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This paper describes a technique to compute magnetic normal modes of nanosized particles. The technique
is based on the Landau-Lifshitz formalism of micromagnetics and accounts fully for both the exchange and the
dipolar field. It requires no more than the specification of the material parameters and the geometry of the
sample; in particular, it does not require the specification of boundary conditions. It also allows the large-
amplitude nonlinear regime to be probed. The technique is applied to a model of a polycrystalline iron particle,
which is shown to possess a rich variety of normal modes. Some of these modes are reminiscent of standing
waves, while others are more or less localized in parts of the sample. The variation of the mode frequencies
with the applied field is analyzed and compared with existing approximations.
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[. INTRODUCTION more general casés Very recently, some progress has been
made in evaluating magnetic modes in confined geometries
Recent advances in processing techniques have madevihen dipolar induced pinning effects are includéd.’
possible to fabricate small magnetic particles with accurate In the absence of analytical solutions, computations offer
control over their shape and thicknésé Because the size of the only feasible alternative. The purpose of this paper is to
such particles can be comparable to the exchange length show how, on the basis of the Landau-Lifshitz formalism of
the domain wall thickness, their magnetic behavior differsmicromagnetic$® magnetic normal modes of nanosized par-
fundamentally from that of larger samples, where the existicles can be identified in the presence of both exchange and
tence of multiple magnetic domains plays a fundamentadtipolar fields. Support for this idea comes from earlier work
role. While the dynamics of magnetic spins in nanoparticleon micromagnetic-based FMR computatidfig® where the
have been addressed experimentally by means of BrillouiFMR frequency of a small saturated flat disk was determined
scattering, ferromagnetic resonar@R), and other novel from a Fourier transform of the time-dependent total magne-
techniques, much less work has been done on the corréization. The proposed computational procedure has three
sponding theoretical problem of determining magnetic norsignificant features. First, the particle is divided into cells
mal modes. This problem is of more than theoretical imporwhose dimensions are smaller than the exchange length, so
tance; indeed, it has important implications for technologythe magnetization within a cell is approximately uniform.
For example, the reduction in size of a read head is ulti-The spatial approximations are then based on finite differ-
mately limited by spin-wave induced noiédf the normal  ences. Second, the algorithm used to integrate the Landau-
modes were known, one could control them by suitable deLifshitz equation maintains a constant magnetization at all
sign choices, thus limiting the noise and enabling further sizéimes. The algorithm is the same as the one used by the
reductions. authors for spring-magnet calculatioffsThird, the dipolar
Attempts to solve the magnetic normal-mode problem in afar-field) contribution is derived from a scalar magnetic po-
manner analogous to that used for mechanical normal modésntial, and the latter is computed by means of a boundary
of vibration of a finite particle have been mostly unsuccessintegral formulation. Thus, the computational domain is the
ful. The problem is difficult because one must account simulsame as the physical domain occupied by the particle, and
taneously for the exchange coupling, which acts at thehere is no need to artificially extend the domain or introduce
atomic level, and dipolar fields that are typically long rangeartificial boundary conditions.
and extend over the whole sample. Only in a very few spe- The plan of this paper is as follows. In Sec. Il, we formu-
cial cases and under severely restricting conditions is it podate the micromagnetics problem and describe the computa-
sible to treat the problem analytically. If both exchange andional approach to identify magnetic normal modes. In Sec.
dipolar fields are included, the normal modes are known onlyll, we present the results of numerical simulations for a
for the homogeneous saturated infinite bulk ferroma§riket; polycrystalline iron nanoparticle. We identify several normal
exchange is neglected, they are known for the homogeneousodes and analyze the behavior of their frequency as a func-
infinite magnetic slab'® and, with certain additional ap- tion of the strength of the applied field. In Sec. IV, we sum-
proximations, for a few very simple shaps?and only if  marize our findings and discuss the type of problems that can
dipolar fields are neglected entirely can they be obtained fobe addressed with the current method.
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Il. MICROMAGNETIC MODEL wherelJ is the square root of the negative identityR?,
The Landau-Lifshitz(LL) equation of micromagnetics is 10 0 -1
a differential equation for the magnetization vediby IZ(O 1)’ J:(l O)’ J2=—1.
oM .
- Y _ (M><H)+%M><(M><H) . 1) Hence, we can recast Eqg) and(5) in the form
1+g Pm’=cgH[1—(Pm-Pm)?]h, (6)

