PHYSICAL REVIEW B 69, 174430 (2004
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Using a combination of high-temperature series expansion, exact diagonalization, and quantum Monte
Carlo, we perform a complementary analysis of the thermodynamic properties of quasi-one-dimensional
mixed-spin systems with alternating magnetic moments. In addition to explicit series expansions for small spin
guantum numbers, we present an expansion that allows a direct evaluation of the series coefficients as a
function of spin quantum numbers. Due to the presence of excitations of both acoustic and optical nature, the
specific heat of a mixed-spin chain displays a double-peak-like structure, which is more pronounced for
ferromagnetic than for antiferromagnetic intrachain exchange. We link these results to an analytically solvable
half-classical limit. Finally, we extend our series expansion to incorporate the single-ion anisotropies relevant
for the molecular mixed-spin ferromagnetic chain material MnNigNQethylenediamine), with alternating
spins of magnitude 5/2 and 1. Including a weak interchain coupling, we show that the observed susceptibility
allows for an excellent fit and the extraction of microscopic exchange parameters.
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I. INTRODUCTION for arbitrary alternating spinsS ands. This will allow not
only for a direct comparison with experimental data, but also
Promoted by the synthesis of various one-dimensionalor a study of a gradual transit to the half-classical ligit
(1D) bimetallic molecular magnets, the physics of quantum— which is exactly solvablé?~*® Finally, while our ED
spin chains with mixed magnetic moments is of great interand QMC data will be obtained on systems of the smallest
est. Typically, quasi-1D mixed-spiiMS) compounds display possible mixed-spin magnitude, i.€5 1 ands=1/2, this is
antiferromagnetid AFM) intrachain exchangk;® which has  a case also included in the HTSE. In addition, for the sake of
stimulated theoretical investigations of AFM MS models us-completeness and to compare with existing literature, we will
ing a variety of techniques such as spin-wave théoly, also include results for the AFM case.
variational method$! the density-matrix renormalization In this paper, we focus on a chain with two kinds of spin
group (DMRG),*®*® and quantum Monte Carlo species, i.eSands, arranged alternatingly and coupled by a
calculation® 19 Interestingly, since a unit cell of the MS nearest-neighbor Heisenberg exchange. Namely, the Hamil-
chain comprises two different magnetic moments, the spedonian reads
trum will allow for excitation of “acoustic” as well as “op-

N
tical” nature’® While not identified unambiguously in
. o int=— 5+s- )
present day experiments, the character of these excitations Hint 32‘1 (S-5+5-S+0) @
should appear in thermodynamic and other observable prop- C .
erties as twdndependent energy scalés pI'he subscript =1, ... N refers to the unit cells, and we

In addition, and £ f th ding, what indlways use periodic boundary condiltions. .
n addition, and apart Tom e preceding, wnat remain In Sec. Il, our HTSE approach is detailed. In Sec. lll,

less well studied are MS chains wiferromagnetic(FM) ¢ ¢ ) ith OMC and ED d th
intrachain exchange, which arise in materials of recent intef/® tUrN 10 a comparison with Q an an €
results of the half-classical limit. In Sec. IV, we discuss

est such as MnNi(Ng) ,(en), with en = ethylenediaminé3 i o _
This compound is regarded as a quasi-1D MS material Wmﬁhe result.of fitting the HTSE to S.USCGpthI“ty data obtalngd
MnNi(NO,)4(en),. Conclusions are presented in

