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Susceptibility and Dzyaloshinskii-Moriya interaction in the Haldane-gap
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The Haldane gap material NigBgN,),NO,(CIO,) exhibits anomalies in its Knight shift, far infrared
absorption and field-dependent gaps, which have been explained using the staggaisat that occurs due
to the low crystal symmetry. We point out that the low-temperature susceptibility is also anomalous and that a
consistent interpretation of all data may require consideration of the Dzyaloshinskii-Moriya interaction.
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[. INTRODUCTION various satellites of the proton Knight shift associated with
the various inequivalent H atoms in the unit cell.
Ni(C,HgN,),NO,(CIO,) (NENP) is one of the best- Mitra and Halperifobserved that this staggered field also
studied quasi-one-dimensional antiferromagnets which exprovides a natural explanation for the field dependence of the
hibits a “Haldane gap” in its excitation spectrum since the gaps. Since this staggered field is perpendicular to the uni-
atomic spins hav&=1. The interchain coupling’ is esti-  form field it breaks th&, symmetry that would otherwise be
mated to be only .0004 whereJ~48 K is the intrachain present and eliminates the finite field Ising transition. Using
coupling and the disordered phase appears to persist down gomean-field type approximation they attempted to fit the
zero temperature. Ignoring interchain couplings, the standartield-dependent gaps by the estimated staggeréensor’
Hamiltonian for this system consists of Heisenberg exchang&urthermore, because the field is staggered it halves the unit
plus crystal-field terms: cell making wave vectors 0 and equivalent thus explaining
the far-infrared adsorption anomaly.
So far, no explanation has been offered, as far as we
know, for the anomalously large loWw-susceptibility. Here
(1.1  We observe that the staggered field also provides a natural
explanation for this since the measured susceptibility then
The crystal-field interactions split the triplet magnon excita-becomes a sum of uniform and staggered susceptibilities and
tion into three separate modes at energies 13.6 K, 15.7 Khe latter becomes quite largbut remains finitg at low T.
and 29 K- However, we find that it is not possible to consistently fit the
However, various anomalies appear in the finite field besusceptibility data in terms of a staggemgéensor alone.
havior of NENP. The low-temperature susceptibility is much  We also observe that another important effect has been
larger than expected from the measured gap anisofr@pg  left out of previous explanations of these anomalies. This is
gap does not close at the Ising transition predicted to occur ahe Dzyaloshinskii-Moriya(DM) antisymmetric exchange
a finite critical field® At low T the Knight shift(local mag- interaction®”’
netic field at a nucleysis much larger than expectédro-
duction of a single magnon by far infrared absorption is ob-

H=§ {9551 +EXSH?+E(S)2— ()4}

served even though this is expected to produce only zero HDM:; Dj-(§XS+1)- 1.2
wave-vector excitations and a single magnon has wave vec-
tor nearsr.> The low crystal symmetry of NENP permits this interaction

Chiba et al* pointed out that the Knight-shift anomaly as well as the staggeregtensor. A convenient way of treat-
can be explained by taking into account the staggered part afig a DM interaction is to remove it by a gauge transforma-
the gyromagnetic tensor. They observed that the local crystdion. It is possible to exactly eliminate it in favor of a small
structure near a magnetic Ni ion has principal axes which areymmetric exchange interaction and a small perturbation to
rotated from the global crystal axes and that the local printhe crystal-field Hamiltonian which just slightly change the
cipal axes take two different orientations for even and oddnagnon energies. However, the combination of a DM inter-
sites along a chain. Thg tensor and also the crystal-field action and a magnetic field is less benign. The gauge trans-
Hamiltonian are expected to align with the local crystal sym-formation transforms the uniform-field into a combination of
metry. This implies that thg tensor has a staggered compo- uniform, slowly rotating uniform and staggered effective
nent so that an applied uniform magnetic field leads to dields. Thus the effective staggered field has two sources
small effective staggered field in addition to the uniform one.which are potentially of the same order of magnitude.
Because an antiferromagnet responds much more strongly, at We calculate the susceptibility including the staggeged
low T, to a staggered field than to a uniform one, this leads tdaensor and DM interaction using a Ginzburg-Land&l)
large effects at lowT. By considering the direction of the mean-field approachWe also do the calculation using a
staggered field, this theory is successful at explaining théype of fermionic mean-field theoR/Either approach allows
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quite good fitting of the susceptibility data at 0 A reli- c ¢ %y

