PHYSICAL REVIEW B 69, 184302 (2004

Lumped-mass method for the study of band structure in two-dimensional phononic crystals
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A lumped-mass method is introduced to study the propagation of elastic waves in two-dimensional periodic
systems. First, it is used to calculate the band structure of an array of Pb columns in an epoxy background.
Second, the method is applied to the same array of Pb columns in a soft rubber background. The results are
compared with those calculated with the well-known plane-wave expansion formalism, where the advantages
of the lumped-mass method are pointed out and analyzed. These advantages make it possible for easy calcu-
lations of band structures of phononic crystals with interfaces of large contrast of elastic constants as well as
units of any shapes.
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[. INTRODUCTION offers a new procedure to compute the band structure of PCs.
As a numerical example of its strength, we have analyzed
In recent years, a great deal of work has been devoted tavo kinds of two-dimensiona2D) structures, which consist
the study of the propagation of classical waves in periodi®f same array of Pb columns while one in epoxy and the
structures. A famous example is the photonic Cry§t&{9r other in very soft rubber backgrounds. It will be shown that
these new crystals, both theoretical predictions and experthe LM can improve the PWE technique because of its faster
ments have shown the appearance of frequency gaps for ti§@nvergence and lower computational times, especially for
propagation of electromagnetic waves, which has been usdfe Pb soft-rubber combination. In regard to the algorithms
for the achievement of new optical devices. based on MST and FDTD, these techniques are more suitable
Quickly, those studies were extended to the propagatiofP treat the transmission/reflectance problem in finite struc-
of elastic and acoustic waves in periodic structures made dtires and their comparison with the lumped-mass method is
materials with different elastic properties, which have beerPut of the scope of the present work. However, some
named phononic crystal®Cs2~ by analogy with the pho- Works®**in dealing with those techniques indicate that the
tonic crystals. The emphasis was laid on the existence dtalculations of the phononic band structure present several
complete acoustic/elastic band ga@sBG) within which ~ drawbacks from the computational point of view. Thus, the
sound and vibrations are all forbidden. These new material(echnique based on MST can only handle specific arrays of
can be of real interest, since a large contrast between tH#gPhere(3D) or cylinder(2D) and requires a large number of
elastic parameters is allowed. For example, systems con{erms in the multipole expansion as well as complicated de-
posed of very soft rubb&P (with elastic constant of five ductions. As to the technique based on FDTD, which needs
orders lower than common solidare most likely to obtain discretization techniques both in the time and space domain,
the low-frequency gaps with a structure of small dimensionit requires a very strong reduction of the discrete time pa-
which can lead to promising applications as a low-frequencyameter in order to ensure the stability in the numerical cal-
vibration/noise insulation. Besides, their properties in theculation in dealing with structures having interfaces of large
transmission bands have been used to build refractive dé&ontrast of elastic constants. Thus the calculation time will
vices such as lenses and acoustic interferométe®n the  be prolonged heavily in dealing with these hard cases. While
other hand, more sophisticated combinations such as fluid§e LM method in the present paper, which requires only the
infiltrated in a drilled solid"? or solid-solid systents* discretization of the space domain, is insensitive to the sharp
have been demonstrated to produce a full phononic band ga@riation of elastic constants on the interfaces inside the
for ultrasounds. phononic crystals. .
Several theoretical methods have already been developed The paper is organized as follows. In Sec. Il we describe
in order to study the elastic response of PCs. Mostly, thdéhe main ingredients of the LM, which is applied to an array
calculations are based on the plane-wave expan$ovE) of Pb columns in epoxy background in Sec. lll, and to the
method, in which the wave equations are solved in the Fousame array in a soft rubber background in Sec. IV. Compari-
rier spacé?® Nevertheless, PCs involving media with a large SOns with the results obtained with the PWE are also per-
contrast in their elastic properties are not easy to treat withormed in the two sections. Finally in Sec. V we summarize
PWE because a large number of plane waves is required {§e work.
obtain reliable band structures, and unphysical flat frequency
bands can appear. Other methods such as the variational
method(VM),° multiple scattering theoryMST)**~°or the
finite difference time domaiFDTD) algorithmg°-22 over- Figure 1 shows the cross section of representative 2D
come those difficulties in a certain extent. phononic crystals, where the direction is vertical to the
In this work, we present a lumped-md&dl) method that paper. The fuscous parts are the cylinders inserted in the