spinsS=5/2 ands=1 at the Mn and Ni ions, respectively.
The susceptibility displays an easy-axis anisotropy. At tem-sec' V.
peratures belowly=2.45 K, a weak AFM interchain cou-
pling induces AFM ordering. If this antiferromagnetic order
is suppressed by a magnetic field of approximately 1.6 T, the The HTSE is an expansion in powers 83, whereg is
low-temperature specific heat shows a maximuriiatt K the inverse temperature. Here we use the linked-cluster ex-
and a shoulder at=1.5 K. These features could possibly pansion of Ref. 17. In this method, the series coefficients for
reflect the two aforementioned characteristic energy scaleshe thermodynamic limit are obtainesactlyfrom those cal-
however, for the case of a FM, rather than an AFM MSculated on finite-size clusters. In general, this includes the
chain. subtraction of contributions from a large number of so-called
Motivated by this, it is the purpose of this paper to per-subclusters. In one dimension, however, significant simplifi-
form a complementary analysis of the thermodynamic propeations occur due to cancellati6h!® This is true also for the
erties of FM MS chains, using high-temperature series exMS chain systems. That is, in the absence of a magnetic
pansion(HTSE), exact diagonalizatiofED), and quantum field2° the free energy in the thermodynamic limit is rep-
Monte Carlo(QMC). In particular, our HTSE will be derived resented by

Il. HIGH-TEMPERATURE SERIES EXPANSION
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FIN=F/(S,s)+F.(s,S)—F,_(S,s)—F,_4(s,S 3
(S,8)+F (5,9 —F¢_1(S,s)—F(_1(s,9) ffr*f* TKP‘TK
+O[(IBJ)N]- (2) 5 S58sSs §s8ssgs

where F,(S,s) is the free energy of thé site open-chain
system described by

1
£-1)2

Mt

M= ;1 (S's+s-S:+1) (£:0dd 0 /gés@s

0 02 04 06 08 1

=He-1=ISu S (£:eVED, ©) k/m
andF(s,S) is Obtained by exch_angin@ andsin F_{;(_S,S). FIG. 1. The spin-wave dispersion relation for the FM MS chain
Then: a calculation of T(H,)"] is needed on a finite Sys- with s=1/2 andS=1. The spatial distance of two spins of the same
tem, Le,, species in neighboring unit cells is taken to be unity.

s*|=n)=s"s*|xn¥1)=|%£n¥*1)

TrHD= > (my, ... m|HYmy, ... .m,), (4
{m;} x{s(s+1)—(m+nF1)(m+n)}. (8

wherem; represents the magnetic quantum numbers at.site Note that the norm ofn) is not unity, namely,

We applyH, order by order on the kém,, ...,m,). This n

operation yields linear combinations of kets with coefficients (+n|=n)= H {s(s+1)—(m+n’F1)(m+n")}. (9

which are functions ofm;}. To evaluate TH2", products of n=1

n L
k:‘ts of typfeH‘«’Jmll’ M) are nﬁedzend+f1£ m‘n’sﬁj’ﬁh"e " Besides the method$) and (ii), the contribution to the
the case of Ty *, one can use that;" " =H;H; ~. In  ghacific heat from the largest cluster is calculated separately.

order to evaluate this trace, we use two different algorithmsyiamely, contributions frond site chain toO[ (8J)2¢ 2] and
Method (i) is based on a direct matrix multiplication for o[(33)2(~1] have a simple form; with notatiox=s(s

fixed Sands. A linear combination of kets with coefficients 1 1) andx=S(S+1), for ¢=2lI it is proportional to 2x'X'

is regarded as a sparse vector. It is stored as a compressggld for¢ =21+ 1 proportional tox'X'*1+x'*1X'. The pre-

array of nonzero elements and another array of their pointerctors of these terms can be determined by comparing with

to the kets. These pointers are stored in ascending order $ose ofs=S=1/2 for any¢ in Ref. 19. The method§) and

that one can find a needed element using binary search in thig) are used only for the rest of the contribution.

array. All the operations are performed using integers, and We have computed the specific heat for the madel

thus there is no loss of precision. with s=1/2 andS=1, up to 29th order using the meth¢l
Method(ii) is designed for arbitrary spins, which is based Furthermore, for arbitrarg andS, the series has been calcu-

on an analytic approach to the matrix elements in@y.I1t  l|ated up to 11th order using the methét) and standard

has an advantage for large spins because the méthadl  symbolic packages. By settif§=s=1/2, our model is re-

fail for very large spins due to time and/or memory con-duced to the homogeneous spin-half Heisenberg chain, and

straints. After symbolic operations, the summation of thepur series agrees with that in the literattffezurthermore,

form =7, _ _ m" can be calculated analytically for arbitramy  we have also checked that tBe- limit of the series agrees

