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Normal modes of spin excitations in magnetic nanoparticles
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This paper describes a technique to compute magnetic normal modes of nanosized particles. The technique
is based on the Landau-Lifshitz formalism of micromagnetics and accounts fully for both the exchange and the
dipolar field. It requires no more than the specification of the material parameters and the geometry of the
sample; in particular, it does not require the specification of boundary conditions. It also allows the large-
amplitude nonlinear regime to be probed. The technique is applied to a model of a polycrystalline iron particle,
which is shown to possess a rich variety of normal modes. Some of these modes are reminiscent of standing
waves, while others are more or less localized in parts of the sample. The variation of the mode frequencies
with the applied field is analyzed and compared with existing approximations.
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I. INTRODUCTION

Recent advances in processing techniques have ma
possible to fabricate small magnetic particles with accur
control over their shape and thickness.1–6 Because the size o
such particles can be comparable to the exchange leng
the domain wall thickness, their magnetic behavior diffe
fundamentally from that of larger samples, where the ex
tence of multiple magnetic domains plays a fundamen
role. While the dynamics of magnetic spins in nanopartic
have been addressed experimentally by means of Brillo
scattering, ferromagnetic resonance~FMR!, and other novel
techniques, much less work has been done on the co
sponding theoretical problem of determining magnetic n
mal modes. This problem is of more than theoretical imp
tance; indeed, it has important implications for technolo
For example, the reduction in size of a read head is u
mately limited by spin-wave induced noise.7 If the normal
modes were known, one could control them by suitable
sign choices, thus limiting the noise and enabling further s
reductions.

Attempts to solve the magnetic normal-mode problem i
manner analogous to that used for mechanical normal mo
of vibration of a finite particle have been mostly unsucce
ful. The problem is difficult because one must account sim
taneously for the exchange coupling, which acts at
atomic level, and dipolar fields that are typically long ran
and extend over the whole sample. Only in a very few s
cial cases and under severely restricting conditions is it p
sible to treat the problem analytically. If both exchange a
dipolar fields are included, the normal modes are known o
for the homogeneous saturated infinite bulk ferromagnet8 if
exchange is neglected, they are known for the homogene
infinite magnetic slab9,10 and, with certain additional ap
proximations, for a few very simple shapes;11,12 and only if
dipolar fields are neglected entirely can they be obtained
0163-1829/2004/69~17!/174428~12!/$22.50 69 1744
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more general cases.13 Very recently, some progress has be
made in evaluating magnetic modes in confined geomet
when dipolar induced pinning effects are included.14–17

In the absence of analytical solutions, computations o
the only feasible alternative. The purpose of this paper is
show how, on the basis of the Landau-Lifshitz formalism
micromagnetics,18 magnetic normal modes of nanosized pa
ticles can be identified in the presence of both exchange
dipolar fields. Support for this idea comes from earlier wo
on micromagnetic-based FMR computations,19–21 where the
FMR frequency of a small saturated flat disk was determin
from a Fourier transform of the time-dependent total mag
tization. The proposed computational procedure has th
significant features. First, the particle is divided into ce
whose dimensions are smaller than the exchange length
the magnetization within a cell is approximately uniform
The spatial approximations are then based on finite dif
ences. Second, the algorithm used to integrate the Lan
Lifshitz equation maintains a constant magnetization at
times. The algorithm is the same as the one used by
authors for spring-magnet calculations.22 Third, the dipolar
~far-field! contribution is derived from a scalar magnetic p
tential, and the latter is computed by means of a bound
integral formulation. Thus, the computational domain is t
same as the physical domain occupied by the particle,
there is no need to artificially extend the domain or introdu
artificial boundary conditions.

The plan of this paper is as follows. In Sec. II, we form
late the micromagnetics problem and describe the comp
tional approach to identify magnetic normal modes. In S
III, we present the results of numerical simulations for
polycrystalline iron nanoparticle. We identify several norm
modes and analyze the behavior of their frequency as a fu
tion of the strength of the applied field. In Sec. IV, we sum
marize our findings and discuss the type of problems that
be addressed with the current method.
©2004 The American Physical Society28-1
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II. MICROMAGNETIC MODEL

The Landau-Lifshitz~LL ! equation of micromagnetics i
a differential equation for the magnetization vectorM,

]M

]t
52

g

11g2 F ~M3H!1
g

M
M3~M3H!G . ~1!