IIl. THE LUMPED-MASS METHOD
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FIG._l. The cross section of representative two-dimensional FIG. 3. The four cells adjacent to a certain nogie,n in
phononic crystals. Fig. 2(a).
the lattice constant. considered. As the density is concentrated on the nodes, the

~ By assuming that elastic wave propagation is along thgjisplacements along treaxis in the cell can be written in a
direction that is parallel to the-y plane, we have the equa- Jguble linear form:

tions in a homogeneous medium:
4

o AN+2u 0]( & w= a1+azx+a3y+a4xy=2 Niw;i , 4
X X i=1
oy = A ANt2u O ey, (1)
- ¥ where N;=(1/4bc)(c+&x)(b+7y), &=xi/c; ni=yi/b;
X 0 0 i i=1---4 for the nodes ‘t-4, respectively.
Thus, the strains in the cell are
Txz m 0 Yxz
{ 7'yZ] 0 u [ szJ ' @ &=BA;, ©
where B=(L/4bc){&i(b+ nmy), m(c+&xX)}, 2
Given o ={0y,0y, 7} Ey={ex.Ey. V) o, =[owlox,owldy]" are the strains, and A,
={7x2. Ty s &= {Vxz, Wyzt' . EGs.(1) and(2) form =[wy,W,,w3,w,]" are the displacements of particles -4
along thez axis.
0, =D,y&x,:  0,=D,e,, 3) Inserting Eq.(5) into Eq.(3) yields the expression of cor-

responding stresses,
where oy, oy, Ty, Txz» Ty; are normal and shearing
stresses andi, 8yy, Yxy sz, 7y2 are the corresponding 0,=D,£,=D;BA,. (6)
strains;\ and u are Lameconstants of the medium.

The idea of the lumped-mass method is to simplify the
continuous system to the discrete one. Thus, the density Jf
the medium is concentrated into particles at discrete points
and the elastic constant is treated as simple linear elasticity

between the adjacent particles. where F,={F;,F,,F3,F,}T are the forces on the nodes

As shown in Fig. 2a), the density in a unit of PCs is along thez axis, K ,=[k;;] are the stiffness matrices that can
concentrated oMN XN particles in a square array, whepe pe written as

andq are the periodic number. For the infinite periodic struc-
ture, p andq are arbitrary integers.

Figure 2b) illustrates a rectangle cell composed by four K= JJBTDthdX dy=[ki], 8
adjacent particles in Fig.(8), where the displacements are ¢

given byu;, v, w; (i=1---4 for the of the particles-1-4,  wherei,j=1---4 for node 1--4, respectively; is the thick-

With the virtual work principle in analytical mechanits,
e obtained

F,=K,A,, (7)

respectively. ness on the direction, can be arbitrary, and
b »\ b £
= "y :“ "o kij:% S&ig 1+% +omn| 1+ %” 9)
—d - 4 3 V3
b x As the inertial loads caused by the density of the medium
; &wl iy W2 are body force, it can be concentrated on the nodes averagely
g+3—] a2 ZAY v as particlemp, , in the lumped-mass method.
q+z~CF¥FFC}CFC}:$¥ 1, c F " Figure 3 illustrates the four cells adjacent to a certain
prip*3 o pre node(m,n. When the stiffness matrices of the four cells are
@ ® calculated and given bik?,], [K7,1, [k%;], and[K,1, i
FIG. 2. (8 Lumped masses in a unit of the 2D P@k) a cell =1---4, the dynamics equation on no¢a,n can be written
composed by four adjacent particles. as
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FIG. 4. (a) Phononic band
structure along the edge of the ir-
reducible Brillouin zone for a
square lattice of Pb columns with
a square cross section embedded
Bl N in epoxy. The filling fraction is
: 0.36. The continuous(dashed

- 3| 1 Epoxy lines represent the in-plan@ut-

T W a of-plane modes computed with
/Z/%//////%é ) the lumped-mass method. The
//%/ i symbols represent the results ob-
° e tained by using the plane-wave

expansion method. The shadowed
region defines the complete gap.
(b) The cross section of the
phononic crystals(c) The corre-
sponding irreducible Brillouin
Wave vector, k  ~ © zone (shown as shadowed re-

(a) gions.