For example, whem=2, the sum is equal tgs(s+1)(2s  with the Taylor series of the exact solutithwhich will be

+1). As a result, the series coefficients are obtained as ashown in the following section.

expression valid for arbitrar$g ands. Naively it may seem

that operators of type™ will cause square roots in the ma- lll. LARGE- AND SMALL-SPIN LIMITS

trix elements of the Hamiltonian. However, such square roots

are absent in the final result. In fact, the calculation can b% o

carried out disregarding square roots as explained below. Inc—

troducing the simplified notation,

In this section, we provide evidence for the presence of a
uble-peak-like structure in the specific heat of the FM MS
hain. We begin by recalling the elementary excitations in a
MS chain. The dispersion relation of the one-magnon exci-
tations in the FM case reads

=Ny, ..., =0 =(s)M ... (sp)Mmy, ... .mg), (5) -
= +
the initial state is represented b, . . .,0). Spin operators w(k)=J[S+sxS"+s"+2Sxogk)], (10
act on these states as follows. Suppbsa) (n>0) repre- and is shown in Flg 1 for the extreme quantum cease,
sents the state at siten the notation(5). Then, =1/2 andS=1. Similar to the AFM casé? the spectrum
consists of both an acoustic and an optical branch reflecting
s +n)=(m=n)|+n), (6) the presence of two different spins in a unit cell. These
branches indicate two energy scales in the thermodynamics
s*|=n)=|+n=1), (7y  of the MS chains. The appearance of two one-magnon
branches can be qualitatively understood as followskAt
and =1, the excitations correspond to an alternating tilting of
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either the shorter or the longer spins as indicated by the

arrows in Fig. 1. The magnitude of neighboring spins deter- 0.35 (a)
mines the energies of these modes, leading to a splitting o 0.3
the branches foB+s. As k is reduced away frork= 7, the 0.25

magnon eigenstates gradually loose their alternating tilting 0.2
form, and nealkk=0 become similar in nature to those of C/R ’

P[15/14]

uniform chains. The low-temperature specific heat as com- 0.15 . ';Hgﬂﬂ
puted using linear spin-wave theory is expected to be &xact 0.1 T —-—- P[11/10]
to leading order inT. Since w(k) is proportional tok? 0.05 13 -QMC
at low energies, the specific heat is thus proportional{4 ) 0 7~ DMRG
for T<J.
We can establish a connection between the high- 0 005 01 015 02 025 03
temperature series for the specific heat and this low- T
temperature scaling using a suitable Padlysis. In ex-
trapolating the high-temperature series for the specific heat 0.4
information from the ground-state energy, the low-energy ex- ) (b)
citations and the high-temperature entropy can be used a
follows.22 The expansion variable is changed frggrto the 0.35
internal energy per unit celle=(H;,)/N. Here,e=0 for .
B=0. The power series af(B) is thus inverted to obtain C/R 0.3 /f, P15/14]
B(e). Let S(e) denote the entropy per unit cell of the MS //// ———P[14/13]
chain. Fromg=dsS/de, one obtains 0.25 g S EH%](‘)}
e Iz-amc
S:ST:“JO B(e")de', (11) 0.2

0 01 02 03 04 05
whereSy—..=In(2S+1)+In(2s+1). The low-temperature be-

havior of the specific heatCxTY? translates intaS« (e T

e )13 at e : : i

€) " ate~eg for' the new series, whem, is the ground FIG. 2. Low-temperature behavior of the specific heat per unit
state energy per site. In Ref. 22, only the féMis used 10 ¢qjl of the AFM (@) and FM (b) mixed-spin chain withs=1/2, S
extrapolate the specific heat of a HTSE for a FM model.—1 ysing several different Padgpproximants of the HTSE and