Here,H is the effective magnetic field, which depends no
linearly onM, andM is the magnitude ofM. Equation~1! is
the equation of a spinning top driven by the magnetic fi
~first term inside the brackets! and subject to damping~sec-
ond term!; g is the gyromagnetic constant andg a ~dimen-
sionless! damping coefficient. The LL equation maintains
constant magnetization;M5Ms at all times, whereMs is the
saturation magnetization. On the other hand, the directio
M, which is given by the magnetic spin vectorm5M/M ,
varies with time t, as well as with space throughout th
sample.

A. Time integration of the Landau-Lifshitz equation

The time integration of the LL equation requires spec
care, since it is essential that the magnitude of the magn
zation be preserved at all times. The algorithm that acco
plishes this has been described elsewhere,22 but we include a
brief description here for completeness.

We begin by observing that the spatial variation does
play a role in the time integration of the LL equation, so t
following description applies anywhere in the domain.
emphasize this point, we focus on time as the independ
variable and use a prime8 to denote~partial! differentiation
with respect to time.

Next, we separate the magnitude of the effective magn
field from its direction, writingH5Hh, whereH5uHu. Thus
h, like m, is a vector of unit length. Then the LL equatio
assumes the form

m852cH@~m3h!1gm3~m3h!#, ~2!

wherec5g/(11g2) is a constant.
We can rewrite the LL equation as two separate equat

if we introduce, for any three-component vectoru the pro-
jectionsP andQ,

Pu5~u•h!h, Qu5u2Pu5h3~u3h!. ~3!

Applying P andQ to Eq. ~2!, we obtain

Pm852cHP@~m3h!1gm3~m3h!#, ~4!

Qm852cHQ@~m3h!1gm3~m3h!. ~5!

Notice the identities

P~m3h!50,

P@m3~m3h!#5~m•Qm!h52@12~Pm•Pm!2#h,

Q~m3h!52JQm,

Q@m3~m3h!#5~m•h!Qm,
17442
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whereJ is the square root of the negative identity inR2,

I 5S 1 0

0 1D , J5S 0 21

1 0D , J252I .

Hence, we can recast Eqs.~4! and ~5! in the form

Pm85cgH@12~Pm•Pm!2#h, ~6!

Qm85cH@J2g~m•h!I #Qm. ~7!

Now, suppose thatH does not change on a time interv
@ t,t1Dt#,

H~s!5H~ t !, t<s<t1Dt. ~8!

ThenPm85(Pm)8 andQm85(Qm)8 on @ t,t1Dt#, so Eqs.
~6! and ~7! reduce to a coupled system of differential equ
tions for the scalaru5(Pm•h) and the vectorv5Qm,

u85cgH~12u2! on @ t,t1Dt#. ~9!

v85cH~J2guI!v on @ t,t1Dt#. ~10!

The equation foru is independent ofv; it can be integrated
exactly,

u~s!5
u~ t !cosh„cgH~ t !~s2t !…1sinh„cgH~ t !~s2t !…

cosh„cgH~ t !~s2t !…1u~ t !sinh„cgH~ t !~s2t !…
~11!

for t<s<t1Dt.
Next, we turn to Eq.~10!. We replace the constantcgH

by u8/(12u2) @from Eq. ~9!# and use the identity
2uu8/(12u2)5@ ln(12u2)1/2#8 to convert the equation into
a differential equation for the vectorw5(12u2)21/2v,

w85cHJw on @ t,t1Dt#. ~12!

This equation can be integrated,

w~s!5ecH(t)(s2t)Jw~ t !

5@cos„cH~ t !~s2t !…I 1sin„cH~ t !~s2t !…J#w~ t !

~13!

for t<s<t1Dt. From the expression~11! we obtain

~12u~s!2!1/2

5
@12u~ t !2#1/2

cosh„cgH~ t !~s2t !…1u~ t !sinh„cgH~ t !~s2t !…
,

so

v~s!5
cos„cH~ t !~s2t !…I 1sin„cH~ t !~s2t !…J

cosh„cgH~ t !~s2t !…1u~ t !sinh„cgH~ t !~s2t !…
v~ t !