. > . . X 2 1 ®
able determination of these parameters will probably await . © L yor
accurate numerical results on one-dimensional chains and v. borz Loven

more accurate experiments. It is possible that still other ef-
fects which we continue to ignore such as the staggered
crystal-field interaction and interchain couplings are impor-
tant. Nonetheless, we expect that our basic conclusion that
the DM interaction and staggeragitensor are of roughly
equal importance in explaining these anomalies will remain FIG. 1. An illustration of the three coordinate systems. 1 and 2
true. refer to the even and odd sites.

In the following section we review the crystal symmetry
of NENP. Using this plus higf- susceptibility measure- . -
ments we estimate the uniform and staggeget@nsor. We Hex:‘]; S Sj1- (2.9
also derive the most general form of the DM interaction al-
lowed by symmetry. We then go on to discuss the Ibw- However, there is an important symmetry breaking in the
susceptibilities of GL and fermion models in Sec. Ill. In Sec.crystal-field Hamiltonian. This is expected to be diagonal in
IV 'we comment on other types of experimental data andhe S’ coordinate system, as in E¢{.1),
other theoretical approaches.

_ "2 "2 "2
Il. g TENSOR AND DZYALOSHINSKII-MORIYA HCF_; {EXS")*+BEUS)*—(8")°]}. (2.8
INTERACTION IN NENP

The ethylene-diamine molecule surrounding each maglransforming to theS coordinate system, the crystal-field
netic Ni atom in NENP has an approximate orthorhombicHamiltonian has a diagonal uniform part and a small off-
symmetry with principal axes rotated relative to those defindiagonal staggered part. We will assume that the staggered
ing the crystal space group. It is convenient to describe thi®art can be ignored in what follows. The uniform diagonal
rotation in two stages. Labeling the space group aXegart_could then be fit to the observed magnon gaps. This
(a,b,c) in the conventional way we first introduce a rotation Implies thatE*>E*>0. _ _
matrix R, which rotates by 58° about theaxis. This defines  Another important source of anisotropy, when a magnetic
a coordinate system which we labely,z). (The chain axis, field is applle_d, is the _Landgtensor,g. The Zeeman term in
b is identified withz) The components of the spin operators the Hamiltonian is written:
in this coordinate systemSf) are related to those in the

crystallographic system3’) by Hy= g, ﬁ.gjéj ) (2.7
J

S=R,S, (2.2 . . . .
The g tensor is assumed to be diagonal in ti§el(») basis:
where R, is a rotation about thez axis by (—¢) (¢

~58°): g 0 O
cos¢p sing O eno=| 0 9, O[. (2.9

R,=| —sing cos¢p 0|, (2.2) 0 0 g
0 0 1 The uniform and staggeregitensors in the X,y,z) coordi-

. . . nate system are given by
A further rotation by=+ 6 (68~10°) about they axis, R, ,

depending on sites: Uxy )= 9" T E=(R )G 0 (Ry) 2.9
cosé 0 =*sin® where
Ry = 0 1 0 (2.3
y
Fsind 0 cosd 9 0 0
u:
) o g 0 gy O
defines the local symmetry axes around a Ni sg&/ (7). 0 0o
The + or — sign occurs for even or odd sites along a Ni 9z
chain.(See Fig. 1. We label the corresponding spin compo- g.c0s6%+g,sin6? 0 0
nentsS’, _ 0 9, 0
§=RZS. (2.4) 0 0 g.sing*+g,cosd?
. . S . (2.10
The ordinary exchange interaction in NENP is generally
assumed to be of the Heisenberg form and
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0 0 (g¢—9,)sinfcoso On the other hand, for a unifor@;=D,
o= 0 0 0 . a]_:a_j, (2.18
(9:—9g,)sindcosd 0 0 2.1 where
The gyromagnetic tensor in the crystallographic coordinate a=tan 1(D/J). (2.19

system @.,b,c) can be written as This gauge transformation introduces a snxalt anisotropy