Here, we also employ the AFM,, since this additional CoNn-  from QMC. In(a), DMRG results from Ref. 9 are also shown. Here,
straint from the other sign o does not drastically change Ris the gas constant.

the final result, but makes the extrapolation less sensitive to

the used Padapproximant. We thus obtain the same ex-gyjts to represent the thermodynamic limit. For the AFM
AFM specific heat will be obtained using the substitutions,ye||. |n contrast to the AFM case, the HTSE result for the
e——e andBJ— — BJ from the FM case. Then, if the Pade |ow-temperature specific heat for the FM case shows large

approximant ine is applied to oscillation upon increasing the order of the series. Compari-
1 . son with the QMC data shows that the exact solution is lo-
e s o
3 3/, € cated within the range of these oscillations. We take the
STIn(2S+1)(2s+1)] (1 eg"") <1+ eQFM) ' arithmetic average oP[12/11], P[13/12], P[14/13], and

P[15/14] as the final HTSE result, which in the temperature
the low-temperature behavior and the high-temperature errange 0.03<T<0.45) has an error of order 5%.
tropy are correctly reproduced. Fe+1/2 andS=1, we use The specific heat in a larger temperature regime is shown
the AFM ground-state energsh™ = —1.45408 from Ref.  in Fig. 3. We find overall good agreement between the QMC
4. The extrapolation is found to be rather insensitive to errorand the HTSE data, both for the AFM and the FM case. In
in e5™ . For example, an error 1dJ in ;™ affects the contrast to the homogeneous FM spin-1/2 chain, the FM MS
AFM specific heat only by %10 % at T=0.1], and chain displays at least two distinct structures @{T),
even less at higher temperatures. In the following wenamely a peak af ~0.54) and a shoulder af~0.25]. The
denote byP[m/n] the rational approximant function ie  HTSE result indicates the presence of an additional weak
resulting from a polynomial of ordem over a polynomial shoulder aff ~0.1J, which is, however, difficult to check for
of ordern. using QMC due to increasing statistical errors at low tem-

In Fig. 2, a comparison is shown between different Padgeratures.

approximants for the low-temperature specific heat for the The features in the intermediate temperature regime be-
s=1/2, S=1 case. We also include results from stochasticcome more pronounced with increasing order of the series
series expansion QMC simulatidigor both the FM and the ~expansion, probably because the higher-order polynomials
AFM case for chains of 100 sites. No deviations were foundcan reproduce the involved rapid changes more accurately.
to the QMC data for 50 sites, and thus we regard these re- We have included in Fig. 3 ED results for small finite
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FIG. 4. The HTSE results for the dependenceSoof the spe-
cific heat per unit cell witrs= 1/2 for antiferromagnetiAFM) and
(b) ferromagnetidFM) coupling, wheréS| = {S(S+1). Here S=x is
from Ref. 14. Details are in the text.

\ where the plus(minug sign represents the FM
C/R oo l/il e Baites (AFM*9) case. Therefore, the slope of the acoustic
: /// —— 10 sites branch in the AFM case is larger than in the FM case,
o 12 sites making low-temperature shoulders more pronounced
0.1}/ ___1:{?28 for FM MS chains.
/;’ Iz ~aoMc (i)  The gap between the acoustic and the optical mode in
the FM case is larger than in the AFMIcase, so that
0O 02 04 06 08 1 12 14 the splitting of the structures iB(T) is more evident
T/ in the former case. Apart froiti) and(ii), the elemen-
tary excitation spectra of the FM and the AFM case
FIG. 3. Specific heat per unit cell of the AFk&) and FM (b) resemble each other, pointing towards additional ef-
mixed-spin chain witts=1/2, S=1 as obtained from HTSE, QMC, fects from magnon interactions.

