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Size-dependent effects on the magnetization dynamics of Condon domains
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The existence of magnetic domains in nonferromagnetic metals at quantizing magnetic fields is examined
under conditions of de Haas–van Alphen oscillations in the range of strong magnetic fields in thin slabs in a
three-dimensional electron gas. Dynamics of Condon domain walls are studied in bulk metals and films at
time-varying and time-independent applied magnetic fields. The temperature, magnetic field, purity, and
sample size-dependent effects on the width, velocity and mobility of domain walls are calculated. Domain wall
resonance and relaxation effects are considered in the three-dimensional electron gas.
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I. INTRODUCTION

Oscillations of the thermodynamic quantities in an ext
nal magnetic field are the result of the oscillations of t
density of states and the fact that the magnetic field quant
the energy levels~Landau quantization!.1 Many properties of
the electron gas in normal metals are periodic functions
magnetic fields as successive Landau levels sweep thro
the Fermi level due to an increase of the external magn
field—for instance, oscillations of magnetization~de Haas–
van Alphen effect—dHvA!.1 The magnetic field changes th
density of states and consequently also the internal energ
the electron gas, and when 4px.1 ~x is differential mag-
netic susceptibility]M /]B, M is the oscillatory part of the
magnetization!, the ‘‘realignment’’ of the density of states
connected with the change of magnetic inductionB occur-
ring during the stratification into phases, becomes energ
cally ‘‘convenient’’—the formation of Condon domains.1,2

This instability caused by magnetic interactions among c
duction electrons is known as diamagnetic phase transiti2

The transformation occurs in each cycle of dHvA oscillatio
when the reduced amplitude of oscillations approac
unity.1 A series of phase transitions takes place at disc
values of the external magnetic field. The reason for t
collective effect is that an electron is subject to the magn
induction instead of the magnetic field~the Shoenberg
effect!.1 Thus, an applied magnetic field of a few Tesla m
‘‘magnetize’’ nonmagnetic metals in the sense of the appe
ance of magnetic domains. Condon domains were predi
by Condon in Ref. 3 and discovered in silver by means
nuclear magnetic resonance4 and in beryllium and white tin
by means of muon spin-rotation spectroscopy.5–9 Domain
formation at diamagnetic phase transitions was theoretic
studied in Refs. 2, 3, 10–20. The diamagnetic phase tra
tion in the single-domain case in three-dimensional~3D!
metals was described in Refs. 21–23. The temperature
0163-1829/2004/69~17!/174417~10!/$22.50 69 1744
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pendence of the magnetic induction bifurcation due Cond
domains was satisfactory reproduced in quasi-tw
dimensional~2D! ~Ref. 24! and 3D metals.25 It was shown
that the temperature dependence of the magnetic induc
bifurcation due Condon domains has a universal chara
and does not depend on the dimensionality of the elec
gas. This fact confirms the long-range nature of magn
interactions between orbital magnetic moments of cond
tion electrons in metals under high quantizing magne
fields.26 It evidences in favor of using the mean-field a
proach for the description of diamagnetic phase transitio

Condon domains in the 3D electron gas are the only t
of magnetic domains, for which the dynamics of doma
walls have not been considered. Note however that osc
tions of Condon domain walls were considered in the
electron gas by analogy with ferromagnets.19 The motivation
for the investigation of the domain wall dynamics of Cond
domains is driven by interest in understanding the charac
istic magnetic lengths of the system, deriving from the d
main dynamics and their comparison with these parame
calculated from the static properties. The motion of dom
walls is determined by the fundamental nature of the m
netic material. Experimental and theoretical investigations
the domain dynamics will give the characteristic sizes
domains and domain walls, hence, the underlying physic
magnetic ordering phenomena under conditions of magn
oscillations. Consequently, the dynamics of Condon dom
walls should be studied as an additional tool for the inve
gation of the phenomenon.

Ordered states, such as Condon domains, should ex
several kinds of dynamics: magnetization density wave10

and motion of domain walls. In weak magnetic fields t
wall-displacement processes of ferromagnetic domain27

govern the magnetization. The Condon domain wall sho
have a characteristic frequency of oscillations, so far
©2004 The American Physical Society17-1
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known in 3D metals. Consequently, there should be a re
nance dispersion of magnetic susceptibility, caused by w
displacement processes. Numerous observations
detected the above resonance behavior in ferromagnets
ferroelectrics28–31and have furnished experimental eviden
of the existence of domain wall mass. Thus, two types
domain dynamics experiments have been done which
vide for the most part the basis for the theoretical picture
domain wall motion.28,31Small-motion or susceptibility stud
ies mentioned above are the first type, and large-motion
velocity versus applied field are the second. The latter p
cess is motion of domain walls leads to reorientation
switching of the magnetization in domains induced by
applied magnetic field. The above research of Condon
mains dynamics deals with bulk metals. The problem of
dynamics of domain walls in thin films remains open a
merits investigation as well. It would be useful to exami
the dynamics of domain walls in the 3D metals, in whi
Condon domains have been experimentally detected. The
namics of the interphase boundaries at first-order diam
netic phase transitions were theoretically considered in R
12, 16. It would be a mistake to identify the two types of t
boundary motion, namely the interphase boundary and
main wall motion. We shall discuss this problem in Sec.

