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Susceptibility and Dzyaloshinskii-Moriya interaction in the Haldane-gap
compound Ni„C2H8N2…2NO2„ClO4…

Hai Huang* and Ian Affleck†

Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

~Received 2 November 2003; published 24 May 2004!

The Haldane gap material Ni(C2H8N2)2NO2(ClO4) exhibits anomalies in its Knight shift, far infrared
absorption and field-dependent gaps, which have been explained using the staggeredg tensor that occurs due
to the low crystal symmetry. We point out that the low-temperature susceptibility is also anomalous and that a
consistent interpretation of all data may require consideration of the Dzyaloshinskii-Moriya interaction.
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I. INTRODUCTION

Ni(C2H8N2)2NO2(ClO4) ~NENP! is one of the best-
studied quasi-one-dimensional antiferromagnets which
hibits a ‘‘Haldane gap’’ in its excitation spectrum since t
atomic spins haveS51. The interchain couplingJ8 is esti-
mated to be only .0004J, whereJ'48 K is the intrachain
coupling and the disordered phase appears to persist dow
zero temperature. Ignoring interchain couplings, the stand
Hamiltonian for this system consists of Heisenberg excha
plus crystal-field terms:

H5(
j

$JSW j•SW j 111Ez~Sj
z!21Ex@~Sj

x!22~Sj
y!2#%.

~1.1!

The crystal-field interactions split the triplet magnon exci
tion into three separate modes at energies 13.6 K, 15.7
and 29 K.1

However, various anomalies appear in the finite field
havior of NENP. The low-temperature susceptibility is mu
larger than expected from the measured gap anisotropy.2 The
gap does not close at the Ising transition predicted to occu
a finite critical field.3 At low T the Knight shift~local mag-
netic field at a nucleus! is much larger than expected.4 Pro-
duction of a single magnon by far infrared absorption is o
served even though this is expected to produce only z
wave-vector excitations and a single magnon has wave
tor nearp.3

Chiba et al.4 pointed out that the Knight-shift anomal
can be explained by taking into account the staggered pa
the gyromagnetic tensor. They observed that the local cry
structure near a magnetic Ni ion has principal axes which
rotated from the global crystal axes and that the local p
cipal axes take two different orientations for even and o
sites along a chain. Theg tensor and also the crystal-fiel
Hamiltonian are expected to align with the local crystal sy
metry. This implies that theg tensor has a staggered comp
nent so that an applied uniform magnetic field leads to
small effective staggered field in addition to the uniform on
Because an antiferromagnet responds much more strong
low T, to a staggered field than to a uniform one, this lead
large effects at lowT. By considering the direction of the
staggered field, this theory is successful at explaining
0163-1829/2004/69~18!/184414~10!/$22.50 69 1844
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various satellites of the proton Knight shift associated w
the various inequivalent H atoms in the unit cell.

Mitra and Halperin5observed that this staggered field al
provides a natural explanation for the field dependence of
gaps. Since this staggered field is perpendicular to the
form field it breaks theZ2 symmetry that would otherwise b
present and eliminates the finite field Ising transition. Us
a mean-field type approximation they attempted to fit
field-dependent gaps by the estimated staggeredg tensor.4

Furthermore, because the field is staggered it halves the
cell making wave vectors 0 andp equivalent thus explaining
the far-infrared adsorption anomaly.

So far, no explanation has been offered, as far as
know, for the anomalously large low-T susceptibility. Here
we observe that the staggered field also provides a na
explanation for this since the measured susceptibility th
becomes a sum of uniform and staggered susceptibilities
the latter becomes quite large~but remains finite! at low T.
However, we find that it is not possible to consistently fit t
susceptibility data in terms of a staggeredg tensor alone.

We also observe that another important effect has b
left out of previous explanations of these anomalies. This
the Dzyaloshinskii-Moriya~DM! antisymmetric exchange
interaction,6,7

HDM5(
j

DW j•~SW j3SW j 11!. ~1.2!

The low crystal symmetry of NENP permits this interactio
as well as the staggeredg tensor. A convenient way of treat
ing a DM interaction is to remove it by a gauge transform
tion. It is possible to exactly eliminate it in favor of a sma
symmetric exchange interaction and a small perturbation
the crystal-field Hamiltonian which just slightly change th
magnon energies. However, the combination of a DM int
action and a magnetic field is less benign. The gauge tra
formation transforms the uniform-field into a combination
uniform, slowly rotating uniform and staggered effectiv
fields. Thus the effective staggered field has two sour
which are potentially of the same order of magnitude.

