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Thermodynamic properties of ferromagnetic mixed-spin chain systems
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Using a combination of high-temperature series expansion, exact diagonalization, and quantum Monte
Carlo, we perform a complementary analysis of the thermodynamic properties of quasi-one-dimensional
mixed-spin systems with alternating magnetic moments. In addition to explicit series expansions for small spin
quantum numbers, we present an expansion that allows a direct evaluation of the series coefficients as a
function of spin quantum numbers. Due to the presence of excitations of both acoustic and optical nature, the
specific heat of a mixed-spin chain displays a double-peak-like structure, which is more pronounced for
ferromagnetic than for antiferromagnetic intrachain exchange. We link these results to an analytically solvable
half-classical limit. Finally, we extend our series expansion to incorporate the single-ion anisotropies relevant
for the molecular mixed-spin ferromagnetic chain material MnNi(NO2)4(ethylenediamine)2, with alternating
spins of magnitude 5/2 and 1. Including a weak interchain coupling, we show that the observed susceptibility
allows for an excellent fit and the extraction of microscopic exchange parameters.

DOI: 10.1103/PhysRevB.69.174430 PACS number~s!: 75.10.Pq, 75.50.Gg, 75.40.Cx
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I. INTRODUCTION

Promoted by the synthesis of various one-dimensio
~1D! bimetallic molecular magnets, the physics of quant
spin chains with mixed magnetic moments is of great int
est. Typically, quasi-1D mixed-spin~MS! compounds display
antiferromagnetic~AFM! intrachain exchange,1–3 which has
stimulated theoretical investigations of AFM MS models u
ing a variety of techniques such as spin-wave theory,4–10

variational methods,11 the density-matrix renormalizatio
group ~DMRG!,4,5,9 and quantum Monte Carlo
calculations.6–10 Interestingly, since a unit cell of the MS
chain comprises two different magnetic moments, the sp
trum will allow for excitation of ‘‘acoustic’’ as well as ‘‘op-
tical’’ nature.7,9 While not identified unambiguously in
present day experiments, the character of these excita
should appear in thermodynamic and other observable p
erties as twoindependent energy scales.12

In addition, and apart from the preceding, what rema
less well studied are MS chains withferromagnetic~FM!
intrachain exchange, which arise in materials of recent in
est such as MnNi(NO2)4(en)2 with en5 ethylenediamine.13

This compound is regarded as a quasi-1D MS material w
spinsS55/2 ands51 at the Mn and Ni ions, respectively
The susceptibility displays an easy-axis anisotropy. At te
peratures belowTN52.45 K, a weak AFM interchain cou
pling induces AFM ordering. If this antiferromagnetic ord
is suppressed by a magnetic field of approximately 1.6 T,
low-temperature specific heat shows a maximum atT56 K
and a shoulder atT51.5 K. These features could possib
reflect the two aforementioned characteristic energy sca
however, for the case of a FM, rather than an AFM M
chain.

Motivated by this, it is the purpose of this paper to p
form a complementary analysis of the thermodynamic pr
erties of FM MS chains, using high-temperature series
pansion~HTSE!, exact diagonalization~ED!, and quantum
Monte Carlo~QMC!. In particular, our HTSE will be derived
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for arbitrary alternating spinsS and s. This will allow not
only for a direct comparison with experimental data, but a
for a study of a gradual transit to the half-classical limitS
→` which is exactly solvable.14–16 Finally, while our ED
and QMC data will be obtained on systems of the smal
possible mixed-spin magnitude, i.e.,S51 ands51/2, this is
a case also included in the HTSE. In addition, for the sake
completeness and to compare with existing literature, we
also include results for the AFM case.

In this paper, we focus on a chain with two kinds of sp
species, i.e.,Sands, arranged alternatingly and coupled by
nearest-neighbor Heisenberg exchange. Namely, the Ha
tonian reads

Hint52J(
i 51

N

~Si•si1si•Si 11!. ~1!

The subscripti 51, . . . ,N refers to the unit cells, and we
always use periodic boundary conditions.

