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The existence of magnetic domains in nonferromagnetic metals at quantizing magnetic fields is examined
under conditions of de Haas—van Alphen oscillations in the range of strong magnetic fields in thin slabs in a
three-dimensional electron gas. Dynamics of Condon domain walls are studied in bulk metals and films at
time-varying and time-independent applied magnetic fields. The temperature, magnetic field, purity, and
sample size-dependent effects on the width, velocity and mobility of domain walls are calculated. Domain wall
resonance and relaxation effects are considered in the three-dimensional electron gas.
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[. INTRODUCTION pendence of the magnetic induction bifurcation due Condon
domains was satisfactory reproduced in quasi-two-
Oscillations of the thermodynamic quantities in an exter-dimensional(2D) (Ref. 24 and 3D metal€® It was shown
nal magnetic field are the result of the oscillations of thethat the temperature dependence of the magnetic induction
density of states and the fact that the magnetic field quantizdsifurcation due Condon domains has a universal character
the energy level§andau quantizationt Many properties of and does not depend on the dimensionality of the electron
the electron gas in normal metals are periodic functions ofjas. This fact confirms the long-range nature of magnetic
magnetic fields as successive Landau levels sweep throughteractions between orbital magnetic moments of conduc-
the Fermi level due to an increase of the external magnetiion electrons in metals under high quantizing magnetic
field—for instance, oscillations of magnetizatitse Haas— fields®® It evidences in favor of using the mean-field ap-
van Alphen effect—dHvA" The magnetic field changes the proach for the description of diamagnetic phase transitions.
density of states and consequently also the internal energy of condon domains in the 3D electron gas are the only type
the electron gas, and whenr4>1 (x is differential mag-  of magnetic domains, for which the dynamics of domain
netic susceptibilityM/dB, M is the oscillatory part of the \yajis have not been considered. Note however that oscilla-
magnetizatiop the “realignment” of the density of states, {jons of Condon domain walls were considered in the 2D
connected with the change of magnetic induct®roccur-  gjactron gas by analogy with ferromagn¥t@he motivation
ring during the stratification into phases, becomes energet, e jnyestigation of the domain wall dynamics of Condon
caI_Iy_ conv_e_nlent —the formatlon_ O.f Cond_on domains. domains is driven by interest in understanding the character-
This instability caused by magnetic interactions among con:-

duction electrons is known as diamagnetic phase tranﬁtion!suc magnetic lengths of the system, deriving from the do-

The transformation occurs in each cycle of dHvVA oscillations™ 2" dynamics and the!r comparison with the.se parameters
when the reduced amplitude of oscillations approachegalcmated from the static properties. The motion of domain

unity.! A series of phase transitions takes place at discret&"al,IS IS det'ermlned _by the fundamentall nat.ure Of th? mag-
values of the external magnetic field. The reason for thidietic material. Experimental and theoretical investigations of

collective effect is that an electron is subject to the magnetiéh® domain dynamics will give the characteristic sizes of
induction instead of the magnetic fielthe Shoenberg domains and domain walls, hence, the underlying physics of
effect.! Thus, an applied magnetic field of a few Tesla maymagnetic ordering phenomena under conditions of magnetic
“magnetize” nonmagnetic metals in the sense of the appearoscillations. Consequently, the dynamics of Condon domain
ance of magnetic domains. Condon domains were predicteda”S should be studied as an additional tool for the investi-
by Condon in Ref. 3 and discovered in silver by means ofgation of the phenomenon.

nuclear magnetic resonarfcand in beryllium and white tin Ordered states, such as Condon domains, should exhibit
by means of muon spin-rotation spectroscopyDomain  several kinds of dynamics: magnetization density wif/es
formation at diamagnetic phase transitions was theoreticallpnd motion of domain walls. In weak magnetic fields the
studied in Refs. 2, 3, 10—20. The diamagnetic phase transwall-displacement processes of ferromagnetic domains
tion in the single-domain case in three-dimensiofD) govern the magnetization. The Condon domain wall should
metals was described in Refs. 21-23. The temperature d&ave a characteristic frequency of oscillations, so far un-
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known in 3D metals. Consequently, there should be a resa4 is the magnetic field inside the materiak=k(B—H)
nance dispersion of magnetic susceptibility, caused by wall=k[h,,+47M], (k= 27F/H? ,F is the fundamental oscil-
displacement processes. Numerous observations haygtion frequency, hg,=H,—H is the small increment
detected the above resonance behavior in ferromagnets agfithe magnetic field and the external magnetic fiektl, ;
ferroelectrics®**and have furnished experimental evidenceall the components of vectors are taken along the direction of
of the existence of domain wall mass. Thus, two types ofhe magnetic induction In the first harmonic approximation

domain dynamics experiments have been done which prahe magnetization is found from the implicit equation
vide for the most part the basis for the theoretical picture obf state!