Here,H is the effective magnetic field, which depends non-

linearly onM, andM is the magnitude of1. Equation(1) is Qm’=cH[J—g(m-h)I]Qm. (7)
the equation of a spinning top driven by the magnetic fieIdNOW, suppose thaH does not change on a time interval
(first term inside the bracketand subject to dampingsec- [t,t+At],

ond term; vy is the gyromagnetic constant agda (dimen-

sionlesg damping coefficient. The LL equation maintains a H(s)=H(t), tss<t+At. (8

tant tizatioh) =M at all ti h is th
constant magnetizatioV s at all times, wheréVl is the henPm’ = (Pm)’ andQm’ =(Qm)’ on[t.t+At], so Egs.

saturation magnetization. On the other hand, the direction o6 d(7) red ¢ led " f diff tial
M, which is given by the magnetic spin vector=M/M, y ) anf (t)hre ucle o_apcourp])e zyfhem Ot ! Eren lal equa-
varies with timet, as well as with space throughout the lons for the scalan=(Pm-h) and the vectop =Qm,

sample. u’=cgH(1—-u? on [t,t+At]. 9)
A. Time integration of the Landau-Lifshitz equation v'=cH(J—gubhv on [tt+At]. (10

The time integration of the LL equation requires specialThe equation fou is independent ob; it can be integrated
care, since it is essential that the magnitude of the magnetixactly,

zation be preserved at all times. The algorithm that accom-

plishes this has been described elsewR&heit we include a _u(t)cosHcgH(t)(s—t))+sinh(cgH(t)(s—t))
brief description here for completeness. U8 = CosicgH(t) (s— 1))+ u(t)sinhcg H(t) (s— 1))
We begin by observing that the spatial variation does not (12)

play a role in the time integration of the LL equation, so the
following description applies anywhere in the domain. Tofor t<s<t+At.

emphasize this point, we focus on time as the independent Ne3<t, we tzurn to Eq(10). We replace the constgn'gl—!
variable and use a primleto denote(partia) differentiation 0¥ U'/(1—-u%) [from Eqg. (9)] and use the identity
with respect to time. —uu'/(1-u?)=[In(1-u?*?]" to convert the equation into

: - : _ PNSY,
Next, we separate the magnitude of the effective magneti@ differential equation for the vector=(1-u°) v,

field from its direction, writingd =Hh, whereH = |H|. Thus ' "
h, like m, is a vector of unit length. Then the LL equation wi=cHJw on [t,t+At]. (12
assumes the form This equation can be integrated,
m’ = —cH[(mxh)+gmx (mxh)], 2) w(s)=eSHOGEy(t)
wherec=y/(1+g?) is a constant. =[codcH(t)(s—t))l +sin(cH(t)(s—1))J]w(t)
We can rewrite the LL equation as two separate equations (13)
if we introduce, for any three-component vectothe pro-
jectionsP andQ, for t<s<t+At. From the expressio(ill) we obtain
Pu=(u-h)h, Qu=u—Pu=hx(uxh). (3) (1-u(s))?
Applying P andQ to Eq.(2), we obtain B [1-u(t)?]*?
= E———— i —,
P’ = — cHP[(mx h) + gmx (mx )], ) coshicgH(t)(s—t))+u(t)sinh(cgH(t)(s—t))
so
m’ = —cHQ[(mXh)+gmXx(mxh). 5
Q QL ) amx( ) ® ) cogcH(t)(s—t))l +sin(cH(t)(s—1))J ®
v(S)= U

Notice the identities coshicgH(t)(s—t))+u(t)sinh(cgH(t)(s—t))

(14)
P(mxh)=0,
for t<s<t+At.