The goal of this research of the Condon domain phase
diamagnetic phase transitions is the description of the
namics of Condon domain walls of the two above-mention
types. To the best of our knowledge, all the theoretical a
experimental studies of diamagnetic phase transitions
Condon domains have been focused on large samples, an
the phenomena have been investigated on a macrosc
scale. Some static mesoscopic properties of metals unde
ing diamagnetic phase transitions or containing Condon
mains have been studied in Ref. 32.

In this paper we present a mean-field theory elabora
considering the bulk and size-dependent static and dyna
effects in the Condon domain phase. In a more genera
pect the Condon magnetism has been recently surveye
Ref. 33.

The paper is organized as follows. Section I contains
Introduction. Section II deals with the model of Lifschitz
Kosevich-Shoenberg including the Landau-type expansio
the thermodynamic potential density in the bulk and s
cases. Section III concerns the overdamped motion of
main walls. Section IV considers the inertia effect on t
motion of domain walls. Section V refers to the finite-si
effect on the motion of domain walls. Section VI is devot
to domain wall resonance and relaxation. In Sec. VII
concentrate on phase diagrams and dynamics of dom
walls in silver. Section VIII presents conclusions.

II. MODEL

The oscillator part of the thermodynamic potential dens
can be written neglecting all harmonics in the Lifschit
Kosevich formula, but one, the first harmon
approximation:34,1

V5
1

4pk2 Fa cos~b!1
1

2
a2 sin2~b!G , ~1!
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H is the magnetic field inside the materialb5k(B2H)
5k@hex14pM #, (k5 2pF/H2 ,F is the fundamental oscil-
lation frequency, hex5Hex2H is the small increment
of the magnetic fieldH and the external magnetic fieldHex ;
all the components of vectors are taken along the directio
the magnetic induction!. In the first harmonic approximation
the magnetization is found from the implicit equatio
of state:1

4pkM5a sin†k@hex14p~12n!M #‡, ~2!

a is the reduced amplitude of oscillations:a54pkA
54p(]M /]B)B5H ,1 A is the first harmonic amplitude,n is
the demagnetization factor. If the magnetic interaction
strong enough, a state of lower thermodynamic potential
be achieved over part of an oscillation cycle by the sam
breaking up into domains, for which the local value of ma
netization alternates in sign from one domain to the ne
Close to the phase-transition temperature@which is found
from the equationa(Tc ,H)51] we can present the thermo
dynamic potential per unit volume as an expansion in pow
of magnetization:

V52p~12a!M21 8
3 p3k2M4. ~3!

Accordingly, we arrived at the Landau-type thermodynam
potential density:21

V52
A

2
M21

B

4
M4, ~4!

A54p(a21);B5 32
3 p3k2. In the case of the breaking

up into domains these equations are valid over the ra
of domain existence in the dHvA cycle. According
Ref. 34, the temperature and field dependence of the am
tude is

a~T,H !5a0~H !
lT

sinh~lT!
exp@2l~H !TD#, ~5!

l[ 2p2kBmcc/e\H , mc is the cyclotron mass. The limiting
amplitude a0(H)[a(lT→0,H) is the combination of
temperature-independent factors in the Lifschitz-Kosev
formula,34 wherea05(Hm /H)3/2, kB is the Boltzmann con-
stant,e is the absolute value of the electron charge,c is the
light velocity, \ is the Planck constant,TD is the Dingle
temperature, andHm is the limiting field above which dia-
magnetic phase transition does not occur at any tempera
~it depends on the shape of the Fermi surface—see deta
Ref. 15!. To construct temperature-magnetic-field phase d
grams giving the range of the appearance of diamagn
phase transitions15 we use henceforward the implicit equa
tion for the diamagnetic phase-transition temperature~5! put-
ting this equation equal to unity at the phase transition.
a,1 (T.Td) the homogeneous phase exists with zero m
netization. Ata.1 (T,Td) the ‘‘magnetic,’’ ordered phase
appears with nonzero magnetization. The phase transitio
the second order with the well-defined transition temperat
Td takes place only at discrete values of magnetic inducti
The envelope of these points serves as the diamagn
7-2
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SIZE-DEPENDENT EFFECTS ON THE MAGNETIZATION . . . PHYSICAL REVIEW B69, 174417 ~2004!
phase-transition boundary. The left wing of the bell-shap
phase diagram corresponds to comparatively low magn
fields: lTd@1, the right side corresponds to comparative
high magnetic fieldslTd!1. In the first case the phase
transition temperature in a slabTs is given by32

Ts5TdF12S 34/3

22/3lTd
D S r c

L D 2/3G , ~6!

wherer c is the cyclotron radius,L is the slab thickness; her
Td is the bulk phase transition temperature. On the basi
the approach used in Ref. 32 one can deriveTs for high
magnetic fields,lTd!1,

Ts5TdF12
37/3

22/3~lTd!2 S r c

L D 2/3G . ~7!