domain wall motiorf®3! Small-motion or susceptibility stud-

ies mentioned above are the first type, and large-motion or dakM=asink[ he,+47(1—n)M]], 2
velocity versus applied field are the second. The latter pro- . _ _
cess is motion of domain walls leads to reorientation o 1S the reduced amplitude of oscillations=4mkA
switching of the magnetization in domains induced by an:477(‘?M/aB)E%=H_’ A Is the first harmonic ?mP"‘Ud‘ﬂ IS
applied magnetic field. The above research of Condon dgthe demagnetization factor. If the magnetic interaction is

mains dynamics deals with bulk metals. The problem of the>{'ONg enough, a state of lower thermodynamic potential can
dynamics of domain walls in thin films remains open andP€ achieved over part of an oscillation cycle by the sample

merits investigation as well. It would be useful to examinePréaking up into domains, for which the local value of mag-

the dynamics of domain walls in the 3D metals, in which netization alternates in si_g_n from one dom_ain to the next.
Condon domains have been experimentally detected. The d{=/0S€ to the phase-transition temperat{nich is found
namics of the interphase boundaries at first-order diamadfom the equatiora(T.,H)=1] we can present the thermo-
netic phase transitions were theoretically considered in Ref&lynamic potential per unit volume as an expansion in powers
12, 16. It would be a mistake to identify the two types of the©f magnetization:

boundary motion, namely the interphase boundary and do- 5 8 3 okra

main wall motion. We shall discuss this problem in Sec. III. OA=2m(1-a)M°+ 3 7°k°M". ©)

. The goql of this resear(;h of the Condon dF’”.‘a'” phase anﬂccordingly, we arrived at the Landau-type thermodynamic
diamagnetic phase transitions is the description of the dyg .o o) density
namics of Condon domain walls of the two above-mentioned) '
types. To the best of our knowledge, all the theoretical and A B
experimental studies of diamagnetic phase transitions and Q=—§M2+ ZM4' (4)
Condon domains have been focused on large samples, and all
the phenomena have been investigated on a macroscopAc:47T(a_ 1):B= 2 732 In the case of the breaking

scale. Some static mesoscopic properties of metals undergab into domains these equations are valid over the range

ing diamagnetic phase transitions or containing Condon do(—)f domain existence in the dHVA cycle. According to
mains have been studied in Ref. 32. .

. ) . Ref. 34, the temperature and field dependence of the ampli-
In this paper we present a mean-field theory elaboratlorfude is

considering the bulk and size-dependent static and dynamic

effects in the Condon domain phase. In a more general as- AT
pect the Condon magnetism has been recently surveyed in a(T,H)=ap(H) =—=—=—exd —A(H)Tp], (5)
Ref. 33. Sinh(AT)

The paper is organized as follows. Section | contains an = 2 72k;m.c/efiH , m, is the cyclotron mass. The limiting
Introduction. Section Il deals with the model of Lifschitz- gmplitude ao(H)=a(AT—0H) is the combination of
Kosevich-Shoenberg including the Landau-type expansion oemperature-independent factors in the Lifschitz-Kosevich
the thermodynamic potential density in the bulk and slabxormyla3* wherea,=(H,,/H)%? kg is the Boltzmann con-

cases. Section Il concerns the overdamped motion of dosiant e is the absolute value of the electron chargés the
main walls. Section IV considers the inertia effect on thejight velocity, 7 is the Planck constanflp is the Dingle

motion of domain walls. Section V refers to the ﬁ”ite'Sizetemperature an#, is the limiting field above which dia-

effect on the motion of domain walls. Section VI is devoted yagnetic phase transition does not occur at any temperature
to domain wall resonance and relaxation. In Sec. VI We(jt depends on the shape of the Fermi surface—see details in
concentrate on phase diagrams and dynamics of domaiRef 15. To construct temperature-magnetic-field phase dia-
walls in silver. Section VIII presents conclusions. grams giving the range of the appearance of diamagnetic
phase transitior’s we use henceforward the implicit equa-
tion for the diamagnetic phase-transition temperatbyeut-