~14!

for t<s<t1Dt.
These results motivate the choice of the integrat

scheme for Eq.~2!,

mn115anhn1bnhn~mn3hn!, ~15!

wheremn115m(tn11), mn5m(tn), hn5h(tn), and
8-2
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an5
~mn•hn!cosh~cgHnDt !1sinh~cgHnDt !

cosh~cgHnDt !1~mn•hn!sinh~cgHnDt !
,

bn5
cos~cHnDt !I 1sin~cHnDt !J

cosh~cgHnDt !1~mn•hn!sinh~cgHnDt !
,

with Hn5H(tn) andDt5tn112tn .
The algorithm~15! is unconditionally stable for all value

of Dt. Of course, the quality of the approximation suffers
Dt increases. However, the algorithm explicitly displays t
relationship between the size ofDt and the local error in the
time integration. The rate of precession ofm around the po-
lar axis is governed byH, the magnitude of the local effec
tive field: in one time step,m precesses through an ang
HDt. Therefore, by properly choosingDt, we can resolve
the fastest precessional motion in a given number of t
steps per period. SinceH varies over the course of a simu
lation, we have a natural and direct means to adjust the
of Dt to the current dynamical state, while maintaining t
resolution of the precessional motion.

Other algorithms for the numerical integration of the L
equation have been proposed by Chen, Fredkin,
Koehler,23 Nigam24 and E and Wang.25

B. The effective magnetic field

The effective magnetic fieldH is derived from the free
energy,E. If Ha is the externally applied magnetic field, the

H52
dE

dM
. ~16!

If anisotropy contributions and magnetostrictive terms
ignored~an assumption that is certainly justified in the ca
of polycrystalline materials!, the free energy is the sum o
the exchange energy, the~dipolar! far-field energy, and the
energy contribution from the applied field,

E5Eex1Eff1Eaf . ~17!

The individual terms are given by the integrals

Eex5E Au¹Mu2, ~18a!

Eff52
1

2E M•Hff , ~18b!

Eaf52E M•Ha , ~18c!

whereA is the exchange coupling constant.
The exchange energy contributes a term proportiona

DM to the effective-field subject to the natural bounda
condition ~vanishing interior limit of the normal derivative!.
The Laplacian is approximated numerically by means of
standard 7-point stencil.

The far field is obtained from a scalar magnetic potent
Hff52¹F, which, given the magnetizationM, is calculated
as follows.26 First, F is written as a sum,F5F11F2,
whereF1 is the solution of the Neumann problem
17442
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DF154p~¹•M! in V, n•¹F154p~n•M!on ]V.
~19!

Here,V is the domain,]V is the boundary ofV, andn is
the outward normal on the boundary. The boundary value
F1 thus obtained generate the boundary values ofF2,

F2~x!5E
]V

F1~y!cosFn•
x2y

ux2yuG , x,yP]V, ~20!

andF2 is found by solving the Dirichlet problemDF250 in
V subject to the computed boundary values.

C. Computational approach

We assume that the domainV ~the physical domain oc-
cupied by the particle! is three dimensional and rectangul
and that the particle is placed in a Cartesian (x,y,z) coordi-
nate system, withM5(Mx ,M y ,Mz). The applied magnetic
field is uniform, constant in time, and directed along t
positivex axis,Ha5(Ha ,0,0).

The particle is divided into cubic cells, and the magne
zation is assumed to be uniform in each cell. A cell is
dexed by a triplet (i , j ,k), and each cell carries a magnetiz
tion vectorM i , j ,k . The magnitude ofM i , j ,k is constant and
equal to the saturation magnetizationMs ; its direction is
given by the spin vectormi , j ,k , which is a vector of unit
length.

Given the dimensions of the particle and the strength
the applied magnetic field, the only physical parameters
need to be specified for the simulations are the excha
coupling constantA, the saturation magnetizationMs , the
gyromagnetic constantg, and the damping coefficientg.

The approach used to find normal modes is conceptu
similar to the one used previously in FMR calculations.19,20

For a given applied field, the particle is first allowed to rea
its equilibrium state. This is accomplished by integrating t
LL equation~1! to equilibrium with the damping coefficien
g50.5. The spin configuration is then perturbed from eq
librium and, with the damping coefficientg50, allowed to
evolve in time. The motion of each spin vector is monitor
at regular intervals for a certain length of time, and the tim
series of each component in each cell is Fourier analyzed~In
Ref. 19, the Fourier transform was applied only to the s
tially averaged magnetization vector.! The normal modes are
then identified by correlating the Fourier transforms throug
out the sample.