We calculate the susceptibility including the staggeredg
tensor and DM interaction using a Ginzburg-Landau~GL!
mean-field approach.8 We also do the calculation using
type of fermionic mean-field theory.9 Either approach allows
©2004 The American Physical Society14-1
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quite good fitting of the susceptibility data at lowT. A reli-
able determination of these parameters will probably aw
accurate numerical results on one-dimensional chains
more accurate experiments. It is possible that still other
fects which we continue to ignore such as the stagge
crystal-field interaction and interchain couplings are imp
tant. Nonetheless, we expect that our basic conclusion
the DM interaction and staggeredg tensor are of roughly
equal importance in explaining these anomalies will rem
true.

In the following section we review the crystal symmet
of NENP. Using this plus high-T susceptibility measure
ments we estimate the uniform and staggeredg tensor. We
also derive the most general form of the DM interaction
lowed by symmetry. We then go on to discuss the lowT
susceptibilities of GL and fermion models in Sec. III. In Se
IV we comment on other types of experimental data a
other theoretical approaches.

II. g TENSOR AND DZYALOSHINSKII-MORIYA
INTERACTION IN NENP

The ethylene-diamine molecule surrounding each m
netic Ni atom in NENP has an approximate orthorhom
symmetry with principal axes rotated relative to those de
ing the crystal space group. It is convenient to describe
rotation in two stages. Labeling the space group a
(a,b,c) in the conventional way we first introduce a rotatio
matrixRz which rotates by 58° about theb axis. This defines
a coordinate system which we label (x,y,z). ~The chain axis,
b is identified withz.! The components of the spin operato
in this coordinate system (Sa) are related to those in th
crystallographic system (Sa8) by

SW 5RzSW 8, ~2.1!

where Rz is a rotation about thez axis by (2f) (f
'58°):

Rz5S cosf sinf 0

2sinf cosf 0

0 0 1
D . ~2.2!

A further rotation by6u (u'10°) about they axis, R y
6 ,

depending on sites:

R y
65S cosu 0 6sinu

0 1 0

7sinu 0 cosu
D ~2.3!

defines the local symmetry axes around a Ni site (j,z,h).
The 1 or 2 sign occurs for even or odd sites along a
chain.~See Fig. 1.! We label the corresponding spin comp
nentsSW 9,

SW 95R y
6SW . ~2.4!

The ordinary exchange interaction in NENP is genera
assumed to be of the Heisenberg form
18441
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Hex5J(
j

SW j•SW j 11 . ~2.5!

However, there is an important symmetry breaking in t
crystal-field Hamiltonian. This is expected to be diagonal
the SW 9 coordinate system, as in Eq.~1.1!,

HCF5(
j

$Ez~Sj
z9!21Ex@~Sj

x9!22~Sj
y9!2#%. ~2.6!

Transforming to theSW coordinate system, the crystal-fiel
Hamiltonian has a diagonal uniform part and a small o
diagonal staggered part. We will assume that the stagg
part can be ignored in what follows. The uniform diagon
part could then be fit to the observed magnon gaps. T
implies thatEz@Ex.0.

Another important source of anisotropy, when a magne
field is applied, is the Lande´ g tensor,g. The Zeeman term in
the Hamiltonian is written:

HZ5mB(
j

hW •gjSW j . ~2.7!

Theg tensor is assumed to be diagonal in the (j,z,h) basis:

g(j,h,z)5S gj 0 0

0 gh 0

0 0 gz

D . ~2.8!

The uniform and staggeredg tensors in the (x,y,z) coordi-
nate system are given by

g(x,y,z)5gu6gs5~R y
6!g(j,h,z)~R y

6!21, ~2.9!

where

gu5S gx 0 0

0 gy 0

0 0 gz

D
5S gjcosu21gzsinu2 0 0

0 gh 0

0 0 gjsinu21gzcosu2
D
~2.10!

and

FIG. 1. An illustration of the three coordinate systems. 1 an
refer to the even and odd sites.
4-2
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SUSCEPTIBILITY AND DZYALOSHINSKII-MORIYA . . . PHYSICAL REVIEW B 69, 184414 ~2004!
gs5S 0 0 ~gj2gz!sinucosu

0 0 0

~gj2gz!sinucosu 0 0
D .

