperature phase and various
servables.
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~2! Comparison with the Ising spin glass: As mentioned
above, experiments have revealed quantitative differen
between Heisenberg and Ising samples. Therefore, we
want to compare our results with the many aging studies
the Ising Edwards-Anderson model, Eq.~1!.

~3! The nature of the transition in the Heisenberg mod:
Since some of the numerical works that support the sp
chirality decoupling scenario are performed in a dynami
context, we shall discuss this issue in detail, investigating
gradual freezing with time of both spin and chiral degrees
freedom. Following Ref. 29, we define chirality as

x i
m5Si 1em

•~Si3Si 2em
!, ~3!

wheremP$x,y,z%, andem is a unit vector in the directionm.

III. AGING DYNAMICS

In this section, we define and study the behavior of va
ous dynamical quantities that are measured during the a
of the system. Their scaling properties are discussed in d
in the following section.

A. Energy density

It is a central feature of glassy materials that they do
reach thermal equilibrium on experimental time scales wh
they are quenched to their ‘‘glassy’’ phase. The main con
quence is that physical quantities keep evolving with time
the system tries to reach equilibrium, which is known
‘‘aging,’’ a term invented by the polymer glass community.40

An obvious manifestation of this out-of-equilibrium dy
namics is therefore the time dependence of physical obs
ables. In our case, it is easy to follow the evolution of t
energy density,

e~ tw!5 K 1

N
H L . ~4!

That the system ages at all temperatures studied here i
deed clear from Fig. 1 where at each temperatureT
P@0.02,0.16# the time dependence ofe(tw) is evident.

FIG. 1. The time dependence of the energy density for temp
turesT50.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04, and 0.02~from top
to bottom! reveals the aging of the system in its low-temperatu
phase,T<Tc.0.16.
3-2
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
B. Two-time autocorrelation functions

The evolution with time of physical observables impli
that the dynamics of the system is not time translationa
invariant. Early studies on polymeric glasses showed
two-time quantities reveal the aging behavior of the syst
much more strikingly,40 so that two-time correlation or re
sponse functions are widely studied in aging glassy mat
als.

The simplest two-time quantity that has been studied
merically in spin glasses is the autocorrelation function
the spins defined by

C~ t1tw ,tw!5
1

N (
i

^Si~ t1tw!•Si~ tw!&. ~5!

FIG. 2. Autocorrelation function of the spins, Eq.~5!, for L
560, as a function of the time differencet for various waiting times
tw logarithmically spaced in the intervaltwP@2,57 797# ~from left
to right!. The temperature isT50.14, 0.10, and 0.04~from top to
bottom!.
18442
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This function is represented as a function of the time diff
encet for various waiting timestw and various temperature
in Fig. 2.

The first and main observation from Fig. 2 is that th
two-time quantity is not a function of the time differenc
only, as it would be in an equilibrium system,C(t1tw ,tw)
ÞC(t). This is just another way of saying that the system
aging, but much more information can be extracted from t
correlator.

In more detail, the shape of the curves shown in Fig. 2
similar to what is commonly observed in many materia
For small time differencest!tw the curves for varioustw
superpose, implying that the dynamics is time translationa
invariant in this time regime, reminiscent of some sort
‘‘local equilibrium’’ or ‘‘quasi equilibrium.’’ This will be
clarified below. Moreover, we find that for allT<0.10, the
curves in this time regime are consistent with the existe
of a ‘‘plateau.’’ At T50.10, the plateau starts to be visible
time differencest;103–104 only, but its existence become
clearer at lower temperatures. In mathematical terms,
means that the Edwards-Anderson parameter defined as

qEA5 lim
t→`

lim
tw→`

lim
L→`

C~ t1tw ,tw!, ~6!

is finite and positive,qEA.0. It is important that the system
is large enough that it can be considered effectively infin
for the values oft and tw used. If the system is not larg
enough, the overall direction of the spins will wander ra
domly during the simulation, since there is no energy cos
a global rotation, with the result that limt→`limtw→`C(t

1tw ,tw)50 at fixedL. It is clear from Fig. 2 thatqEA is a
decreasing function of temperature, withqEA(T→0)51. At
higher temperatures, we do not observe a plateau, pres
ably because our time window is too small, as can
guessed from comparing the curves atT50.14 and T
50.10 in Fig. 2.

Although a plateau is expected, because equilibrium m
surements indicate spin-glass order belowTc , we recall that
no such plateau can be unambiguously observed in the I
spin glass in three dimensions, where the short time reg
is well described by a pure power law.17,19 A nonzeroqEA
indicates the existence of spin-glass phase where spins
frozen in random directions, and the observation of a plat
in the spin autocorrelation function in Fig. 2 is the first ev
dence of a standard spin-glass phase in the model in Eq~2!
using nonequilibrium techniques. For the Ising spin gla
analogous evidence for a transition is currently missing. E
perimentally, plateaus are also hardly visible in two-time c
relation or response functions, but this is probably due to
narrow experimental time window. The existence of a p
teau can be, however, experimentally revealed throug
scaling analysis of two-time quantities.4,5

Turning to the large time regimet@tw we observe that
curves at various waiting times do not superpose at all in
regime at any temperature, fully revealing the aging nat
of the dynamics. As in many glassy materials, it is clear t
3-3



e
le

nl

, t
fo

ry

y

e
c

re
d

,
fo
2
fo

a
a

ity
ar
fs

o

s
am
th
in

fo
tim

ro

ce
hat

ges
-

na
2

L. BERTHIER AND A. P. YOUNG PHYSICAL REVIEW B69, 184423 ~2004!
the time decay ofC(t1tw ,tw) becomes slower when th
waiting time increases. The physical interpretation is simp
since the relaxation time of the sample is infinite, the o
relevant time scale is the age of the sampletw which imposes
an age-dependent relaxation time: the older the sample
slower its relaxation becomes. We shall discuss in the
lowing section the scaling behavior of these curves.