P[mx (mxh)]=(m-Qm)h=—[1—(Pm- Pm)?]h, These results motivate the choice of the integration
scheme for Eq(2),
Xh)=—
Q(m>h) JQm, My 1= aphy+ Bahn(my X hy), (15

Q[mX (mxh)]=(m-h)Qm, wherem,, ;=m(t,. 1), my=m(t,), h,=h(t,), and
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_(mn-hn)cosr(chnAt)+sinr(chnAt) AD=47(V-M)inQ, n-VO,;=4m(n-M)on ).
“n~ costicgH,At) + (m,- hy)sinf(cgH,At) ’ (19
cogcHpA) I +sin(cH,At)J Here, ) is the domaingQ is the boundary of), andn is
B”:cosr(chnAt) +(m,-h)sinhcgH.At)’ the outward normal on the boundary. The boundary values of

@, thus obtained generate the boundary value® gof
with H,=H(t,) andAt=t,, ,—t,.

The algorithm(15) is unconditionally stable for all values .
of At. Of course, the quality of the approximation suffers as D,(x)= J q)l(y)cof{n. X7y
At increases. However, the algorithm explicitly displays the a0 Xyl
relationship between the size At and the local error in the
time integration. The rate of precessionmfaround the po- and®, is found by solving the Dirichlet probledy®,=0 in
lar axis is governed by, the magnitude of the local effec- () subject to the computed boundary values.
tive field: in one time stepm precesses through an angle
HAt. Therefore, by properly choosingt, we can resolve
the fastest precessional motion in a given number of time
steps per period. Sindd varies over the course of a simu-  We assume that the domafd (the physical domain oc-
lation, we have a natural and direct means to adjust the sizeupied by the particleis three dimensional and rectangular
of At to the current dynamical state, while maintaining theand that the particle is placed in a Cartesiary(z) coordi-
resolution of the precessional motion. nate system, wittM= (M, ,M,M,). The applied magnetic

Other algorithms for the numerical integration of the LL field is uniform, constant in time, and directed along the
equation have been proposed by Chen, Fredkin, angositivex axis,H,=(H,,0,0).

, X,yed, (20

C. Computational approach

oehler;® Nigant™ an and Wang: e particle is divided into cubic cells, and the magneti-
Koehler?® Nigan?* and E and Wan§® Th ticle is divided into cubic cell d th t
zation is assumed to be uniform in each cell. A cell is in-

B. The effective magnetic field dexed by a tripleti(,j,k), and each cell carries a magnetiza-

tion vectorM; ; . The magnitude of; ; , is constant and
equal to the saturation magnetizatidfhg; its direction is
given by the spin vectom; ; ,, which is a vector of unit
SE length.
H=— M (16) Given the dimensions of the particle and the strength of
the applied magnetic field, the only physical parameters that

If anisotropy contributions and magnetostrictive terms areneed to be specified for the simulations are the exchange
ignored(an assumption that is certainly justified in the casecoupling constant, the saturation magnetizatidd s, the
of polycrystalline materiajs the free energy is the sum of gyromagnetic constant, and the damping coefficiemt
the exchange energy, thdipolar far-field energy, and the The approach used to find normal modes is conceptually

The effective magnetic fieldH is derived from the free
energy,E. If H, is the externally applied magnetic field, then

energy contribution from the applied field, similar to the one used previously in FMR calculatidié’
For a given applied field, the particle is first allowed to reach
E=Eext Eft Eqa- (17 its equilibrium state. This is accomplished by integrating the
The individual terms are given by the integrals LL equation(1) to equilibrium with the damping coefficient

g=0.5. The spin configuration is then perturbed from equi-
) librium and, with the damping coefficiert=0, allowed to
Eex:f AlVM|?, (183 evolve in time. The motion of each spin vector is monitored
at regular intervals for a certain length of time, and the time
1 series of each component in each cell is Fourier analyhed.
Ef=— Ef M- Hg, (18 Ref. 19, the Fourier transform was applied only to the spa-
tially averaged magnetization vecjofhe normal modes are
then identified by correlating the Fourier transforms through-
E.= —f M-H,, (180  out the sample.