The oscillator part of the thermodynamic potential densityting this equation equal to unity at the phase transition. At
can be written neglecting all harmonics in the Lifschitz-a<1 (T>Tg) the homogeneous phase exists with zero mag-
Kosevich formula, but one, the first harmonic Netization. Ata>1 (T<Tgy) the “magnetic,” ordered phase
approximatiort®? appears with nonzero magnetization. The phase transition of
the second order with the well-defined transition temperature
T4 takes place only at discrete values of magnetic induction.
The envelope of these points serves as the diamagnetic

Il. MODEL

1
Q= ypred acogb)+ Eazsinz(b) , )
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phase-transition boundary. The left wing of the bell-shapech#0 and it varies, the energy balance is altered and rear-
phase diagram corresponds to comparatively low magnetimngements of the domain structure take place, mainly
fields: AT4>1, the right side corresponds to comparativelythrough the motion of domain walls. Wall motion is the
high magnetic fields\T4<1. In the first case the phase- dominant magnetization mechanism. The wall will move in
transition temperature in a sldh is given by such a way that the volume of an energetically favorable
s o3 domain inc_reases at the expense of an energeticqlly unfavor-
T—Tl1— 3 e able domain. Thus, we consider the forced motion of the
s—d 22371,/ L domain wall under the driving forck. Taking into account
the declination from the center of the period of oscillations

wherer ¢ is the cyclotron radiud, is the slab thickness; here .4 he energy of domain walls we should add the following
Ty is the bulk phase transition temperature. On the basis qf,, terms to Eq(4):

the approach used in Ref. 32 one can derlyefor high
magnetic fieldsAT4<1, K ( aM)Z r2
Cc

: (6)

3713 r.| 23 —hM+ 2

gl o) | Dk the ty coefficient, Usi -
d K is the inhomogeneity coefficient. Using the time-

The question of what the bulk is, should be answered hergependent Ginzburg-Landau equation JM/dt
depending on the value of the second term in the brackets. it —I' (6Q2/dM) for the overdamped motion of domain
its contribution is negligible compared with unity, the phase-walls we obtain the following equation:
transition temperature is size independent, and the properties
of the sample are considered as the bulk ones. In the opposite M ( 9*M

ax 4

Ts=Ty

- = _ _ 3
case the slab properties differ from those of the bulk sample. at =K IX2 +AM—BM+h

The size dependence of the phase-transition temperature in
the slab is the strongest in E@) since, in contrast to E{6) I' is the Landau-Khalatnikov transport coefficient. By using
published in Ref. 32, the second term in the brackets is conthe time-dependent Ginzburg-Landau equation we say that
parable to unity provided the factox§ 4 andr./L are small.  the local rate of displacement of the order parameter is lin-
The cyclotron radius is always much smaller than the slakearly proportional to the local thermodynamic force pre-
thickness, and the conditionTy<1 is fulfilled at high mag- sented by the functional derivative of the thermodynamic
netic fields corresponding to the right side of fiieH bulk  potential density. The constant of proportionality, the kinetic
phase diagram. Then suppression of the ordered state is mateefficientI', is the response coefficient, which defines a
easily realized in the case of E() than in the case of Eq. time scale for the system. Therefore we suppose that the
(6). Using Eq.(7) and puttingT,=0, we get that the sample domain wall dynamics have a relaxational character. This
reaches the minimal value of thickness,,: Lmn approach was used for the description of motion of inter-
=[27(3)Y%2]r./(\T4)%. The size dependence of tleco-  phase boundaries at first-order diamagnetic phase transitions
efficient is therefore related to a diamagnetic phase-transitionnder temperature changBstHowever we also apply it to
point shift to lower temperatures at small sizes. The size ahe motion of domain walls. One of the reasons for its appli-
which the magnetic ordering becomes unstable is the criticatation was actually shown in Ref. 16. Close to the first-order
size. phase transition the so-called wetting of a domain wall oc-
Accordingly, at the critical sizes, a balance among thecurs: the domain wall splits into two interphase boundaries
volume, surface, and gradient energies determines a chardeetween the homogeneous phase and the “domain-up” and
teristic phase-transition poinfT(<T,), i.e., a new phase- “domain-down,” respectively. The shape of the interphase
transition point, instead of the original bulk phase transitionboundary coincides with that obtained in Ref. 12. By
point T4. Beyond this transition temperature the ordereddomain-up and domain-down we understand two values of
phase will be suppressed in the sample with the dimension®agnetization of opposite directions. This is the wetting of
less than the critical sizes. This process is analogous to tHBe domain wall by the homogeneous phase. The change
classical homogeneous nucleation process in that condensé@m nonwetting to wetting behavior occurs under well-
phase nuclei are not stable unless the radii of the condenséi¢fined conditions corresponding to attaining thermody-