The long time behavior found here is qualitatively ve
different from the one reported by Kawamura30 who argues
that the spin autocorrelation function becomes stationar
large times, even at temperatures as low asT50.05. This
fact was later corrected by Matsubaraet al.35 who noted that
a global rotation or ‘‘drift’’ of the system could affect th
dynamics, and produced curves similar to ours by ‘‘subtra
ing’’ by hand a global rotation of the spins. This is mo
simply interpreted as the system being too small for the or
of limits in Eq. ~6! to apply. Our results for anL516 system,
plotted in Fig. 3, are consistent with those of Kawamura30

and show stationary behavior at long times. By contrast,
L560, the spin autocorrelation function shown in Fig.
does not reach stationarity in the same time window even
temperatures as high asT50.16 and without subtracting
global rotation of the spins. This shows that one of Kaw
mura’s numerical arguments in favor of a spin-chiral
decoupling30 stems from data on too small a size. Simil
finite-size effects are most probably also at work in Re
31–33.

We now present data for the autocorrelation function
the chirality,

Cx~ t1tw ,tw!5
1

3N (
m

(
i

^x i
m~ t1tw!x i

m~ tw!&. ~7!

Since the system is isotropic,Cx does not depend onm and
we have also averaged the data over the three direction
space. Our results are shown in Fig. 4 for the same par
eters as for the spins. The main conclusion from Fig. 4 is
chiralities have essentially the same behavior as the sp
We observe a stationary decay at smallt, followed by a
slower, waiting time-dependent decay at large times. As
the spins, the appearance of a plateau is clear within our

FIG. 3. Autocorrelation function of the spins forT50.05 and
L516 show that the use of too small a system size yields statio
data fortw.104, not observed in the larger system used in Fig.
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window for T<0.10, indicating the existence of a nonze
Edwards-Anderson parameter for chirality,

qxEA5 lim
t→`

lim
tw→`

lim
L→`

Cx~ t1tw ,tw!, ~8!

which also grows whenT decreases. This is expected sin
we have found above that spins freeze, which implies t
chiralities freeze as well.

C. Time is length

The key problem is to understand the subtle slow chan
that the system undergoes: what does ‘‘old’’ or ‘‘young’’ re

ry
.

FIG. 4. Autocorrelation function of the chirality, Eq.~7!, as a
function of the time differencet for various waiting timestw loga-
rithmically spaced in the intervaltwP@2,57 797# ~from left to right!.
The temperature isT50.14, 0.10, and 0.04~from top to bottom!.
3-4
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
ally mean for the sample? To answer this question, we tur
a spatial description of the aging dynamics.

The decomposition of the decay of autocorrelation fu
tions into a fast stationary process and a slow nonstation
one directly suggests the existence of some sort of lo
equilibrium within the sample: a spin appears locally equ
brated~short-time dynamics! although the sample as a who
is still far from equilibrium and evolves towards equilibriu
~long-time dynamics!.

It is possible to illustrate this last statement, as was d
in the Ising case.17 Because of the disorder, the spin orien
tions in an equilibrium configuration are random, so that i
impossible to detect any domain growth by simply looking
the spin directions. However, two copies of the system,a and
b, evolving independently but with the same realization
the disorder, will reachcorrelated equilibrium configura-
tions, because the spins have to satisfy the same constr
imposed by the same disorder in both copies. Hence, the
orientations in one copy can be compared with those in
second copy. These spatial correlations are theoretically
pected, as discussed in Sec. IV A below.

It is therefore useful to define the local relative orientati
of the spins as

cosu i~ tw!5Si
a~ tw!•Si

b~ tw!. ~9!

In Fig. 5 we present snapshots where this quantity is enco
on a gray scale. Comparing three successive times, it
comes clear that aging is nothing but the growth with time
a local random ordering of the spins imposed by the disor
of the Hamiltonian.8,41 Notice that the ‘‘domains’’ observed
in Fig. 5 have highly irregular boundaries, which will influ
ence the behavior of the spatial correlators discussed be

Next we focus on chiral degrees of freedom, and simila
define a chiral local overlap as

qx i
m ~ tw!5x i

m,a~ tw!x i
m,b~ tw!. ~10!

In Fig. 6, we present snapshots where this quantity is
coded on a black and white scale, i.e., we represent the q
tity sgn(qx i

m ) for m5x. Different space directions would giv
similar plots. Although a chiral ordering must follow the sp
ordering observed in Fig. 5, this is hardly visible by the e
and the system appears much more disordered in this c
representation. We interpret this as stemming from the
that spins are actually not ‘‘very’’ correlated within the d
namic correlation length~see the following section!, and so
the chiralities, which involve three spins, are even less c
related.

D. Four-point correlation functions

We now go beyond qualitative pictures of black and wh
domains and measure the dynamic correlation length ass
ated with the mean domain size observed in Figs. 5 and

First, we generalize the two-site, two-replica correlati
function ~which is therefore a ‘‘four-point’’ object! studied in
the Ising case17 to the case of Heisenberg spins as
18442
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C4~r ,tw!5
1

N (
i

^Si
a~ tw!•Si 1r

a ~ tw!Si
b~ tw!•Si 1r

b ~ tw!&.

~11!

