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Lumped-mass method for the study of band structure in two-dimensional phononic crystals
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~Received 4 January 2004; published 28 May 2004!

A lumped-mass method is introduced to study the propagation of elastic waves in two-dimensional periodic
systems. First, it is used to calculate the band structure of an array of Pb columns in an epoxy background.
Second, the method is applied to the same array of Pb columns in a soft rubber background. The results are
compared with those calculated with the well-known plane-wave expansion formalism, where the advantages
of the lumped-mass method are pointed out and analyzed. These advantages make it possible for easy calcu-
lations of band structures of phononic crystals with interfaces of large contrast of elastic constants as well as
units of any shapes.
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I. INTRODUCTION

In recent years, a great deal of work has been devote
the study of the propagation of classical waves in perio
structures. A famous example is the photonic crystals.1 For
these new crystals, both theoretical predictions and exp
ments have shown the appearance of frequency gaps fo
propagation of electromagnetic waves, which has been u
for the achievement of new optical devices.

Quickly, those studies were extended to the propaga
of elastic and acoustic waves in periodic structures mad
materials with different elastic properties, which have be
named phononic crystals~PCs!2–7 by analogy with the pho-
tonic crystals. The emphasis was laid on the existence
complete acoustic/elastic band gaps~ABG! within which
sound and vibrations are all forbidden. These new mater
can be of real interest, since a large contrast between
elastic parameters is allowed. For example, systems c
posed of very soft rubber8,9 ~with elastic constant of five
orders lower than common solids! are most likely to obtain
the low-frequency gaps with a structure of small dimensi
which can lead to promising applications as a low-freque
vibration/noise insulation. Besides, their properties in
transmission bands have been used to build refractive
vices such as lenses and acoustic interferometers.10 On the
other hand, more sophisticated combinations such as fl
infiltrated in a drilled solid11,12 or solid-solid systems13,14

have been demonstrated to produce a full phononic band
for ultrasounds.

Several theoretical methods have already been develo
in order to study the elastic response of PCs. Mostly,
calculations are based on the plane-wave expansion~PWE!
method, in which the wave equations are solved in the F
rier space.15 Nevertheless, PCs involving media with a lar
contrast in their elastic properties are not easy to treat w
PWE because a large number of plane waves is require
obtain reliable band structures, and unphysical flat freque
bands can appear. Other methods such as the variat
method~VM !,9 multiple scattering theory~MST!16–19 or the
finite difference time domain~FDTD! algorithms20–22 over-
come those difficulties in a certain extent.

In this work, we present a lumped-mass~LM ! method that
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offers a new procedure to compute the band structure of P
As a numerical example of its strength, we have analy
two kinds of two-dimensional~2D! structures, which consis
of same array of Pb columns while one in epoxy and
other in very soft rubber backgrounds. It will be shown th
the LM can improve the PWE technique because of its fa
convergence and lower computational times, especially
the Pb soft-rubber combination. In regard to the algorith
based on MST and FDTD, these techniques are more suit
to treat the transmission/reflectance problem in finite str
tures and their comparison with the lumped-mass metho
out of the scope of the present work. However, so
works22,23 in dealing with those techniques indicate that t
calculations of the phononic band structure present sev
drawbacks from the computational point of view. Thus, t
technique based on MST can only handle specific array
sphere~3D! or cylinder~2D! and requires a large number o
terms in the multipole expansion as well as complicated
ductions. As to the technique based on FDTD, which ne
discretization techniques both in the time and space dom
it requires a very strong reduction of the discrete time
rameter in order to ensure the stability in the numerical c
culation in dealing with structures having interfaces of lar
contrast of elastic constants. Thus the calculation time w
be prolonged heavily in dealing with these hard cases. W
the LM method in the present paper, which requires only
discretization of the space domain, is insensitive to the sh
variation of elastic constants on the interfaces inside
phononic crystals.

The paper is organized as follows. In Sec. II we descr
the main ingredients of the LM, which is applied to an arr
of Pb columns in epoxy background in Sec. III, and to t
same array in a soft rubber background in Sec. IV. Comp
sons with the results obtained with the PWE are also p
formed in the two sections. Finally in Sec. V we summar
the work.

II. THE LUMPED-MASS METHOD

Figure 1 shows the cross section of representative
phononic crystals, where thez direction is vertical to the
paper. The fuscous parts are the cylinders inserted in
©2004 The American Physical Society02-1
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hosting material, parallel with thez axis. The distancea is
the lattice constant.