In Sec. II, our HTSE approach is detailed. In Sec. I
we turn to a comparison with QMC and ED and th
results of the half-classical limit. In Sec. IV, we discu
the result of fitting the HTSE to susceptibility data obtain
for MnNi(NO2)4(en)2. Conclusions are presented
Sec. V.

II. HIGH-TEMPERATURE SERIES EXPANSION

The HTSE is an expansion in powers ofbJ, whereb is
the inverse temperature. Here we use the linked-cluster
pansion of Ref. 17. In this method, the series coefficients
the thermodynamic limit are obtainedexactlyfrom those cal-
culated on finite-size clusters. In general, this includes
subtraction of contributions from a large number of so-cal
subclusters. In one dimension, however, significant simp
cations occur due to cancellation.18,19This is true also for the
MS chain systems. That is, in the absence of a magn
field,20 the free energyF in the thermodynamic limit is rep-
resented by
©2004 The American Physical Society30-1
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F/N5F,~S,s!1F,~s,S!2F,21~S,s!2F,21~s,S!

1O@~bJ!2,#, ~2!

where F,(S,s) is the free energy of the, site open-chain
system described by

H,52J (
i 51

(,21)/2

~Si•si1si•Si 11! ~,:odd!

5H,212JS,/2•s,/2 ~,:even!, ~3!

andF,(s,S) is obtained by exchangingS ands in F,(S,s).
Then, a calculation of Tr@(H,)n# is needed on a finite sys
tem, i.e.,

Tr H,
n5(

$mi %
^m1 , . . . ,m,uH,

num1 , . . . ,m,&, ~4!

wheremi represents the magnetic quantum numbers at sii.
We applyH, order by order on the ketum1 , . . . ,m,&. This
operation yields linear combinations of kets with coefficie
which are functions of$mi%. To evaluate TrH,

2n , products of
kets of typeH,

num1 , . . . ,m,& are needed at most, while i
the case of TrH,

2n11 , one can use thatH,
2n115H,

nH,
n11 . In

order to evaluate this trace, we use two different algorith
Method ~i! is based on a direct matrix multiplication fo

fixed S ands. A linear combination of kets with coefficient
is regarded as a sparse vector. It is stored as a compre
array of nonzero elements and another array of their poin
to the kets. These pointers are stored in ascending orde
that one can find a needed element using binary search in
array. All the operations are performed using integers,
thus there is no loss of precision.

Method~ii ! is designed for arbitrary spins, which is bas
on an analytic approach to the matrix elements in Eq.~4!. It
has an advantage for large spins because the method~i! will
fail for very large spins due to time and/or memory co
straints. After symbolic operations, the summation of
form (m52s

s mn can be calculated analytically for arbitraryn.
For example, whenn52, the sum is equal to13 s(s11)(2s
11). As a result, the series coefficients are obtained as
expression valid for arbitraryS ands. Naively it may seem
that operators of types6 will cause square roots in the ma
trix elements of the Hamiltonian. However, such square ro
are absent in the final result. In fact, the calculation can
carried out disregarding square roots as explained below
troducing the simplified notation,

u6n1 , . . . ,6n,)[~s1
6!n1 . . . ~s,

6!n,um1, . . . ,m,&, ~5!

the initial state is represented byu0, . . .,0). Spin operators
act on these states as follows. Supposeu6n) (n.0) repre-
sents the state at sitei in the notation~5!. Then,

szu6n)5~m6n!u6n), ~6!

s6u6n)5u6n61), ~7!

and
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s7u6n)5s7s6u6n71)5u6n71)

3$s~s11!2~m1n71!~m1n!%. ~8!

Note that the norm ofun) is not unity, namely,

~6nu6n!5 )
n851

n

$s~s11!2~m1n871!~m1n8!%. ~9!

Besides the methods~i! and ~ii !, the contribution to the
specific heat from the largest cluster is calculated separa
Namely, contributions from, site chain toO@(bJ)2,22# and
O@(bJ)2,21# have a simple form; with notationx[s(s
11) andX[S(S11), for ,52l it is proportional to 2l x lXl

and for,52l 11 proportional toxlXl 111xl 11Xl . The pre-
factors of these terms can be determined by comparing w
those ofs5S51/2 for any, in Ref. 19. The methods~i! and
~ii ! are used only for the rest of the contribution.

