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We demonstrate single-shot readout of quantum states of the Josephson charge qubit. The quantum bits are
transformed into and stored as classical kisarge quantain a dynamic memory cell—a superconducting
island. The transformation of staté) (differing form state|0) by an extra Cooper paiis a result of a
controllable quasiparticle tunneling to the island. The charge is then detected by a conventional single-electron
transistor, electrostatically decoupled from the qubit. We study relaxation dynamics in the system and obtain
the readout efficiency of 87% and 93% fdr) and|0) states, respectively.
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It has been recently realized that Josephson junctions caglectron transistofSET) (C,~1000 aF) and a charge trap
be used for building quantum bitgjubity and integrated (C,~1000 aF) placed between the qubit and the SET. The
quantum computer circuits controlled by external electricalrap is connected to the box through a highly resistive tunnel
signals®? After the first experiments on single Josephsonjunction (R,~100 MQ) and coupled to the SET with a ca-
qubits3~” an important step toward the integration has beerpacitanceC~100 aF. The use of the trap enables us to
made: coherent control of two qubits and conditional gateseparate in time the coherent state manipulation and readout
operation have been experimentally demonstrated for twprocesses and, in addition, the qubit becomes electrostati-
electrostatically coupled charge qubitSsHowever, in these cally decoupled from the SET. The qubit relaxation rate in-
experiments, individual probabilities of each qubit averaged
over all states of the other qubit were measuf¥tb directly Q
measure multi-qubit states, one must be able to readout each Q"' ]
qubit after every single-shot coherent state manipulation. The Q:'f ;:
single-shot readout is of great importance, for instance, for Qp —
guantum state tomography, quantum state teleportation,
quantum cryptographt. Without the single-shot readout, al-
gorithms that give non-unique solutions cannot be utilized.

To readout single quantum states of the Josephson qubits
(in particular, flux qubitsthrough the phase degree of free-
dom, a few circuits, measuring switching event from the su-
percurrent state to the finite-voltage state, were
implemented~’ In charge type of qubits, it is straightfor-
ward to measure a charge quantum instead of the flux
quantum® For the single-shot charge readout, a radio-
frequency  single-electron transistor electrostatically
coupled to the qubit was proposed as a detector of the charge
states:*1®Although this approach works in principté!’the
single-shot readout has not yet been realized. In this work, FIG. 1. (& Scanning electron micrograph of the device. The
we demonstrate an operation and study mechanism of nov&luminum structure is deposited on top of a thigh§iinsulating
readout scheme that allows one to perform highly efficientayer (0-4m) above a gold ground plane. The device consists of a
single-shot measurements, with suppressed back-action & op:er palr“box,"a reservoir, a trap and a measurement SET. The dc
the measurement circuit on the qubit. 0X .and trap ) and pulse(control an.d re.adomtgates. control

A scanning-electron micrograph of our circuit is shown in potenngls of Fhe islands. .'.DUIS? operation is schematically repre-
Fig. 1(a). The device consists of a charge qabind a read- sentegln the_ |nlse(b) Slt(ablllt)_/_dlagrafmhof tShEeTSET c_oupl_etlll to the
out circuit. The qubit is a Cooper-pair bdwith its effective trap. Open circles mark positions of the quasiparticle current

. — peaks orVys—Vy,; plane(dc gate voltages of the SET and the jrap
capacitance to the grourd,~600 aF) coupled to a reser- Pairs of numbers N;,Ng) designate the trap-SET ground state

voir through a Josephson junction with the Josephson energy,arge configuration in each cell bounded by the SET peaks and
E,~20 weV. The reservoir is a big island with about 0.1 nF sqjid lines. Dashed, dashed-dotted and dotted lines indicate posi-
capacitance to the ground plane and galvanically isolateglons of the SET peaks for 0, 1 or 2 additional electrons in the trap,
from the external environment. The QUblt states are COherrespective|y_(c) A typical time-trace of the SET currertower
ently controlled by a non-adiabatic control pulse, yielding apane) together with the readout pulse sequerogper panél
superposed state () and|1). The readout part includes an Negative switches on the lower curve correspond to the detected
electrometer which is a conventional low-frequency singlecharge of the trap. Digits 1 and 0 mark readout bits.
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duced by the SET voltage noise is suppressed by a factor of
(CpiCst/CiCp)2~3%x107°, whereCp,~30 aF® The cou-
pling strength can be made even weaker, if the unwanted
box-to-trap capacitanc€,, is further decreased.