Typically, a spin vector describes an elliptically shaped

whereA is the exchange coupling constant. closed orbit in a plane. The orbit plane and the orbit center
The exchange energy contributes a term proportional teeflect the static equilibrium configuration of the magnetiza-
AM to the effective-field subject to the natural boundarytion; they are the same for all modes and need not be con-
condition (vanishing interior limit of the normal derivatiye  sidered further. The dynamics of a particular mode at a given
The Laplacian is approximated numerically by means of thérequency are specified completely by four parameters for
standard 7-point stencil. each cell, namely, the area of the spin orbit, its aspect ratio

The far field is obtained from a scalar magnetic potential(ratio of major to minor axis its tilt (angle between major
Hg¢=—V®, which, given the magnetizatiav, is calculated axis and sample axgsand the relative phase of the spin

as follows?® First, ® is written as a sum®=®,+®,, vectors. The numerical simulations indicate that well defined
where®, is the solution of the Neumann problem correlations between cells emerge only at frequencies where
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FIG. 1. Fourier transform oM, vs frequency(GH2) in four cells in the midplane.

at least some cells show clear peaks in the Fourier transfornthe components of the magnetization. The orbit area is pro-

when there are no peaks in any cell, no correlations are olportional to the amplitude and therefore independent of time,

served. a fact that is convenient. A shortcoming of this representation
A complete description of a magnetic normal mode inis, of course, that it does not contain information about the

terms of the four parameters for each cell is clearly impracphase of the spin.

tical. How to devise a description in terms of a few param-

eters is, however, not obvious. It is helpful to compare the IIl. RESULTS FOR A POLYCRYSTALLINE

current problem with the analogous problem for normal IRON PARTICLE

modes of a vibrating membrane. The latter is described by an ) ) ) )
expression of the formAF(x)e'“!, whereA is a scalar am- In this section, we present the results of numerical simu-

plitude andF a normalized function of positiofior example, lations for a model of a polygrystalline iron particle. The
a Bessel function in the case of a circular membyage Sample is rectangular, measuring XIZ0X 60 nm?, and the
snapshot of a membrane oscillating in an eigenmode prgnaterial parameters are

vid_es a complete representationfefx) and, thus, a charac- A=2.5x10"® erg/cm

terization of the normal mode. In the present case, the prob- ‘ '

lem is more complicated. The time and space variables are M.=1.700 emu/cri( = oerste
not separable, the amplitude is a vector, and the fundétitn s H 9
different for each component. In principle, one can adopt the y=2.93 GHz/kOe.

same approach as for the vibrating membrane and use a

snapshot of one of the components of the magnetizationlhe particle is placed in a uniform magnetic field, which is
This approach gives an intuitively clear picture of a mode,constant in time and directed along the positvexis, H,
but the result must be interpreted with care. Because of the(H,,0,0). The particle is arranged so the field is lined up
phase differences between cells, snapshots at different timaegth the long(116) side, the short20) side is aligned with
are not necessarily comparable; moreover, the amplitudes dbey axis, andz is the coordinate in the spanwigg0) direc-
not scale, and slight differences in the profiles will betion. The particle is divided into cubic cells measuring 4 nm
present; and finally, changes in the aspect ratio will producen a side. Each cell is indexed by a tripletj(k), with i
variations between snapshots of different components of thec1, . ..,29;j=1,...,5; anck=1,...,15. Thetotal num-
magnetization. For these reasons it is prudent to give addber of cells is 25X 15=2,175.

tional consideration to the area of the spin orbit in each cell Once equilibrium is achieved, a perturbation is applied to
to corroborate the results obtained from a snapshot of one @xcite the normal modes. A given perturbation will excite
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FIG. 2. Four symmetric one-dimensional plane-wave-like normal modes. From top to bottom: 4-nodélthGitéz), 0-node modd52
GHz), 6-node modé57 GH2, and 10-node mod&9 GH2.