Frequency,

9*W Con=Cnin> (15)
mm,nﬁz_:fm,n:kélwmfl,nfl'i’(k 2_*'k 1)Wmn 1 " "
. L Cn+1n=C1p- (16)
+Kaw _1+ (ki +Kaw
43ms 127 (Kiz Kag Wi 1 Equation(12) forms with Eqs.(13)—(16) a standard com-

+KiWm 10t 1+ (Kigt Ko)W1 plex eigenvalue problem,
oW 101+ (K51t k)W 1n [S,(k)— 021]C=0. (17)
+(Kqy+ Ko+ Kt Kagd Wiy n (10) Similarly, the traveling wave solution of-y vibration

wherem,, , is the mass of particle on noden,n in Fig. 3. modes forms another standard complex eigenvalue problem,

We can get a series of similar equations on each node in [Se(K)— w?1]A=0 (18)
one unit of the phononic crystals. With the Bloch theor@m, y '
the traveling wave solution is assumed as wherek={k, k,} is the wave vector.

_ Equations(17)—(18) can be solved to construct the band
Wyt mq+n=Cmne'l(PTM@NKeHarmaiNk=otl = (17)  structure of wave frequencies for known wave vectok.
. , It is not necessary to solve Eq4.7)—(18) for all values of
wherek, ,k, are the wave numbers on theandy axis, @ iS ¢ pye to the periodicity all propagating modes are captured
the wave frequency, andy, , is the wave amplitude of par- y yestricting the wave vector to the irreducible Brillouin

ticle mp, . _ _ zone, as shown later in Fig(&}.?®
Inserting Eqg.(11) into Eq. (10) yields NXN complex

equations, lll. RESULT FOR Pb COLUMNS IN EPOXY
1 2 2 .
[ (Kir+ k5ot K3t Ka)/ M n = ©?]Crn Here, as a test example of the LM, we consider a square
il iyt ) 3 4 iy lattice of Pb columns with a cross section of a square in
[K3:Cm-1n-18" "7 4 (Kt Kyy) Conn g€ epoxy. Figure 4a) shows the dispersion relations of the elas-

i(yx—vy) 1 ¥x tic modes corresponding to a crystal having a filling fraction
+k42Cm+ln 1€ *k 2+k 3)Cm+1ne f,=(l/a)?=0.36, wherd is the length of square side of the
+ k13Cm+ 1yn+1e'(“/x*7y)+(k 4t k2 53)Cnm, ni1€7 inclusion anda is the lattice constant. The elastic parameters
’ ey employed in the calculations werpp,=11600 kg n 2,
+K3Crm-1n+ 187 7+ (K31 K3y Pepo= 1180 kg T3, Npy=4.23< 10, \ gpo=4.43% 10°, pupy,

(19 =149 10", pepe=1.59<10°. The modes propagating in
the plane(full Imes) as well as those propagating alomg
where y,=k,a/N, y,=k,a/N, andm,n=1,..N. direction (dashed lingswere computed with the lumped-
An infinite number of lattices are considered and the fol-mass method by employing 400 nodes. The results obtained
lowing periodic boundary conditions can thus be applied: with the PWE method by using a set of 441 PW are repre-
sented by circulafin-plane modesand triangular(out-of-

X Cm— :L,n(:-ri yx]/mm,n '

Cno=Cmn> (13)  plane modessymbols. A good agreement is found between
the two methods. A gap separates the dispersion curves of
Cin+1=Cm1, (149 in-plane modes as well of the pure transverse ones. A com-
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Number of plane waves oscillations at the interfaces, which are brought on by the
550,200 400 600 800 1000 Fourier expansions in the PWE calculations when a finite
50 /::: v v number of Fourier components were employed. In an oppo-
v site way, the LM method that works in the direct space de-
sBA My scribes the interfaces directly and correctly, which justifies
é 40 its faster convergence.
;35 In addition, the LM method converges to the true value
g from the direction opposite to the PWE, this provides a cred-
§30 ible way to estimate the true value, which must be located
25 between the two frequencies calculated by the PWE and LM
methods.
20f.__ M,
150260200 600 800 1000 IV. RESULT FOR Pb COLUMNS IN RUBBER

Number of tumped masses N Very soft rubber was recently uskds the coating of Pb

FIG. 5. Convergence of the lower four out-of-plane frequenciesSPherical inclusions arranged in a simple cubic lattice in an
for both lumped-masgsolid lines and plane-wave expansion €POXy host. The very low transverse velocity of the coating
(dashed lingsmethods. They correspond to the pointg, M, 5, layer resulted in a strong resonant band structure with a gap
and M, in Fig. 4. The top axis representing the number of plane-at a frequency of two orders of magnitude lower than the
waves employed in the plane-wave expansion calculation is alignegxpected one by Bragg scattering. This is significant for the
with the number of lumped masses in the bottom axis that produceapplications of low-frequency sound and the vibration shelter
a matrix having the same dimension as in the lumped-mass methodf small dimension.