~2.11!

The gyromagnetic tensor in the crystallographic coordin
system (a,b,c) can be written as

g(a,c,b)5~RzR y
6!g(j,h,z)~RzR y

6!21. ~2.12!

A. Dzyaloshinskii-Moriya interaction

As discussed by Dzyaloshinskii6 and Moriya,7 an addi-
tional exchange interaction term can appear in the Ham
tonian which is antisymmetric under interchanging the t
sites, the DM interaction

HDM5(
j

DW j•~SW j3SW j 11!. ~2.13!

The possible values of the DM vectorsDW j can be limited by
considering crystal symmetries of NENP, which at low te
peratures are given by the space groupPn21a.5,10 First, the
compound is invariant under a translation along theb̂ ~or ẑ)
by two sites. This means the DM vectors are the same am
the even~or odd! links. Second, the crystal structure is i
variant under the combined operation of one site transla
along the chain (b̂) direction and a 180° rotation aroundb̂.
The operation acts asSj

a,c→2Sj 11
a,c , Sj

b→Sj 11
b . This im-

plies thatDa, j andDc, j are staggered,}(21) j while Db, j is
uniform. The other symmetry operations relate sites in o
chain to sites in the others, so there are no further restrict
on the intrachain DM vectors.

A nearest-neighbor DM interaction in one dimension c
always be eliminated by a redefinition of the spin operat
which varies from site to site~i.e., a gauge transformation!.
Let us suppose that the symmetric exchange interactio
SO(3) invariant. Then, choosing coordinates so thatDW } ẑ,
we may write the combined symmetric and antisymme
exchange interactions as

Hex5(
j

$@~J1 iD j !Sj
1Sj 11

2 1H.c.#1JSj
zSj 11

z %.

~2.14!

We may always transform this into a purely parity-symmet
exchange interaction:

Hex5(
j

@AJ21D2~Sj
xSj 11

x 1Sj
ySj 11

y !1JSj
zSj 11

z #,

~2.15!

by a gauge transformation:

Sj
2→Sj

2eia j . ~2.16!

WhenD j5(21) jD, the required gauge transformation sim
ply alternates from site to site:

a j5~21! j~1/2!tan21~D/J!. ~2.17!
18441
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On the other hand, for a uniformD j5D,

a j5a• j , ~2.18!

where

a5tan21~D/J!. ~2.19!

This gauge transformation introduces a smallxxzanisotropy
into the symmetric exchange interaction. Its effects on
crystal-field Hamiltonian must also be considered. If w
write this, in general, as

HCF5 (
j ,a,b

Sj
aEj

abSj
b , ~2.20!

then the effect of the gauge transformation is

Ej→R~a j !EjR 21~a j !, ~2.21!

whereR(a j ) is the rotation matrix which effects the gaug
transformation of Eq.~2.16!:

R~a j !5S cosa j sina j 0

2sina j cosa j 0

0 0 1
D . ~2.22!

Thus the principal axes of the crystal-field Hamiltonian a
rotated from site to site while the eigenvalues remain
same. For an alternating DM interaction, this is an altern
ing rotation which would introduce an alternating term in t
crystal-field Hamiltonian. As discussed above, such a term
expected to already be present, before the gauge transfo
tion. For a uniform DM interaction, the transformedE tensor
in the crystal-field Hamiltonian rotates steadily along t
chain. We will assume these small effects can be ignore

The combination of a DM interaction and an applied fie
leads to more important effects. Upon performing the gau
transformation, theg tensor at sitej is transformed as

gj→gjR 21~a j !. ~2.23!

In the case of a staggered DM interaction, this leads to
alternating term in theg tensor even if it was not presen
before, thus adding to the effective staggered field. A u
form DM interaction leads to a rotating effective magne
field. Both staggered and uniform DM interactions can
readily treated using field theory methods. They appear to
approximately as important as the staggered field in expl
ing the various anomalies mentioned in Sec. I. We show
it is possible to fit the susceptibility data quite well by takin
into account the staggered and uniform DM interactions.

Since the DM interaction contributes the same order
magnitude to the effective staggered field as the stagg
gyromagnetic tensor,11,12 we have to combine them togethe
For smallgs and (D/J), and an arbitrary direction for the
staggered DM vectorDW s5(Dx ,Dy ,0), the staggered field
can be approximated as

hW s'gshW 1S 1

2JDDW s3guhW [AhW , ~2.24!
4-3
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HAI HUANG AND IAN AFFLECK PHYSICAL REVIEW B 69, 184414 ~2004!
which is just the sum of two contributions.11,12Here we have
introduced another matrixA relating the total effective stag
gered field,hW s to the original laboratory fieldhW . Note that
uAu!1.