—(R.RE RRI L 21 into the symmetric exchange interaction. Its effects on the
Gact = (ReRy )Gen.o(ReRy) 212 crystal-field Hamiltonian must also be considered. If we
write this, in general, as
A. Dzyaloshinskii-Moriya interaction
_ As discussed _by Dzy_aloshlns%and Morlya,_an addi- _ Hep= 2 SjanabSEJ, (2.20
tional exchange interaction term can appear in the Hamil- ;&b

tonian which is antisymmetric under interchanging the two .
sites. the DM interaction then the effect of the gauge transformation is

Ej—R(a)E;R  Ha)), (2.22)

Hou=2>, Di-(S XS ,1). 2.1 _ . N
oM 2 i (5% S+0) 213 whereR(«;) is the rotation matrix which effects the gauge

i - o transformation of Eq(2.16):
The possible values of the DM vectdds can be limited by

considering crystal symmetries of NENP, which at low tem- cosa; sina; O
H 5,10

peratures a.re-glveh by the space grmla. FJrst, tpe Rla))= —sina; cosa; 0. (2.22

compound is invariant under a translation along bhe@r z)

by two sites. This means the DM vectors are the same among 0 0 1

the even(or odd links. Second, the crystal structure is in- 15 the principal axes of the crystal-field Hamiltonian are
variant under th(A-:‘ combined operation of one site tra”f"':l“o'?'otated from site to site while the eigenvalues remain the
along the chainlf) direction and a 180° rotation aroutid  same. For an alternating DM interaction, this is an alternat-
The operation acts aS}"“— — Sy, Sf’ﬂ it.’+1' This im-  ing rotation which would introduce an alternating term in the
plies thatD, ; andD ; are staggereds(— 1)’ while D,;is  crystal-field Hamiltonian. As discussed above, such a term is
uniform. The other symmetry operations relate sites in on@xpected to already be present, before the gauge transforma-
chain to sites in the others, so there are no further restrictionson. For a uniform DM interaction, the transform&densor
on the intrachain DM vectors. in the crystal-field Hamiltonian rotates steadily along the
A nearest-neighbor DM interaction in one dimension canchain. We will assume these small effects can be ignored.
always be eliminated by a redefinition of the spin operators The combination of a DM interaction and an applied field
which varies from site to sité.e., a gauge transformatipn leads to more important effects. Upon performing the gauge
Let us suppose that the symmetric exchange interaction isansformation, thg tensor at sitg is transformed as

SO(3) invariant. Then, choosing coordinates so Batz, _
. - . . . gi—gR Ya. (2.23
we may write the combined symmetric and antisymmetric 779 j

exchange interactions as In the case of a staggered DM interaction, this leads to an
alternating term in they tensor even if it was not present
Hox= >, {[(J+iDj)Sj*Sj11+ H_C_]+J%ZSJ.Z+1}_ before, thus adding to the effective staggered field. A uni-
i form DM interaction leads to a rotating effective magnetic
(214 field. Both staggered and uniform DM interactions can be
We may always transform this into a purely parity-symmetricread”y_treatEd usi_ng field theory methods. The_y appear to _be
exchange interaction: _approxma‘_[ely as important as t_he staggered field in explain-
ing the various anomalies mentioned in Sec. I. We show that
it is possible to fit the susceptibility data quite well by taking

Hex= 2 [VIZ+DA(S'S, 1 +S/S. 1) +ISS ], into account the staggered and uniform DM interactions.
' 2.15 Since the DM interaction contributes the same order of
' magnitude to the effective staggered field as the staggered
by a gauge transformation: gyromagnetic tensdr;*?we have to combine them together.

e For smallg® and (D/J), and an arbitrary direction for the
S —S e (2.16 staggered DM vectoﬁsz(Dx,Dy,O), the staggered field

WhenD;=(—1)'D, the required gauge transformation sim- ¢an be approximated as
ply alternates from site to site:

DSx g'h=Ah, (2.24

a;=(—1)(1/2)tan” }(D/J). (2.17)
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which is just the sum of two contributiot$'?Here we have v v[ag\2 A2
introduced another matrif relating the total effective stag- H=f dZ( E 5Hi2+ E(ﬁ_;) + i(ﬁ.z
gered field,h® to the original laboratory field. Note that '
|A|<1. "

Thus after making the gauge transformation and discard- _MBik%n higi Rui( @ 2) €mndmlly

ing terms which we expect to be unimportant, the Hamil-

tonian can be written, in the<(y,z)(§) coordinate system: .
—ra2 hRi(a 2)pebich A G* (35
H=2> {3S- S 1+EXSH*+E(S)°— ()% Here €;j is the antisymmetric tensor withy,;=1. We as-
i

sume the gaps, normalization factors, and velocity are
—peh-[g"R(a-))1§— (1) ugh> R(a- S},
(2.295

whereR(«-j) is defined in Eqs(2.18 and(2.22. The val-
ues of J~44 K and E?*~8 K have been determined from
fitting the magnon gaps to numerical simulatioh$! EX  (we use units where the spacing between neighboring Ni
~0.4 K is extracted by the best fit of experimental data tojons along the chains is )LThe gaps are from neutron-
the six-spin-ring model calculatioh. scattering experiment§and normalization factors and ve-
locity are from numerical simulatior's.

Tsvelik proposed a fermionic field theory modebr
NENP. We can easily include uniform DM interaction into
A. Mean-field results this model. But there is some problem for staggered effective
field (including staggered tensor and staggered DM inter-
action. The staggered components of the spin operators have
a very complicated representation as the product of three
Ising order (and disorder parameter fields. Consequently,

A=157K, A, =136 K, A,=29 K,

px=py=1.08, p,=1.2, v=120 K, A=3.7 K.
(3.6

Ill. SUSCEPTIBILITY

In the larges approximation, the Heisenberg spin chain is
equivalent to a field theory, the(8 nonlinearo-model(see,
e.g., Refs. 15 and 16 The Hamiltonian of this model is

[ b
Jven By there appears to be no simple method for treating a staggered
. field in this model. If only uniform DM interaction is taken
H:(E) f dz gi*+ 1 @) }(552:1), (3.1 into account, the Hamiltonian can be modified as
2 g\ dz
where H:j dz Ek: (XK Y292k Axioxk)
. 1. ¢ - ih G Rim( @ Z) €mnpXr , @3
= @‘ﬁx% (3.2 MBk%p KOk Rim( @ )emann'pop (3.7

) . where x| is two-component Majorana fermion field

The coupling constang and the magnon velocity take the
values, ats— o, Yo
sz( ' ) (k=1,2,3), (3.8

2
9= s’ v=2Js 33 @e sign+ (—) corresponds to the righteft) movers and

X=X"Y0. v, (#=0,1) are chosen ay,=oy, y1=ioy.
The original spin operators are expressed in terms of the fieltthe advantage of this model is that the field-shifted gaps
& and the spin density as agree better with neutron-scattering experiments than those

of the bosonic model of E(3.5).

B. Isotropic susceptibility: uniform and staggered

If we relax the constraint of 3) nonlinearo model and add In this section, we will forget about the DM interaction
a repulsive¢* interaction, which is treated perturbatively, a and crystal-field terms, and discuss the uniform and stag-
much simpler theory can be obtained. Including anisotropigered susceptibilities of isotropic Heisenberg spin-1 chain. In
terms, we then phenomenologically model the low-lying ex-the isotropic case, when an external uniform magnetic field
citations via the following bosonic quantum field thedry, is applied to the system, we assume that the unifgitemsor
which we refer to as the Ginzburg-Landau mod@&L s also isotropic. We sejug=1 in this section only.
mode): The Hamiltonian for this case is given by
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FIG. 2. Comparison of isotropic uniform susceptibilities of dif-

ferent models.

H=; [3§-S..—h-§.

In a noninteracting quasiparticle approximation

2 SI=Si=N,—-N_,
1
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Temperature (T/J)

FIG. 3. Comparison of isotropic staggered susceptibilities of
different models.