By assuming that elastic wave propagation is along
direction that is parallel to thex-y plane, we have the equa
tions in a homogeneous medium:

H sx

sy

txy

J 5F l12m l 0

l l12m 0

0 0 m
G H «x

«y

gxy

J , ~1!

H txz

tyz
J 5Fm 0

0 mG H gxz

gyz
J . ~2!

Given sxy5$sx ,sy ,txy%
T; «xy5$«x ,«y ,gxy%

T sz
5$txz ,tyz%

T; «z5$gxz ,gyz%
T, Eqs.~1! and ~2! form

sxy5Dxy«xy : sz5Dz«z , ~3!

where sx , sy , txy , txz , tyz are normal and shearin
stresses and«x , «y , gxy , gxz , gyz are the corresponding
strains;l andm are Lame´ constants of the medium.

The idea of the lumped-mass method is to simplify t
continuous system to the discrete one. Thus, the densit
the medium is concentrated into particles at discrete po
and the elastic constant is treated as simple linear elast
between the adjacent particles.

As shown in Fig. 2~a!, the density in a unit of PCs is
concentrated onN3N particles in a square array, wherep
andq are the periodic number. For the infinite periodic stru
ture,p andq are arbitrary integers.

Figure 2~b! illustrates a rectangle cell composed by fo
adjacent particles in Fig. 2~a!, where the displacements a
given byui , n i , wi ( i 51¯4 for the of the particles 1̄ 4,
respectively!.

FIG. 1. The cross section of representative two-dimensio
phononic crystals.

FIG. 2. ~a! Lumped masses in a unit of the 2D PCs;~b! a cell
composed by four adjacent particles.
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First, the propagation of vibrations along thez axis is
considered. As the density is concentrated on the nodes
displacements along thez axis in the cell can be written in a
double linear form:

w5a11a2x1a3y1a4xy5(
i 51

4

Niwi , ~4!

where Ni5(1/4bc)(c1j ix)(b1h i y), j i5xi /c; h i5yi /b;
i 51¯4 for the nodes 1̄ 4, respectively.

Thus, the strains in the cell are

«z5BDz , ~5!

where B5(1/4bc)$j i(b1h i y),h i(c1j ix)%T, «
5@]w/]x,]w/]y#T are the strains, and Dz
5@w1 ,w2 ,w3 ,w4#T are the displacements of particles 1¯4
along thez axis.

Inserting Eq.~5! into Eq.~3! yields the expression of cor
responding stresses,

sz5Dz«z5DzBDz . ~6!

With the virtual work principle in analytical mechanics,24

we obtained

Fz5K zDz , ~7!

where Fz5$F1 ,F2 ,F3 ,F4%
T are the forces on the node

along thez axis,K z5@ki j # are the stiffness matrices that ca
be written as

K z5E
c
EBTDzBt dx dy5@ki j #, ~8!

wherei , j 51¯4 for node 1̄ 4, respectively,t is the thick-
ness on thez direction, can be arbitrary, and

ki j 5
m

4 Fb

c
j ij j S 11

h ih j

3 D1
b

c
h ih j S 11

j ij j

3 D G . ~9!

As the inertial loads caused by the density of the medi
are body force, it can be concentrated on the nodes avera
as particlemm,n in the lumped-mass method.

Figure 3 illustrates the four cells adjacent to a cert
node~m,n!. When the stiffness matrices of the four cells a
calculated and given by@ki , j

1 #, @ki , j
2 #, @ki , j

3 #, and @ki , j
4 #, i , j

51¯4, the dynamics equation on node~m,n! can be written
as

al FIG. 3. The four cells adjacent to a certain node~m,n! in
Fig. 2~a!.
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FIG. 4. ~a! Phononic band
structure along the edge of the ir
reducible Brillouin zone for a
square lattice of Pb columns with
a square cross section embedd
in epoxy. The filling fraction is
0.36. The continuous~dashed!
lines represent the in-plane~out-
of-plane! modes computed with
the lumped-mass method. Th
symbols represent the results o
tained by using the plane-wav
expansion method. The shadowe
region defines the complete gap
~b! The cross section of the
phononic crystals.~c! The corre-
sponding irreducible Brillouin
zone ~shown as shadowed re
gions!.
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]2w