, ()

phase nuclei are larger than a specific critical size. namic coexistence of the phase involved. The wetting of an
interface by a solid phase may occur when it becomes ener-

IIl. DYNAMICS OF DOMAIN WALLS: getically favorable to insert a thin layer of a new phase at the
OVERDAMPED MOTION interface. This condition can often be met when two phases

are unstable, as in the vicinity of a critical or a triple point at
Equation(3) is valid in the center of the period of mag- first-order phase transitions. Comparison of the interphase
netic oscillationsh=0. This means that the sample is in the boundary profil&® with that obtained in Ref. 12 shows that
center of the oscillation cycle so that the up domain and thehe interphase boundaries formed by the wetting are kink-
down domain are equally wide. In the case of the stationargolitons of the time-dependent Ginzburg-Landau equation
motion of the domain wall acted upon by an “external describing the interphase boundary between each of the two
force,” an external magnetic field removes the equivalence domains and the homogeneous phase. Since the interphase
of the states to the right and left of the domain wall. Whenboundary and the domain boundary appear in the framework
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of this approach we also use it here for the magnetic-field- (3m)YI'r kh

induced motion of domain walls. v= W' (15
Passing to the moving frame=x—uvt, wherev is the

velocity in the directiorx, we obtain Sinceh is small compared to the applied field inducing

&M dM magnetic oscillations, we can thus justify the considered
KT to— —T(—AM+BM3—ah)=0. 9 shape of the domain wall. The plane wall approximation is
a2 " Vds ( an) © valid for small applied fields where a small mount of curva-
ture allows balancing the forces tending to bend the domain
wall.

Since the domain walls do not begin to move until the
acting field nearly reaches to a threshold magnetic field, be-

The solution to Eq.(9) corresponding to the domain wall
boundary conditions is knowin

M;—M : ; o .
M(s)=M,+ ! 2 (10 low which the domain wall is pinned and above which the
1+exp<i wall moves forward, the velocity in Eq15) is proportional
A to the excess magnetic field. This linear dependence is ex-
. 3 _ pected in the mean-field theory. The depinning threshold
M1,M2.M; are the roots of the equatidBM™~AM—ah .,y 1o treated as a dynamic phase transition and analyzed as
=0: a critical phenomenon.
1 (a_1)\12 The mobility of Condon domain wallg can be deter-

M= 277 cod® mined as follows®

Ykal 2a 3)

. v(h)
1 (a—1)\22 E<ﬂ__¢) pm=limy_q n | (16)

,=—|—=—] co ,

k7| 2a 3 hence

1/2

NN ot COS(”“" 3m"Trk .

kw| 2a 3 TP Lo 17

h
p=arccos |, IV. DYNAMICS OF DOMAIN WALLS:
m INERTIAL EFFECT

1 312 Domain wall resonances have not been subjected to any
hm=7[2(@=D)]"" (1) experimental investigations for Condon domains in the 3D
electron gas. However, the existence of the domain wall
M; and M, are magnetization values in two domains mass can hardly be excluded from general arguments. To
corresponding to the two minima of the thermodynamicdescribe the rapid, nonoverdamped, movement of the domain
potential density(4) in an applied magnetic field, while wall the inertia term is added. It should include a product of
M; is the saddle point of the thermodynamic potentialthe inertial factom and the second derivative of the magne-
density. The solutior(10) is a kink-soliton corresponding tization with respect to time- 9>M/4dt?. Then in the moving
to a large amplitude disturbance connecting two magnetizaframe the first term of Eq(9) transforms intoK —mu?2. In
tion states by a domain wall. At,, the magnetization has this case the domain wall width is given by
only one direction. Thus, the kink solutigh0) describes the