This function measures correlations of the relative orien
tion of two spins separated by a distancer at timetw , just as
the structure factor does in a pure ferromagnet. Note
C4(r ,tw) is invariant under global rotation of the spins
either copy, and so is independent of the wandering of
overall spin orientation which can affect the two-time au
correlation functions discussed in Sec. III B. However, the
will be a change of behavior inC4(r ,tw) when tw is suffi-
ciently large that the dynamic correlation length becom
comparable to the system sizeL, since the system then
equilibrates.

FIG. 5. The relative orientation of the spins in two copies of t
system, Eq.~9!, is encoded on a gray scale in a 60360360 simu-
lation box at three different waiting timestw52, 27, and 57 797
~from top to bottom! at temperatureT50.04. The growth of a local
random ordering of the spins is evident.
3-5
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L. BERTHIER AND A. P. YOUNG PHYSICAL REVIEW B69, 184423 ~2004!
We present the space dependence ofC4(r ,tw) for various
tw and three different temperatures in Fig. 7. These data
viously confirm the visual impression of the snapshots
Fig. 5. At a given temperature, the decay ofC4(r ,tw) with r
becomes slower at largertw , indicating the growth with time
of a dynamic correlation length,,(T,tw), sometimes also
referred to as a ‘‘coherence length.’’ Physically, this mea
that an ‘‘older’’ system exhibits slower dynamics because
a larger dynamic correlation, very much as in standard co
ening phenomena.8

A second piece information we get from Fig. 7 is that t
growth of ,(T,tw) is strongly dependent on temperatur

FIG. 6. The sign of the chiral local overlaps in two copies of t
system, Eq.~10!, is encoded on a black and white scale in a
360360 simulation box at three different waiting timestw52, 27,
and 57 797~from top to bottom!. The temperature isT50.04, and
we have chosenm5x. The actual configurations are the same as
Fig. 5, but the chiral ordering, corresponding to the spin order
observed there, is hardly visible.
18442
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since much larger length scales can be equilibrated aT
50.14 than atT50.04. This is expected in a disordere
system where thermal activation is likely to play a role, a
we shall quantify this statement in the following section. W
also note that much smaller length scales are reached in
same time window in the Ising spin glass, both in three a
four dimensions, where plots similar to Fig. 7 typical
stop17,19 at r 55 –10, instead ofr 520–30 used here.

A third piece of information is that the spatial decay

g

FIG. 7. The two-site two-replica correlator for the spins defin
in Eq. ~11! as a function ofr for various waiting times logarithmi-
cally spaced in the intervaltwP@2,57 797# ~from left to right!. The
temperature isT50.14, 0.10, and 0.04~from top to bottom!. Note
that the range of ther axis changes with temperature as a result
a slower growth of the dynamic correlation length at lower tempe
ture. A nonexponential decay is also evident from these curves
3-6
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
C4(r ,tw) is clearly not exponential, since the latter wou
correspond to straight lines in the lin-log representat
adopted in Fig. 7. Moreover, a closer inspection of the d
shows that, as for the time decay of the autocorrelation fu
tions, they can be decomposed in a short-distance decr
,,(T,tw) where the curves at varioustw merge, and a long-
distance one,r .,(T,tw), which becomes slower at large
tw . This confirms the intuition that spins are indeed in loc
equilibrium on short length scales, but that the system a
whole is not equilibrated. We note that even the local eq
librium part of the decay seems to be nonexponential, wh
might be connected to the strongly irregular nature of
domains observed in Fig. 5.

Finally note that the correlator in Eq.~11! is symmetric
aboutL/2530 due to periodic boundary conditions. A look
Fig. 7 justifies our use of a system sizeL560 since even for
the largest waiting time and the largest temperature stu
here, we are in the regime where,(T,tw),L/2, so that our
results are not affected by finite-size effects.

We now turn to the chiral degrees of freedom and defi
corresponding two-site, two-replica spatial correlations
the chirality as

C4x~r ,tw!5
1

N (
i

^x i
m,a~ tw!x i 1r

m,a~ tw!x i
m,b~ tw!x i 1r

m,b~ tw!&.

~12!

In the following we distinguish between two correlato
C4x(r i ,tw) andC4x(r' ,tw) if r is taken in a direction par
allel or perpendicular tom, respectively.

Our results for the correlators~12! are presented in Fig. 8
As for the spins, the spatial decay becomes slower at la
tw , indicating a gradual random ordering of the chiralitie
Although this ordering was not visible on the snapshots p
sented in Fig. 6, appropriate correlators not surprisingly p
form better than the eye. Chiral ordering is anyway expec
since ordering of the spins implies the one of chiralities.
agreement with the visual observations, however, we
that spatial correlations of chiralities are much weaker th
for the spins and correlators are numerically indistingui
able from noise beyondr;4. As a result, we did not attemp
to perform a detailed scaling analysis of spatial correlati
of the chirality. Again, we interpret this as being due to t
fact that chiralities are less correlated because they inv
three spins on a length scaler 52.

Results for the spin and chiral two-site, two-replica co
elators for L516, the size studied by Kawamura,30 are
shown in Fig. 9. By comparing the top of Fig. 9 with Fig.
which is for L560, we see that the behavior of the sp
function is very strongly size dependent. Physically this
because the smaller system size comes to, or approa
equilibrium on the time scale of the simulation, whereas
larger size does not. However, the data for the chiral func
for L516 in the bottom part of Fig. 9 are not very differe
from that for L560 shown in Fig. 8. This observation ex
plains why Kawamura30 found that chiral autocorrelation
does not stop aging while spin autocorrelation does.