Here, as another test example of the LM method, we cal-
plete gap, resulting from the superposition of the two bandtulated the band structures of same square lattice of Pb col-
structures, settles between the fourth and the fifth bands afmns with a square cross section in a different background of
about 29-41 kHz. soft rubber. The elastic parameters of this new hosting me-

The convergence of the LM and the PWE method aredium employed in the calculations werep,
compared in Fig. 5. The behavior of the lower four frequen-=1300 kg m 3, N\, ;,)=6X10°, w,=4x10% being the
cies of the out-of-plane modes at the M pojpbints M, same with Refs. 8, 9. Figure 6 presents the band structures
M, 3, and M, in Fig. 4a)] is shown as a function of the corresponding to the phononic crystals. The modes propagat-
number of nodegfrom 25 to 900 employed in a unit with ing in the planex-y (full lines) as well as those propagating
the LM method. For the PWE calculations we make a similarout of the plangdashed lineswere computed with the LM
study and have changed the number of plane waves, from 2hethod by employing 400 nodes. The results obtained with
to 961. The two abscissa scales are the same in such a weye PWE method by using a set of 1225 plane waves are
that the sizes of matrices are the same in both methods. Frorepresented by a circlén-plane modesand triangularout-

Fig. 5, it is noticeable that the three higher frequencieg, M of-plane modes symbols. The elementary agreement be-
and M, 3, converge similarly in both methods. However, thetween the two methods exists only at the low-frequency
LM improves the convergence of lower modes, MThis  bands while bad agreement is found at high-frequency ones.
improvement can be understood with the well-known Gibbs The convergence of the LM has also been analyzed and

400,

FIG. 6. (@ Phononic band
structure along the edge of the ir-

;’//5%/ I //;//;/////;//%%//24////%/////% reducible Brillouin zone for the
%%%’%‘%%%%W%%M same square lattice of Pb columns

Z G . . .
with square cross section as in

I —_

\

= W%W%%WW Fig. 4(b), but embedded in soft
% 250/?45%//%%%%%/%/4////4%%5%%%% <_l_>‘ e Eruhbebsgn-lt—i?]i gﬂg&gagﬁg;ﬁr? el: %36.
g 200~ ° b a resent the in-planéout-of-plang
& ®) modes computed with the lumped-
= 150 mass method. The symbols repre-
sent the results obtained by using
100 kM the plane-wave expansion method.
B . The shadowed region defines the
50 T — X7 complete gap(b) The cross sec-
’ tion of the phononic crystalgc)
The corresponding irreducible
OM X Brillouin zone (shown as shad-
Wave vector, k © owed region};

(@)
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Number of plane waves one, especially at higher frequencies. Four hundred nodes are
5000 200 400 600 800 1000 1200 needed with the LM method in order to guarantee conver-
\\ \“\\\GN M, gence better than 0.3%, while for the PWE method, usable
4501 \\ i convergence cannot be obtained, even 1225 plane waves are
400} Your i employed. This distinct contrast is due to the high contrast
. \;o—\ o between the elastic parameters of Pb and rubber, which re-
_ 3sor / M "““‘----e-__h_fiz.s.__;, quires us to introduce a large number of Fourier components
) a0l | for the PWE method to approach it, while it can be described
g, ./‘!—'Tu'—' directly and correctly with the LM method.
§ 250 | .
1
£ 200} é\ ] V. CONCLUSION
150 F \\\ 1 Based on the discretization of continuous system, we have
\*’“*~~e- M, presented a lumped-mass method that works in the direct
100 H_'Tl'—; © p space and allows computing the band structures of two-
50 | dimensional phononic crystals. Two examples were studied
to show its correctness and advantages in comparison with
% 260 460 eoo 8(;0 1060 1260 the plane-wave expansion method. We concluded that the
Number of lumped masses N lumped-mass method converges faster and its convergence is