The question of what the bulk is, should be answered h
depending on the value of the second term in the bracket
its contribution is negligible compared with unity, the phas
transition temperature is size independent, and the prope
of the sample are considered as the bulk ones. In the opp
case the slab properties differ from those of the bulk sam
The size dependence of the phase-transition temperatu
the slab is the strongest in Eq.~7! since, in contrast to Eq.~6!
published in Ref. 32, the second term in the brackets is c
parable to unity provided the factorslTd andr c /L are small.
The cyclotron radius is always much smaller than the s
thickness, and the conditionlTd!1 is fulfilled at high mag-
netic fields corresponding to the right side of theT-H bulk
phase diagram. Then suppression of the ordered state is
easily realized in the case of Eq.~7! than in the case of Eq
~6!. Using Eq.~7! and puttingTs50, we get that the sampl
reaches the minimal value of thicknessLmin : Lmin
5@27(3)1/2/2#r c /(lTd)3 . The size dependence of theA co-
efficient is therefore related to a diamagnetic phase-trans
point shift to lower temperatures at small sizes. The size
which the magnetic ordering becomes unstable is the crit
size.

Accordingly, at the critical sizes, a balance among
volume, surface, and gradient energies determines a ch
teristic phase-transition point (Ts,Td), i.e., a new phase
transition point, instead of the original bulk phase transit
point Td . Beyond this transition temperature the order
phase will be suppressed in the sample with the dimens
less than the critical sizes. This process is analogous to
classical homogeneous nucleation process in that conde
phase nuclei are not stable unless the radii of the conde
phase nuclei are larger than a specific critical size.

III. DYNAMICS OF DOMAIN WALLS:
OVERDAMPED MOTION

Equation~3! is valid in the center of the period of mag
netic oscillations:h50. This means that the sample is in th
center of the oscillation cycle so that the up domain and
down domain are equally wide. In the case of the station
motion of the domain wall acted upon by an ‘‘extern
force,’’ an external magnetic fieldh removes the equivalenc
of the states to the right and left of the domain wall. Wh
17441
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hÞ0 and it varies, the energy balance is altered and r
rangements of the domain structure take place, ma
through the motion of domain walls. Wall motion is th
dominant magnetization mechanism. The wall will move
such a way that the volume of an energetically favora
domain increases at the expense of an energetically unfa
able domain. Thus, we consider the forced motion of
domain wall under the driving forceh. Taking into account
the declination from the center of the period of oscillatio
and the energy of domain walls we should add the follow
two terms to Eq.~4!:

2hM1
K

2 S ]M

]x D 2

, K5
r c

2

4
.

K is the inhomogeneity coefficient. Using the tim
dependent Ginzburg-Landau equation ]M /]t
52G (dV/]M ) for the overdamped motion of domai
walls we obtain the following equation:

]M

]t
5GS K

]2M

]x2 1AM2BM31hD , ~8!

G is the Landau-Khalatnikov transport coefficient. By usi
the time-dependent Ginzburg-Landau equation we say
the local rate of displacement of the order parameter is
early proportional to the local thermodynamic force pr
sented by the functional derivative of the thermodynam
potential density. The constant of proportionality, the kine
coefficient G, is the response coefficient, which defines
time scale for the system. Therefore we suppose that
domain wall dynamics have a relaxational character. T
approach was used for the description of motion of int
phase boundaries at first-order diamagnetic phase transi
under temperature changes.12 However we also apply it to
the motion of domain walls. One of the reasons for its app
cation was actually shown in Ref. 16. Close to the first-or
phase transition the so-called wetting of a domain wall
curs: the domain wall splits into two interphase boundar
between the homogeneous phase and the ‘‘domain-up’’
‘‘domain-down,’’ respectively. The shape of the interpha
boundary coincides with that obtained in Ref. 12. B
domain-up and domain-down we understand two values
magnetization of opposite directions. This is the wetting
the domain wall by the homogeneous phase. The cha
from nonwetting to wetting behavior occurs under we
defined conditions corresponding to attaining thermo
namic coexistence of the phase involved. The wetting of
interface by a solid phase may occur when it becomes e
getically favorable to insert a thin layer of a new phase at
interface. This condition can often be met when two pha
are unstable, as in the vicinity of a critical or a triple point
first-order phase transitions. Comparison of the interph
boundary profile16 with that obtained in Ref. 12 shows tha
the interphase boundaries formed by the wetting are ki
solitons of the time-dependent Ginzburg-Landau equa
describing the interphase boundary between each of the
domains and the homogeneous phase. Since the interp
boundary and the domain boundary appear in the framew
7-3
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of this approach we also use it here for the magnetic-fie
induced motion of domain walls.

Passing to the moving frame,s5x2vt, wherev is the
velocity in the directionx, we obtain

KG
d2M

ds2 1v
dM

ds
2G~2AM1BM32ah!50. ~9!