Typically, a spin vector describes an elliptically shap
closed orbit in a plane. The orbit plane and the orbit cen
reflect the static equilibrium configuration of the magnetiz
tion; they are the same for all modes and need not be c
sidered further. The dynamics of a particular mode at a gi
frequency are specified completely by four parameters
each cell, namely, the area of the spin orbit, its aspect r
~ratio of major to minor axis!, its tilt ~angle between majo
axis and sample axes!, and the relative phase of the sp
vectors. The numerical simulations indicate that well defin
correlations between cells emerge only at frequencies wh
8-3
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FIG. 1. Fourier transform ofMz vs frequency~GHz! in four cells in the midplane.
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at least some cells show clear peaks in the Fourier transfo
when there are no peaks in any cell, no correlations are
served.

A complete description of a magnetic normal mode
terms of the four parameters for each cell is clearly impr
tical. How to devise a description in terms of a few para
eters is, however, not obvious. It is helpful to compare
current problem with the analogous problem for norm
modes of a vibrating membrane. The latter is described b
expression of the formAF(x)eivt, whereA is a scalar am-
plitude andF a normalized function of position~for example,
a Bessel function in the case of a circular membrane!. A
snapshot of a membrane oscillating in an eigenmode
vides a complete representation ofF(x) and, thus, a charac
terization of the normal mode. In the present case, the p
lem is more complicated. The time and space variables
not separable, the amplitude is a vector, and the functionF is
different for each component. In principle, one can adopt
same approach as for the vibrating membrane and u
snapshot of one of the components of the magnetizat
This approach gives an intuitively clear picture of a mod
but the result must be interpreted with care. Because of
phase differences between cells, snapshots at different t
are not necessarily comparable; moreover, the amplitude
not scale, and slight differences in the profiles will
present; and finally, changes in the aspect ratio will prod
variations between snapshots of different components of
magnetization. For these reasons it is prudent to give a
tional consideration to the area of the spin orbit in each
to corroborate the results obtained from a snapshot of on
17442
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the components of the magnetization. The orbit area is p
portional to the amplitude and therefore independent of tim
a fact that is convenient. A shortcoming of this representat
is, of course, that it does not contain information about
phase of the spin.

III. RESULTS FOR A POLYCRYSTALLINE
IRON PARTICLE

In this section, we present the results of numerical sim
lations for a model of a polycrystalline iron particle. Th
sample is rectangular, measuring 116320360 nm3, and the
material parameters are

A52.531026 erg/cm,

Ms51,700 emu/cm3~5oersted!,

g52.93 GHz/kOe.

The particle is placed in a uniform magnetic field, which
constant in time and directed along the positivex axis, Ha
5(Ha ,0,0). The particle is arranged so the field is lined
with the long~116! side, the short~20! side is aligned with
they axis, andz is the coordinate in the spanwise~60! direc-
tion. The particle is divided into cubic cells measuring 4 n
on a side. Each cell is indexed by a triplet (i , j ,k), with i
51, . . . ,29; j 51, . . . ,5; andk51, . . . ,15. Thetotal num-
ber of cells is 293531552,175.

Once equilibrium is achieved, a perturbation is applied
excite the normal modes. A given perturbation will exc
8-4
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FIG. 2. Four symmetric one-dimensional plane-wave-like normal modes. From top to bottom: 4-node mode~49 GHz!, 0-node mode~52
GHz!, 6-node mode~57 GHz!, and 10-node mode~89 GHz!.
174428-5
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only those modes whose spatial Fourier transform is c
tained in that of the perturbation. This feature has both
vantages and disadvantages. By judiciously choosing the
turbation, one can reduce the number of excited modes
thus avoid excessive mode overlap. On the other hand,
merous simulations must be performed to guarantee tha
the modes are actually observed. We have chosen to w
with two perturbations, one symmetric, the other antisy
metric along the long axis~the direction of the applied field!.
In the symmetric perturbation, the spins in the central port
of the particle—that is, in all cells withi 57, . . . ,23—are
rotated from their equilibrium position by 1 deg in the (x,z)
plane. In the antisymmetric perturbation, the spins in
cells with i 57, . . . ,14 arerotated by 1 deg in the positiv
direction and those withi 516, . . . ,23 by 1 deg in thenega-
tive direction. The numerical simulations indicate that,
long as the perturbations do not exceed65 deg, the position
of a peak in the frequency spectrum is not affected. We a
ascertained that the Fourier amplitude of a peak scales
the amplitude of the initial perturbation, so we are clea
probing the response in the linear regime. The Fourier tra
form can be performed on any of the components of the s
vector; again, the choice of the particular component affe
the relative amplitudes of the peaks but not their position
the frequency spectrum.