We plot isotropic boson, fermion, Heisenberg spin-1 chain
(transfer-matrix renormalization-group meth@@ and non-
linear o-model result§’ in Fig. 2. We see boson model result
is consistent with Heisenberg spin-1 chain result below
around 0.2 J, fermion model below roughly 0.5 J, nonlinear
o model result is the best, below roughly 1.5 J.

(3.10 When a staggered magnetic field is applied to the system,
the Hamiltonian is

(3.9

where N. are total numbers of quasiparticles with,

==*1.

The uniform zero-field susceptibility per spin can be cal-

culated as

1 1 2
Xo=7((SD%) = T((NL =N_)%)= Z((N2)=(N.)?).

Write

N+:; Ny k,

we get

2
Xo=7 ; (<N§—,k>_<N+,k>2)-

H=; [JS-S+1—(—1)h-§]. (3.16

For the free boson case, the staggered susceptibility is

319 p?(vlJ) B

W 14.82, (3.1

J-XsB=

(3.12 where p is the wave function renormalization of bosonic
field. We choos@=1.11 to fit the low-temperature results of
Heisenberg spin-1 chaiffTMRG).?? They are plotted in Fig.
3. We see they are consistent up to around 0.1 J. We also note
this p is consistent with the average value got from the nu-
merical simulations of equal-time correlation functidrin
Ref. 13,9;=p?):

(3.13

So for boson and fermion distributions, we have different

susceptibilities per unit length as follows:

A2 21,2
2 dk eVA +vkeIT

XU'B:? E (e\/A2+v2k2/T_1)2,

2] dk e\/A2+v2k2/T

XU’F:T Z (eVA2+v2k2/T+ 1)2'

p=3(pxtpytp)=112. (3.18

(3.19
C. Susceptibility of GL model: uniform and staggered
Susceptibility data has been published for an applied field
31 along the crystallographie, b, or ¢ axis, which is aniso-
(3.19 tropic. We assume that what is measuredziS/ah§|0, etc.,
whereF is the free energy ank, the field component in the

where the gap is 0.4107(Refs. 19—21 and the velocity is a direction. From Eqgs.(2.25 and (2.24 we get in the

2.5 J%

(x,y,2) coordinate system:

184414-5
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1 9%F candidate is to include the staggered and uniform DM con-
X'k=[ h-ohe tributions and the staggeregitensor at lowT.
ok We first must determine thgtensor. We do this from high
_ 2 d » temperature data. At high, both x'(0) and x™() go to
et gllgkm L ]112 np TRin(aJ1) Rmp( @] 2) 28'%/(3T). So the staggered contribution to the susceptibility
is suppressed by the small factorsAsf and can be dropped.
[Since the staggeregitensor is proportional to the difference

1
P _
< (T )S (O)> FAIANK L E (—1)hrme of g tensor g:—g,), one may think dropping these terms
jaj2.np i ¢ 9¢
will eventually affect the staggeregitensor much. We actu-
B , , ally did the calculation by keeping these terms and found the
~ fo drRin(aj) Rmpla-j2)(S] (1S (O)>) } result changes very littleWe also expect the relatively small
crystal-field Hamiltonian itself to become unimportant at
(319  highT. In this limit we have
Defining the reduced susceptibility'(q) at arbitrary mo- 1 9°F
mentum q: X'=r o MBZ ik IhX. (3.22
|k(q)_ f dredlis- Jz)<S. (T)Sk (0)), (3.20 where y— 2/(3T) at largeT. Using the chain rule
1112
an oh;\?9°F
then plugging the explicit form ok matrix into Eq.(3.19 X :L 'S hz’ etc., (3.23
and use the translation invariance of spin-correlation func- a
tion, x' can be written as the experimental measurements of susceptibility data in the

crystallographic coordinate system at highthus give us,
approximately, the following results for thgtensor in the
(x,y,2) coordinate system:

1—
x'*= MBE {gn ki

0,
X' (a)+ 6 zX“(O)}

grcodp+gisite=(2.2372,

1_6'1—” il
A AK > X (m+a)+ 6 x (7).