We have computed the specific heat for the model~1!
with s51/2 andS51, up to 29th order using the method~i!.
Furthermore, for arbitrarys andS, the series has been calcu
lated up to 11th order using the method~ii ! and standard
symbolic packages. By settingS5s51/2, our model is re-
duced to the homogeneous spin-half Heisenberg chain,
our series agrees with that in the literature.18 Furthermore,
we have also checked that theS→` limit of the series agrees
with the Taylor series of the exact solution,14 which will be
shown in the following section.

III. LARGE- AND SMALL-SPIN LIMITS

In this section, we provide evidence for the presence o
double-peak-like structure in the specific heat of the FM M
chain. We begin by recalling the elementary excitations i
MS chain. The dispersion relation of the one-magnon ex
tations in the FM case reads

v~k!5J@S1s6AS21s212Sscos~k!#, ~10!

and is shown in Fig. 1 for the extreme quantum cases
51/2 andS51. Similar to the AFM case,7,9 the spectrum
consists of both an acoustic and an optical branch reflec
the presence of two different spins in a unit cell. The
branches indicate two energy scales in the thermodynam
of the MS chains. The appearance of two one-magn
branches can be qualitatively understood as follows: Ak
5p, the excitations correspond to an alternating tilting

FIG. 1. The spin-wave dispersion relation for the FM MS cha
with s51/2 andS51. The spatial distance of two spins of the sam
species in neighboring unit cells is taken to be unity.
0-2
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THERMODYNAMIC PROPERTIES OF FERROMAGNETIC . . . PHYSICAL REVIEW B 69, 174430 ~2004!
either the shorter or the longer spins as indicated by
arrows in Fig. 1. The magnitude of neighboring spins de
mines the energies of these modes, leading to a splittin
the branches forSÞs. As k is reduced away fromk5p, the
magnon eigenstates gradually loose their alternating til
form, and neark50 become similar in nature to those
uniform chains. The low-temperature specific heat as co
puted using linear spin-wave theory is expected to be exa21

to leading order inT. Since v(k) is proportional tok2

at low energies, the specific heat is thus proportional toT1/2

for T!J.
We can establish a connection between the hi

temperature series for the specific heat and this lo
temperature scaling using a suitable Pade´ analysis. In ex-
trapolating the high-temperature series for the specific h
information from the ground-state energy, the low-energy
citations and the high-temperature entropy can be use
follows.22 The expansion variable is changed fromb to the
internal energy per unit cell,e5^Hint&/N. Here, e50 for
b50. The power series ofe(b) is thus inverted to obtain
b(e). Let S(e) denote the entropy per unit cell of the M
chain. Fromb5dS/de, one obtains

S5ST5`1E
0

e

b~e8!de8, ~11!

whereST5`5 ln(2S11)1ln(2s11). The low-temperature be
havior of the specific heat,C}T1/2, translates intoS}(e
2e0)1/3 at e;e0 for the new series, wheree0 is the ground-
state energy per site. In Ref. 22, only the FMe0 is used to
extrapolate the specific heat of a HTSE for a FM mod
Here, we also employ the AFMe0, since this additional con
straint from the other sign ofJ does not drastically chang
the final result, but makes the extrapolation less sensitiv
the used Pade´ approximant. We thus obtain the same e
trapolation for both the FM and the AFM case. Namely, t
AFM specific heat will be obtained using the substitutio
e→2e andbJ→2bJ from the FM case. Then, if the Pad´
approximant ine is applied to

S 3@ ln~2S11!~2s11!#23S 12
e

e0
FMD 21S 11

e

e0
AFMD 21

,

the low-temperature behavior and the high-temperature
tropy are correctly reproduced. Fors51/2 andS51, we use
the AFM ground-state energye0

AFM521.45 408J from Ref.
4. The extrapolation is found to be rather insensitive to err
in e0

AFM . For example, an error 1024J in e0
AFM affects the

AFM specific heat only by 431024 at T50.1J, and
even less at higher temperatures. In the following
denote byP@m/n# the rational approximant function ine
resulting from a polynomial of orderm over a polynomial
of ordern.