Although we have not been able to precisely estimate
dynamic correlation length associated with chiral order,
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FIG. 8. The two-site two-replica correlator for the chiralitie
~12! as a function ofr for various waiting times logarithmically
spaced in the intervaltwP@2,57 797#. The temperature isT
50.14, 0.10, and 0.04~from top to bottom!. For T50.10 we show
both C4x(r i ,tw) and C4x(r' ,tw) which exhibit similar behavior.
Note that the range of ther axis is much smaller than that for th
spin correlator in Fig. 7.
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fact that we cannot measure correlations beyondr;4, while
we can estimate spin correlations up tor;25 shows that spin
correlations are much stronger in the whole tempera
range that we have investigated,T<0.16. This implies that
we find no temperature regime belowT50.16 where chiral
order manifests itself unaccompanied by simultaneous
ordering as a spin-chirality decoupling scenario natura
predicts. Hence, although the present nonequilibrium
proach says nothing about equilibrium behavior in the th
modynamic limit, an important conclusion of this whole se
tion is that, when a proper system size is used, dynam
studies of the Heisenberg spin glass are more simply in
preted in terms of a simultaneous phase transition atTc
.0.16 for both spin and chiral degrees of freedom.

IV. SCALING OF DYNAMIC FUNCTIONS

The study of several space-time correlators of the prec
ing section leads to the conclusion that forT<0.16, spins of
the Heisenberg spin glass gradually freeze with time in r
dom orientations dictated by the quenched disorder, natur
followed by chiral degrees of freedom. This behavior
qualitatively similar to that of the Ising spin glass. In th
section, we study the scaling behavior of dynamic functio
defined for the spin degrees of freedom, to get a quantita

FIG. 9. Two-site, two-replica functions for spins~top! and
chiralities~bottom! at T50.05 andL516. While the bottom figure
is very similar to Fig. 8, the top figure is very different~note, in
particular, the differentr range used in both cases!.
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description of its aging dynamics, and compare the res
with numerical studies of the Ising spin glass and with e
periments.

A. Spatial correlations

We start our scaling analysis with the study of spat
correlations of the spins. This choice is dictated by theor
cal considerations, since scaling theories of aging dynam
show that time correlations have natural scaling forms wh
expressed as a function of the dynamical correlation len
,,8,10–14 so that its knowledge is of primary importance
this study.

Following the physical discussion of the preceding s
tion, it is natural to suggest the following decomposition
C4(r ,tw) between a ‘‘locally equilibrated’’ and an ‘‘aging’
part,

C4~r ,tw!.C4eq~r !C4agingS r

,~T,tw! D , ~13!

with C4aging(x→0);constant, andC4aging(x→`)50. As in
studies of the Ising spin glass,19,42 we found that the func-
tional forms

C4eq~r !.r 2a(T), ~14!

and

C4aging~x!.exp~2xb!, b.1, ~15!

represent the data quite well, so that a plot at fixedT of
r aC4(r ,tw) versus the scaling variabler /, should collapse
the data for all timestw . Such scaling plots are indeed pr
sented in Fig. 10. Although the data collapse is quite go
small deviations can be observed in these scaling plots. T
might be due to the fact that corrections to scaling arise
small waiting times where the coherence length is still sm
so that a scaling regime defined by,@1 is not entered yet.
Similar scaling plots were obtained for the Ising sp
glass,19,42 although on a more restricted spatial range.

The temperature variation of the exponenta(T) in Eq.
~14! is shown in Table I. At very low temperatures,T
<0.10, it seems to be roughly constant at about 0.8. T
same trend is also found in the Ising spin glass, althou
there the exponent sticks to the value 0.5. AtTc the scaling
forms in Eqs.~13! and~14! are also expected to hold witha
related to the anomalous exponenth via the relation

a~Tc!5d221h. ~16!

Our estimate forh is therefore

h'0.1. ~17!

We cannot estimate error bars on this value since it res
from a somewhat arbitrary scaling procedure.

As for the Ising case, we find evidence that

lim
r→`

lim
tw→`

lim
L→`

C4~r ,tw!50, ~18!
3-8
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
since a.0. Here L has to be much larger than,(T,tw),
otherwise the system comes to equilibrium, and we ge

FIG. 10. Rescaled four-point functions of the spins according
the scaling form~13!, and using Eq.~14!, for temperaturesT
50.14, 0.10, and 0.04~from top to bottom!. Parameters and sym
bols are the same as in Fig. 7.

TABLE I. Temperature variation of the exponenta of the power
law in Eq. ~14! of the spatial correlations, and the exponentm
which occurs in the scaling of the autocorrelation function, see
~26!.

T 0.16 0.15 0.14 0.12 0.10 0.08 0.04 0.0
a 1.1 1.05 1.0 0.9 0.8 0.8 0.8 0.8
m 0.97 0.98 0.98 1.0 1.01 1.03 1.07 1.0
18442
a

nonzero value simply because the system has spin-glas
der ~see again Fig. 9!.

From the point of view of the droplet picture8 ~which has
a single ground state plus those related by global symme!,
Eq. ~18! is puzzling since one expects limr ,tw ,L→`C4(r ,tw)

5^q2&eq5qEA
2 . The data in Figs. 7 and 8 are clearly inco

sistent with the larger limits being equal tô q2&eq as esti-
mated from the autocorrelations in Figs. 2 and 4. Howev
Eq. ~18! has been justified19,42 within the replica symmetry
breaking~many-state, ‘‘RSB’’! picture.19,42The argument3 is
that an equilibrium calculation of the correlator~11! within a
replica symmetry breaking approach predicts power-law
havior like Eq.~14! with a nonzeroa in the ‘‘zero-overlap’’
sector.43 However, this argument is really for equilibrium
fluctuations, and it is not obvious how to translate this res
to the nonequilibrium situation of interest here. In particul
a restricted average over the ‘‘zero-overlap’’ sector canno
justified by the sole~trivial! observation that the global over
lap is zero in the aging regime.3