insensitive to the sharp variation of elastic constants on the
FIG. 7. Study of the convergence of out-of-plane modes for botiinterfaces inside the phononic crystals. Especially, the latter
the plane-wavédashed linesand lumped-masgsolid lineg meth-  advantage is unique in comparison with other wook the
ods. Four modes were analyzed at the M point of the Brillouin zonejmprovement of plane-wave expansion methods. Another
denoted by M, M, 3, and M,. unique feature of the new method is that it need not deduce
the structure factors for every inerratic shape in the lumped-
compared with the PWE method. The behavior of frequenimass method. Thus, it can be used to calculate the band
cies at M, M, 3, and M, points is presentetthe solid lines ~ structures of two-dimensional phononic crystals with any
in Fig. 7) as a function of the number of nodes employed inunit shapes directly.
the LM method. For the PWE calculations, we made the
similar study and have changed the number of plane waves
(dashed lines in Fig.)7 It is shown that the LM method has
almost the same convergence in comparison with the result This work was funded by the State Key Development
obtained in Sec. Ill, while the PWE method have a very lowProgram for Basic Research of Chiffarant No. 5130¥.

ACKNOWLEDGMENT

*Electronic mail: wang-g@vip.sina.com
1S. G. Johnson and J. D. JoannopoulBkptonic Crystals—The
Road from Theory to PracticéKluwer Academic, Dordrecht,

IE. R. Montero de Espinosa, E. Jimenez, and M. Torres, Phys. Rev.
Lett. 80, 1208(1998.
12M. Torres, F. R. Montero de Espinosa, and J. L. Aragon, Phys.

2002. ‘ Rev. Lett.86, 4282(2001).

M. M. Sigalas and E. N. Economou, J. Sound VI68 377 133 O vasseur, P. A. Deymier, G. Frantziskonis, G. Hong, B.

5 (1992. _ ) Djafari-Rouhani, and L. Dobrzynski, J. Phys.: Condens. Matter
M. M. Sigalas and E. N. Economou, Solid State Comm#). 10, 6051 (1998.

4E14N1 (ngc?)?l.omou and M. M. Sigalas, Phys. Rev4B 13434 3. 0. Vassegr, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L.
('1953. o ' : : Dobrzynski, and D. Prevost, Phys. Rev. L&®, 3012(2002).

5For a review of this method see M. S. Kuswaha, Recent Res.
Devel. Appl. Phys2, 743(1999.

18M. Kafesaki, R. S. Penciu, and E. N. Economou, Phys. Rev. Lett.
84, 6050(2000.

7M. Kafesaki and E. N. Economou, Phys. Rev.6B, 11993
(1999.

187 Lju, C. T. Chan, P. Sheng, A. L. Goertzen, and J. H. Page,
Phys. Rev. B62, 2446(2000.

19Y. Y. Chen and Z. Ye, Phys. Rev. @, 036616(2001); Phys. Rev.
Lett. 87, 184301(2001).

20M. Sigalas and N. Garal J. Appl. Phys87, 3122(2000.

21y, Tanaka, Y. Tomoyasu, and S. I. Tamura, Phys. Re§2B7387
(2000.

SM. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-
Rouhani, Phys. Rev. Let?1, 2022(1993.

6M. S. Kushwaha, P. Halevi, G. Manez, L. Dobrzynski, and B.
Djafari-Rouhani, Phys. Rev. B9, 2313(1994).

’R. Marfnez-Sala, J. Sancho, J. V.righez, V. Gmez, J. Llinares,
and F. Meseguer, Naturftondon 378 241(1995.

8Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and
Ping Sheng, Scienc289, 1734(2000.

9C. Goffaux and J. Sehez-Dehesa, Phys. Rev. &, 144301
(2003.

10F Cervera, L. Sanchis, J. V. Sancheze2e R. Marinez-Sala, C.
Rubio, F. Meseguer, C. lpez, D. Caballero, and J."8ehez-
Dehesa, Phys. Rev. Le&8, 023902(2002.

184302-5



WANG, WEN, LIU, AND WEN PHYSICAL REVIEW B 69, 184302 (2004

22G. Wang, J. H. Wen, X. Y. Han, and H. G. Zhao, Acta Phys. Sin.?*L. N. Hand and J. D. FinchAnalytical Mechanicg§Cambridge

52, 1943(2003. University Press, Cambridge, 1998
23, sanchis, A. Hakansson, F. Cervera, and hcBaz-Dehesa, 2°N. W. Ashcroft, Solid State Physic@international Thomson Pub-
Phys. Rev. B67, 035422(2003. lishing, Bonn, 198Y.

184302-6