174428-5



GRIMSDITCH, LEAF, KAPER, KARPEEV, AND CAMLEY PHYSICAL REVIEW B69, 174428 (2004

only those modes whose spatial Fourier transform is con- 1
tained in that of the perturbation. This feature has both ad- ~

vantages and disadvantages. By judiciously choosing the per- K N

turbation, one can reduce the number of excited modes and &%

thus avoid excessive mode overlap. On the other hand, nu-

merous simulations must be performed to guarantee that all

the modes are actually observed. We have chosen to work 0 oo
with two perturbations, one symmetric, the other antisym- 100 200

metric along the long axi&he direction of the applied field 50 150

In the symmetric perturbation, the spins in the central portion 100

of the particle—that is, in all cells with=7,...,23—are obdocp o -}

rotated from their equilibrium position by 1 deg in the £) 50

plane. In the antisymmetric perturbation, the spins in the 50, 0 20 30 % 0 20 30
cells withi=7,...,14 arerotated by 1 deg in the positive X X

direction and those with=186, . . .,23 by 1 deg in theega-
tive direction. The numerical simulations indicate that, as;

long as the perturbations do not exceel deg, the position axis. The three other graphs show the variation of the aspect ratio

of a pe.’?lk in the ffeque”CY spectrl_Jm is not affected. We als op righy, tilt of the major axis(in degrees, bottom leftand rela-
ascertained that the Fourier amplitude of a peak scales witf),o phase(in degrees, bottom rightilong the majox) axis.

the amplitude of the initial perturbation, so we are clearly
probing the response in the linear regime. The Fourier trangransform ofM, in the midplane |=3) against (horizontal
form can be performed on any of the components of the spiRyig) andk (vertical axig. From top to bottom, we observe a
vector; again, the choice of the particular component affecty_node mode at 49 GHz, a 0-node mode at 52 GHz, a 6-node
the relative amplitudes of the peaks but not their positions i ode at 57 GHz, and a 10-node mode at 89 Gi¥ndes
the frequency spectrum. _ _ with an odd number of nodes are not excited by the symmet-
~ All'the results reported below were obtained by integrat-ic injtial perturbation) Excluding the 0-node mode, we note
ing the LL equations over a period of 11.880™‘° sec. The  that the mode frequency increases with the number of nodes,
resulting frequency resolution in the Fourier transform isgg expected from the exchange interaction. The 0-node mode
0.63 GHz. is reminiscent of the unifornfFMR) mode in a bulk sample
and is referred to as the “bulk” mode. Its frequency is close
to the FMR frequency, and its amplitude is fairly uniform
throughout the interior of the sample. This mode would be-
We first probe the normal-mode structure of the nanopareome the uniform mode if the sample were made infinitely
ticle at a fixed value of the applied fielth,=10 kOe. The large. Contrary to the FMR mode, however, its phase differs
dependence on the strength of the applied field will be takeiby almost 30 deg between the ends and the center of the
up in Sec. Il B. sample.(In an infinite film, the phase of the FMR mode is
Figure 1 shows the Fourier transform lgf, in four rep-  constant throughout the sampl&he other modes in Fig. 2
resentative cells in the midplang=3) after a symmetric show a clearly identifiable standing-wave-like structure in
perturbation. The graphs on the left are for cells near the enthe direction of the applied field. The existence of standing
of the particle (=2), the graphs on the right are for cells waves in confined geometries is well knowh62"28Their
midway along the long axisi € 15). A peak in the Fourier theoretical explanation requires the introductionaaf hoc
transform indicates that the initial perturbation has excited @oundary conditions at the free surfaces, which has led to the
mode in the particular cell at that frequency and indicates theoncept of “pinning?”?® and the definition of the Rado-
existence of a normal mode at that frequer{@e converse Weertman boundary conditioR3The physical origin of pin-
is not necessarily true. The absence of a peak may simplying is usually ascribed to surface anisotropy, although it has
indicate that the normal mode at that frequency has a smalieen correlated more recently with the local demagnetizing
amplitude in that cell. Therefore, while it is possible to befield in the vicinity of edge$®® The present approach does
guided by peaks in individual Fourier transforms, the onlynot require any suclad hocboundary conditions. Figure 2
fail-safe technique is to reconstruct the modes at every freshows that the bulk mode is “pinned” at the ends, the 4-node
qguency of the Fourier transform and then ignore those thatnode is almost pinned, but the other two modes are essen-
are weak and show no clear structlir€he differences be- tially unpinned. We return to this point in Sec. lll C, where
tween the Fourier transforms in cells near the edges and iwe discuss the dependence of the mode frequencies on the
the center of the sample already provide evidence that edgeavelength.
effects play an important role in determining the normal- The graphs in Fig. 2 were obtained by taking snapshots of
mode structure. one componentNl,) of the magnetization vector. As men-
The graphs in Fig. 2 show four one-dimensional planetioned in the preceding section, these snapshots provide only
wave-like normal modes, both in three-dimensional perspeca partial description. Figure 3 provides a more complete de-
tive (left column and as two-dimensional contour plots scription of the 6-node mode shown in Fig. 2. The top left
(right column. They were obtained by plotting the Fourier diagram in Fig. 3 shows the spin orbits in four cellis (