]t2 5 f m,n5k31
1 wm21,n211~k32

3 1k41
4 !wm,n21

1k42
4 wm11,n211~k12

1 1k43
4 !wm11,n

1k13
1 wm11,n111~k14

1 1k23
2 !wm,n11

1k24
2 wm21,n111~k21

2 1k34
3 !wm21,n

1~k11
1 1k22

2 1k33
3 1k44

4 !wm,n , ~10!

wheremm,n is the mass of particle on node~m,n! in Fig. 3.
We can get a series of similar equations on each nod

one unit of the phononic crystals. With the Bloch theorem25

the traveling wave solution is assumed as

wp1m,q1n5Cm,nei @~p1m!~a/N!kx1~q1n!a/N ky2vt#, ~11!

wherekx ,ky are the wave numbers on thex andy axis,v is
the wave frequency, andCm,n is the wave amplitude of par
ticle mm,n .

Inserting Eq.~11! into Eq. ~10! yields N3N complex
equations,

@2~k11
1 1k22

2 1k33
3 1k44

4 !/mm,n2v2#Cm,n

5@k31
1 Cm21,n21e2 i ~gx1gy!1~k32

3 1k41
4 !Cm,n21e2 igy

1k42
4 Cm11,n21ei ~gx2gy!1~k12

1 1k43
4 !Cm11,neigx

1k13
1 Cm11,n11ei ~gx1gy!1~k14

1 1k23
2 !Cm,n11eigy

1k24
2 Cm21,n11ei ~gy2gx!1~k21

2 1k34
3 !

3Cm21,ne2 igx#/mm,n , ~12!

wheregx5kxa/N, gy5kya/N, andm,n51,...,N.
An infinite number of lattices are considered and the f

lowing periodic boundary conditions can thus be applied

Cm,05Cm,N , ~13!

Cm,N115Cm,1 , ~14!
18430
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C0,n5CN,n , ~15!

CN11,n5C1,n . ~16!

Equation~12! forms with Eqs.~13!–~16! a standard com-
plex eigenvalue problem,

@Sz~k!2v2I #C50. ~17!

Similarly, the traveling wave solution ofx-y vibration
modes forms another standard complex eigenvalue prob

@Sxy~k!2v2I #A50, ~18!

wherek5$kx ,ky% is the wave vector.
Equations~17!–~18! can be solved to construct the ban

structure of wave frequenciesv for known wave vectork.
It is not necessary to solve Eqs.~17!–~18! for all values of

k. Due to the periodicity all propagating modes are captu
by restricting the wave vector to the irreducible Brillou
zone, as shown later in Fig. 4~c!.25

III. RESULT FOR Pb COLUMNS IN EPOXY

Here, as a test example of the LM, we consider a squ
lattice of Pb columns with a cross section of a square
epoxy. Figure 4~a! shows the dispersion relations of the ela
tic modes corresponding to a crystal having a filling fracti
f h5( l /a)250.36, wherel is the length of square side of th
inclusion anda is the lattice constant. The elastic paramet
employed in the calculations wererPb511 600 kg m23,
repo51180 kg m23, lPb54.2331010, lepo54.433109, mPb
51.4931010, mepo51.593109. The modes propagating in
the plane~full lines! as well as those propagating alongz
direction ~dashed lines! were computed with the lumped
mass method by employing 400 nodes. The results obta
with the PWE method by using a set of 441 PW are rep
sented by circular~in-plane modes! and triangular~out-of-
plane modes! symbols. A good agreement is found betwe
the two methods. A gap separates the dispersion curve
in-plane modes as well of the pure transverse ones. A c
2-3
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plete gap, resulting from the superposition of the two ba
structures, settles between the fourth and the fifth band
about 29–41 kHz.

The convergence of the LM and the PWE method
compared in Fig. 5. The behavior of the lower four freque
cies of the out-of-plane modes at the M point@points M1,
M2,3, and M4 in Fig. 4~a!# is shown as a function of the
number of nodes~from 25 to 900! employed in a unit with
the LM method. For the PWE calculations we make a sim
study and have changed the number of plane waves, from
to 961. The two abscissa scales are the same in such a
that the sizes of matrices are the same in both methods. F
Fig. 5, it is noticeable that the three higher frequencies,4
and M2,3, converge similarly in both methods. However, t
LM improves the convergence of lower modes M1. This
improvement can be understood with the well-known Gib

FIG. 5. Convergence of the lower four out-of-plane frequenc
for both lumped-mass~solid lines! and plane-wave expansio
~dashed lines! methods. They correspond to the points M1 , M2,3,
and M4 in Fig. 4. The top axis representing the number of pla
waves employed in the plane-wave expansion calculation is alig
with the number of lumped masses in the bottom axis that produ
a matrix having the same dimension as in the lumped-mass me
18430
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oscillations at the interfaces, which are brought on by
Fourier expansions in the PWE calculations when a fin
number of Fourier components were employed. In an op
site way, the LM method that works in the direct space d
scribes the interfaces directly and correctly, which justifi
its faster convergence.