Thus after making the gauge transformation and disca
ing terms which we expect to be unimportant, the Ham
tonian can be written, in the (x,y,z)(SW ) coordinate system:

H5(
j

$JSW j•SW j 111Ez~Sj
z!21Ex@~Sj

x!22~Sj
y!2#

2mBhW •@guR~a• j !#SW j2~21! jmBhW s
•R~a• j !SW j%,

~2.25!

whereR(a• j ) is defined in Eqs.~2.18! and~2.22!. The val-
ues of J'44 K and Ez'8 K have been determined from
fitting the magnon gaps to numerical simulations.13,14 Ex

'0.4 K is extracted by the best fit of experimental data
the six-spin-ring model calculation.3

III. SUSCEPTIBILITY

A. Mean-field results

In the large-s approximation, the Heisenberg spin chain
equivalent to a field theory, the O~3! nonlinears-model~see,
e.g., Refs. 15 and 16!. The Hamiltonian of this model is
given by

H5S v
2D E dzFg lW21

1

g
S ]fW

]z
D 2G ~fW 251!, ~3.1!

where

lW5
1

vg
fW 3

]fW

]t
. ~3.2!

The coupling constantg and the magnon velocity take th
values, ats→`,

g5
2

s
, v52Js. ~3.3!

The original spin operators are expressed in terms of the
fW and the spin densitylW as

SW j'~21! j sfW j1 lW j . ~3.4!

If we relax the constraint of O~3! nonlinears model and add
a repulsivef4 interaction, which is treated perturbatively,
much simpler theory can be obtained. Including anisotro
terms, we then phenomenologically model the low-lying e
citations via the following bosonic quantum field theory,2,17

which we refer to as the Ginzburg-Landau model~GL
model!:
18441
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H5E dzH(
i

Fv
2

P i
21

v
2 S ]f i

]z D 2

1
D i

2

2v
f i

2G
2mB (

iklmn
higik

u Rkl~a•z!e lmnfmPn

2mB(
ik

hi
sRik~a•z!rkfk1lfW 4J . ~3.5!

Here e i jk is the antisymmetric tensor withe12351. We as-
sume the gaps, normalization factors, and velocity are

Dx515.7 K, Dy513.6 K, Dz529 K,

rx5ry51.08, rz51.2, v5120 K, l53.7 K.
~3.6!

~We use units where the spacing between neighboring
ions along the chains is 1.! The gaps are from neutron
scattering experiments18 and normalization factors and ve
locity are from numerical simulations.13

Tsvelik proposed a fermionic field theory model9 for
NENP. We can easily include uniform DM interaction in
this model. But there is some problem for staggered effec
field ~including staggeredg tensor and staggered DM inte
action!. The staggered components of the spin operators h
a very complicated representation as the product of th
Ising order ~and disorder! parameter fields. Consequentl
there appears to be no simple method for treating a stagg
field in this model. If only uniform DM interaction is taken
into account, the Hamiltonian can be modified as

H5E dzF(
k

~ i x̄kg1]zxk1Dkx̄kxk!

2mB (
klmnp

ihkgkl
u Rlm~a•z!emnpx̄ng0xpG , ~3.7!

wherexk is two-component Majorana fermion field

xk5S x1,k

x2,k
D ~k51,2,3!, ~3.8!

the sign1 (2) corresponds to the right~left! movers and
x̄5xTg0 . gm (m50,1) are chosen asg05sx , g15 isy .
The advantage of this model is that the field-shifted ga
agree better with neutron-scattering experiments than th
of the bosonic model of Eq.~3.5!.

B. Isotropic susceptibility: uniform and staggered

In this section, we will forget about the DM interactio
and crystal-field terms, and discuss the uniform and st
gered susceptibilities of isotropic Heisenberg spin-1 chain
the isotropic case, when an external uniform magnetic fi
is applied to the system, we assume that the uniformg tensor
is also isotropic. We setgmB51 in this section only.

The Hamiltonian for this case is given by
4-4
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H5(
j

@JSW j•SW j 112hW •SW j #. ~3.9!