profile of the domain wall. The width of this moving wall A= e 1
is equal to T4 Tto|]| 2
2m(a—1)| 1+ 247ml'?(a—1)cos 5
_le 1 (18)
A= 4 [2m(a—1)]7* (12 . o . . .
The influence of the inertial effect is determined by the di-
Its velocity is given by mensionless factomI'2. Both factorsm andI" are param-

eters of the theory and should be extracted from the analysis

_ 1 T T+ of the system based on experiments. The connection between
v=(6m)"r(a—1) COS( 3 | (13 the inertial factor and the domain wall mass will be found in
Sec. VII. Equation(18) becomes Eq(12) whenm=0. The
Forh<hp, velocity of the domain wall is then given by
J’_
v=(6m)YTr(a—1)"?sin W) (14 (67r)1’21“rc(a—1)1’2005(773<p)
m
. o . v= o (19
or changing the sine in Eq14) by the argument and using 1+ 24rml2(a—1)cog m ‘P)
Eqg. (11) we obtain 3
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Equation(19) becomes Eq13) whenm=0. Forh<h,,, Egs.  thickness. Using the results of Sec. I, one can obtain equa-

(18) and(19) give tions for the dynamics of domain walls in a slab of finite
thickness.
le 1 The slab under consideration is a 3D spatial system, being
A (20) infinite in two dimensions and confined in its thickness.

Since the mean-field critical exponents obtained by using

T4 27(a-1)]? { 3771"2mk2h2} 2
the Landau theory are not sensitive to the details of the

(a—1)°

and microscopic system, they are univer$alThus, the critical
exponents calculated in the infinite sample are the same
(3m)YI'r kh 1 in the slab. This means that the size-finite renormalization

v= 2(a—1) 37T 2mken2172: 2D of the reduced amplitude of magnetic oscillations occurs

[ + W} as a result of the crossover from the bulk to the slab:
—3a, whered is the reduced amplitude of dHVA oscillations

If mI'2<1, the inertial effect seems to be negligible. If taking into account the finite-size effect on the slab. Then

mI'?>1, the inertial effect is substantiak®h? is equal to the width of the domain wall in the case of the overdamped

0.01-1 for reasonable values of temperature and magnetfdotion is

field, and its influence on the dynamics of domain walls is

smaller than the influence of the factmi’?. Equation(21)

exhibits critical temperature dependence in the overdamped

limit. The field dependence of the velocity of domain walls

(21) coincides with that derived in Ref. 36 for the fast mo-

le 1
A= 2 2GR D] 23

Close to the phase-transition temperature where

tion of domain walls in ferromagnets. It is seen from E2f) Ja
that the domain wall width narrows when the inertial factor (a— 1):(ﬁ> (Ts—T), (29
increases. T=T

Comparing Eq(21) with the equation for the velocity of

domain walls measured in ferromagnéts, Ja N
= =T ATl
h T=T,
V= oI (22)
1+ ’u—h) } Ja
Um (a—T>T_T=x,>\TS>1,

S

wherev,, is the limiting velocity of the domain wall, we

obtain a very simple formula:,=(K/m)¥2. Thus, the lim-

iting velocity v, is determined by the ratio of the inhomo- Ts=Tg
geneity and inertia coefficients. The limiting velocity is

the velocity of the domain motion when the second term At thick slabsé=a, and the bulk properties therefore take
in the brackets in Eqs21) and (22) is much larger than place: T .=Ty,.

unity. It depends on temperature, magnetic field, and the

sample size and will be estimated in Sec. VII. The limiting N _ o T+

velocity is derived in the dissipationless case. In the second v=(6m)Tr(a-1)"*co 3 | (26)
limiting case of the overdamped domain wall motiaon,