In Fig. 2, a comparison is shown between different Pa´
approximants for the low-temperature specific heat for
s51/2, S51 case. We also include results from stochas
series expansion QMC simulations23 for both the FM and the
AFM case for chains of 100 sites. No deviations were fou
to the QMC data for 50 sites, and thus we regard these
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sults to represent the thermodynamic limit. For the AF
case, the DMRG results from Ref. 9 are shown in Fig. 2~a! as
well. In contrast to the AFM case, the HTSE result for t
low-temperature specific heat for the FM case shows la
oscillation upon increasing the order of the series. Comp
son with the QMC data shows that the exact solution is
cated within the range of these oscillations. We take
arithmetic average ofP@12/11#, P@13/12#, P@14/13#, and
P@15/14# as the final HTSE result, which in the temperatu
range 0.03J,T,0.45J has an error of order 5%.

The specific heat in a larger temperature regime is sho
in Fig. 3. We find overall good agreement between the QM
and the HTSE data, both for the AFM and the FM case.
contrast to the homogeneous FM spin-1/2 chain, the FM
chain displays at least two distinct structures inC(T),
namely a peak atT;0.54J and a shoulder atT;0.25J. The
HTSE result indicates the presence of an additional w
shoulder atT;0.1J, which is, however, difficult to check for
using QMC due to increasing statistical errors at low te
peratures.

The features in the intermediate temperature regime
come more pronounced with increasing order of the se
expansion, probably because the higher-order polynom
can reproduce the involved rapid changes more accurate

We have included in Fig. 3 ED results for small fini

FIG. 2. Low-temperature behavior of the specific heat per u
cell of the AFM ~a! and FM ~b! mixed-spin chain withs51/2, S
51 using several different Pade´ approximants of the HTSE and
from QMC. In ~a!, DMRG results from Ref. 9 are also shown. Her
R is the gas constant.
0-3
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FUKUSHIMA, HONECKER, WESSEL, AND BRENIG PHYSICAL REVIEW B69, 174430 ~2004!
chains for both the AFM and the FM cases. The full sp
trum has been calculated for finite chains with up to se
unit-cells ~14 sites!. The ED result for 14 sites agrees wi
the QMC and the HTSE down to temperatures ofT;0.5J
for the FM case, andT;0.3J for the AFM case. Figure 3
clearly shows that finite-size effects in the specific heat
significantly larger in the FM than in the AFM case. In th
AFM case, the differences between the 12- and 14-site
are already rather small, with a weak shoulder at low te
perature signaling the second energy scale inC(T). For the
FM case the ED data show a strong finite-size shift of
specific heat maximum, which gradually develops into
shoulder nearT;0.25J, which is found both from the HTSE
and QMC.

This suggests that long-range collective modes domin
the thermodynamics up to higher temperatures for the
than for the AFM case. To shed more light onto this diffe
ence, let us compare the elementary excitation spectra fo
FM and the AFM case.

~i! At low temperatures, the specific heat reflects the d
persion of the acoustic branch of excitations. In t
long-wavelength limit, the dispersion in linear spi
wave theory reads

v~k!;
Ss

2uS6su
k2,

FIG. 3. Specific heat per unit cell of the AFM~a! and FM ~b!
mixed-spin chain withs51/2, S51 as obtained from HTSE, QMC
and full diagonalizations for small finite chains.
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where the plus~minus! sign represents the FM
~AFM4,6! case. Therefore, the slope of the acous
branch in the AFM case is larger than in the FM ca
making low-temperature shoulders more pronounc
for FM MS chains.

~ii ! The gap between the acoustic and the optical mod
the FM case is larger than in the AFM7,9 case, so that
the splitting of the structures inC(T) is more evident
in the former case. Apart from~i! and~ii !, the elemen-
tary excitation spectra of the FM and the AFM ca
resemble each other, pointing towards additional
fects from magnon interactions.