The operation of the circuit can be described in the fol-
lowing way. During the qubit manipulation, the trap is kept , o
unbiased prohibiting charge relaxation to the trap. Once the 0.2 04 06 08 1
control pulse is terminated, the readout puksee the inset of 1.0 tc(ns)
Fig. 1(a)) is applied to the trap. The length and the amplitude 0.8 e (b)
of the readout pulse are adjusted so that if there is an extra ~ , 06 ‘e B
Cooper pair in the box after termination of the control pulse, 04 1 ,.'"‘- ,’.‘b\ _."* 04
it escapes to the trap through a quasiparticle tunneling with a 021y.. ".'  *
high probability. After the charge is trapped, it remains in the ~00 02 04
trap for a long time(a reverse trap-to-box charge relaxation t, (ns)
is suppressed due to the superconducting energy dgp 2
and is measured by a low-frequency SET.

The Hamiltonian of the two-level system of the
qubit in the charge basif0) and |1) (without and with
an extra Cooper pair is H=U,(0,Q,)]0){0]
+Up(2,Qp)|1)(1| —1/2E, (|0){1|+|1)(0]) (we define an
electrostatic energy of islandk as U.(N,,Qy)
=(Nye—Q,)?/2C,, wherek is eitherb or t indicating box
or trap island, respectivelyy, is an excess electron number
and Qy is a gate induced charge in the island. Starti
at  Qpo(Qno<Qp1), Wwhere E>E; (AE=Uy(2,Qp)
—Up(0,Qp)) we let the system relax to the ground state
which is nearly pure charge sta{f). Then we instantly
change the eigenbasis for a timeby applying a rectangular
control pulse, which brings the system @,;. If Qu; is a
degeneracy point XE=0), the final state of the control
pulse manipulation is |0)coswt./2+|1)sinwt./2 (w;
=E,/#), therefore, after the pulse termination, the stafe
is realized with a probability of sfa;t./2.

FIG. 2. (a) Coherent oscillations measured by averaging over
many events of the single-shot measuremeisP vs t, measured
at AQ,=0.84e(=Qy,), Where visibility is the highestc) P vs t,
measured aQ,=0.7%(=Q,g), where the oscillations are the
longest lastingdegeneracy point Dashed envelops correspond to
the exponential decay with the decay time of 5.8 ns.

switchesm normalized by total number of shotg, usually
' n,=327 for one data points a function of the control pulse
ngIengthtC and the amplitudA Q, (AQ;= Q1 — Q1) is shown

as a two-dimensional plot in Fig.(&. We define the pulse
'with AQ,=0.84e(=Qy,) andt,=120 ps, wherP reaches
maximum, as ar-pulse. Figure &) demonstrates coherent
oscillations as a function df measured ah Qpa . As shown
by the vertical arrowed line, the visibility here reaches 0.64,
while the longest lasting oscillations shown in Figc)2are
found atAQ,=0.7%(=Qyg), (the phase decoherence is ex-
pected to be the weakest at the degeneracy poWe believe
thatQu,,# Qg due to the control pulse distortion because of

_Figure 1b) shows an experimentally measured stability imiteq frequency bandwidths of the transmission lines and
diagram: SET current peak positions as a function of trap an e pulse generator

box gate voltages of the SET and the trap. By setting the box Curves with open and closed dots in Fig&,® represent

and trap gates to one of the poimig, Ni, Of Nip, We €an  p 55 4 function of the readout pulse amplitukl®, with and

detect if the traphhasé)_l,_ 1 or 2 ﬁddigpnal gllect_rrons. I(r; OUlyithout control -pulses, respectively. The probabilities
measurements, the SET is usually adjustetligp To read- .measured al;y are shown in Fig. @), while the probabili-

out the qubit, the trap is biased by the readout pulse of typiz h " itch
cal lengtht, — 300 ns and amplitud& 0, = 3.56(AQ,= O,y ties measured all;, (where positive switches are counted

— Qo). applied to the readout gate, letting an extra Cooper
pair of the statél) escape to the trap through a quasiparticle
tunneling and switching off the SET curretihe SET peak
position is shifted to the position of the dashed Jine

Figure Xc) demonstrates a readout pulse sequefare
upper curvetogether with a time-trace of the SET curréat
lower curve, where negative switches coming synchro- 0
nously with the readout pulses are counted as charge detec-

0 8

2 AQf(e) 3

2 46
Q)
tion events. The trap relaxes to its ground state in atunneling -\~ 5 b \s readout pulse amplitud&Q

