Bulk electronic structure of Na_{0.35}CoO₂·1.3H₂O A. Chainani, ¹ T. Yokoya, ² Y. Takata, ¹ K. Tamasaku, ³ M. Taguchi, ¹ T. Shimojima, ² N. Kamakura, ¹ K. Horiba, ¹ S. Tsuda, ² S. Shin, ^{1,2} D. Miwa, ³ Y. Nishino, ³ T. Ishikawa, ³ M. Yabashi, ⁴ K. Kobayashi, ⁴ H. Namatame, ⁵ M. Taniguchi, ⁵ K. Takada, ^{6,7} T. Sasaki, ^{6,7} H. Sakurai, ⁶ and E. Takayama-Muromachi ⁶ ¹Soft X-ray Spectroscopy Lab, RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan ²Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan ³Coherent X-ray Optics Lab, RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan ⁴JASRI/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan ⁵HiSOR, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-8526, Japan ⁶National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Saitama 332-0012 Japan ⁷CREST, Japan Science and Technology Corporation, Japan (Received 5 December 2003; published 19 May 2004) High-energy ($h\nu$ =5.95 keV) synchrotron photoemission spectroscopy (PES) is used to study bulk electronic structure of Na_{0.35}CoO₂·1.3H₂O, the layered superconductor. In contrast to three-dimensional doped Co oxides, Co 2p core level spectra show well-separated Co³⁺ and Co⁴⁺ ions. Cluster calculations suggest low-spin Co³⁺ and Co⁴⁺ character, and a moderate on-site Coulomb correlation energy U_{dd} ~3–5.5 eV. Photon dependent valence band PES identifies Co 3d and O 2p derived states, in near agreement with band-structure calculations. DOI: 10.1103/PhysRevB.69.180508 PACS number(s): 74.25.Jb, 74.25.Kc, 79.60.-i The discovery of superconductivity in the hydrated Co oxide Na_{0.35}CoO₂·1.3 H₂O is important in terms of a layered triangular lattice with superconductivity. Since it has twodimensional CoO2 layers consisting of (CoO6) octahedra and Na¹⁺ content corresponds to Co³⁺ valency in a matrix of Co⁴⁺ ions, it is reminiscent of doping induced superconductivity as in high- T_c cuprates. In spite of extensive investigations,² it has not been possible to achieve superconductivity in a three-dimensional Co-oxide system. Electronelectron correlations between Co 3d electrons are believed to be substantial (on-site Coulomb energy $U_{dd} = 3 - 5.5 \text{ eV}$) from electron spectroscopic studies, 3-7 albeit less than copper oxides ($U_{dd} = 5-8$ eV, Ref. 8). Theoretical studies, 9^{-1}_{-12} including resonating-valence-bond models, predict fascinating properties for this system. Recent experiments signifying strong correlations show dimensional crossover¹³ and the relation of spin entropy with the large thermopower¹⁴ in the nonsuperconducting compositions. From the point of conventional phonon-mediated superconductivity, weak or strong electron-phonon coupling leading to superconductivity also needs to be carefully investigated for the Co-oxide superconductors. This is because the doping dependent T_c 's are rather low, ¹⁵ with a maximum T_c of ~ 5 K. The layered Co oxides thus provide a new opportunity to study charge and spin dynamics in superconducting oxides. Recent studies indicate that Na_xCoO₂ is close to charge and spin ordering tendencies. ^{16,17} NMR studies ¹⁸ on nonsuperconducting Na_xCoO₂ have concluded integral valent Co³⁺ and Co⁴⁺ ions reflecting charge order. Also, while intercalated water is necessary for superconductivity, its role in modifying the electronic structure is not yet clear. It is thus important to study the electronic structure of Na_xCoO₂ · yH₂O as a function of Na content x and water content y. Photoemission spectroscopy (PES) has provided a systematic enumeration of the electronic structure of transition-metal compounds^{3–8} based on the Zaanen-Sawatzky-Allen (ZSA) phase diagram. 