The solution to Eq.~9! corresponding to the domain wa
boundary conditions is known35

M ~s!5M21
M12M2

11expS s

D D . ~10!

M1 ,M2 ,M3 are the roots of the equationBM32AM2ah
50:

M15
1

kp S a21

2a D 1/2

cosS w

3 D ,

M25
1

kp S a21

2a D 1/2

cosS p2w

3 D ,

M35
1

kp S a21

2a D 1/2

cosS p1w

3 D ,

w5arccosS h

hm
D ,

hm5
1

3k
@2~a21!#3/2. ~11!

M1 and M2 are magnetization values in two domai
corresponding to the two minima of the thermodynam
potential density~4! in an applied magnetic field, while
M3 is the saddle point of the thermodynamic potent
density. The solution~10! is a kink-soliton corresponding
to a large amplitude disturbance connecting two magnet
tion states by a domain wall. Athm the magnetization ha
only one direction. Thus, the kink solution~10! describes the
profile of the domain wall. The width of this moving wallD
is equal to

D5
r c

4

1

@2p~a21!#1/2. ~12!

Its velocity is given by

v5~6p!1/2Gr c~a21!1/2cosS p1w

3 D . ~13!

For h!hm

v5~6p!1/2Gr c~a21!1/2sinS h

3hm
D ~14!

or changing the sine in Eq.~14! by the argument and usin
Eq. ~11! we obtain
17441
-

l

a-

v5
~3p!1/2Gr ckh

2~a21!
. ~15!

Sinceh is small compared to the applied field inducin
magnetic oscillations, we can thus justify the conside
shape of the domain wall. The plane wall approximation
valid for small applied fields where a small mount of curv
ture allows balancing the forces tending to bend the dom
wall.

Since the domain walls do not begin to move until t
acting field nearly reaches to a threshold magnetic field,
low which the domain wall is pinned and above which t
wall moves forward, the velocity in Eq.~15! is proportional
to the excess magnetic field. This linear dependence is
pected in the mean-field theory. The depinning thresh
may be treated as a dynamic phase transition and analyze
a critical phenomenon.

The mobility of Condon domain wallsm can be deter-
mined as follows:36

m5 limh→0Fv~h!

h G , ~16!

hence

m5
~3p!

1/2
Gr ck

2~a21!
. ~17!

IV. DYNAMICS OF DOMAIN WALLS:
INERTIAL EFFECT

Domain wall resonances have not been subjected to
experimental investigations for Condon domains in the
electron gas. However, the existence of the domain w
mass can hardly be excluded from general arguments
describe the rapid, nonoverdamped, movement of the dom
wall the inertia term is added. It should include a product
the inertial factorm and the second derivative of the magn
tization with respect to time2]2M /]t2 . Then in the moving
frame the first term of Eq.~9! transforms intoK2mv2. In
this case the domain wall width is given by

D5
r c

4

1

H 2p~a21!F1124pmG2~a21!cos2S p1w

3 D G J 1/2.

~18!

The influence of the inertial effect is determined by the
mensionless factormG2. Both factorsm and G are param-
eters of the theory and should be extracted from the anal
of the system based on experiments. The connection betw
the inertial factor and the domain wall mass will be found
Sec. VII. Equation~18! becomes Eq.~12! when m50. The
velocity of the domain wall is then given by

v5

~6p!1/2Gr c~a21!1/2cosS p1w

3 D
F1124pmG2~a21!cos2S p1w

3 D G1/2. ~19!
7-4
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Equation~19! becomes Eq.~13! whenm50. Forh!hm Eqs.
~18! and ~19! give

D5
r c

4@2p~a21!#1/2

1

F11
3pG2mk2h2

~a21!2 G1/2 ~20!

and

v5
~3p!1/2Gr ckh

2~a21!

1

F11
3pG2mk2h2

~a21!2 G1/2. ~21!

If mG2!1, the inertial effect seems to be negligible.
mG2@1, the inertial effect is substantial.k2h2 is equal to
0.01–1 for reasonable values of temperature and magn
field, and its influence on the dynamics of domain walls
smaller than the influence of the factormG2. Equation~21!
exhibits critical temperature dependence in the overdam
limit. The field dependence of the velocity of domain wa
~21! coincides with that derived in Ref. 36 for the fast m
tion of domain walls in ferromagnets. It is seen from Eq.~20!
that the domain wall width narrows when the inertial fac
increases.

Comparing Eq.~21! with the equation for the velocity o
domain walls measured in ferromagnets,35

v5
mh

F11S mh

vm
D 2G1/2, ~22!

where vm is the limiting velocity of the domain wall, we
obtain a very simple formula:vm5(K/m)1/2. Thus, the lim-
iting velocity vm is determined by the ratio of the inhomo
geneity and inertia coefficients. The limiting velocity
the velocity of the domain motion when the second te
in the brackets in Eqs.~21! and ~22! is much larger than
unity. It depends on temperature, magnetic field, and
sample size and will be estimated in Sec. VII. The limiti
velocity is derived in the dissipationless case. In the sec
limiting case of the overdamped domain wall motion,m
50, v5mh. It should be noted that the law field mobilit
is unaffected by the inertial term. Equations~12!, ~18!, and
~20! are presented forv!vm , otherwise the domain wal
thickness decreases like@12(v2/vm

2 )#1/2 with increasing the
velocity.