S . 3. X
process of the extra charge to the reservoir via the box. Th?r-pulse(open and closed cycles, respectiyekg) P measured at

with and without

lifetime of the trapped charge is about 308, which is N ‘[see Fig. )]. (b) P measured aN,,. One may distinguish
much shorter than the theoretically estimated one for tunnelyee different regions on the ploté) a finite probability for the
ing of thermally excited qusiparticles. This is probably due toexcited state detection is only i, position;(Il) finite probabilities
defects in the tunnel junction or uncontrolled non-for the excited state detection are M, and N,, positions;(Ill)
equilibrium quasiparticles. We use repetition time of 2 ms toswitches are detected even if the qubit is in the s@fe Threshold
let the trap freely relax, which in principle can be shortenedamplitudesQ,,, Q5. Qic are derived for the box-to-trap relax-
if negative “reset” pulse is applied to the trap. ation processes (2,0)(1,1), (1,1)-(0,2) and (0,0)»(—1,1), re-
An experimentally obtaine®=m/n, (number of counted spectively.
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particle relaxation to the trap through the high resistive junc-
tion is blocked by A when the trap is not biased. The
relaxation rate to the reservoir found from the fittiteplid
curve is B=(220 ns) . Figure 4b) shows relaxation dy-
namics of the stat¢l) as a function of the readout pulse
lengtht, (ty=0). This relaxation is mainly determined by
quasiparticle decay to the trap with a ratg o> ). Addi-
tionally, the inset of Fig. éb) shows dynamics of0)-state
FIG. 4. (a) P as a function of delay between the contrepulse  relaxation (“dark” switches) to the trap. These “dark”
and the readout pulsg . A solid curve is a fitting by an exponent Switches can be presumably described by the process (0,0)
with a decay ratg8=(220 ns) L. (b) A probability of |1) states —(—2,2), with a weak relaxation raie= (4100 ns) ! de-
detection created by the -pulse as a function of the readout pulséved from fitting the data by & exp(—yt,) (solid curve.
lengtht,. A solid curve is a result of fittingn(t) using Eq.(1) Let us consider the relaxation dynamics in more detail.
normalized byn, with fitting parametersig and @ (n5/n;=0.87  The number of excited states*, decreases within the time
and = (37 ns) 1). The inset shows probability without-pulses.  interval [t,t+dt] as dn*(t)=—an*(t)dt—Bn*(t)dt.1°
P is fitted by 1—exp(— ;) with y=(4.1 us)™*. The number of states if0, 0) configuration,n(t), changes,

- - . in turn, asdn(t)=—yn(t)dt+gn*(t)dt. We may also
are shown in Fig. @). One may divide the plots into three write an expression for the number of events in which the

regions marked by I, Il and Il differing from each other by . . x i
the counting characteristics. Based on the data from thes:tcreap is found to be chargedm(t) =n*()dt+n(t)dt. Solv

plots, we suppose that when the qubit is in the sta}e one Ing these equations with the initial condition$ (0)=nj ,
1 _ * _ .

quasiparticle tunnels from the box to the trap in the proces8(0)=Nt—ng andm(0)=0 we find

(2,0)—(1,1) within region | ((Ny,N;) represents the box- n* (a—7)

trap quasiparticle configuratiginquasiparticles tunnel to the mt)=n[l-e "]+ — 14 [e M—e (@A (1)

trap in the process (2,6)(1,1)—(0,2) within region II; a atpB—y

quasiparticle tunneling process becomes possible even Qe fit the data of Fig. @) by a curve ofP=m(t)/n; with

the itatdO) i_n re_gilon [I. i cally feasible in th m(t) taken from Eq.(1) with two fitting parametersx and
The quasiparticle tunneling is energetically feasible in t eng . The fitting givesa=(37 ns) ! (Ref. 20 and n%/n,

process Ny ,N;)— (N,—1,N;+ 1), when the following con- —0.84. implvi - .
» ; o =0.84, implying that the efficiency dD)-to-|1) conversion
dition is satisfied U,(Np,Qpo) + U(Ny, Q1) >Up(Ny by the controlar-pulse is 84%.