and full diagonalizations for small finite chains.
After analyzing the extreme quantum case wsth 1/2

chains for both the AFM and the FM cases. The full spec2ndS=1, we now discuss the specific heat of MS chains for
trum has been calculated for finite chains with up to severarger values ofS, keepings=1/2 fixed. In particular, we
unit-cells (14 site$. The ED result for 14 sites agrees with want to connect to the exactly solvabidalf-classical limit,
the QMC and the HTSE down to temperaturesTof 0.5] S— .
for the FM case, and@~0.3] for the AFM case. Figure 3 Figure 4 shows the results from the 11th order HTSE for
clearly shows that finite-size effects in the specific heat aré=1/2 and various values & The temperature is normal-
significantly larger in the FM than in the AFM case. In the ized to|S|J=J\S(S+1) in order to render the half-classical
AFM case, the differences between the 12- and 14-site datémit finite. In the limit S—« the specific heat of the chain
are already rather small, with a weak shoulder at low temwith FM couplings is identical to that of the AFM chain,
perature signaling the second energy scal€(i). For the  with a distinct peak aT ~0.55J. At T=0 the specific heat
FM case the ED data show a strong finite-size shift of theof the half-classical model is finite. In the quantum case,
specific heat maximum, which gradually develops into thehowever, the specific heat vanishesTas 0. Using the vari-
shoulder neaf ~0.25J, which is found both from the HTSE ableSHTSE, we can link both limiting situations as follows:
and QMC. In the limit S—o, the series coefficients o3& J)" with odd
This suggests that long-range collective modes dominats converge to zero. Let us compare thenjth and (4
the thermodynamics up to higher temperatures for the FMt+1)th order terms at finit& The ratio of the latter to the
than for the AFM case. To shed more light onto this differ-former is of O(t/S), wheret=T/(SJ). Hence, if the limit
ence, let us compare the elementary excitation spectra for tHe— is taken witht fixed, the latter becomes negligible
FM and the AFM case. compared to the former &—«~. However, ifSis finite, tklle
(i) At low temperatures, the specific heat reflects the dis-tWO terms are cqm.parable for temperatures bel@vsS .
persion of the acoustic branch of excitations. In theTherefore, even iBis Iarge, the SpECIIIf heat deviates from
lona- lenath limit. the di ion in li . the half-classical behavior belot~S™", and approaches
ong-waveiengtn fimit, the diSpersion in inéar spin- ;o4 ast—0. As a result, the specific heat will display a
wave theory reads double-peak-like structure for larggas well. Summarizing
Ss these results from the HTSE, there are two different ways of

2
(k) 2|Sis|k ’ taking the largeS and T—0 limit,
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the AFM cases are most pronounced in the extreme quantum
limit s=1/2 andS=1, and in the low-temperature regime.
The large- and small-spin limits exhibit similar structures,
suggesting that the specific heat of MS chain systems in l . ) .
general show a double-peak-like or peak-shoulder structure,
both for AFM and FM intrachain exchange, and for any com- 0 5 10 15 20
bination of spins. In the FM case this structure is more pro- TIK]
nounced if| S—s| is large, reflecting the size of the gap be- . o )
tween the acoustic and the optical mode, similar to the AFM_ FIG. 5. Fitling to susceptibility of MnNi(N@4(en), by Eq.
casel? (18). Here, (wgNa/kg) x is plotted, whereug, N, andkg are

We note that the specific heat in the high-temperaturéaom .magneton, Avogadro’s number, and Boltzmann constant, re-
limit of the AFM case is larger than in the FM case becauséPectively:
of quantum effects. This is evident from the first two terms ] ) ) o
of the series for the specific heat, which we present in th&Ve emphasize that our HTSE is carried out taking into ac-
Appendix. These two terms stem from two-site correlationsc0Unt this noncommutativity. .
only and dominate the high-temperature behavior. Since the Since 3D AFM ordering of MnNi(NG)4(en), below Ty
total entropy difference between zero and infinite tempera= 2-45 K signals the presence of a non-negligible interchain
ture is the same in both cases, the FM and AFM specific-hegxchange, we will enhance our 1D analysis to incorporate

curves therefore have to intersect at low temperatures.  this coupling on a phenomenological basis. That is to say, fits
to the experimental results will be performed using a

random-phase approximation expression

lim lim C/R=1, (12 .
T—0 S—x 4 1 T experiment
S — % —— fitting by HTSE
lim limC/R=0. (13 S 3} i
S—»o T—0 E