All the results reported below were obtained by integr
ing the LL equations over a period of 11.88310210 sec. The
resulting frequency resolution in the Fourier transform
0.63 GHz.

A. Fixed applied field, H aÄ10 kOe

We first probe the normal-mode structure of the nanop
ticle at a fixed value of the applied field,Ha510 kOe. The
dependence on the strength of the applied field will be ta
up in Sec. III B.

Figure 1 shows the Fourier transform ofMz in four rep-
resentative cells in the midplane (j 53) after a symmetric
perturbation. The graphs on the left are for cells near the
of the particle (i 52), the graphs on the right are for cel
midway along the long axis (i 515). A peak in the Fourier
transform indicates that the initial perturbation has excite
mode in the particular cell at that frequency and indicates
existence of a normal mode at that frequency.~The converse
is not necessarily true. The absence of a peak may sim
indicate that the normal mode at that frequency has a s
amplitude in that cell. Therefore, while it is possible to
guided by peaks in individual Fourier transforms, the on
fail-safe technique is to reconstruct the modes at every
quency of the Fourier transform and then ignore those
are weak and show no clear structure.! The differences be-
tween the Fourier transforms in cells near the edges an
the center of the sample already provide evidence that e
effects play an important role in determining the norm
mode structure.

The graphs in Fig. 2 show four one-dimensional plan
wave-like normal modes, both in three-dimensional persp
tive ~left column! and as two-dimensional contour plo
~right column!. They were obtained by plotting the Fourie
17442
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transform ofMz in the midplane (j 53) againsti ~horizontal
axis! andk ~vertical axis!. From top to bottom, we observe
4-node mode at 49 GHz, a 0-node mode at 52 GHz, a 6-n
mode at 57 GHz, and a 10-node mode at 89 GHz.~Modes
with an odd number of nodes are not excited by the symm
ric initial perturbation.! Excluding the 0-node mode, we not
that the mode frequency increases with the number of no
as expected from the exchange interaction. The 0-node m
is reminiscent of the uniform~FMR! mode in a bulk sample
and is referred to as the ‘‘bulk’’ mode. Its frequency is clo
to the FMR frequency, and its amplitude is fairly unifor
throughout the interior of the sample. This mode would b
come the uniform mode if the sample were made infinit
large. Contrary to the FMR mode, however, its phase diff
by almost 30 deg between the ends and the center of
sample.~In an infinite film, the phase of the FMR mode
constant throughout the sample.! The other modes in Fig. 2
show a clearly identifiable standing-wave-like structure
the direction of the applied field. The existence of stand
waves in confined geometries is well known.14–16,27,28Their
theoretical explanation requires the introduction ofad hoc
boundary conditions at the free surfaces, which has led to
concept of ‘‘pinning’’27,28 and the definition of the Rado
Weertman boundary conditions.29 The physical origin of pin-
ning is usually ascribed to surface anisotropy, although it
been correlated more recently with the local demagnetiz
field in the vicinity of edges.15,16 The present approach doe
not require any suchad hocboundary conditions. Figure 2
shows that the bulk mode is ‘‘pinned’’ at the ends, the 4-no
mode is almost pinned, but the other two modes are es
tially unpinned. We return to this point in Sec. III C, whe
we discuss the dependence of the mode frequencies on
wavelength.