V. DYNAMICS OF DOMAIN WALLS AND SIZE-
DEPENDENT EFFECTS

The results of Sec. IV are valid for infinite samples. It
clear that sample sizes should be taken into account.
geometry to be considered is that of a slab of infinite pla
extent (Lx ,Ly→`) and of finite thicknessLz . We consider
the layerlike domain structure with a phase transition of
second order in the case of a 180° domain. We examine
sample geometry because all the direct measurement
Condon domains3–9 were made for platelike samples, whe
two dimensions of the specimen were much larger than
17441
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thickness. Using the results of Sec. II, one can obtain eq
tions for the dynamics of domain walls in a slab of fini
thickness.

The slab under consideration is a 3D spatial system, be
infinite in two dimensions and confined in its thicknes
Since the mean-field critical exponents obtained by us
the Landau theory are not sensitive to the details of
microscopic system, they are universal.27 Thus, the critical
exponents calculated in the infinite sample are the sa
in the slab. This means that the size-finite renormalizat
of the reduced amplitude of magnetic oscillations occ
as a result of the crossover from the bulk to the slaba
→ã, whereã is the reduced amplitude of dHvA oscillation
taking into account the finite-size effect on the slab. Th
the width of the domain wall in the case of the overdamp
motion is

D5
r c

4

1

@2p~ ã21!#1/2. ~23!

Close to the phase-transition temperature where

~ ã21!5S ]a

]TD
T5Ts

~Ts2T!, ~24!

S ]a

]TD
T5Ts

5
l2Ts

3
, lTs!1,

S ]a

]TD
T5Ts

5l,lTs@1,

Ts5TdF12S Lmin

L D 2/3G . ~25!

At thick slabsã5a, and the bulk properties therefore tak
place:Ts5Td .

v5~6p!1/2Gr c~ ã21!1/2cosS p1w

3 D . ~26!

For h!hm the velocity is as follows:

v5~6p!1/2Gr c~ ã21!1/2sinS h

3hm
D ~27!

or changing sin(h/3hm) by h/3hm we obtain

v5
~3p!1/2Gr ckh

2~ ã21!
. ~28!

Equations~26!–~28! include the dependence of the veloci
on the slab thicknessL and thus describe the size-depende
dynamics of domain walls in the overdamped motion.

VI. DOMAIN WALL RESONANCE AND RELAXATION

We have considered large motion or velocity versus
plied field dynamics of Condon domain walls. The seco
type of the dynamics of Condon domain walls is a so-cal
7-5
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small-motion case or oscillations of domain walls in t
presence of a small time-varying magnetic field. We consi
this effect in the 3D case, while oscillations of Condon d
main walls in the 2D electron gas were studied in Ref. 19
analogy with ferromagnets. It is convenient to analyze t
subject by proceeding to a simple equation of motion fo
180° wall.28,29 The small-amplitude periodic motion of un
area of such a domain wall in an applied field is determin
as is that of a simple harmonic oscillator, by its effecti
massmw , its viscous damping coefficientg, and its stiffness
coefficienta. The pressure on the wall is 2M0H, M0 is the
magnetization in the domain, whereH is the applied field
parallel to the direction of the magnetization. We may wr
therefore,

mw

d2x

dt2
1g

dx

dt
1ax52M0H, ~29!

as the equation of motion of unit area of a 180° domain w
for small displacementsx from equilibrium. The viscous
damping parameterg measures the energy losses connec
with the motion of the domain wall. It is difficult to calculat
the kinetic coefficient since the damping mechanism is
completely clear. Eddy current damping of domain wall m
tion in magnetic metals is usually large. However, the mot
is also damped by magnetic relaxation mechanisms. Exp
mental evidence of the existence of domain wall mass
obtained in many materials.28,29

The presence of the domain wall mass leads to a dom
wall resonance. A characteristic frequency of domain w
oscillations should be observed by measuring magnetic
ceptibility caused by wall-displacement processes. Solv
Eq. ~29! for the case of an alternative magnetic fieldH
5H0 exp(ivt), v is the frequency, we obtain an expressi
for the susceptibility x due to the domain wal
displacement28,29

x~v!5
x0

S 12
v2

v0
2 1

iv

g/mw
D , ~30!

wherex0 is the susceptibility at the frequencyv50 given
by

x05
3~a21!

2p2k2Da
, ~31!

D is the domain width, and the frequency of the w
resonance29 ~of Condon domains! is given by

v05S a

mw
D 1/2

. ~32!

As is known,1 4px05a. Then

v05
1

k F6~a21!

pDamw
G1/2

. ~33!