After analyzing the extreme quantum case withs51/2
andS51, we now discuss the specific heat of MS chains
larger values ofS, keepings51/2 fixed. In particular, we
want to connect to the exactly solvable14 half-classical limit,
S→`.

Figure 4 shows the results from the 11th order HTSE
s51/2 and various values ofS. The temperature is normal
ized touSuJ[JAS(S11) in order to render the half-classica
limit finite. In the limit S→` the specific heat of the chai
with FM couplings is identical to that of the AFM chain
with a distinct peak atT;0.5uSuJ. At T50 the specific heat
of the half-classical model is finite. In the quantum ca
however, the specific heat vanishes asT→0. Using the vari-
ableSHTSE, we can link both limiting situations as follows
In the limit S→`, the series coefficients of (bSJ)n with odd
n converge to zero. Let us compare the (2n)th and (2n
11)th order terms at finiteS. The ratio of the latter to the
former is of O(t/S), where t[T/(SJ). Hence, if the limit
S→` is taken with t fixed, the latter becomes negligibl
compared to the former asS→`. However, ifS is finite, the
two terms are comparable for temperatures belowt;S21.
Therefore, even ifS is large, the specific heat deviates fro
the half-classical behavior belowt;S21, and approaches
zero ast→0. As a result, the specific heat will display
double-peak-like structure for largeS as well. Summarizing
these results from the HTSE, there are two different ways
taking the large-S andT→0 limit,

FIG. 4. The HTSE results for the dependence onS of the spe-
cific heat per unit cell withs51/2 for antiferromagnetic~AFM! and
ferromagnetic~FM! coupling, whereuSu5AS(S11). Here,S5` is
from Ref. 14. Details are in the text.
0-4
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lim
T→0

lim
S→`

C/R51, ~12!

lim
S→`

lim
T→0

C/R50. ~13!

As seen from Fig. 4 the differences between the FM a
the AFM cases are most pronounced in the extreme quan
limit s51/2 andS51, and in the low-temperature regim
The large- and small-spin limits exhibit similar structure
suggesting that the specific heat of MS chain systems
general show a double-peak-like or peak-shoulder struct
both for AFM and FM intrachain exchange, and for any co
bination of spins. In the FM case this structure is more p
nounced ifuS2su is large, reflecting the size of the gap b
tween the acoustic and the optical mode, similar to the A
case.12

We note that the specific heat in the high-temperat
limit of the AFM case is larger than in the FM case becau
of quantum effects. This is evident from the first two term
of the series for the specific heat, which we present in
Appendix. These two terms stem from two-site correlatio
only and dominate the high-temperature behavior. Since
total entropy difference between zero and infinite tempe
ture is the same in both cases, the FM and AFM specific-h
curves therefore have to intersect at low temperatures.

IV. FITTING TO EXPERIMENTAL DATA

We now turn to a comparison to the susceptibility da
observed on MnNi(NO2)4(en)2. In this compound, the sym
metry around Ni ions is nearly cubic with, however, a fair
large anisotropy at the Mn site to be expected.13 Hence, we
take into account a single-site anisotropy only on one of
spins, i.e.,S. The g factors of the spinsS and s are repre-
sented byG andg, respectively. Therefore, the total Hami
tonian reads

H5Hint1Hani1Hmag, ~14!

where

Hani5D(
i 51

N

~Si
z!2, ~15!

Hmag52h•(
i 51

N

~GSi1gsi !. ~16!

Here, we derive the power series ofx in bD as well asbJ
up to O(b7). WhenD50 andg5G, the series coefficients
coincide with those in the literature24,25 assuming a
misprint24–26,28 in Ref. 24. Since the contributionHmag is
used to evaluate the susceptibility, we will only consider
case of small Zeeman energiesuhu5h→0 in the following.
The orientation of the magnetic fieldh will be chosen to be
eitherhiz or hix. Most theoretical studies of MS systems a
limited to the case ofD50 andg5G, in order to make use
of total spinz, i.e., ( i(Si

z1si
z), conservation. However, for a

proper comparison to experimental data,DÞ0 andgÞG has
to be accepted, leading to

@Hint1Hani,Hmag#Þ0. ~17!
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We emphasize that our HTSE is carried out taking into
count this noncommutativity.