5

As seen from Fig. 4 the differences between the FM and £ 2}
i)
=

IV. FITTING TO EXPERIMENTAL DATA

We now turn to a comparison to the susceptibility data X= L,
observed on MnNi(N@) ,(en),. In this compound, the sym- 1-Jx1p

metry around Ni ions is nearly cubic with, however, a fairly

large anisotropy at the Mn site to be expectd#ience, we Where X1p IS the susceptibility of the pure 1D system_ob-
take into account a single-site anisotropy only on one of thd@ined by HTSE and extrapolated by a simple Papjroxi-
spins, i.e.,S The g factors of the spins$S and's are repre- Mation(PA). Here,J, effectively models the average inter-

sented byG and g, respectively. Therefore, the total Hamil- chain exchange. Figure 5 shows the results of our fitg taf
tonian reads experimental data of the susceptibifitywith a magnetic

_q _ field oriented both perpendicular and parallel to thaxis.
TE= Hin Hanit Flimag (14 Apart froms=1 andS=5/2 we have used=2.24 andG
where =2 as listed in Ref. 13. Best fits are obtained far
=2.8K, J,=-0.036 K, andD=-0.36 K. As estimated
(SH?, (15  from the PA of the HTSE, in the range plotted, the error
involved in the theoretical curve foy,p is within the width
of the line. As is obvious from the figure, our theory allows
GS+gs). (16)  for an excellent fit to the experimental data down To
~4 K. Only the high-temperature data, for 1GK
Here, we derive the power series pfin 8D as well aspJ =25 K have been utilized to set the paramet&r®, and
up to O(B’). WhenD=0 andg=G, the series coefficients J, . Keeping these fixed, the splitting betwelgft andh.l c
coincide with those in the literatu#®® assuming a of the experimental data tends to become larger than that of
misprint*~?*?in Ref. 24. Since the contributioft,,, is  the theory forT<4 K.
used to evaluate the susceptibility, we will only consider the In Ref. 13, values of1~1.9 K andD~ —0.45 K have
case of small Zeeman energigg=h—0 in the following.  been reported for MnNi(N§4(en),. These have been ob-
The orientation of the magnetic fieldwill be chosen to be tained by fitting a directional average of the susceptibility
eitherh||z or h||x. Most theoretical studies of MS systems arewith respect to the magnetic field to the half-classical lithit,
limited to the case oD =0 andg=G, in order to make use i.e., S—x, applicable forD=0. Moreover the effects of
of total spinz, i.e.,3;(S'+5s7), conservation. However, for a interchain coupling have been neglected. To compare with
proper comparison to experimental ddbe# 0 andg# G has  this result we may us@, =0 in Eq. (18). In fair agreement

(18

Hani=

N
D>
=1
N
> (
i=1

Hmag: —h-

to be accepted, leading to with Ref. 13, we findJ~2.4 K andD~—0.36 K in this
case, with a quality of the fit, however, which is inferior to
[Hint™ Hanis Himagl # 0. (17)  that shown in Fig. 5.
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V. SUMMARY a magnetic field requires further numerical studies and is left