To distinguish between the single and many states
tures, one should perform local measurements and show
local properties are~in!consistent with the existence of
single equilibrium state.44 The correlator in Eq.~11! can do
this, using the~square of the! relative spin orientation as a
local physical observable. Although, as discussed above,
not clear to us that the argument often given for a power-
variation within RSB theory is correct, the droplet theo
makes the clear prediction8 that Eq.~11! tends to a constant
qEA

2 , for tw→`. Hence the results of our simulations, whic
fit the power-law variation in Eq.~14! with a.0, may be
closer to the RSB ‘‘many-states’’ picture, at least on the tim
and length scales being probed. Theoretical studies of
two-site, two-replica correlation functionC4 using the
Migdal-Kadanoff approximation in the spirit of Refs. 13 an
48, would be very valuable.

B. Length scales

From the scaling behavior ofC4(r ,tw), we obtain a prac-
tical definition of the dynamical correlation length of th
spins as the quantity leading to the best collapse of the
in Fig. 10. An obvious problem is that the results for, are
affected by the uncertainty in the value ofa, as is also the
case in the Ising spin glass. In particular, this makes it
possible to estimate error bars on our results for,. The evo-
lution with time of the coherence length at various tempe
tures is presented in Fig. 11, where a log-log representa
is used. We find that, grows with time, in a temperature
dependent manner, as was anticipated above.

From nonequilibrium critical dynamics arguments, o
expects,;tw

1/z , wherez is the critical dynamic exponent. An
activated scaling,,;(T ln tw)1/c, is more naturally expected
at low temperatures, wherec is the so-called barrier
exponent.8 Moreover, at a given temperatureT&Tc , we ex-
pect a crossover from a critical~power-law! regime at short
times to an activated regime at large times, which occur
shorter times for lower temperatures.

o

q.
3-9



o

rg

th

s t
d

nt
e
a

la

f t
to
F
n

th
d

th

tu
wt
e

ith

with
11
ds-
ef.
and

em-

s
ata
rly
the

en-
vi-

the
ow
el,

dy-
the
ly.
sted
s.
hat
per-
e
g. 12
d

ng
ally

e

t
lly

m
ra

on

of
ed
4,
th
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All these theoretical expectations can successfully be
served in our numerical results in Fig. 11. ForT50.16, a
power-law behavior is consistent with the data at la
enough times, with

z'5.0. ~19!

Here again, we did not attempt to define error bars on
value of the exponent. The valuez'7.0 was found using the
same method in the Ising spin glass.19 It is the smaller value
of the dynamic exponent which allows larger length scale
be reached in the Heisenberg model than in the Ising mo
as was noted above.

Clearly, at lowT, the long-time behavior is not consiste
with a power law and the bending of the curves is inde
compatible with a logarithmic growth law. Note that even
the lowest temperature we have simulated,T50.02, the first
two decades of waiting times give a growth law very simi
to the one obtained atT50.16, indicating that the ‘‘true’’
activated behavior is entered in the last three decades o
simulations only. This is consistent with the corrections
scaling observed in the spatial correlators, recall Fig. 10.
this reason, our data do not allow a precise determinatio
the barrier exponentc from a logarithmic fit to the growth
law which contains too many free parameters. Likewise,
interpolation law between critical and activate
regimes,10,19,20,45

tw;toS ,

,o
D z

expFYo

T S ,

j~T! D
cG , ~20!

which was used in earlier studies, does not account for
crossover seen in our data. In this expression,j;uT
2Tcu2n wheren is the critical exponent for the equilibrium
correlation length, and,o , to , and Yo are microscopic
length, time, and energy scales, respectively.

The conclusion is that larger time scales need to be s
ied to establish a more quantitative description of the gro
law for ,, but this is difficult because it would require a hug
amount of computer time, as one would have to work w
even larger system sizes.

FIG. 11. Growth law of the coherence length at different te
peratures. The data are represented by points and lines. The st
line is a power-law fit to the data at large times forT50.16, ,
;tw

1/z , with z'5.0.
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It is nevertheless possible to compare these results
the Ising spin glass. In Fig. 12, we replot the data of Fig.
together with published data obtained in the Ising Edwar
Anderson model.19 We use the representation adopted in R
47 to compare similar experimental data in Heisenberg
Ising samples, and plot, versus (T/Tc)ln(tw) in a lin-log
scale. In this representation, data at different times and t
peratures collapse if,;tw

zT/Tc , a growth law advocated in
some early studies.18,42,46We recognize from Fig. 12 that thi
functional form indeed reasonably accounts for the Ising d
but not at all for the Heisenberg ones. Also, Fig. 12 clea
confirms that larger length scales can be studied in
Heisenberg model than in the Ising model in three dim
sions. Further, we find in the Heisenberg model clear e
dence of an activated, logarithmic growth law, shown by
downward curvature in the data in Figs. 11 and 12 at l
temperature. This effect is not observed in the Ising mod
see Fig. 12.

Turning to experiments, direct measurements of the
namical correlation length are obviously impossible since
correlator in Eq.~11! cannot be measured experimental
The least indirect method we are aware of was first sugge
in Ref. 46 and used more recently in a variety of sample47

It consists of a dynamic estimate of the number of spins t
relax in a coherent manner probed through a magnetic
turbation. Results47 on both Heisenberg-like and Ising-lik
systems were gathered in the same representation as Fi
~see Fig. 4 in Ref. 47!. Our results are useful to understan
the trends found in experiments. In particular, in Isi
samples, the dynamical correlation length is experiment
found to be smaller but to grow faster with increasing tim
than in Heisenberg samples.47 We will now see that this can
be understood from the data in Fig. 12.