Since 3D AFM ordering of MnNi(NO2)4(en)2 below TN
52.45 K signals the presence of a non-negligible interch
exchange, we will enhance our 1D analysis to incorpor
this coupling on a phenomenological basis. That is to say,
to the experimental results will be performed using
random-phase approximation expression

x.
x1D

12J'x1D
, ~18!

where x1D is the susceptibility of the pure 1D system o
tained by HTSE and extrapolated by a simple Pade´ approxi-
mation ~PA!. Here,J' effectively models the average inte
chain exchange. Figure 5 shows the results of our fits ofx to
experimental data of the susceptibility27 with a magnetic
field oriented both perpendicular and parallel to thec axis.
Apart from s51 andS55/2 we have usedg52.24 andG
52 as listed in Ref. 13. Best fits are obtained forJ
52.8 K, J'520.036 K, andD520.36 K. As estimated
from the PA of the HTSE, in the range plotted, the err
involved in the theoretical curve forx1D is within the width
of the line. As is obvious from the figure, our theory allow
for an excellent fit to the experimental data down toT
;4 K. Only the high-temperature data, for 10 K<T
<25 K have been utilized to set the parametersJ, D, and
J' . Keeping these fixed, the splitting betweenhic andh'c
of the experimental data tends to become larger than tha
the theory forT,4 K.

In Ref. 13, values ofJ;1.9 K and D;20.45 K have
been reported for MnNi(NO2)4(en)2. These have been ob
tained by fitting a directional average of the susceptibil
with respect to the magnetic field to the half-classical limit16

i.e., S→`, applicable forD50. Moreover the effects of
interchain coupling have been neglected. To compare w
this result we may useJ'[0 in Eq. ~18!. In fair agreement
with Ref. 13, we findJ;2.4 K and D;20.36 K in this
case, with a quality of the fit, however, which is inferior
that shown in Fig. 5.

FIG. 5. Fitting to susceptibility of MnNi(NO2)4(en)2 by Eq.
~18!. Here, (mB

2NA /kB)x is plotted, wheremB , NA , and kB are
Bohr magneton, Avogadro’s number, and Boltzmann constant,
spectively.
0-5
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V. SUMMARY

We have studied the specific heat and uniform susce
bility of mixed-spin chain systems using a combination
high-temperature series expansion, exact diagonaliza
and quantum Monte Carlo techniques. In particular, we h
contrasted the cases of FM and AFM intrachain exchang
symbolic high-temperature series has been derived for g
eral values of the spin quantum numbers, and includ
single ion anisotropies. Using this series expansion, we w
able to extract the microscopic model parameters for
quasi-one-dimensional FM mixed-spin chain compou
MnNi(NO2)4(en)2. Comparing our results to the analytical
solvable limit S→`, we found that not only the AFM bu
also the FM case displays a double-peak-like structure in
specific heat which is due to the presence of both optical
acoustic excitations. In fact, we find that for FM intracha
coupling this structure is more pronounced than for AF
exchange. The low-temperature specific heat
MnNi(NO2)4(en)2 shows a weak shoulder around 1.5 K
magnetic order is suppressed by a finite magnetic field.
thus suggestive to associate this shoulder with the pres
of acoustic excitations in this compound. However, a qu
titatively accurate description of the relevant temperat
range for the FM mixed-spin chain withs51 andS55/2 in
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a magnetic field requires further numerical studies and is
for future investigations. Finally, comparing the AFM wit
the FM case in the extreme quantum limit, i.e.,s51/2, S
51, we found finite-size effects to be more pronounced
the FM than in the AFM case. This suggests long-range c
lective excitations to be more relevant for the low
temperature thermodynamics of FM mixed-spin chains.
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APPENDIX: SERIES DATA

Using X[S(S11) andx[s(s11), the specific heat se
ries without the single-site anisotropy is given by
C5CD1CND~x,X!1CND~X,x!1O@~bJ!12#, ~A1!