19 Core-level PES provides valence states and a reasonable estimate of electronic structure parameters: on-site Coulomb energy (U_{dd}) , charge-transfer (CT) energy (Δ) , and hybridization strength (V). Further, while angle-resolved valence band (VB) PES is necessary to study experimental band structure, angle integrated VB-PES provides the transition probability modulated density of states (DOS). The surface sensitivity of PES has often led to controversies regarding surface vis-à-vis bulk electronic structure, and hence, high-energy (HE) PES as well as siteselective PES are very important and promising.^{20,21} A recent development using a high-throughput fixed photon energy and a resolution of 240 meV at a kinetic energy of 5.95 keV, is a valuable advance for investigating bulk electronic structure of materials.²² Its efficacy was demonstrated for a high-K dielectric material for semiconductor applications.²² The principal advantage of HE-PES is the high escape depth of emitted photoelectrons,²³ enabling a truly bulk measurement. At $h\nu=5.95$ keV, the escape depth for Co 2p and O 1selectrons is estimated to be ~ 50 Å, significantly higher than that with soft x-ray photons from a Mg- or Al- $K\alpha$ source $(\sim 10 \text{ Å})$. Since photoionization cross sections (PICS) become very low at high photon energies, 24 VB studies at $h\nu$ ≥5 keV were very difficult earlier, although the first core level study using 8 keV photons was done nearly 30 years ago.²⁵ We study VB and core-level HE-PES ($h\nu=5.95$ keV) of the Co oxide superconductor, Na_{0.35}CoO₂·1.3H₂O and non-superconducting Na_{0.7}CoO₂. Co 2p core level spectra show well-defined Co³⁺ and Co⁴⁺ features in the normal phase of Na_{0.35}CoO₂·1.3H₂O. Cluster calculations indicate a moderate $U_{dd}\sim 3-5.5$ eV. The O 1s spectrum of Na_{0.35}CoO₂·1.3H₂O shows a two-peak structure due to signals from CoO₂ layers and water, respectively. The VB spectra consisting of Co 3d and O 2p derived states are compared with soft FIG. 1. Co 2p core level PES spectra of Na_{0.35}CoO₂·1.3H₂O, Na_{0.7}CoO₂, and CoO obtained using $h \nu = 5.95$ keV photons. x-ray ($h\nu = 700$ eV) PES and reported band-structure calculations BSC's. The VB is similar for both compositions on the energy scale of the resolution used, suggesting important modifications only at a lower energy scale near the Fermi level (E_F), ¹³ probably related to confined carriers in CoO₂ layers and/or a modified electron-phonon coupling. Polycrystalline samples of Na_{0.35}CoO₂·1.3H₂O and Na_{0.7}CoO₂ were made and characterized as described in Ref. 1. Magnetization measurements confirmed the bulk T_c of 4.5 K for Na_{0.35}CoO₂ · 1.3H₂O. To ensure retention of water under vacuum conditions, freshly prepared samples were mounted on substrates with silver paste and also covered with it. After transferring samples to the measurement chamber and cooling to 100 K, they were scraped in situ with a diamond file to obtain clean surfaces. The samples were then cooled to 15 K for HE-PES measurements, at a vacuum of 1×10^{-10} Torr. HE-PES was performed at undulator beam line BL29XU, Spring-8 (Ref. 26) using 5.95 keV photons and a modified SES2002 electron analyzer. The energy width of incident x rays was 70 meV, and the total energy resolution ΔE was set to ~0.5 eV. Soft x-ray PES ($h\nu$ =700 eV) was performed at BL19B, KEK, PF, using a CLAM4 electron analyzer with $\Delta E \sim 0.3$ eV. Samples were cooled to 30 K and the vacuum was 8×10^{-10} Torr during measurements. Single crystal CoO was scraped in situ and measured at 300 K to calibrate the energy scale. E_F of gold was also measured to calibrate the energy scale. Figure 1 shows the Co 2p core level PES spectra of $Na_{0.35}CoO_2 \cdot 1.3H_2O$, $Na_{0.7}CoO_2$, and CoO obtained using $h\nu = 5.95$ keV photons. The Co 2p spectrum of $Na_{0.35}CoO_2 \cdot 1.3H_2O$ exhibits main peaks derived from Co $2p_{3/2}$ and $2p_{1/2}$ due to spin-orbit splitting, and two small humps or satellites at ~ 10 eV higher binding energy (BE) from the main peaks. The $2p_{3/2}$ peak itself consists of two peaks. This is clear in the $2p_{1/2}$ region with well-separated peaks in raw spectra. A simple interpretation is that the low BE peak is due to Co^{3+} and the high BE peak is due to Co^{4+} states. In Fig. 2 we overlay a least-squares curve fit on the data of $Na_{0.35}CoO_2 \cdot 1.3H_2O$ and $Na_{0.7}CoO_2$, obtained using asymmetric Voigt functions and a Shirley background. The fits resolve contributions of Co^{3+} and Co^{4+} features in the FIG. 2. (Color online) A least-squares curve fit to the Co 2p spectrum of Na_{0.35}CoO₂·1.3H₂O and Na_{0.7}CoO₂, shows contributions of Co³⁺ and Co⁴⁺ states in the $2p_{3/2}$ and $2p_{1/2}$ main peaks, with a single peak assumed for satellites. Line diagrams show calculated low-spin Co³⁺ and Co⁴⁺ states. main peaks, as seen in the decomposition. We used a single feature for the satellites for simplicity. The peak widths for Co⁴⁺ feature and satellite in Na_{0.7}CoO₂ are broader than in Na_{0.35}CoO₂·1.3H₂O, suggesting larger inhomogeneity in valency due to increased Na doping. The crystal structure analysis of both samples indicated absence of impurity phases within experimental accuracy. Further, we have carefully checked that BE's for Co³⁺ main peaks are actually lower than the corresponding peaks of Co²⁺ in CoO, e.g., $2p_{3/2}$ peak is at 779.0 eV and 780.0 eV, respectively (Fig. 1). The CoO spectra match those obtained with a Mg $K\alpha$ source extremely well in BE and spectral shapes.^{3,7} Well-separated core-level features are observed in classic nonoxide chargedensity-wave (CDW) systems²⁷ as well as intermediate valence materials without static charge order, ²⁸ because PES is a fast probe. Earlier work on three-dimensional perovskite oxides $La_{1-x}Sr_xCoO_3$ (x=0.0-0.4) showed essentially a single peak at the same BE, and no clear separation into Co^{3+} and Co^{4+} states.^{4,5} The peak width broadened initially with doping for x = 0.1, but across the semiconductor-metal transition at x = 0.2 in La_{1-x}Sr_xCoO₃, the peaks became narrower for increasing x due to uniform nonintegral valency at Co sites.⁴ In misfit layered Co oxides (BiPb)Sr-Co-O with average valencies of 3.33 and 3.52, no clear Co⁴⁺ separated from Co³⁺ was concluded.⁶ Surprisingly, for oxide systems which show charge ordering or disproportionation, such as $Pr_{0.5}Sr_{0.5}MnO_3$, perovskite ferrites, etc., well-separated integral valence features are not observed.^{29,30} It is due to the ground state being dominated by a CT $d^{n+1}L^1$ (L is a ligand hole) rather than a d^n configuration, based on model Hamiltonian cluster calculations.