In a noninteracting quasiparticle approximation

(
i

Si
z5ST

z5N12N2 , ~3.10!

where N6 are total numbers of quasiparticles withSz
561.

The uniform zero-field susceptibility per spin can be c
culated as

xu5
1

T
^~ST

z !2&5
1

T
^~N12N2!2&5

2

T
~^N1

2 &2^N1&2!.

~3.11!

Write

N15(
k

N1,k , ~3.12!

we get

xu5
2

T (
k

~^N1,k
2 &2^N1,k&

2!. ~3.13!

So for boson and fermion distributions, we have differe
susceptibilities per unit length as follows:

xu,B5
2

TE dk

2p

eAD21v2k2/T

~eAD21v2k2/T21!2
, ~3.14!

xu,F5
2

TE dk

2p

eAD21v2k2/T

~eAD21v2k2/T11!2
, ~3.15!

where the gap is 0.4107 J~Refs. 19–21! and the velocity is
2.5 J.21

FIG. 2. Comparison of isotropic uniform susceptibilities of d
ferent models.
18441
-

t

We plot isotropic boson, fermion, Heisenberg spin-1 ch
~transfer-matrix renormalization-group method!,22 and non-
linears-model results23 in Fig. 2. We see boson model resu
is consistent with Heisenberg spin-1 chain result bel
around 0.2 J, fermion model below roughly 0.5 J, nonline
s model result is the best, below roughly 1.5 J.

When a staggered magnetic field is applied to the syst
the Hamiltonian is

H5(
j

@JSW j•SW j 112~21! jhW •SW j #. ~3.16!

For the free boson case, the staggered susceptibility is

J•xs,B5
r2~v/J!

~D/J!2
514.8r2, ~3.17!

where r is the wave function renormalization of boson
field. We chooser51.11 to fit the low-temperature results o
Heisenberg spin-1 chain~TMRG!.22 They are plotted in Fig.
3. We see they are consistent up to around 0.1 J. We also
this r is consistent with the average value got from the n
merical simulations of equal-time correlation function13 ~in
Ref. 13,gi5r i

2):

r̄5 1
3 ~rx1ry1rz!51.12. ~3.18!

C. Susceptibility of GL model: uniform and staggered

Susceptibility data has been published for an applied fi
along the crystallographica, b, or c axis, which is aniso-
tropic. We assume that what is measured is]2F/]ha

2u0 , etc.,
whereF is the free energy andha the field component in the
a direction. From Eqs.~2.25! and ~2.24! we get in the
(x,y,z) coordinate system:

FIG. 3. Comparison of isotropic staggered susceptibilities
different models.
4-5
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x ik5
1

L

]2F

]hi]hk

5mB
2(

lm
Fgi l

ugkm
u S 1

L (
j 1 j 2 ,np

E
0

b

dtRln~a• j 1!Rmp~a• j 2!

3^Sj 1

n ~t!Sj 2

p ~0!& D 1A l i AmkS 1

L (
j 1 j 2 ,np

~21! j 12 j 2

3E
0

b

dtRln~a• j 1!Rmp~a• j 2!^Sj 1

n ~t!Sj 2

p ~0!& D G .
~3.19!

Defining the reduced susceptibilityx̄ ik~q! at arbitrary mo-
mentum q:

x̄ ik~q!5
1

L (
j 1 j 2

E
0

b

dteq( j 12 j 2)^Sj 1

i ~t!Sj 2

k ~0!&, ~3.20!

then plugging the explicit form ofR matrix into Eq.~3.19!
and use the translation invariance of spin-correlation fu
tion, x ik can be written as

x ik5mB
2(

l
H gi l

ugkl
u F12d l ,z

2
x̄ l l ~a!1d l ,zx̄

l l ~0!G
1A l i A lkF12d l ,z

2
x̄ l l ~p1a!1d l ,zx̄

l l ~p!G J .

~3.21!

We expectx̄ ik(0) to become small at lowT.18 This follows
from the fact that it must vanish exponentially in the lim
where rotational symmetry around thez axis is exact. In this
case we expect that the ground state hasST

z50 and that there
is a finite gap,Dx5Dy to the lowest state of nonzeroST

z .