The Ising spin glass has a larger dynamical exponenz,
which means that its dynamical correlation length initia
grows more slowly, since the straight-line data atT5Tc in

-
ight

FIG. 12. Comparison of the growth of the dynamic correlati
length in Heisenberg~data from Fig. 11! and Ising~published data
from Ref. 19! models. We use the experimental representation
Ref. 47, plotting, vs (T/Tc)ln(tw). Heisenberg data are represent
with closed symbols forT50.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.0
0.02 ~from right to left!, Tc.0.16. Ising data are represented wi
open symbols forT50.95, 0.855, 0.76, 0.665, 0.57, 0.475~from
right to left!, Tc.0.95.
3-10
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
Figs. 11 and 12 have slope 1/z. At intermediate temperature
where experiments are usually carried out, the system le
the critical regime after a crossover time scaletc given by

tc;uT2Tcu2zn. ~21!

For the Gaussian Ising and Heisenberg Edwards-Ande
models in three dimensions, it is found that19,38

znu Ising.10.5, znuHeisenberg.5.5, ~22!

in fair agreement with the experimental values reported
Ref. 47: 10.5 for the Ising system Fe0.5Mn0.5TiO3, and 7 and
5, respectively, for the Heisenberg systems CdCr1.7In0.3S4
and Ag:Mn 2.7%. Equations~21! and~22! show that Heisen-
berg systems leave the critical region at much earlier tim
than Ising samples. Fort.tc there is a crossover, visible i
Fig. 11 and the Heisenberg data in Fig. 12, to presuma
activated behavior,,}(ln t)1/c, wherec is the barrier expo-
nent. It can be argued19 that this crossover rationalizes th
apparentT-dependent dynamic exponentzT/Tc observed in
the Ising model. Hence, in the experimental time windo
Heisenberg samples lie deeper in the activated regime w
large length scales have been reached but further grow
extremely slow. In the range of times available in the sim
lations, we do not see the phenomenon obser
experimentally47 that , increases more slowly for Heisen
berg systems than for Ising systems. However, at lon
times, such as those in the experiments, we expect this w
occur since the Heisenberg model is clearly entering the
tivated region where, increases only logarithmically witht.
Hence our data provide a consistent explanation of the
sults of Ref. 47.

C. Autocorrelation functions

Finally, we study the scaling behavior of the spin autoc
relation function. This function has been much studied
Ising spin glasses, and has recently been measure
experiments49 which have usually focused on the more eas
accessible thermoremanent magnetization.4,5 Both functions
are believed to exhibit similar scaling behavior.

As we did for the spatial correlations, it is natural to d
composeC(t1tw ,tw) into an equilibrium and an aging par

C~ t1tw ,tw!.Ceq~ t !CagingS h~ t1tw!

h~ tw! D , ~23!

whereh(t) is an unknown function increasing with time, an
the scaling functionCaging has the following limits:Caging(x
→0)5const andCaging(x→`)50. Two simple expectations
for the aging part are the following.~i! h(t)5t leading to a
simple t/tw scaling of the aging part of the data;~ii ! h(t)
5,(t), the dynamical correlation length, which is the ba
outcome of scaling theories,8 and is also obtained in coars
ening phenomena. It is important to notice that althou
popular, t/tw is not theoretically expected to hold in sp
glasses, as already emphasized.19 The natural choice of
h(t)5,(t) does not lead tot/tw scaling if the dynamics in-
volves barrier activation because then,(t) grows logarith-
mically with time, thought/tw scaling is obtained for critica
18442
es

on

n

s

ly

,
re
is
-
d

er
ld
c-

e-

-
n
in

-

h

dynamics where,(t)}t1/z. Furthermore, exactly solvabl
models have demonstrated the possibility of more gen
scaling forms6,50,51 that we also discuss below.

In analysis of experimental data, deviations fromt/tw
scaling are often described phenomenologically by the
placement

t

tw
→tw

12m f S t

tw
D , ~24!

as the scaling variable inCaging, wherem is an exponent~in
practice, close to unity! andf a scaling function. The simples
choice would bef (x)5x, but it is more common to take

f ~x!5
1

12m
@~11x!12m21#, ~25!

so Eq.~24! becomes

t

tw
→u~ tw ,t !5

1

12m
@~ t1tw!12m2tw

12m#, ~26!

since this attempts to take into account the fact that the
age of the sample during the measurement ist1tw rather
thantw , see, e.g., Ref. 52. This functionu(tw ,t) corresponds
to

h~ t !5expF t12m

12mG ~27!

in Eq. ~23!, and reduces totw
12m(t/tw) for t!tw .

Contrary to the Ising spin glass, we find that the init
decay of the correlation function is better described by
logarithmic behavior than by a power law, and we take

Ceq~ t !5a2b ln~ t ![g~ t !, ~28!

where a and b are two temperature dependent paramet
describes the data very well. This can be recognized from
initial linear aspect of the data in Fig. 2 where a log-l
representation was used. Experimentally also, an in
power-law decay of the data is generally adopted, but
numerical value of this exponent is extremely small, ty
cally ,0.10, so that differences from a logarithmic behav
are probably small.