Taking into account the size-dependent effect we obtain
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v05
1

k F6~ ã21!

pDamw
G1/2

. ~34!

Let us estimate this frequency under conditions of
experiment4 in silver: H59 T, T51.4 K, a52.6, mw54.7
310211 g/cm2 ~see below the details of the calculation
mw) using Eqs.~31! and ~32!. In this case the resonant fre
quency isv051.23107 s21 corresponding to the real fre
quency of about 2 MHz. The frequency of the nuclear ma
netic resonance in silver, at which the domains we
observed, was equal to 18 MHz.4 The calculated resonan
frequency may be therefore observable since the scree
due to the skin effect occurs so that the skin layer is mu
larger than the domain width.

At strong amplitudes of impulse fields the wall motio
becomes irreversible and the stiffness becomes indepen
of the wall position, i.e., the inertial and stiffness terms
Eq. ~29! are negligible. Thus,gv52M0h in this case; com-
paring this equation to Eq.~15! we obtain the equation giv
ing the relation betweenG andg :

G5
2~a21!3/2

p3/2k2r cg
. ~35!

This limiting case corresponds therefore to the stron
damped case. The motion of the domain wall in metals m
be overdamped, since eddy currents weaken inertial effe
The value of mw /g may be taken, for example, from
magnetic-resonance experiments. It is usually derived fr
the resonance linewidth.29 Using Eq.~35! we can present the
expression for mobility as follows:

m5
@3~a21!#1/2

pkg
. ~36!

In Ref. 37 the damping coefficientg is calculated provided
eddy currents are the dominant mechanism of damping
terms of our model this coefficient is given by

g5
16AD

pBrc2 , ~37!

wherer is the resistivity. For the data of the nuclear ma
netic resonance experiment in silver,4 using r510212 V m
at helium temperatures for the residual resistivity ratio, eq
to about 10 000, characteristic of pure silver samples,38 we
obtain g51.231022 g/cm2 s . Inserting the calculated
damping into Eq.~36! we have the mobility 150 cm/s G
The mobility is sensitive to the sample purity especia
through the resistivity. Using the data of Ref. 4 we getv
'15 m/s . This value shows an order of magnitude of
domain wall velocity in silver by using the given resistivit
and the experimental data of Ref. 4. According to Eqs.~36!
and ~37!, the mobility tends to zero on approaching th
phase-transition temperature. This behavior is character
of the eddy current nature of damping. In the case of
relaxation mechanism of damping the mobility strongly i
creases when the sample reaches the phase-transition
perature. This follows from Eq.~17!. Such a substantial dif-
ference between the critical temperature dependence o
7-6
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mobility of domain walls in the two cases enables to clar
the role of different mechanisms of damping in the dom
wall motion.

In our model the relation between the inertia factor a
the domain wall mass is given by

mw5
1

16p2k2 m
~a21!

D
. ~38!

Equation ~38! is the result of calculations of the kinetic
energy density

1

2
mE S ]M

]t D 2

dx5
1

32
m

~a21!

p2k2D
v2, ~39!

which is equal to1
2 mwv2. The calculation of Eqs.~38! and

~39! is based on the calculation of the difference between
energy of the moving domain wall and the energy of t
domain wall at rest, which is equal to12 mwv2.

The limiting velocity of Condon domain wallsvm under
conditions of the experiment4 in silver can be estimated b
usingvm5(K/m)1/2 ~see Sec. IV!: vm5100 m/s. In the cal-
culations of the resonant frequency and the domain w
massmw is taken as 4.7310211 g/cm2 . This value is calcu-
lated following the known consideration of the domain w
inertia in conducting media39 on the basis of the data of th
nuclear magnetic-resonance experiment.4 In our case the cal-
culation made according to Ref. 39 gives the following
sult:

mw5
pD3A

3Br2c4 . ~40!

The relaxation timet5 g/a is the time, with which the
domain wall responds to changes of the external ‘‘forc
2M0h. If the domain wall response to the applied field
rapid, the inertial effects are negligible. At frequencies lo
enough compared to the domain wall resonant frequency
motion of the domain wall behaves as a simple relaxat
with the real and imaginary parts of the susceptibility

x8~v!5x0

1

11~vt!2 , ~41!

x9~v!5x0

vt

11~vt!2 . ~42!