The graphs in Fig. 2 were obtained by taking snapshot
one component (Mz) of the magnetization vector. As men
tioned in the preceding section, these snapshots provide
a partial description. Figure 3 provides a more complete
scription of the 6-node mode shown in Fig. 2. The top l
diagram in Fig. 3 shows the spin orbits in four cellsi

FIG. 3. Details of the spin motion for the 6-node mode. Top le
four spin orbits in the (x,z) plane in different cells along the long
axis. The three other graphs show the variation of the aspect
~top right!, tilt of the major axis~in degrees, bottom left!, and rela-
tive phase~in degrees, bottom right! along the major~x! axis.
8-6
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FIG. 4. Four antisymmetric standing-wave-like modes. From top to bottom: 3-node mode~49 GHz!, 5-node mode~52 GHz!, 9-mode
node~80 GHz!, and 11-node mode~99 GHz!.
174428-7
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GRIMSDITCH, LEAF, KAPER, KARPEEV, AND CAMLEY PHYSICAL REVIEW B69, 174428 ~2004!
51,4,9,14) along the major axis of the sample. The mark
each orbit indicates the position of the spin vector at a gi
instant of time, from which the relative phases can be
ferred. The graph at the bottom right shows the variation
the phase along the long~x! axis. The remaining two graph
in Fig. 3 show the variation of the aspect ratio and the tilt
the major axis of the orbit along thex axis. In a simple
‘‘standing-wave’’ picture, the aspect ratio would be a co
stant, the tilt would be zero, and the phase would jump d
continuously by 180 deg at every node. Clearly, the mode
our particle does not have any of these simplifying attribut

The antisymmetric perturbation excites a different set
modes. Figure 4 shows four one-dimensional plane-wa
like modes, again arranged from top to bottom in order
increasing frequency. The lowest frequency is associa
with a 3-node mode~49 GHz!, next is a 5-node mode~52
GHz!, followed by a 9-node mode~80 GHz!, and an 11-node
mode ~99 GHz!. Clearly, the frequency increases with th
number of nodes. As expected, only modes with an odd n
ber of nodes are observed, and every antisymmetric m
has a node at the center. A more interesting observatio
that the modes appear to evolve from being pinned at lo
frequencies to being unpinned at higher frequencies. The
quencies of the one-dimensional even- and odd-node m
shown in Figs. 2 and 4 display an interesting interleav
property, at least at higher order: Ifnn is the frequency~in
GHz! of the n-node mode, then nn,nn11 for n
54,5, . . . ,11.Only the bulk mode does not fit this patter
Also, note that with a frequency discrimination of 0.63 GH
we may observe two very different modes at the same
quency; for example, the bulk mode and the 5-node mode
both at 52 GHz.

In addition to the one-dimensional plane-wave-like so
tions shown in Figs. 2 and 4, the simulations reveal the
istence of several other types of modes. Figure 5 shows
modes that exhibit a two-dimensional structure. The top t
modes are excited by the symmetric perturbation, the bot
two by the antisymmetric perturbation. These modes can
construed as standing waves with two orthogonal wave v
tors. Note that, again, symmetric perturbations excite o
symmetric modes, antisymmetric perturbations only a
symmetric modes. The two-dimensional normal modes
play an interleaving property that is somewhat similar to
interleaving property observed for the one-dimensio
modes: If nnx ,nz

is the frequency~in GHz! of the nx3nz

mode, thennnx ,nz
,nnx11,nz

for nx53,4, . . . ,11 andnz52.
~The simulations did not reveal an obvious pattern for ot
values ofnz .)

While in the conventional ‘‘standing-wave’’ model~with
pinned or unpinned boundary conditions! all modes of a rect-
angular sample are of the standing-wave type, we identi
several modes that do not fit this description. For exam
some modes are clearly localized in the particle near
edges or near the corners. Figure 6 shows two ‘‘end mod
that are localized near the edges, one generated by the
metric perturbation~top!, the other by the antisymmetric pe
turbation ~bottom!. These edge modes happen to have
same frequency~31 GHz! within the resolution of the simu
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lations~0.63 GHz!, which shows that selective excitation v
the symmetry of the perturbation is essential. The fact t
the frequency of the end modes is lower than the freque
of the bulk mode~52 GHz! can be traced to the larger loca
demagnetizing fields near the ends. In total, we have b
able to identify more than 20 different normal modes. If w
had applied antisymmetric perturbations along thez axis as
well, we would presumably have detected at least anothe
modes. Although the modes can be sorted into families ba
on the number of nodal lines, even this classification is c
fusing because there exist modes with the same nodal s
ture but different frequencies that appear to differ only in t
distribution of their amplitudes. At this stage of our unde
standing, there appears to be little reason to present the
quency and a full description of each one of them.