_1'Qb°)+ut(Nt.+1’.Qt1)+2A (we neglept the Interaction If our readout pulse length=t, satisfies the conditions
energy term which is as small as the inter-island coupling

_1 . .pe
strength. Substituting an explicit expression for the energies,y<tr <a+tp, then Eq.(1) can be simplified to
one may find the necessary trap readout pulse amplitude for
the quasiparticle escapeAQ,>Q;+N.e+ 7(2—Np)e, m(t)~ng
where 7=C,/C, and Q;=e/2— 5(3e/2— Q) +2AC,/e
— Q0. We define three threshold amplitudes &f);, at  Using Eq.(2), one may estimate an efficiency of the single-
which the following processes become possible: (2,0)shot readout. We introduce a probabilRy(x) of finding the
—(1,1) at AQ:>Qa, Where Qa=Q/; (1,1)—(0,2) at trap chargedy=1) or unchargedy=0), when the qubit is
AQ:>Qg, whereAQ=0Q, +(1+ 7)e; (0,0)—(—1,1) at in |x) state  is either 0 or 1. According to the definition of
AQ;>Q,c, where Q,c=Q|+2ne. The threshold ampli- Py(X), Po(0)+P1(0)=1 andPq(1)+P,(1)=1. The total
tudes calculated witk,,= 0.6e [taken from the first step of Number of detected events expressed in terms of these prob-
P curve in Fig. 38)] and »=1.67 areQ;z=3.3 andQ,c  abilities may be written asn=ngP;(1)+(n—ng)P1(0).
=3.% and shown in Figs. @) and 3b) by the dashed ver- Comparing the latter expression with H&) we find
tical lines. Note that the probability for the trap to have a

§
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charge atAQt>4._5e reaches_ 1 in Fig. @. This proves that _ P,(1)= L’Bytf (39)
once the charge is trapped it is detected with 100% probabil- a+p

ity. For the highest efficiency, we set the operation point of

the SET toN,,, where either one or two trapped quasiparti- P1(0)=t,. (3b)

cles yield a negative switch of the SET current and the pulse .

amplitude toAQ,~3.5, at which two quasiparticles may __Confirming that our readout pulse length=300 ns ful-

escape to the trap. f|I_Is the necessary condition for EEB), y<t, <a+ﬁ,. we
Figures 4a) and 4b) demonstrate time relaxation dynam- directly find from Eq.(3) that the probability of detection of

ics of the qubit states. Figurga shows a probability? to  the state[1) is P;(1)=0.87 and the stat¢0) is Po(0)

find an extra charge in the trap, when time delgys intro- ~ =0.93 (P1(0)=0.07). The derived probabilities are consis-

duced between the contrat-pulse and the readout pulses. tent with the mean probability of the oscillations at the de-

The exponential decay ¢ may be explained by tunneling generacy point, (P)=[(ng)P1(1)+ (n;—(ng))P1(0)]/n

to the reservoifpresumably via energetically feasible Coo- =0.47[horizontal line in Fig. 4c)], where(ng/n;)=0.5. We

per pair tunneling (2,0):(0,0)] because alternative quasi- suppose that the readout efficiency can be very much im-
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proved by optimizing the relaxation rates and fabricationto demonstrate entangled states and controlled-NOT gate
procedure, because the factor of expA/kT]~exd —50] operation.
gives very strong suppression of unwanted relaxation One of the straightforward applications of the described
through thermally excited quasiparticles. device, staying outside quantum computation direction, is a
Finally, we would like to briefly discuss new possibilities tunable single-photon detector in a centimeter wavelength
and potential applications, which this scheme opens. The trainge. A weak microwave radiation may resonantly excite
island works as a dynamic memory cell, which stores théh® box near the degeneracy point from the ground to the
multi-qubit state in a classical bit. Therefore, the data can b&xcited state with a finite probability. The excited state may
further processed in a classical way. For example, impleIhen be converted into the charge stiitp by an adiabatic
menting sequential readout of many cells connected in serie§Ve€P of the control gate voltagéa relatively slow gate
similar to that of charge-coupled devices, will allow one to VOItag€ change forces the system to move along eigenenergy
reduce a number of output circuit channels. Also, the singlepand$ and detected by the single-shot measurement circuit.

shot readout of a double qubit sysfefwill allow us We thank S. Lloyd for valuable discussion.

*Electronic address: astf@frl.cl.nec.co.jp has an extra Cooper pair or nothe current induced, for ex-
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of finding the qubits with one extra Cooper pair. That is, if the = measured decay af* in Fig. 4(a) is perfectly exponential.

wave function in the double qubit charge badisi,) is  2°The tunnel junction resistance is estimated Rg=2A/ae?

2;.i,Cii,liaiz) (i are 1 or 0 depending on whether the qubit =100 MQ.
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