=0, v=pwh. It should be noted that the law field mobility For h<h, the velocity is as follows:

is unaffected by the inertial term. Equatio(i®), (18), and

1_

I-min 2R
L

(25

(20) are presented fov<v,,, otherwise the domain wall v=(6m)YIr (A 1)1’Zsin( L) 27)
thickness decreases liké — (v?/v2)]*? with increasing the ¢ 3hm
velocity. or changing sirt{/3h,,,) by h/3h,, we obtain
V. DYNAMICS OF DOMAIN WALLS AND SIZE- _ (3m) 1’2Frckh
DEPENDENT EFFECTS U= Tom-1) (28)

The results of SeC IV are valid for |nf|n|te Samples. Itis Equat|0ns(26)_(28) include the dependence of the Ve|ocity
clear that sample sizes should be taken into account. Thgn the slab thicknesis and thus describe the size-dependent

geometry to be considered is that of a slab of infinite planaglynamics of domain walls in the overdamped motion.
extent (,,Ly,—) and of finite thickness ,. We consider

the layerlike domain structure with a phase transition of the
second order in the case of a 180° domain. We examine this
sample geometry because all the direct measurements of We have considered large motion or velocity versus ap-
Condon domairs® were made for platelike samples, when plied field dynamics of Condon domain walls. The second
two dimensions of the specimen were much larger than itsype of the dynamics of Condon domain walls is a so-called

VI. DOMAIN WALL RESONANCE AND RELAXATION
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small-motion case or oscillations of domain walls in the 1 12
presence of a small time-varying magnetic field. We consider Wo=
this effect in the 3D case, while oscillations of Condon do-

main walls in the 2D electron gas were studied in Ref. 19 byLet us estimate this frequency under conditions of the
analogy with ferromagnets. It is convenient to analyze thisexperimertt in silver: H=9T, T=1.4K, a=2.6, m,=4.7
subject by proceeding to a simple equation of motion for ax 10" g/cn? (see below the details of the calculation of
180° wall?®?° The small-amplitude periodic motion of unit m,) using Egs.(31) and (32). In this case the resonant fre-
area of such a domain wall in an applied field is determinedgquency isw,=1.2x10" s ! corresponding to the real fre-

as is that of a simple harmonic oscillator, by its effectivequency of about 2 MHz. The frequency of the nuclear mag-
massm,,, its viscous damping coefficient and its stiffness netic resonance in silver, at which the domains were
coefficienta. The pressure on the wall iMH, M is the  observed, was equal to 18 MHZThe calculated resonant
magnetization in the domain, wheke is the applied field frequency may be therefore observable since the screening
parallel to the direction of the magnetization. We may writedue to the skin effect occurs so that the skin layer is much

6(a—1)
wDam,,

(34)

therefore, larger than the domain width.
At strong amplitudes of impulse fields the wall motion
d?x dx becomes irreversible and the stiffness becomes independent
mWW”L?’aJ’“XZZMOH’ (29) of the wall position, i.e., the inertial and stiffness terms in

Eq. (29) are negligible. Thusyv =2Myh in this case; com-
as the equation of motion of unit area of a 180° domain wallparing this equation to Eq15) we obtain the equation giv-
for small displacementx from equilibrium. The viscous ing the relation betweeh and y:
damping parametey measures the energy losses connected

with the motion of the domain wall. It is difficult to calculate re 2(a—1)%? 35
the kinetic coefficient since the damping mechanism is not - 77372k2r07' (39

completely clear. Eddy current damping of domain wall mo-_

tion in magnetic metals is usually large. However, the motion Nis limiting case corresponds  therefore to the strongly

is also damped by magnetic relaxation mechanisms. Experflamped case. The motion of the domain wall in metals may

mental evidence of the existence of domain wall mass waB€ overdamped, since eddy currents weaken inertial effects.

obtained in many materiaf&?2° The value ofm,/y may be taken, for example, from
The presence of the domain wall mass leads to a domaifl@gnetic-resonance experiments. It is usually derived from

wall resonance. A characteristic frequency of domain walthe resonance linewidt?. Using Eq.(35) we can present the

oscillations should be observed by measuring magnetic su§xpression for mobility as follows:

ceptibility caused by wall-displacement processes. Solving 3(a—1)112

Eqg. (29 for the case of an alternative magnetic fiett M:[ (a-1)] _

=Hgexp(owt), w is the frequency, we obtain an expression Ky

for the susceptibility y due to the domain wall

displacemert:?°

(36)

In Ref. 37 the damping coefficient is calculated provided
eddy currents are the dominant mechanism of damping. In
terms of our model this coefficient is given by