. - . for future investigations. Finally, comparing the AFM with
We have studied the specific heat and uniform susceptl,[—he FM case in the extreme quantum limit, i.8=1/2, S

bility of mixed-spin chain systems using a combination 0f:1, we found finite-size effects to be more pronounced in

high-temperature series expansion, exact Q|agonallzat|orghe EM than in the AFM case. This suggests long-range col-
and quantum Monte Carlo techniques. In particular, we have . o
ective excitations to be more relevant for the low-

contrasted the cases of FM and AFM intrachain exchange. remperature thermodvnamics of EM mixed-spin chains
symbolic high-temperature series has been derived for gen- P y P '
eral values of the spin quantum numbers, and including

single ion anisotropies. Using this series expansion, we were ACKNOWLEDGMENTS
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magnetic order is suppressed by a finite magnetic field. It is
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APPENDIX: SERIES DATA

C=Cp+ Cnp(X,X) + Cnp(X,X) + O[(83) ], (A1)

2xX(BJ)? B xX(BJ)3 2xX 2x2X? 1y
™ 3 3 15 15 (BJ)

—23&X  40433X?  2x3x3 5 19XX+ 116X32X2  62X3%x3  2x*X*4
1800 32400 135 (BJ) 2700 10125 18225 675

—2231xX 148933%2X? . 11504%3X3 . 4x4X4 0, 1590& X . 15768563%X% 5996 7233X3
520200 15876000 2976750 1575 5821200 209563200 943034400

. 36 42&*X* . 4x5%5 10, [~ 7255%X 82285%?X? 11166171%3X® 144889%*X* 2x°X> i
3742200 ' 1039 38102400 13395375 3857868000 128595600 5103, A7

(A2)

—xX  2x2X? s [8xX 643%°X2%  4x3X3 )6
8 27 )¢ 315" 7860 | 189 |V

. (BI)®

—8xX3(BI)*  AxXA(BI)® [ —17HKX® 2xX®  10x2X3 157% X% xxX3  8x2x3
Cnp(X,X)= + 6

0 7
45 27 1890 ' 63 | 189 2700 25 2025)([“)

—124><X2+124>(X3 B6091x2X3  16xX*  1064k3X*  8x3x* o 322 X% 1019 X3
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We have computed the series of the susceptibility with the single-site anisotropyQ(Bfd, which is too lengthy to be
fully listed in this paper. Hence, we show here only the first four terms of the series, and the rest will be provided on request.
Since the noncommutativity, Eq17), is neglected in Ref. 16, th8—« limit of the series below wittD=0 andg#G is
different from the function given in Ref. 16.

(g% G| [4gGIxX _ [—X 4X? s 5ol (X)) 2x7X
Xzz—ﬁ(?+ A R T | AR e BT T
—(JI%xX) —4xX  16xX? —(xX) 2xX? X 4x2 8x3
G——%—-D + 212 + TR T
27 45 135 27 27 227 105" 94

XX x2X 5[ 2xX 16x2X 8xx2 64x2X?2 4xX%  xX

+ B4 g2 33———— gG| DJ? -

108 81 675 675 2025 2025 405 135

(xx 16x2x 16xX? 8x2X2) ) <2xX 16x X2 32><X3” 2{ (xx XXZ)
G2 J3

90 405 405 | 405 63 315 ' 2835 108~ 81

(XX 22xX% 1exX® —X, o7x* 3¢ 1ex* A4
54 405 | 405 90 " 2725 4725 14175 (Ad)
2 2 2 2 2
~[9°x GX ,| 49GIxX S X 2X 3] ool T(XX)  2x°X —(J°xX)
XXX_E<T+ 3 )“3 o PGl )[R T T 27
2xX  8xX? —(xX) 2xX? X X2 o4x3 XX x2X
45 135 27 27 210 315 945 108 81

675 ' 675 | 2025 2025, |7 9C 270 405 90 405 405 ' 405

2(2xx 4xX? 16xx3) 2[ 3(xx xX2> 2(—(XX) 11xX? 8xx3)

2(—(XX) 8x?X  4xX?  32x2X?

XX 2xX2) (xx 16x2X 16xX? 8x2X2>

DJ2(

315 945 2835 108 81 108 " 405 405

3(—x Xz  2x8 8X45)“
-D - + + +ee (A5)

2520 1350 1575 1417
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