(3.21

_ 2_ 2
We expecty'¥(0) to become small at low.'8 This follows 9;=(2.19% (329
from the fact that it must vanish exponentially in the limit Setting#=10°, ¢$=58°, we have from Eq(2.10

where rotational symmetry around thexis is exact. In this

case we expect that the ground state #as 0 and that there 9,=2.20, g,=2.24, g,=2.15. (3.29

is a finite gap,A,=A, to the lowest state of nonze®;.  Tpys the uniform and staggeregtensor in the X,y,z) co-
Thus, at lowT, x?¥0)«e *x'T. The fact that in NENPA,  ordinate system are, from Eq®.10 and (2.11):

~A, suggests that this symmetry is broken only by a small

amount. This small symmetry breaking is presumably due to 220 O 0

the E* term in Eq.(1.1) and the DM interaction. As pointed ¢=[ 0 224 o (3.26
out in Ref. 18, theE* term leads to a splitting of the gaps of ’ '

gzsif+gicosp=(2.21)?,

first order inE* but aT=0 unifo_rm sug:eptibility of second 0 0 21

order inE*. This suggests that*40)/x**(0) should be of 0 0 0.00

order (A,—A,)?/(A,—~A,)?=.019. This estimate was con- '

firmed by an explicit calculation using the Ginzburg-Landau o= 0 0 0 |, (3.27
field theory, reviewed above. On the other hand, the experi- 0.008 0 0

ment obtained a value for this ratio of about 0.3. While it is
possible that this just reflects errors in this rough estimat@nd matrixA can be derived from Eq2.24).

and in the detailed mean-field calculatt®mwhich confirmed On the other hand, at oW the DM interaction and Stag-
it, it seems more likely that another explanation is requiredgeredg tensor make important contributions. For the GL
The explanation could reside in impurity effects or difficul- model, from Eq.(3.5 we can see there appear two extra
ties in separating the spin susceptibility from the diamagnetiéerms when a magnetic field is applied to the system:
contribution. However, later experimefftsat lower T sug-
gest that the impurity contribution does not set in until con- SH= _f dz

. MB
siderably lowerT and that the data over the temperature

rangeT>1.7 K may be dominated by the signal from the

pure system. Thus we are qul to consid_er the possibility_that +2 hSRi( - 2) pi| -
this discrepancy may be intrinsic. In this case, the obvious

E higiukRkl(a' Z) €imn®mlly
ikimn

(3.28

184414-6
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Now we use the free field approximation€ 0) to calculate

the susceptibilities of the spin chain. Expandigg and
IT; (i=x,y,2) in terms of annihilation and creation opera-

tors:
b= \/ZLU;)ik{exp[—i(wikt—kx)]aik+ H.cl,

(3.29
m=> / ! i i k
=2 m(_”‘)ik){exq_'(wikt_ X)]ai
—H.c}, (3.30
wherelL is the number of spins and
w5=A2+0v%K2. (3.30)

If there is no external field, the Hamiltonian becomes

Ak (3.32

_ +
Ho—zk: wik| &y ikt
|

Looking at6H as a small term, we use first-order perturba-

tion theory for eigenstatm), i.e,

-3 TR,

we have the finiteF formula for susceptibility

2 e PEo(n|(sH/h)[m)[?
=23 .
n,m

Em_En

(3.33

Define reduced uniform and staggered susceptibilitiesy
at momentum q@<<) as:

Z BdTeq(irJ'z)<S}1( T)Si(o»'

Xea)= 1
! L 102 JO

_ 1
xXK(q)==— >,

B o )
(m+a)(ir—i2)( gl k
L 1T, fo dre P <Sll(T)Slz(o)>'

(3.39

From Eq.(3.33 we can calculate them in the GL model as
follows:

;ﬂ(q)=%”dk

2

((Ul_w,)z
(l+n|+nr’n)—n:
W+ wpy

W Wy

(0 + wp)?