The calculation ofv0t gives 4A3a/p2 . This expression is
distinct from that derived in Ref. 19 for the 2D electron ga
A3/4p, and includes the reduced amplitude of dHvA osc
lations,a depending on temperature, magnetic field, and s
sample for a thin specimen. For the data4 v0t}1. The re-
sponse type is therefore unclear. However, increasing the
duced amplitude may lead tov0t@1 and provide the reso
nance response. In the opposite casev0t!1, which also
may be reached by changing temperature and magnetic fi
the eddy currents pattern appear to move along as thou
was attached to the moving domain wall. Thus, the iner
effect is negligible, and the domain wall motion is ove
damped. For this reason, the consideration in Sec. II
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valid. In a sense, the relaxational character of the dom
wall response is supported by the analysis of the heli
resonance in aluminum under conditions of the Condon
mains’ appearance.40 The softening of the helicon has bee
shown in Ref. 40 to happen owing to the occurrence of C
don domains. The growth of the helicon damping has b
found related to the relaxational dynamics of diamagne
phase transitions.40 It cannot be explained by the eddy cu
rents induced by helicons. The characteristic helicon f
quencies in Ref. 41 are several hundreds of Hertz. From
data presented in Ref. 42, the frequency that makes osc
tions of domain walls possible is about 1 MHz. It is muc
larger than the helicon frequency. This means that dom
wall motion will not occur at least at frequencies smal
than 1 MHz. This conclusion is clear from the conditions
the experiment, in which the wavelengths of the helicons
much larger than the domain width. Consequently, the da
ing of helicons observed in Ref. 41 is not caused by ed
currents induced by motion of the domain walls in the osc
lating field of helicons. The similar calculation of the fre
quency of oscillations of domain walls was made in Ref.
in beryllium. The authors42 showed that in beryllium domain
wall motion will not occur until 20 MHz. Similar result was
actually observed in Ref. 4 in silver, where the Larmor fr
quency, 18 MHz, did not cause domain motion. The analy
of the helicon damping in aluminum showed a strong te
perature increase exhibiting critical slowing down in t
electron relaxation time.40 This characterizes the overdampe
dynamics of magnetically interacting electrons in aluminu
The response of the domain walls apparently reflects the
sponse of the collectivized electrons determining the Sho
berg effect. It should evidently be of a relaxational type
aluminum. However, this fact does not necessarily lead
conclusions about the relaxational dynamics of domain w
in other metals in which Condon domains occur. A gener
ized conclusion on the type of dynamics of domain walls
not evident. The type of dynamics of domain walls rema
an open problem requiring further clarification.

VII. MAGNETIZATION REORIENTATION IN SILVER

To construct theT-H phase diagram in silver we puta
51 in Eq. ~5! and plot the dependence ofT on H.25

The curves in Fig. 1 form the geometric place of points
diamagnetic phase transitions for different Dingle tempe
tures~from 0 K to 1 K! reflecting the degree of purity of th
sample in silver: outside the bell-shape curve the homo
neous phase takes place, while the ordered phase is loc
inside the bell. The interphase curves separate the
phases. The phase diagram is constructed on the basis o
~5! equal to unity. The range of existence of the order
phase decreases with increasing the Dingle temperature
we stated in Sec. II, the region of high magnetic fields in
phase diagram exhibits a more pronounced size-depen
effect. In this range of fields the bulk phase-transition te
perature is given by22

Td5
†6@a0 exp~2lTD!21#‡1/2

l
. ~43!
7-7
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In this case the largest shift of the phase-transition temp
ture should take place.

In Fig. 2 the phase-transition temperature in the s
Ts(H) is shown as a function of the magnetic-field value
zero Dingle temperature at two ranges of comparatively
fields and comparatively high fields at different values of
slab thickness from 1mm to 10mm in silver. For construct-
ing the plot equations~5!, ~6!, and~7! are used. It is seen tha
the phase-transition temperature decreases with increa
the magnetic-field value. The growth in the Dingle tempe
ture leads to decreasing the phase-transition temperature
analytic results are obtained in these two cases. In this fig

FIG. 1. The temperature-magnetic-field phase diagram in si
for different Dingle temperatures. The bulk phase transitionTd is
given in K, the magnetic field is given in Tesla, T. The curve
denotesTD50 K, 221 K.

FIG. 2. The phase-transition temperature in the slabTs(H) as a
function of the magnetic-field value at zero Dingle temperature
two ranges: the left wing describes the region of comparatively
fields in the bulk phase diagram,lTd@1, Td is the bulk phase-
transition temperature, the right wing describes the region of c
paratively high fields in the bulk phase diagram,lTd!1, at differ-
ent values of the slab thickness from 1mm to 10mm in silver ~ten
curves!. The analytic results are obtained for the two cases.
data in the two ranges are ‘‘sewn’’ and are seen to form the comm
phase diagram also giving information about the range oflTd}1.
17441
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the results are ‘‘sewn’’ and are seen to form the comm
phase diagram also giving information about the range
lTd}1.