Thus, at lowT, x̄zz(0)}e2Dx /T. The fact that in NENP,Dx
'Dy suggests that this symmetry is broken only by a sm
amount. This small symmetry breaking is presumably due
the Ex term in Eq.~1.1! and the DM interaction. As pointed
out in Ref. 18, theEx term leads to a splitting of the gaps o
first order inEx but aT50 uniform susceptibility of second
order in Ex. This suggests thatx̄zz(0)/x̄xx(0) should be of
order (Dx2Dy)

2/(Dz2Dy)
25.019. This estimate was con

firmed by an explicit calculation using the Ginzburg-Land
field theory, reviewed above. On the other hand, the exp
ment obtained a value for this ratio of about 0.3. While it
possible that this just reflects errors in this rough estim
and in the detailed mean-field calculation18 which confirmed
it, it seems more likely that another explanation is requir
The explanation could reside in impurity effects or difficu
ties in separating the spin susceptibility from the diamagn
contribution. However, later experiments24 at lower T sug-
gest that the impurity contribution does not set in until co
siderably lowerT and that the data over the temperatu
rangeT.1.7 K may be dominated by the signal from th
pure system. Thus we are led to consider the possibility
this discrepancy may be intrinsic. In this case, the obvi
18441
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candidate is to include the staggered and uniform DM c
tributions and the staggeredg tensor at lowT.

We first must determine theg tensor. We do this from high
temperature data. At highT, both x̄ ik(0) and x̄ ik(p) go to
2d ik/(3T). So the staggered contribution to the susceptibi
is suppressed by the small factors ofA2 and can be dropped
@Since the staggeredg tensor is proportional to the differenc
of g tensor (gj2gz), one may think dropping these term
will eventually affect the staggeredg tensor much. We actu
ally did the calculation by keeping these terms and found
result changes very little.! We also expect the relatively sma
crystal-field Hamiltonian itself to become unimportant
high T. In this limit we have

x i i 5
1

L

]2F

]hi
25mB

2(
k

gik
u gik

u x̄, ~3.22!

wherex̄→2/(3T) at largeT. Using the chain rule

xaa5
1

L S ]hi

ha
D 2]2F

]hi
2

, etc., ~3.23!

the experimental measurements of susceptibility data in
crystallographic coordinate system at highT thus give us,
approximately, the following results for theg tensor in the
(x,y,z) coordinate system:

gx
2cos2f1gy

2sin2f5~2.23!2,

gx
2sin2f1gy

2cos2f5~2.21!2,

gz
25~2.15!2. ~3.24!

Settingu510°, f558°, we have from Eq.~2.10!

gj52.20, gh52.24, gz52.15. ~3.25!

Thus the uniform and staggeredg tensor in the (x,y,z) co-
ordinate system are, from Eqs.~2.10! and ~2.11!:

gu5S 2.20 0 0

0 2.24 0

0 0 2.15
D , ~3.26!

gs5S 0 0 0.008

0 0 0

0.008 0 0
D , ~3.27!

and matrixA can be derived from Eq.~2.24!.
On the other hand, at lowT the DM interaction and Stag

gered g tensor make important contributions. For the G
model, from Eq.~3.5! we can see there appear two ext
terms when a magnetic field is applied to the system:

dH52E dzmBF (
iklmn

higik
u Rkl~a•z!e lmnfmPn

1(
ik

hi
sRik~a•z!rkfkG . ~3.28!
4-6
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Now we use the free field approximation (l50) to calculate
the susceptibilities of the spin chain. Expandingf i and
P i ( i 5x,y,z) in terms of annihilation and creation oper
tors:

f i5(
k
A v i

2Lv ik
$exp@2 i ~v ikt2kx!#aik1H.c.%,

~3.29!

P i5(
k
A 1

2v iLv ik
~2 iv ik!$exp@2 i ~v ikt2kx!#aik

2H.c.%, ~3.30!

whereL is the number of spins and

v ik
2 5D i

21v2k2. ~3.31!

If there is no external field, the Hamiltonian becomes

H05(
ik

v ikS aik
1aik1

1

2D . ~3.32!

Looking atdH as a small term, we use first-order perturb
tion theory for eigenstateun&, i.e,

un&→un&2(
m

um&^mudHun&
Em2En

,

we have the finite-T formula for susceptibility

x5
2

Z (
n,m

e2bEnu^nu~dH/h!um&u2

Em2En
. ~3.33!