³⁰ From similar cluster calculations (details are described in Ref. 31 and results of one such calculation for low spin Co3+ and Co4+ are shown as line diagrams in Fig. 2), we obtain the electronic structure parameters of U_{dd} = 5.5 eV, Δ = 4.0 eV, and V = 3.1 \pm 0.2 eV which describe the Co 2p spectral features fairly well. For FIG. 3. O 1s core level PES spectra of $Na_{0.35}CoO_2 \cdot 1.3H_2O$ and $Na_{0.7}CoO_2$ obtained using $h\nu = 5.95$ keV photons, showing the presence of water derived O 1s signal in superconducting composition. simplicity, we use the same parameter values for $\mathrm{Co^{3+}}$ and $\mathrm{Co^{4+}}$ except for crystal field splitting, 10Dq. The 10Dq values for $\mathrm{Co^{3+}}$ and $\mathrm{Co^{4+}}$ are 2.5 eV and 4.0 eV, respectively. The uncertainty in Δ is \pm 0.5 eV while the calculated spectra were very similar for $U_{dd}=3.0-5.5$ eV, consistent with earlier work. The ground state character for $\mathrm{Co^{3+}}$ is $3d^6=57.0\%$, $3d^7\underline{L}^1=38.1\%$, and $3d^8\underline{L}^2=4.9\%$, while that for $\mathrm{Co^{4+}}$ is $3d^5=57.4\%$, $3d^6\underline{L}^1=37.6\%$, and $3d^7\underline{L}^2=5.0\%$. We have also checked for high-spin $\mathrm{Co^{3+}}$ and $\mathrm{Co^{4+}}$ configurations but the results are not compatible with the data. The analysis suggests that $\mathrm{Na_{0.35}CoO_2 \cdot 1.3H_2O}$ and $\mathrm{Na_{0.7}CoO_2}$ contain low spin $\mathrm{Co^{3+}}$ and $\mathrm{Co^{4+}}$ configurations, consistent with magnetic measurements. The calculations also show CT character of the satellites. The results indicate an electronic structure of mixed character, but more Mott-Hubbard-like rather than CT-like in terms of the ZSA phase diagram. While the main peaks of Co³⁺ and Co⁴⁺ features are well separated, it is clear from the cluster calculations that Co 2p spectra consist of degenerate multiple features at higher BE's. The satellite intensity is also large, being $\sim 70\%$ of the Co³⁺ main peak. It is hence difficult to estimate the actual Co3+:Co4+ relative concentrations although the main peak intensities are roughly consistent with nominal concentrations (within 10%). The present studies are consistent with integral valent charge order measured by NMR studies. 18 Although LDA+U calculations¹⁶ for Na_{0.33}CoO₂ indicate a correlation driven charge order with a ferromagnetic ground state, the absence of ferromagnetic order and suppression of Co moments on introducing water in Na_{0.35}CoO₂·1.3H₂O (Ref. 32) suggests an additional input to the electronic structure, most likely strong electron-phonon coupling as in regular CDW transitions. The O 1s core level HE-PES spectra of $Na_{0.35}CoO_2 \cdot 1.3H_2O$ and $Na_{0.7}CoO_2$ are shown in Fig. 3. The spectrum of $Na_{0.35}CoO_2 \cdot 1.3H_2O$ has two peaks at BE's of 528.6 eV and 531.6 eV. The peak at 528.6 eV is the oxygen 1s core level from the CoO_2 layers, as has been observed in layered Co oxides.⁶ The peak at 531.6 eV is ascribed to O 1s core level of water, as is evident from its BE.³³ While the 528.6 eV peak is present in $Na_{0.7}CoO_2$, the high BE feature at 531.6 eV is missing. A weak intensity feature at a still higher FIG. 4. Valence band HE-PES ($h\nu$ =5.95 keV) spectra of Na_{0.35}CoO₂·1.3H₂O, Na_{0.7}CoO₂, and CoO, and of Na_{0.35}CoO₂·1.3H₂O obtained using $h\nu$ =700 eV photons. The Co 3d states are enhanced in the $h\nu$ =700 eV spectrum. BE of 533 eV is observed, possibly due to carbonatelike contamination which is below the detection limit of x-ray diffraction. The results show that the superconducting sample contains water, which is absent in the nonsuperconducting compound, as expected from the compositions. The HE-PES VB spectra of Na_{0.35}CoO₂·1.3H₂O, Na_{0.7}CoO₂, and CoO are shown in Fig. 4, along with the soft x-ray ($h\nu = 700 \text{ eV}$) spectrum of Na_{0.35}CoO₂·1.3H₂O. For Na_{0.35}CoO₂·1.3H₂O, the HE-PES spectrum shows a low intensity peak at 0.9 eV and a broad structure centered around 6 eV. In comparison, the $h\nu = 700$ eV spectrum shows a higher intensity 0.9 eV peak with the leading edge crossing E_F and a broad peak centered at 5 eV (data normalized at 5 eV BE). The spectral changes for the two photon energies arise from changes in PICS. This is confirmed by comparing the present HE-PES CoO data with those reported in Ref. 34 for $h\nu = 600$ eV. The spectral intensity changes and comparison with BSC's (Ref. 35) indicate that the feature at 0.9 eV is due to Co 3d states and the broad peak centered at 5-6eV is dominated by O 2p states. The observed relative intensity changes indicate deviations from available calculated atomic PICS at $h\nu = 8.0$ keV (Ref. 24) which suggest higher relative intensity of the Co 3d states compared to O 2pstates. BSC's for $Na_{0.5}CoO_2$ indicate a peak closer to E_F , with high DOS at E_F derived from Co $3dt_{2g}$ states, which is separated from the Co $3de_g$ states located in the unoccupied states.³⁵ While oxides can show a contamination peak around 10 eV, the feature at 10.5 eV in CoO is intrinsic as is observed for cleaved single crystals^{7,34} and in the present case. It is clearly absent in Na_{0.7}CoO₂. A weak tailing feature between 9 and 12 eV is observed in Na_{0.35}CoO₂·1.3H₂O. Comparing with studies on interaction of water with a high- T_c cuprate³³ and its absence in Na_{0.7}CoO₂, we attribute it to the water present in Na_{0.35}CoO₂·1.3H₂O. But for this feature, the Co 3d and O 2p derived states are similar in Na_{0.35}CoO₂·1.3H₂O and Na_{0.7}CoO₂. The VB of CoO shows a feature at nearly 1.6 eV consisting of Co 3d states and a higher BE broad feature due to O 2p states at about 7 eV. A comparison indicates that in $Na_{0.35}CoO_2 \cdot 1.3H_2O$ and $Na_{0.7}CoO_2$, the Co 3*d* feature is shifted to lower BE compared to CoO, as in Co 2*p* core levels (Fig. 1). Recent high-resolution angle-resolved PES (ARPES) studies on nonsuperconducting $Na_xCoO_2(x=0.5-0.7)$ also suggest consistency with BSC's, but with a renormalization of electronic states on a low energy scale of 100 meV.^{13,36} This energy scale is beyond present HE-PES measurements. A more accurate analysis at and very near E_F in superconducting $Na_{0.35}CoO_2 \cdot 1.3H_2O$ requires higher-resolution measurements, preferably with ARPES, to obtain the energy and momentum resolved electronic structure. The interplay of electron-electron correlations and strong electron-phonon coupling³⁷ of renormalized carriers in Na_{0.35}CoO₂·1.3H₂O could stabilize a "composite glue" for pairing, driven by a change in hybridization or intersite Coulomb interactions. In conclusion, HE-PES provides normal state bulk electronic structure of $Na_{0.35}CoO_2 \cdot 1.3H_2O$. In contrast to three-dimensional doped Co oxides, the Co 2p core level spectra show well-separated Co^{3+} and Co^{4+} ions. Cluster calculations suggest low spin Co^{3+} and Co^{4+} states, and a moderate on-site $U_{dd} \sim 3-5.5$ eV. Valence band PES identifies Co 3d and O 2p derived states, nearly in agreement with BSC's. A.C. thanks Professor O. Gunnarsson for very valuable discussions. We thank Dr. M. Arita, Dr. T. Tokushima, and Dr. K. Shimada for valuable experimental support. ¹ K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. Dilanian, and T. Sasaki, Nature (London) **422**, 53 (2003). ²J. B. Goodenough, in *Progress in Solid State