FIG. 3. Details of the spin motion for the 6-node mode. Top left:
our spin orbits in the X,z) plane in different cells along the long

A. Fixed applied field, H,=10 kOe
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FIG. 4. Four antisymmetric standing-wave-like modes. From top to bottom: 3-node @#®deH2, 5-node modd52 GH2, 9-mode
node(80 GH2, and 11-node mod&é9 GH2.
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=1,4,9,14) along the major axis of the sample. The mark orations(0.63 GH2, which shows that selective excitation via
each orbit indicates the position of the spin vector at a giverthe symmetry of the perturbation is essential. The fact that
instant of time, from which the relative phases can be inthe frequency of the end modes is lower than the frequency
ferred. The graph at the bottom right shows the variation oPf the bulk mode&(52 GH3 can be traced to the larger local

; o demagnetizing fields near the ends. In total, we have been
the phase along the lorng) axis. The remaining two graphs . : .
in Fig. 3 show the variation of the aspect ratio and the tilt ofable to identify more than 20 different normal modes. If we

e majo s o the ot aong the s I a simple "4 <PPIEd ahITC: perbatons dong P es
standing-wave” picture, the aspect ratio would be a CoN modes. Although the modes can be sorted into families based

stant, the tilt would be zero, and the phase would jump d'.sbn the number of nodal lines, even this classification is con-

contmugusly by 180 deg at every node. _Clea_rly, the mode Ir1‘using because there exist modes with the same nodal struc-
our particle does not have any of these simplifying attributesy .o bt gifferent frequencies that appear to differ only in the

The antisymmetric perturbation excites a different set ofyistribution of their amplitudes. At this stage of our under-
modes. Figure 4 shows four one-dimensional plane-wavesianding, there appears to be little reason to present the fre-

like modes, again arranged from top to bottom in order ofyyency and a full description of each one of them.
increasing frequency. The lowest frequency is associateg

with a 3-node mod€49 GH2, next is a 5-node modé?2 B. Variable applied field

GH2), followed by a 9-node mode0 GH2, and an 11-node eyt e investigate the variation of the mode frequencies
mode (99 GH2. Clearly, the frequency increases with the \yith the strength of the applied field. Figure 7 shows the
number of nodes. As expected, only modes with an odd numy,qde frequencies of the bulk modEig. 2, second from
ber of nodes are observed, and every antisymmetric mo%p)—circles, the standing-wave mode with 10 nodei. 2,
has a node at the center. A more interesting observation '§otton‘)—triangles, and the symmetric end modRig. 6,
that the modes appear to evolve from being pinned at lowejop)—diamonds. In general, the mode frequency increases
frequencies to being unpinned at higher frequencies. The fregjth the number of nodes. The 11- and 12-node modes lie
quencies of the one-dimensional even- and odd-node modegove the 10-node mode; the other standing-wave modes
shown in Figs. 2 and 4 display an interesting interleavinggentified in the preceding section lie above or close to the
property, at least at higher order: i, is the frequencyin  pylk-mode frequency. The solid line in Fig. 7 is the Kittel
GHz) of the n-node mode, thenv,<v,.; for n  EMR frequency of a three-dimensional ellipsoid with the
=4.5,...,11.0nly the bulk mode does not fit this pattern. same major axes as our partiéfeln spite of its deviations
Also, note that with a frequency discrimination of 0.63 GHz from perfect uniformity, the frequency of the bulk mode is
we may observe two very different modes at the same frestj|| in surprisingly good agreement with the Kittel equation
quency; for example, the bulk mode and the 5-node mode a®r the uniform mode of a three-dimensional ellipsoid. The
both at 52 GHz. good agreement at high fields indicates that the average di-
In addition to the one-dimensional plane-wave-like solu-polar fields within the sample are similar to the homoge-
tions shown in Figs. 2 and 4, the simulations reveal the eXneous demagnetizing field within a comparable ellipsoidal
istence of several other types of modes. Figure 5 shows folfample. At low fields, the inhomogeneities of the demagne-
modes that exhibit a two-dimensional structure. The top twajzing fields become comparable to those of the applied field,
modes are excited by the symmetric perturbation, the bottorgnd the agreement is less good. For which particle shape
two by the antisymmetric perturbation. These modes can bgndjor size this agreement ceases to exist altogether remains
construed as standing waves with two orthogonal wave vegp pe determined.
tors. Note that, again, symmetric perturbations excite only Except for the end mode, the field dependence of the fre-
symmetric modes, antisymmetric perturbations only antigyencies is very close to linear and shows no anomalous
symmetric modes. The two-dimensional normal modes dispehavior at low fields. The end mode, however, shows con-
play an interleaving property that is somewhat similar to thesiderable nonlinearity at low fields and extrapolates to zero
interleaving property observed for the one-dimensionafrequency at approximately 1.1 kOe. Furthermore, although
modes: If v, , is the frequency(in GHz) of the nyXn;,  the symmetric and antisymmetric end modes are unresolved