’
W™ W)

+(n—n;) ] (i#l#m) (3.395

and

2
. piv

T ATy

Xi(a) (3.36

In Eqg. (3.39, n; is the bosonic occupation number

PHYSICAL REVIEW B 69, 184414 (2004

1
Mk = Cexp(wn /1) — 1] (337
and
kK'=—k—0, o=k, N=nNk, o=, n
:nik/. (33&

When the magnetic field is applied aloh@xis, the uniform
DM interaction will shift the staggered susceptibility by mo-
mentume, but will have no effect on uniform susceptibility.
So from Eq.(3.19, the susceptibility along axis (h=hb)
can be written as

XP=(9218)2X2H0) + 5[ (Ar3up) 2+ (Asaup) 21 XX @)
+xL¥(@)]. (3.39

Similarly, we can calculate the susceptibility along &haxis
(h=ha=h[(cos 58°k— (sin58°)y]). Now the only effect
of uniform DM interaction is shifting the uniform suscepti-
bility by momentume, so we have

X*= 3 (9,u5COS5892+ (gyupsin589) 2] xX(a) + x¥¥(a)]

+ w3 (A3,c08 58° Ay,sin 589224 0). (3.40
Up to now, we have ignored the velocity differences. khe
integral in Eq.(3.395 converges ak—o so that it is not
necessary to introduce an ultraviolet cutoff. Of course a
physical cutoff(the lattice spacingexists in the spin chain
but, in the approximatiorA <J, including this effect makes
only small corrections. On the other hand, taking into ac-
count the velocity difference@ccording to Ref. 13y,=v,
=121 K, v,=114 K), the integrals diverge logarithmically
at largek. This implies stronger dependence on the details of
the dispersion relation at larg&rand the ultraviolet cutoff.
However, for the small velocity difference in NENP, we find
the susceptibility has very weak cutoff dependence. Chang-
ing the cutoff fromr to 1007 only changeg? by about 1%.
We just simply ignore this velocity difference.

The staggered and uniform DM vectors are free param-
eters which can be chosen arbitrarily. We take

Dy

0.02 DZ—004 3.4
5] ~0.02, 53=0. (3.4

—0.008,

to fit the experimental data. We plot GL model results and
experimental data in Fig. 4. The agreement is quite good at
low T where the field theory approximations are expected to
work.

D. Susceptibility of fermion model: uniform and staggered

For the fermion model, from E(3.7) an extra term ap-
pears when a uniform effective field is applied to the system:
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DOa-axis (experimental)
Ob-axis (experimental)
(
(

- - a-axis (theoretical)
— b-axis (theoretical)

cm}/mole)

2 (107

Temperature (K)
FIG. 4. Measured susceptibility vs the GL model prediction.
OoH=— f dz /“Bk%:np ihkgEIle(a' Z)emann'}’OXp}-
(3.42

We can also use E@3.33 to compute the finitéF uniform
susceptibility of this model. Let us sé&t,=0 first, i.e., no
uniform DM interaction. TherR will be identity matrix. We
can easily get

XE=(9218) X5 (0),
where in fermion model

E,F(Q)zj ( i

ﬁ) w|wr'n

(3.43

{(1_nI,F_nr’n,F)

wlwr,n_|k|'|k/|_AlAm
X

+ (N e—Npg)

w|+w;n
wjw-+|Kk[ K|+ A A
coont WS
wm—w|
(3.44
Heren,; ¢ is the fermionic occupation number
= ! 3.4
NikF = [exp g /T) + 1] (349
and
kK'=—k—d, o=y, Ne=Nie, N =Ny r.
(3.46
Similarly,
X2=(gyupCOS ssaz?ﬁfp(mﬂgyﬂssin58°>2¥5¥F<c(>>. ,
3.4

The comparison of the uniform susceptibility of bosonic GL
model D,=0) and that of fermion model},=0) is shown
in Fig. 5. The fermion model results are qualitatively similar

to the bosonic results for the uniform susceptibility although FIG.
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s a-axis (GL model) e
& 4 b-axis (GL model) r'e
w—u 3-axis {Fermion model)

3 L = & b-axis {Fermion model) A/

cm‘z/mole)

-3

(10

Temperature (K)

FIG. 5. The comparison of the uniform susceptibility of GL
model O,=0) and that of fermion model,=0).

the fermionic model. This makes the agreement with the ex-
perimental data considerably worse before inclusion of stag-
geredg tensor and DM interaction.