CD5
2xX~bJ!2

3
2

xX~bJ!3

3
1S 2xX

15
2

2x2X2

15 D ~bJ!41S 2xX

18
1

2x2X2

27 D ~bJ!51S 8xX

315
1

643x2X2

7560
1

4x3X3

189 D ~bJ!6

1S 223xX

1800
2

4043x2X2

32 400
2

2x3X3

135 D ~bJ!71S 19xX

2700
1

1162x2X2

10 125
2

622x3X3

18 225
2

2x4X4

675 D ~bJ!8

1S 22231xX

529 200
2

1489333x2X2

15 876 000
1

115043x3X3

2 976 750
1

4x4X4

1575 D ~bJ!91S 15 901xX

5 821 200
1

15768563x2X2

209 563 200
2

5 996 723x3X3

943 034 400

1
36 427x4X4

3 742 200
1

4x5X5

10 395D ~bJ!101S 272 557xX

38 102 400
2

822853x2X2

13 395 375
2

111 661 717x3X3

3 857 868 000
2

1 448 899x4X4

128 595 600
2

2x5X5

5103 D ~bJ!11,

~A2!

CND~x,X!5
28xX2~bJ!4

45
1

4xX2~bJ!5

27
1S 2179xX2

1890
1

2xX3

63
1

10x2X3

189 D ~bJ!61S 157xX2

2700
2

xX3

25
2

82x2X3

2025 D ~bJ!7

1S 2124xX2

3375
1

124xX3

3375
2

6091x2X3

364 500
2

16xX4

3375
2

1064x2X4

91 125
2

8x3X4

675 D ~bJ!81S 3229xX2

132 300
2

1019xX3

33 075

1
23 281x2X3

441 000
1

8xX4

945
1

128x2X4

10 125
1

244x3X4

23 625 D ~bJ!91S 217 137xX2

997 920
1

24 727xX3

970 200
2

86018257x2X3

1 257 379 200

2
11 489xX4

1 091 475
1

6287x2X4

11 642 400
1

25 411x3X4

2 619 540
1

4xX5

6237
1

316x2X5

155 925
1

218x3X5

66 825
1

2x4X5

891 D ~bJ!10

1S 732 629xX2

57 153 600
2

757xX3

35 280
1

11884871x2X3

163 296 000
1

10 279xX4

893 025
2

5 676 361x2X4

367 416 000
2

3 918 727x3X4

214 326 000
2

1382xX5

893 025

2
2672x2X5

893 025
2

30 181x3X5

8 037 225
2

32x4X5

14 175D ~bJ!11. ~A3!
0-6
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We have computed the series of the susceptibility with the single-site anisotropy up toO(b7), which is too lengthy to be
fully listed in this paper. Hence, we show here only the first four terms of the series, and the rest will be provided on
Since the noncommutativity, Eq.~17!, is neglected in Ref. 16, theS→` limit of the series below withD50 andgÞG is
different from the function given in Ref. 16.

xzz5bS g2x

3
1

G2X

3 D1b2H 4gGJxX

9
2DG2F2X

15
1

4X2

45 G J 1b3H g2J2F2~xX!
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1

2x2X
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1gGF2~J2xX!
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8X3
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16x2X
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2
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1
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2
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2

16x2X
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2
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1
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2
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1
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1
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1
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2
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2
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14 175D G J 1 . . . , ~A4!
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2

8xX2

135 D G1G2FJ2S 2~xX!

27
1

2xX2

27 D1D2S X

210
2

X2

315
2

4X3

945D G J 1b4H g2FJ3S xX

108
2

x2X

81 D
2DJ2S 2~xX!

675
1

8x2X

675
1

4xX2

2025
2

32x2X2

2025 D G1gGFDJ2S xX

270
2

2xX2

405 D1J3S xX

90
2

16x2X

405
2

16xX2

405
1

8x2X2

405 D
1D2JS 2xX

315
2

4xX2

945
2

16xX3

2835 D G1G2FJ3S xX
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