Although the low-temperature data in Fig.~2! show evi-
dence for a plateau, i.e., a nonzero value at largetw and t,
Eqs. ~23! and ~28! do not lead to a true plateau. Howeve
Eq. ~23! is sufficient to fit the data and has one less para
eter than a function with a plateau. Also, as discussed m
times in the Ising case,19,53 the use of an additive scaling i
Eq. ~23! is in principle more appropriate, but it too contain
one more free parameter. In practice, data taken over a
ited time window are usually not sufficient to independen
fix all free parameters when such an additive scaling
used.53 We find indeed that our data can be equally well fitt
with an additive and a multiplicative form and both lead
similar results as far as the scaling properties of the ag
part are concerned. Here, we shall present results with a m
tiplicative scaling only.
3-11
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L. BERTHIER AND A. P. YOUNG PHYSICAL REVIEW B69, 184423 ~2004!
With (a,b,m) as free parameters, we have been able
get a satisfactory collapse of the numerical data at all wai
times and temperatures by plottingg(t)C(t1tw ,tw) as a
function of the scaling variableu(tw ,t). Representative re
sults are shown in Fig. 13.

We find that the scaling functionCaging(x) behaves at
largex as

Caging~x!;x2l1, T&Tc , ~29!

Caging~x!;~ ln x!2l2, T!Tc , ~30!

FIG. 13. Spin autocorrelation functions rescaled using Eqs.~23!,
~26!, and~28!. The temperatureT and the exponentm are indicated
in each figure.
18442
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with two temperature-dependent exponentsl1 ,l2.0. We
find for instance thatl1(T50.14)'0.5, l1(T50.12)50.4,
l2(T50.04)'2, and l2(T50.02)'1.5. The existence o
two different scaling forms is another evidence that the
namics crosses over from a critical to an activated reg
when T is decreased fromTc down to 0. Again, this is not
the case in the Ising spin glass which is well described b
power law of the autocorrelation at large times in the wh
low-temperature phaseT<Tc .17

An outcome of the scaling procedure of Fig. 13 is the
fore an estimate of the temperature dependence of the e
nentm, and we report this in Table I. We observe a syste
atic increase ofm when the temperature decreases. ForT
5Tc , we findm,1, a behavior which has been called ‘‘su
aging.’’ When decreasing the temperature, however,m be-
comes equal to 1 aroundT'0.12, and ‘‘superaging,’’ corre-
sponding tom.1, is found at still lower temperatures.

In the Ising spin glass, the situation is again differe
since data in three dimensions indicate that the scaling v
able t/tw can be used, corresponding tom51, in the whole
low temperature phase.19,54 In four dimensions, however, th
same tendency as here is found withm51 close toTc but
m.1 at lower temperatures.19 More puzzling is the experi-
mental situation, since there one hasm,1 and the tempera
ture dependence is the opposite withm decreasing when the
temperature is lowered.4 As discussed in Refs. 19 and 5
however, experimental quenches involve a finite cooling ra
so that laboratory aging experiments are in fact temperat
shift protocols. We will therefore come back to subagi
behavior found in experiments in our future paper.25

This multiplicity of experimental and numerical behavio
obviously requires some discussion. As described abo
there is no obvious theoretical reason to expect a perfectt/tw
scaling in spin glasses aging at low temperatures, so
deviations from this simple behavior should not come a
surprise. Moreover, the rescaling obtained in Fig. 13
purely phenomenological, and must be interpreted as an
fective description of the data rather than a fundamental o
This is consistent with Kurchan’s work showing that pers
tent superaging encoded by Eqs.~23! and~27! with m.1 is
strictly impossible.55

For T5Tc , however, critical scaling with,;t1/z natu-
rally implies the use of,(t1tw)/,(tw) and thereforet/tw as
scaling variables. Hence, it is somewhat surprising that
numerics indicate insteadm(T50.16)50.98. Sincem'1 is
found at a slightly lower temperature, a possible interpre
tion could be that the value ofTc determined in Ref. 38 is
slightly larger than the real one. An indication that this
possible stems from a recent work56 where it is argued tha
the finite-size scaling analysis of Ref. 38 systematically ov
estimates the critical temperature. A second plausible ex
nation is that our data are plagued by unknown correction
scaling in our limited time window atT50.16.

An increasingm when temperature is decreased can
rationalized as follows. It is convenient to define an effect
relaxation time5,19 by h(tw)/h8(tw), see Eq.~23!. When
h(t); ln(t) this becomestwln(tw), which is greater thantw ,
leading to an effective superaging behavior since the ef
tive relaxation time grows faster thantw . The conclusion is
3-12
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AGING DYNAMICS OF THE HEISENBERG SPIN GLASS PHYSICAL REVIEW B69, 184423 ~2004!
that a crossover towards activated behavior at lowT natu-
rally implies an apparent superaging behavior well consis
with our numerics. This argument was already used in R
19 to interpret data in the four-dimensional Ising spin gla

A purely activated behavior together with a simple scal
of the aging part of the decorrelation would imply that t
use of ln(t1tw)/ln(tw) can rescale the data at large times.8 We
test this idea in the middle frame in Fig. 14. A comparis
with the top frame wheret/tw is used shows that a logarith
mic rescaling of the data is much better at large times. To
knowledge, this is the first time that a pure logarithmic re

FIG. 14. Spin autocorrelation functions atT50.04 rescaled us-
ing t/tw , ln(t1tw)/ln(tw) or ln(t)/ln(tw) as scaling variables for the
aging part~from top to bottom!. We only display the 12 larges
waiting times, i.e.,twP@139,57 797#.
18442
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caling of two-time quantities has successfully been emplo
in a spin-glass simulation. This result is important beca
one of the salient predictions of the scaling approach to s
glasses is the prediction of activated dynamics and logar
mic scaling in the aging regime of finite-dimensional sp
glasses.8 Experimentally, a logarithmic rescaling of the the
moremanent magnetization does not collapse the data.25,57 It
does, however, rescale data for the out-of-phase suscep
ity at different frequenciesv,21,57 but in a much more re-
stricted time regime,vtw@1.