Similar to the GL model, we can also include uniform
DM interaction into susceptibility calculation. But as we dis-
cussed in Sec. Il A, we do not know how to treat the stag-
gered effective field. If we include uniform DM interaction
and simply take the staggered contribution of GL model as
that of fermionic model, the total susceptibilities can be cal-
culated and are plotted in Fig. 6. The DM vectors are chosen
as

D,

D D
—X=-0.005, —~ >3

2] 2J

0.03, =0.07

(3.48

to fit the experimental data. The agreement is roughly as
good as GL model.

IV. DISCUSSION OF OTHER EXPERIMENTAL DATA
AND OTHER THEORETICAL APPROACHES

Other experimental anomalies requiring staggegyeedn-
sor and DM interaction for their explanation occur in the
Knight shift and field-dependent gaps. Ignoring these small

3

DOa-axis (experimental)

Ob-axis (experimental)
- - a-axis (theoretical)
— b-axis (theoretical)

cm3/mole)

x (107

Temperature (K)

6. Measured susceptibility vs the fermion model predic-

the T=0 value fory® is smaller by about a factor of 50% in tion.
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perturbations, the fermionic model is fairly successful at ex-
plaining the field-dependent gap$he GL model is accurate

PHYSICAL REVIEW B 69, 184414 (2004

, o dk
at low fields but captures only the qualitative features at Xb:%(gZMB)zf — (1+n,+ny)
higher fields where the Zeeman energy is of order the’gap. 27| wxwy
We find tha_t including the. stggger@jt.ensor and staggered A, A, 2
DM interaction does not significantly improve the agreement AV A e
in the case of the GL model. Including the effect of the % X y +(ny—n,)
uniform DM interaction on the field-dependent gaps is a wxt oy

fairly difficult problem even in the GL model approximation A A\ 2
since it requires a nonlinear treatment of a slowly rotating wx\/A—y+ wy\/A—X)
field, and we do not attempt it here. As remarked above there % X |,

appears to be no simple way of including the staggered field Wy ™ Wy

in the fermion model, thus precluding a calculation of itsand similarly for 2. Note that thek integral does not

effects on field-dependent gaps in that model. The fieldconverge in the ultraviolet, even ignoring velocity differ-

dependent Knight shiftpresents similar calculational diffi- ences, since the integrand behaves ag(A(/Ay)

culties using GL or fermion model. - \/(AX/Ay))2/v|k| at largek. Thus the result will be more
There is another low-energy effective field theory modelsensitive to the details of the ultraviolet cutoff than for the

that has been applied to NENP. This model was proposed byther models considered above. Choosing a cufkff:

Mitra and Halperir® The Hamiltonian is the following: and ignoring the staggered field gives a value 8(T=0)
which is about twice as large as that observed experimen-
tally. Including the staggered field raises the theoretical result
still higher making the agreement worse. Furthermore,

4.2)

ab\2 A2 choosing the arbitrary cutoff to be 40 increasesy®(T
H:f dz >, {EH.ZJF 3(_') + _'¢_2} =0) by a factor of about 2, also worsening the agreement.
T2t 2\ oz 2v Sieling et al?®, using the Lancz® algorithm and the

density-matrix renormalization group technique, studied the
_ 2 h.qU /ﬁ n field-induced gaps, for a field in the direction, using a
me.a NiGik€kim Am¢| m model containing an alternating field and alternating as well
as uniform crystal-field terms. Independent rotation matrices
R were assumed for these two types of alternating terms, rather
— e hipid +?\¢-4] : (4.1)  than assuming that bothtensor and crystal field tensors are
! diagonal in the €,{, ) coordinate system, as seems likely.
The DM interaction was not included. More numerical work
of this type, including the DM interactiotand perhaps also
In this case we also ignore the small velocity differencet-he stagge_red crystal field ter}ngs_n'd can|der|ng the otherl
field direction and the susceptibilities is needed to determine

which can be shown to have a negligible effect, as in the Gy rate values of the staggergdensor and DM interac-
model. This model differs from the standard GL theory oftjgns.

Eq. (3.5 by the factors ofyA,/A,, in the coupling to the

magnetic field. These factors were introduced in Ref. 5, in ACKNOWLEDGMENTS
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