B. Variable applied field

Next, we investigate the variation of the mode frequenc
with the strength of the applied field. Figure 7 shows t
mode frequencies of the bulk mode~Fig. 2, second from
top!—circles, the standing-wave mode with 10 nodes~Fig. 2,
bottom!—triangles, and the symmetric end mode~Fig. 6,
top!—diamonds. In general, the mode frequency increa
with the number of nodes. The 11- and 12-node modes
above the 10-node mode; the other standing-wave mo
identified in the preceding section lie above or close to
bulk-mode frequency. The solid line in Fig. 7 is the Kitt
FMR frequency of a three-dimensional ellipsoid with th
same major axes as our particle.30 In spite of its deviations
from perfect uniformity, the frequency of the bulk mode
still in surprisingly good agreement with the Kittel equatio
for the uniform mode of a three-dimensional ellipsoid. T
good agreement at high fields indicates that the average
polar fields within the sample are similar to the homog
neous demagnetizing field within a comparable ellipsoi
sample. At low fields, the inhomogeneities of the demag
tizing fields become comparable to those of the applied fie
and the agreement is less good. For which particle sh
and/or size this agreement ceases to exist altogether rem
to be determined.

Except for the end mode, the field dependence of the
quencies is very close to linear and shows no anoma
behavior at low fields. The end mode, however, shows c
siderable nonlinearity at low fields and extrapolates to z
frequency at approximately 1.1 kOe. Furthermore, althou
the symmetric and antisymmetric end modes are unreso
at high fields, the latter lies below the former at the lowe
fields and extrapolates to zero frequency at approxima
1.2 kOe. The existence of zero-frequency modes is i
mately related to the static instabilities of the magnetizati
Although it is tempting to associate the zero frequency of
antisymmetric end mode with the onset of magnetization
versal, prior to any such interpretation one must investig
the possibility that other normal modes~for example, corner
modes! could have zero frequency at higher fields.

C. Wavelength dependence of mode frequencies

It is instructive to compare the frequencies of t
standing-wave modes with limiting cases of standing wa
8-8
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FIG. 5. Four two-dimensional modes. From top to bottom: 432 mode~64 GHz!, 632 mode~73 GHz!, 332 mode~64 GHz!, and 9
32 mode~95 GHz!.
174428-9



GRIMSDITCH, LEAF, KAPER, KARPEEV, AND CAMLEY PHYSICAL REVIEW B69, 174428 ~2004!
FIG. 6. Symmetric and antisymmetric end modes~31 GHz!.
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in a truncated infinite plate. In Fig. 8, we show the freque
cies~at 10 kOe! of the standing-wave modes as a function
their wave vector. The wave vector of each mode was co
puted from the distance between nodal lines in Figs. 2 an
for the bulk mode, we assumed that the ‘‘nodes’’ were at
sample ends, so the wavelength was 2L and the wave vecto
q5p/L. If exchange is ignored, the frequency of mod
propagating in an infinite plate along the magnetization
rection is given by the formula9,10

n5g$H@H1x~q!4pM #%1/2, ~21!

wherex is a function of the wave vectorq; x(q) is found by
solving a transcendental equation; its value decreases m
tonically from 1 atq50 to 0 atq5`. On the other hand, if
dipolar fields are ignored and only the effects of exchan
are included, the frequency is given by the formula

n5g~H1Dq2!, ~22!

whereD is the spin-wave stiffness constant. The predictio
of Eqs. ~21! and ~22! are shown by the dashed-dotted a
dashed lines in Fig. 8. It is possible14 to incorporate the ef-
fects of exchange and dipolar coupling by combining~al-
though such an action is not mathematically rigorous! the
two equations~21! and ~22!,

n5g$~H1Dq2!@H1Dq21x~q!4pM #%1/2. ~23!
17442
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The frequencyn given by Eq.~23!, with the valueD52.2
31029 Oe cm2 for bulk Fe, gives the full line in Fig. 8.
Considering that Eq.~23! describes a perfect standing sp
wave, where the phase and the orbital aspect ratio are
stant and the tilt is zero, we see that it provides a surprisin
good description of the wave-vector dependence of the m
frequencies, even in the crossover region where both dip
and exchange contributions are comparable.