mode, therw, , <v, 11, for n,=34,...,11 anch,=2.  at high fields, the latter lies below the former at the lowest
(The simulations did not reveal an obvious pattern for othefields and extrapolates to zero frequency at approximately
values ofn,.) 1.2 kOe. The existence of zero-frequency modes is inti-

While in the conventional “standing-wave” modélith ~ Mately related to the static instabilities of the magnetization.
pinned or unpinned boundary conditiorasl modes of a rect- Although it is tempting to associate the zero frequency of the
angular sample are of the standing-wave type, we identifie@ntisymmetric end mode with the onset of magnetization re-
several modes that do not fit this description. For exampleVersal, prior to any such interpretation one must investigate
some modes are clearly localized in the particle near th&he possibility that other normal modésr example, corner
edges or near the corners. Figure 6 shows two “end modes™odes could have zero frequency at higher fields.
that are localized near the edges, one generated by the sym-
metric perturbatioritop), the other by the antisymmetric per-
turbation (bottom). These edge modes happen to have the It is instructive to compare the frequencies of the
same frequency31 GH2 within the resolution of the simu- standing-wave modes with limiting cases of standing waves

C. Wavelength dependence of mode frequencies
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in a truncated infinite plate. In Fig. 8, we show the frequen-The frequencyv given by Eq.(23), with the valueD =2.2
cies(at 10 kOg of the standing-wave modes as a function of X 10~ ° Oecnf for bulk Fe, gives the full line in Fig. 8.
their wave vector. The wave vector of each mode was com€onsidering that Eq(23) describes a perfect standing spin
puted from the distance between nodal lines in Figs. 2 and 4vave, where the phase and the orbital aspect ratio are con-
for the bulk mode, we assumed that the “nodes” were at thestant and the tilt is zero, we see that it provides a surprisingly
sample ends, so the wavelength was&hd the wave vector good description of the wave-vector dependence of the mode
g=m/L. If exchange is ignored, the frequency of modesfrequencies, even in the crossover region where both dipolar
propagating in an infinite plate along the magnetization di-and exchange contributions are comparable.

rection is given by the formufa® The wave vectors of the normal modes also warrant atten-
tion. In a standing-wave model, the allowed wave vectors are
v=y{H[H+ x(q)47M]}*2 (21)  9given byg=q,=nm/L, whereL is the length of the sample;
if full pinning is assumedzero amplitude at the engdsn
wherey is a function of the wave vectar, x(q) is found by = 1,2,...; if theends are unpmne@‘namm_um_ amplitude at
solving a transcendental equation; its value decreases monte e€nds n=0,1,2.... Although the pinning boundary

tonically from 1 atg=0 to 0 atg=c. On the other hand, if conditions have been debated for many years, recent

dipolar fields are ignored and only the effects of exchangé“'tu‘jiegs',16 have shown that an effective pinning is induced
are included, the frequency is given by the formula by the dipolar forces near the edges. The same authors also

report that, while the longer wavelength modes are pinned at
the ends, the short wavelength modes are essentially un-
pinned. Our simulations show that, for the model patrticle

considered in the present investigation, the crossover from

whereD is the spin-wave stiffness constant. The predictionspinned to unpinned occurs roughly between the modes with
of Egs. (21) and (22) are shown by the dashed-dotted and, 5n4 5 nodes.