In Fig. 3 the phase-transition temperature in the slab
presented as a function of the slab thicknessTs(L) for dif-
ferent Dingle temperatures from 0 K to 1 K in theregion of
high magnetic fields in silver. Equations~6! and~7! are used
for the plot construction. The graph is the phase diagram
the confined sample. Under the curves the range of the
dered phase is located for each Dingle temperature. The
mogeneous phase is situated above and to the left of
curves. It is seen that the phase-transition temperature in
slab decreases with decreases of the slab thickness rea
zero at a definite thickness. This minimum thicknessLmin
depends on the magnetic field and the Dingle temperat
The graph is plotted for high magnetic fields of the bu

FIG. 4. The magnetic-field dependence of the minimal s
thicknessLmin given in micrometer is presented in the case
strong fields and at different Dingle temperatures from 0 K to 1 K
silver: 120 K, 220.2 K, 320.4 K, 420.6 K, 520.8 K, 621 K.
The magnetic-field value is given in Tesla, T.

r

t

-

e
n

FIG. 3. The phase-transition temperature in the slab is prese
as a function of the slab thicknessTs(L). The phase-transition tem
perature is given in K units at six different Dingle temperatur
from 0 K to 1 K in the region of high magnetic fields in silver
120 K, 220.2 K, 320.4 K, 420.6 K, 520.8 K, 621 K. The
thicknessL is given in micrometer.
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SIZE-DEPENDENT EFFECTS ON THE MAGNETIZATION . . . PHYSICAL REVIEW B69, 174417 ~2004!
phase diagram. Depending on the Dingle temperature
phase-transition temperature in the slab reaches the
phase-transition temperature starting from the slab thickn
approximately equal to 100mm. Above this limit value the
sample properties are the bulk ones. Below this thickness
crossover occurs from the bulk size-independent prope
to the finite-size ones.

In Fig. 4 the magnetic-field dependence of the minim
slab thicknessLmin is presented in the case of strong fiel
and at different Dingle temperatures from 0 K to 1 K in
silver. It increases with increases in the magnetic-field va
We use Eqs.~5!, ~6!, and~7! for the graph construction.

In Fig. 5 the mobility of domain wallsm is shown as a
function of temperature at the magnetic field 30 T and d
ferent Dingle temperatures from 0 K to 1 K in silver. Mobi
ity is given in units of 31/2/pkg . Equations~36!, ~24!, and
~25! are used for the calculation. The mobility increases
the temperature is lowered. It tends to zero at the pha
transition temperature exhibiting the critical temperature
pendence. The effect of critical slowing down takes place
the domain wall mobility.

In Fig. 6 the mobilitym is presented as a function of th
slab thickness at different Dingle temperatures at the m
netic field 30 T and temperature 1 K in silver. It is given in
units of 31/2/pkg . Equations~36!, ~24!, and ~25! are used
for the calculation. Mobility decreases with decrease in
slab thickness tending to zero at the minimal thickness.

In Fig. 7 the h dependence of the velocity of doma
walls v(h) is presented in units of the mobilitym in silver at
the magnetic-field value 9 T and temperature 1 K at two
Dingle temperatures: 0 K21, 0.2 K22. The velocity is given
in units of h/hm . Equations~22! and ~17! are used for the
calculation. Increasing the inertial effect would lead
change in the curvature of the graph indicating a tende
towards saturation in strong fields upon field increase. T
curve shown in this figure is plotted at a field for which t
damping is strong enough to avoid saturation of the velo
with field increase, characteristic of inertia-response ty

FIG. 5. The mobility of domain wallsm is shown as a function
of temperature at the magnetic field 30 T and different Dingle te
peratures from 0 K to 1 K in silver: 120 K, 220.2 K, 320.4 K,
420.6 K, 520.8 K, 621 K. Mobility is given in units of
31/2/pkg .
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systems. The curves end when the reorientation is comp
and the magnetization has only one direction. It is seen
the deterioration of sample purity reflected in growth of t
Dingle temperature reduces the range of the domain e
tence cutting the region of the allowed fields at which t
two-domain region takes place.

Since the temperature dependence of the resonant
quency coincides with that of mobility, the temperature a
size curves of the frequency in relative units are similar
those presented in Figs. 5 and 6.

VIII. CONCLUSIONS

The finite-size effect on the diamagnetic phase-transit
temperature is considered in high quantizing magnetic fie
in a slab. Critical slab thickness is found below which t
magnetic ordering disappears. The shift of the pha

-

FIG. 6. The mobility of domain wallsm is presented as a func
tion of the slab thicknessL at different Dingle temperatures and
magnetic field 30 T and temperature 1 K in silver: 120 K, 2
20.2 K, 320.4 K, 420.6 K, 520.8 K, 621 K. The mobility is
given in units of 31/2/pkg .

FIG. 7. The velocity of domain wallsv in units of vm , as a
function of the decrement of the magnetic fieldh, which is the
deviation from the period center of oscillations at magnetic field
and temperature 1.2 K in silver at zero Dingle temperature. T
field h is given in Gauss, G.vm is the limiting velocity of domain
walls.
7-9
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transition temperature towards lower temperatures is sh
to be especially sensitive to the sample thickness in h
magnetic fields corresponding to the right wing of theT-H
phase diagram.

Dynamics of domain walls of two types are studie
Large-motion or velocity versus applied field is the fir
type. Small-motion of domain walls exhibited in the dynam
susceptibility is the second type. The overdamped mo
of domain walls is considered in the bulk and film cas
The inertia effect on the wall motion is also examined
the two cases. The mobility of domain walls is deriv
and estimated. The characteristic frequency of domain w
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