In addition, the LM method converges to the true val
from the direction opposite to the PWE, this provides a cr
ible way to estimate the true value, which must be loca
between the two frequencies calculated by the PWE and
methods.

IV. RESULT FOR Pb COLUMNS IN RUBBER

Very soft rubber was recently used8 as the coating of Pb
spherical inclusions arranged in a simple cubic lattice in
epoxy host. The very low transverse velocity of the coat
layer resulted in a strong resonant band structure with a
at a frequency of two orders of magnitude lower than
expected one by Bragg scattering. This is significant for
applications of low-frequency sound and the vibration she
of small dimension.

Here, as another test example of the LM method, we c
culated the band structures of same square lattice of Pb
umns with a square cross section in a different backgroun
soft rubber. The elastic parameters of this new hosting m
dium employed in the calculations werer rub
51300 kg m23, l rub563105, m rub543104, being the
same with Refs. 8, 9. Figure 6 presents the band struct
corresponding to the phononic crystals. The modes propa
ing in the planex-y ~full lines! as well as those propagatin
out of the plane~dashed lines! were computed with the LM
method by employing 400 nodes. The results obtained w
the PWE method by using a set of 1225 plane waves
represented by a circle~in-plane modes! and triangular~out-
of-plane modes! symbols. The elementary agreement b
tween the two methods exists only at the low-frequen
bands while bad agreement is found at high-frequency o

The convergence of the LM has also been analyzed

s

-
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d.
-

s
n

-
e-
g
d.
e

FIG. 6. ~a! Phononic band
structure along the edge of the ir
reducible Brillouin zone for the
same square lattice of Pb column
with square cross section as i
Fig. 4~b!, but embedded in soft
rubber. The filling fraction is 0.36.
The continuous~dashed! lines rep-
resent the in-plane~out-of-plane!
modes computed with the lumped
mass method. The symbols repr
sent the results obtained by usin
the plane-wave expansion metho
The shadowed region defines th
complete gap.~b! The cross sec-
tion of the phononic crystals.~c!
The corresponding irreducible
Brillouin zone ~shown as shad-
owed regions!.
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compared with the PWE method. The behavior of frequ
cies at M1, M2,3, and M4 points is presented~the solid lines
in Fig. 7! as a function of the number of nodes employed
the LM method. For the PWE calculations, we made
similar study and have changed the number of plane wa
~dashed lines in Fig. 7!. It is shown that the LM method ha
almost the same convergence in comparison with the re
obtained in Sec. III, while the PWE method have a very l

FIG. 7. Study of the convergence of out-of-plane modes for b
the plane-wave~dashed lines! and lumped-mass~solid lines! meth-
ods. Four modes were analyzed at the M point of the Brillouin zo
denoted by M1 , M2,3, and M4 .
ri-

d
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one, especially at higher frequencies. Four hundred nodes
needed with the LM method in order to guarantee conv
gence better than 0.3%, while for the PWE method, usa
convergence cannot be obtained, even 1225 plane wave
employed. This distinct contrast is due to the high contr
between the elastic parameters of Pb and rubber, which
quires us to introduce a large number of Fourier compone
for the PWE method to approach it, while it can be describ
directly and correctly with the LM method.

V. CONCLUSION

Based on the discretization of continuous system, we h
presented a lumped-mass method that works in the di
space and allows computing the band structures of t
dimensional phononic crystals. Two examples were stud
to show its correctness and advantages in comparison
the plane-wave expansion method. We concluded that
lumped-mass method converges faster and its convergen
insensitive to the sharp variation of elastic constants on
interfaces inside the phononic crystals. Especially, the la
advantage is unique in comparison with other work9 on the
improvement of plane-wave expansion methods. Anot
unique feature of the new method is that it need not ded
the structure factors for every inerratic shape in the lump
mass method. Thus, it can be used to calculate the b
structures of two-dimensional phononic crystals with a
unit shapes directly.
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