dashed lines in Fig. 8. It is possibfeto incorporate the ef-
fects of exchange and dipolar coupling by combiniads
though such an action is not mathematically rigojotiee D. Additional observations

two equationg21) and(22), While developing the techniques and obtaining the results
presented above, we encountered numerous aspects that de-
v=y{(H+Dg?)[H+Dg?*+ x(q)47M1}¥2  (23)  serve further and more detailed investigation.
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with the same major axes as our particle. =10 kOe) with their wave vector. The dots represent the computed

results; the dot-dashed, dashed, and full line correspond to Egs.
(21), (22), and(23), respectively.

(i) We observed that two modes, namely, the bulk mode
and the 5-node mode, crossed as the field was increased. In
this particular case, the symmetric and antisymmetric naturghow the existence of modes that are clearly localized, for
of the two modes precludes hybridization effects. Howeverexample, near the edges or corners of the particle. These
one can envision cases where a crossover occurs while hynodes have frequencies well below those of the spin-wave
bridization is allowed, and such cases could be investigateghodes. Moreover, their frequency extrapolates to zero at
with the present formalism. field values close to the value at which the static magnetiza-
(i) Large-amplitude perturbations lead to changes in theion loses the symmetry of the particle—a strong indication
peak positions in the Fourier transform. This result indicateshat these modes are closely tied to the onset of the magne-
that the nonlinear response regime can also be probed witzation reversal process.
the technique described here. The technique and results presented here show that it is
(i )At low fields, where the static magnetization profile possible to obtain both the frequencies and the profiles of the
no longer has the symmetry of the parti¢tbat is, a C-like  normal modes of a magnetic particle, irrespective of its size
statg, many more low-frequency modes of the end-modeand shape and independently of the spatial extent of the
type were excited. modes. The micromagnetic approach thus enables us to
(iv) We also found that, while at high fields most of the bridge the gap between spin-wave theory, where demagne-
amplitude is concentrated in the bulk mode, the energy of thézing fields are largely ignored, and magnetostatic theory,
end modes grows by several orders of magnitude relative tawhere exchange is ignored. In fact, with the magnetostatic
the bulk mode as the applied field decreases. approach it has been possible to obtain only approximate
solutions for particles with a relatively simple shadpé?The
present formalism does not suffer from this limitation.
The results of our investigation demonstrate the potential
IV. SUMMARY AND CONCLUSIONS of thg proposed compL_JtationaI approach. Future st_udies must
be directed at extending the study beyond the simple case
In this paper we have developed a computational apeonsidered here. In principle, the technique can be used to
proach, based on the Landau-Lifshitz formalism of micro-determine not just the magnetic normal modes of a given
magnetics, to identify the magnetic normal modes of a nanoparticle but also their general dependence on the material
sized particle. The formalism is general and applies tgarameters and on particle shape and size. Since the tech-
particles of any shape and material in an applied field ohique requires, however, considerable computational effort,
arbitrary direction and strength. it must be used selectively to address well defined problems
We have applied the technique to a rectangular model of @ nanomagnetism. Examples are mode instabilities deter-
polycrystalline iron particle measuring 1X®0X 60 nnt. mining or contributing to magnetization reversal, normal
We find modes that, although reminiscent of standing spinmodes of magnetic vortex states, normal modes of ring struc-
waves, are considerably more complex. The elliptical spirtures, and the wave-vector dependencies of edge modes and
orbits may be tilted with respect to the sample axes, and thend modes. At present, no other suitable technique is avail-
modes have a spatially varying phase. Our simulations alsable to address these problems in their most general form.
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