Define reduced uniform and staggered susceptibilitiesx̄u , x̄s
at momentum q (q!p) as:

x̄u
ik~q!5

1

L (
j 1 j 2

E
0

b

dteq( j 12 j 2)^Sj 1

i ~t!Sj 2

k ~0!&,

x̄s
ik~q!5

1

L (
j 1 j 2

E
0

b

dte(p1q)( j 12 j 2)^Sj 1

i ~t!Sj 2

k ~0!&.

~3.34!

From Eq.~3.33! we can calculate them in the GL model
follows:

x̄u
ii ~q!5

1

2E S dk

2p D 1

v lvm8
F ~11nl1nm8 !

~v l2vm8 !2

v l1vm8

1~nl2nm8 !
~v l1vm8 !2

vm8 2v l
G ~ iÞ lÞm! ~3.35!

and

x̄s
ii ~q!5

r i
2v

D i
21v2q2

. ~3.36!

In Eq. ~3.35!, nik is the bosonic occupation number
18441
-

nik5
1

@exp~v ik /T!21#
, ~3.37!

and

k852k2q, v i5v ik , ni5nik , v i85v ik8 , ni8

5nik8 . ~3.38!

When the magnetic field is applied alongb axis, the uniform
DM interaction will shift the staggered susceptibility by m
mentuma, but will have no effect on uniform susceptibility
So from Eq.~3.19!, the susceptibility alongb axis (hW 5hb̂)
can be written as

xb5~gzmB!2x̄u
zz~0!1 1

2 @~A13mB!21~A23mB!2#@ x̄s
xx~a!

1x̄s
yy~a!#. ~3.39!

Similarly, we can calculate the susceptibility along thea axis
„hW 5hâ5h@(cos 58°)x̂2(sin 58°)ŷ#…. Now the only effect
of uniform DM interaction is shifting the uniform suscept
bility by momentuma, so we have

xa5 1
2 @~gxmBcos58°!21~gymBsin58°!2#@ x̄u

xx~a!1x̄u
yy~a!#

1mB
2~A31cos 58°2A32sin 58°!2x̄s

zz~0!. ~3.40!

Up to now, we have ignored the velocity differences. Thek
integral in Eq.~3.35! converges atk→` so that it is not
necessary to introduce an ultraviolet cutoff. Of course
physical cutoff~the lattice spacing! exists in the spin chain
but, in the approximationD!J, including this effect makes
only small corrections. On the other hand, taking into a
count the velocity differences~according to Ref. 13,vx5vy
5121 K, vz5114 K), the integrals diverge logarithmicall
at largek. This implies stronger dependence on the details
the dispersion relation at largerk and the ultraviolet cutoff.
However, for the small velocity difference in NENP, we fin
the susceptibility has very weak cutoff dependence. Cha
ing the cutoff fromp to 100p only changesxa by about 1%.
We just simply ignore this velocity difference.

The staggered and uniform DM vectors are free para
eters which can be chosen arbitrarily. We take

Dx

2J
520.008,

Dy

2J
520.02,

Dz

2J
50.04 ~3.41!

to fit the experimental data. We plot GL model results a
experimental data in Fig. 4. The agreement is quite good
low T where the field theory approximations are expected
work.

D. Susceptibility of fermion model: uniform and staggered

For the fermion model, from Eq.~3.7! an extra term ap-
pears when a uniform effective field is applied to the syste
4-7
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dH52E dzFmB (
klmnp

ihkgkl
u Rlm~a•z!emnpx̄ng0xpG .

~3.42!

We can also use Eq.~3.33! to compute the finite-T uniform
susceptibility of this model. Let us setDz50 first, i.e., no
uniform DM interaction. ThenR will be identity matrix. We
can easily get

xF
b5~gzmB!2x̄u,F

zz ~0!, ~3.43!

where in fermion model

x̄u,F
ii ~q!5E S dk

2p D 1

v lvm8
F ~12nl ,F2nm,F8 !

3
v lvm8 2uku•uk8u2D lDm

v l1vm8
1~nl ,F2nm,F8 !

3
v lvm8 1uku•uk8u1D lDm

vm8 2v l
G ~ iÞ lÞm!.

~3.44!

Hereni ,F is the fermionic occupation number

nik,F5
1

@exp~v ik /T!11#
, ~3.45!

and

k852k2q, v i85v ik8 , ni ,F5nik,F , ni ,F8 5nik8,F .
~3.46!

Similarly,

xF
a5~gxmBcos 58°!2x̄u,F

xx ~0!1~gymBsin 58°!2x̄u,F
yy ~0!.

~3.47!