Chemistry*, edited by H. Reiss (Pergamon, London, 1971), Vol. 5, p. 145; M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. **70**, 1039 (1998). ³J. van Elp, J.L. Wieland, H. Eskes, P. Kuiper, G.A. Sawatzky, F.M.F. de Groot, and T.S. Turner, Phys. Rev. B **44**, 6090 (1991). ⁴ A. Chainani, M. Mathew, and D.D. Sarma, Phys. Rev. B **46**, 9976 (1992). ⁵T. Saitoh, A.E. Bocquet, T. Mizokawa, and A. Fujimori, Phys. Rev. B **52**, 7934 (1995); T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, *ibid*. **56**, 1290 (1997). ⁶T. Mizokawa, L.H. Tjeng, P.G. Steeneken, N.B. Brookes, I. Tsukada, T. Yamamoto, and K. Uchinokura, Phys. Rev. B **64**, 115104 (2001). ⁷F. Parmigiani and L. Sangaletti, J. Electron Spectrosc. Relat. Phenom. **98-99**, 287 (1999). ⁸ A. Fujimori *et al.*, Phys. Rev. B **35**, 8814 (1987); Z.-X. Shen *et al.*, *ibid.* **36**, 8414 (1987); H. Eskes, L.H. Tjeng, and G.A. Sawatzky, *ibid.* **41**, 288 (1990). ⁹G. Baskaran, Phys. Rev. Lett. **91**, 097003 (2003). ¹⁰B. Kumar and B.S. Shastry, Phys. Rev. B **68**, 104508 (2003). ¹¹Q.-H. Wang, D.-H. Lee, and P.A. Lee, Phys. Rev. B **69**, 092504 (2004). ¹²W. Koshibae and S. Maekawa, Phys. Rev. Lett. **91**, 257003 (2003). ¹³T. Valla et al., Nature (London) 417, 627 (2002). ¹⁴ Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature (London) 423, 425 (2003). ¹⁵R.E. Schaak, T. Klimczuk, M.L. Foo, and R.J. Cava, Nature (London) 424, 527 (2003). ¹⁶J. Kunes, K.-W. Lee, and W. Pickett, cond-mat/0308388v1 (unpublished). ¹⁷I. Terasaki, Physica B **328**, 63 (2003). ¹⁸R. Ray, A. Ghoshray, K. Ghoshray, and S. Nakamura, Phys. Rev. B **59**, 9454 (1999); J.L. Gavilano, D. Rau, B. Pedrini, J. Hinderer, H.R. Ott, S. Kazakov, and J. Karpinski, Phys. Rev. B **69**, 100404 (2004). ¹⁹ J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys. Rev. Lett. **55**, 418 (1985). ²⁰L. Braicovich, N.B. Brookes, C. Dallera, M. Salvietti, and G.L. Olcese, Phys. Rev. B 56, 15 047 (1997). ²¹J. Woicik, E.J. Nelson, L. Kronik, Manish Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, and G.S. Herman, Phys. Rev. Lett. 89, 077401 (2002). ²² K. Kobayashi et al., Appl. Phys. Lett. **83**, 1005 (2003). ²³NIST Electron Inelastic Mean Free Path Database: Ver. 1.1 (2000). ²⁴J.J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). ²⁵I. Lindau, P. Pianetta, S. Doniach, and W.E. Spicer, Nature (London) 250, 214 (1974). ²⁶ K. Tamasaku, Y. Tanaka, M. Yabashi, H. Yamazaki, N. Kawamura, M. Suzuki, and T. Ishikawa, Nucl. Instrum. Methods Phys. Res. A 467/468, 686 (2001). ²⁷ T.E. Kidd, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. **83**, 2789 (1999) ²⁸P.G. Steeneken, L.H. Tjeng, G.A. Sawatzky, A. Tanaka, O. Tjernberg, G. Ghiringhelli, N.B. Brookes, A.A. Nugroho, and A.A. Menovsky, Phys. Rev. Lett. **90**, 247005 (2003). ²⁹E.Z. Kurmaev et al., Phys. Rev. B **59**, 12 799 (1999). ³⁰ A.E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, and M. Takano, Phys. Rev. B 45, 1561 (1992). ³¹M. Taguchi, T. Uozumi, and A. Kotani, J. Phys. Soc. Jpn. **66**, 247 (1997). ³²R. Jin, B.C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003). ³³S.L. Qiu *et al.*, Phys. Rev. B **37**, 3747 (1988). ³⁴G. Ghiringhelli, L.H. Tjeng, A. Tanaka, O. Tjernberg, T. Mizokawa, J.L. de Boer, and N.B. Brookes, Phys. Rev. B 66, 075101 (2002). ³⁵D.J. Singh, Phys. Rev. B **61**, 13 397 (2000); **68**, 020503(R) (2003). ³⁶M.Z. Hasan *et al.*, cond-mat/0308438v1 (unpublished); H.-B. Yang *et al.*, cond-mat/0310532v1 (unpublished). ³⁷O. Rosch and O. Gunnarsson, Phys. Rev. Lett. **92**, 146403 (2004).