The wave vectors of the normal modes also warrant at
tion. In a standing-wave model, the allowed wave vectors
given byq5qn5np/L, whereL is the length of the sample
if full pinning is assumed~zero amplitude at the ends!, n
51,2, . . . ; if theends are unpinned~maximum amplitude at
the ends!, n50,1,2, . . . . Although the pinning boundary
conditions have been debated for many years, rec
studies15,16 have shown that an effective pinning is induc
by the dipolar forces near the edges. The same authors
report that, while the longer wavelength modes are pinne
the ends, the short wavelength modes are essentially
pinned. Our simulations show that, for the model parti
considered in the present investigation, the crossover f
pinned to unpinned occurs roughly between the modes w
4 and 5 nodes.

D. Additional observations

While developing the techniques and obtaining the res
presented above, we encountered numerous aspects tha
serve further and more detailed investigation.
8-10
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NORMAL MODES OF SPIN EXCITATIONS IN . . . PHYSICAL REVIEW B69, 174428 ~2004!
~i! We observed that two modes, namely, the bulk mo
and the 5-node mode, crossed as the field was increase
this particular case, the symmetric and antisymmetric na
of the two modes precludes hybridization effects. Howev
one can envision cases where a crossover occurs while
bridization is allowed, and such cases could be investiga
with the present formalism.

~ii ! Large-amplitude perturbations lead to changes in
peak positions in the Fourier transform. This result indica
that the nonlinear response regime can also be probed
the technique described here.

~iii !At low fields, where the static magnetization profi
no longer has the symmetry of the particle~that is, a C-like
state!, many more low-frequency modes of the end-mo
type were excited.

~iv! We also found that, while at high fields most of th
amplitude is concentrated in the bulk mode, the energy of
end modes grows by several orders of magnitude relativ
the bulk mode as the applied field decreases.

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed a computational
proach, based on the Landau-Lifshitz formalism of mic
magnetics, to identify the magnetic normal modes of a na
sized particle. The formalism is general and applies
particles of any shape and material in an applied field
arbitrary direction and strength.

We have applied the technique to a rectangular model
polycrystalline iron particle measuring 116320360 nm3.
We find modes that, although reminiscent of standing s
waves, are considerably more complex. The elliptical s
orbits may be tilted with respect to the sample axes, and
modes have a spatially varying phase. Our simulations

FIG. 7. Variation of mode frequencies with the applied fie
bulk mode ~circles!, 10-node mode~triangles!, end mode~dia-
monds!. The solid line is the Kittel FMR frequency of an ellipsoi
with the same major axes as our particle.
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show the existence of modes that are clearly localized,
example, near the edges or corners of the particle. Th
modes have frequencies well below those of the spin-w
modes. Moreover, their frequency extrapolates to zero
field values close to the value at which the static magnet
tion loses the symmetry of the particle—a strong indicat
that these modes are closely tied to the onset of the ma
tization reversal process.

The technique and results presented here show that
possible to obtain both the frequencies and the profiles of
normal modes of a magnetic particle, irrespective of its s
and shape and independently of the spatial extent of
modes. The micromagnetic approach thus enables u
bridge the gap between spin-wave theory, where demag
tizing fields are largely ignored, and magnetostatic theo
where exchange is ignored. In fact, with the magnetost
approach it has been possible to obtain only approxim
solutions for particles with a relatively simple shape.11,12The
present formalism does not suffer from this limitation.

The results of our investigation demonstrate the poten
of the proposed computational approach. Future studies m
be directed at extending the study beyond the simple c
considered here. In principle, the technique can be use
determine not just the magnetic normal modes of a giv
particle but also their general dependence on the mate
parameters and on particle shape and size. Since the
nique requires, however, considerable computational eff
it must be used selectively to address well defined proble
in nanomagnetism. Examples are mode instabilities de
mining or contributing to magnetization reversal, norm
modes of magnetic vortex states, normal modes of ring st
tures, and the wave-vector dependencies of edge modes
end modes. At present, no other suitable technique is av
able to address these problems in their most general for

FIG. 8. Variation of the normal-mode frequencies~at Ha

510 kOe) with their wave vector. The dots represent the compu
results; the dot-dashed, dashed, and full line correspond to
~21!, ~22!, and~23!, respectively.
8-11
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