The comparison of the uniform susceptibility of bosonic G
model (Dz50) and that of fermion model (Dz50) is shown
in Fig. 5. The fermion model results are qualitatively simi
to the bosonic results for the uniform susceptibility althou
theT50 value forxa is smaller by about a factor of 50% i

FIG. 4. Measured susceptibility vs the GL model prediction.
18441
the fermionic model. This makes the agreement with the
perimental data considerably worse before inclusion of st
geredg tensor and DM interaction.

Similar to the GL model, we can also include unifor
DM interaction into susceptibility calculation. But as we di
cussed in Sec. III A, we do not know how to treat the sta
gered effective field. If we include uniform DM interactio
and simply take the staggered contribution of GL model
that of fermionic model, the total susceptibilities can be c
culated and are plotted in Fig. 6. The DM vectors are cho
as

Dx

2J
520.005,

Dy

2J
520.03,

Dz

2J
50.07 ~3.48!

to fit the experimental data. The agreement is roughly
good as GL model.

IV. DISCUSSION OF OTHER EXPERIMENTAL DATA
AND OTHER THEORETICAL APPROACHES

Other experimental anomalies requiring staggeredg ten-
sor and DM interaction for their explanation occur in th
Knight shift and field-dependent gaps. Ignoring these sm

FIG. 6. Measured susceptibility vs the fermion model pred
tion.

FIG. 5. The comparison of the uniform susceptibility of G
model (Dz50) and that of fermion model (Dz50).
4-8
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perturbations, the fermionic model is fairly successful at
plaining the field-dependent gaps.9 The GL model is accurate
at low fields but captures only the qualitative features
higher fields where the Zeeman energy is of order the g2

We find that including the staggeredg tensor and staggere
DM interaction does not significantly improve the agreem
in the case of the GL model. Including the effect of t
uniform DM interaction on the field-dependent gaps is
fairly difficult problem even in the GL model approximatio
since it requires a nonlinear treatment of a slowly rotat
field, and we do not attempt it here. As remarked above th
appears to be no simple way of including the staggered fi
in the fermion model, thus precluding a calculation of
effects on field-dependent gaps in that model. The fie
dependent Knight shift4 presents similar calculational diffi
culties using GL or fermion model.

There is another low-energy effective field theory mod
that has been applied to NENP. This model was propose
Mitra and Halperin.5 The Hamiltonian is the following:

H5E dzH(
i

Fv
2

P i
21

v
2 S ]f i

]z D 2

1
D i

2

2v
f i

2G
2mB(

iklm
higik

u eklmAD l

Dm
f lPm

2mB(
i

hi
sr if i1lfW .4J . ~4.1!

In this case we also ignore the small velocity differen
which can be shown to have a negligible effect, as in the
model. This model differs from the standard GL theory
Eq. ~3.5! by the factors ofAD l /Dm in the coupling to the
magnetic field. These factors were introduced in Ref. 5
order to obtain field-dependent gaps which are essentially
same as in the fermionic model and hence agree much b
with experiment.

In mean-field approximation, the uniform susceptibility
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vx1vy
1~nx2ny!

3
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and similarly for xa. Note that thek integral does not
converge in the ultraviolet, even ignoring velocity diffe
ences, since the integrand behaves as (A(Dy /Dx)
2A(Dx /Dy))

2/vuku at largek. Thus the result will be more
sensitive to the details of the ultraviolet cutoff than for t
other models considered above. Choosing a cutoff,uku,p,
and ignoring the staggered field gives a value forxa(T50)
which is about twice as large as that observed experim
tally. Including the staggered field raises the theoretical re
still higher making the agreement worse. Furthermo
choosing the arbitrary cutoff to be 10p, increasesxa(T
50) by a factor of about 2, also worsening the agreeme

Sieling et al.25, using the Lanczo¨s algorithm and the
density-matrix renormalization group technique, studied
field-induced gaps, for a field in thez direction, using a
model containing an alternating field and alternating as w
as uniform crystal-field terms. Independent rotation matri
were assumed for these two types of alternating terms, ra
than assuming that bothg tensor and crystal field tensors a
diagonal in the (j,z,h) coordinate system, as seems like
The DM interaction was not included. More numerical wo
of this type, including the DM interaction~and perhaps also
the staggered crystal field terms! and considering the othe
field direction and the susceptibilities is needed to determ
accurate values of the staggeredg tensor and DM interac-
tions.
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