Theoretical insights are also provided by the exact so
tion of the nonequilibrium dynamics of mean-field sp
glasses which has revealed the existence of dyna
ultrametricity.50,51,58Physically, ultrametricity implies the ex
istence of a broad distribution of relaxation times organiz
in a hierarchical manner, in the very precise sense descr
in Ref. 50. Technically, this generalizes Eq.~23! to a con-
tinuum of scaling functionsCaging associated with a con
tinuum of functionsh(t). Interestingly, dynamic ultrametric
ity also arises in another mean-field solvable model wh
has the advantage that an exact form for the time decay
be worked out.59 There it was found that two-time correlato
scale with the variable ln(t)/ln(tw). This is subtly different
from the logarithmic rescaling used above but the two sc
ing variables are not compatible, and only the latter lead
dynamic ultrametricity. We have applied this alternative re
caling in the lower frame in Fig. 14, which shows that it
marginally superior to the logarithmic rescaling used abo
Note, however, that this alternative scaling variable ‘‘co
presses’’ slightly more the numerical data, so that we reg
both scalings as being of equally good quality. Note too t
they are both compatible, in a restricted time window, w
an effective description in terms of a superaging behav
This is again the first time, to our knowledge, that aging d
so directly hint at the possible existence of dynamic ult
metricity in a three-dimensional spin glass.

V. SUMMARY AND CONCLUSION

We have performed the first large scale numerical sim
lations of the aging dynamics of the three-dimensio
Heisenberg spin glass. We have measured and discuss
detail the behavior of several space-time correlators rela
both to spin and chiral degrees of freedom. We now summ
rize our main results.

We find that the nonequilibrium dynamics of spins a
chiralities are qualitatively very similar in the rangeT
P@0.02,0.16# that we have investigated in detail. Two-tim
autocorrelation functions show the existence of nonz
Edwards-Anderson parameters for spins and chiralities,
the large time behavior is qualitatively similar and exhib
aging behavior,C(t1tw ,tw)ÞC(t), indicating the simulta-
neous freezing of both spins and chiralities in this tempe
ture window.

Appropriate spatial correlation functions show that agi
is due to the development with time of a spin dynamic
correlation length, so that aging in spin glasses can
thought of as a sort of coarsening, as proposed long ago
Fisher and Huse.8 All our results are consistent with th
3-13
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growth with time of a random ordering of the spins impos
by the quenched disorder. The chiralities naturally follow t
spins but display weaker correlations. This is because s
correlations falloff with power of distance in the nonequili
rium regime, so that the correlations of the chiralities, ea
of which involves three spins, probably falloff with a fast
power law.

The system’s behavior can be simply accounted for w
out invoking any decoupling between spins and chiraliti
and we have explicitly shown that some of the numeri
evidence apparently supporting such a decoupling suf
from strong finite-size effects.

We find that the growth law of the spin dynamical corr
lation length changes from a critical power-law regime
temperatures close toTc to a slower activated regime a
lower temperatures. This crossover naturally influences
scaling behavior of two-time quantities, and we have fou
evidence that the low-temperature behavior of two-time
tocorrelations is more naturally interpreted in terms of log
rithmic rescalings than the standardt/tw scaling commonly
used. In particular, predictions from both droplet or mea
field approaches to spin-glass dynamics are equally abl
rationalize the time scaling of dynamical functions.

Although qualitatively similar at first sight, we hav
found that the Heisenberg Edwards-Anderson model in th
dimensions behaves quantitatively differently from its Isi
cousin in several ways.

~1! The Heisenberg model clearly displays an Edwar
Anderson parameter in the dynamics, see Eq.~6! and Fig. 2,
whereas the Ising model does not.

~2! The growth of the coherence length is not describ
by a power law but exhibits a rapid crossover towards a
vated dynamics, see Figs. 11 and 12.

~3! Crossover to activated dynamics is also observed
the scaling of two-time quantities which are not described
t/tw scaling in the low-temperature phase, see Fig. 14.

~4! Much larger length scales are involved in the dyna
ics at large times and low temperatures, due to the sma
value of the productzn of critical exponents, see Eq.~22!.

Interestingly, the features listed above that distinguish
Heisenberg from the Ising Edwards-Anderson model a
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make the aging dynamics of the Heisenberg model m
closer to the experimental situation where results are ge
ally more naturally interpreted in terms of thermally ac
vated dynamics and logarithmically slow relaxations.4,5 As
far as simple aging protocols are concerned, we have cle
established that aging behavior has to be interpreted in te
of the slow growth with time of a spin-glass dynamic corr
lation length which then dictates scaling behavior of physi
properties. Although direct experimental access to,(tw) is
hard,46 recent comparative studies47 of Ising and Heisenberg
samples are in full agreement with our findings that Isi
samples display faster growth of a smaller dynamic corre
tion length on the time scales of interest, see Fig. 12. Ho
ever, despite these similarities, we have noted that the lo
rithmic scalings found in this work at low temperatures a
large times are not necessarily observed in experiments
cause of the finite cooling rates used in experiments.19,52 Fi-
nally, our observation that the Heisenberg model, as oppo
to the Ising version, displays a clear crossover towards a
vated dynamics is in qualitative agreement with a series
recent studies20,22,47 showing that memory effects and th
influence of temperature shifts are much stronger in Heis
berg samples.

These conclusions, as well as our preliminary result25

point to the correctness of the initial intuition which mot
vated this work that the present model is better suited
study and understand from a microscopic viewpoint a
more complex thermal protocols leading to further noneq
librium effects.
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