X0
M= Ty (30 L6AD .

w% vim,, Y= mBpc?’ (37)
where x, is the susceptibility at the frequeney=0 given  Wherep is the resistivity. For the data of the nuclear mag-
by netic resonance experiment in sileusing p=10"'2Q m

at helium temperatures for the residual resistivity ratio, equal
3(a—1) to about 10000, characteristic of pure silver sampiese
X0=5 270 4" (3D  obtain y=1.2x10"2 glcnfs. Inserting the calculated

damping into Eq.(36) we have the mobility 150 cm/sG.
D is the domain width, and the frequency of the wall The mobility is sensitive to the sample purity especially

resonanc€ (of Condon domainsis given by through the resistivity. Using the data of Ref. 4 we get
~15 m/s. This value shows an order of magnitude of the
a \1? domain wall velocity in silver by using the given resistivity
wo:(m_w) (B2 andthe experimental data of Ref. 4. According to E§$)

and (37), the mobility tends to zero on approaching the
As is known! 47y,=a. Then phase-transition temperature. This behavior is characteristic
of the eddy current nature of damping. In the case of the
relaxation mechanism of damping the mobility strongly in-
(33 creases when the sample reaches the phase-transition tem-
perature. This follows from Eq17). Such a substantial dif-
Taking into account the size-dependent effect we obtain  ference between the critical temperature dependence of the

1 1/2

wO—E

6(a—1)
wDam,,
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mobility of domain walls in the two cases enables to clarifyvalid. In a sense, the relaxational character of the domain
the role of different mechanisms of damping in the domainwall response is supported by the analysis of the helicon

wall motion. resonance in aluminum under conditions of the Condon do-
In our model the relation between the inertia factor andmains’ appearanc¥. The softening of the helicon has been

the domain wall mass is given by shown in Ref. 40 to happen owing to the occurrence of Con-

don domains. The growth of the helicon damping has been

1 (a—1) found related to the relaxational dynamics of diamagnetic

(38) phase transition® It cannot be explained by the eddy cur-

£ ion(38) is th It of calculati t the Kineti rents induced by helicons. The characteristic helicon fre-
quation (38) is the result of calculations of the kinetic- quencies in Ref. 41 are several hundreds of Hertz. From the

M= T6722M A

energy density data presented in Ref. 42, the frequency that makes oscilla-
2 _ tions of domain walls possible is about 1 MHz. It is much
1 oM 1 (a—-1) . ) .
“ml =] dx=—m 02 39 larger than the helicon frequency. This means that domain
2 t 32 wkKAT (39 ; i i
J ™ wall motion will not occur at least at frequencies smaller

(39) is based on the calculation of the difference between théhe experiment, in which the wavelengths of the helicons are
energy of the moving domain wall and the energy of themuch larger than the domain width. Consequently, the damp-
domain wall at rest, which is equal fam,v2. ing of helicons observed in Ref. 41 is not caused by eddy

The limiting velocity of Condon domain walls,, under ~ currents induced by motion of the domain walls in the oscil-
conditions of the experimehin silver can be estimated by lating field of helicons. The similar calculation of the fre-
usingvmz(K/m)“Z (see Sec. I} v,,=100 m/s. In the cal- auency of oscillations of domain walls was made in Ref. 42
culations of the resonant frequency and the domain wall Peryllium. The authof€ showed that in beryllium domain
massm,, is taken as 4.% 10~ 1% g/cn?. This value is calcu- wall motion will not occur until 20 MHz. Similar result was

lated following the known consideration of the domain wall actually observed in Ref. 4 in silver, where the Larmor fre-
inertia in conducting medi on the basis of the data of the duency, 18 MHz, did not cause domain motion. The analysis
nuclear magnetic-resonance experinfeimtour case the cal- ©f the helicon damping in aluminum showed a strong tem-

culation made according to Ref. 39 gives the following re-Perature increase exhibiting critical slowing down in the
electron relaxation timé This characterizes the overdamped

sult:
dynamics of magnetically interacting electrons in aluminum.
wD3A The response of the domain walls apparently reflects the re-
vaW- (40) sponse of the collectivized electrons determining the Shoen-

berg effect. It should evidently be of a relaxational type in
The relaxation timer= y/a is the time, with which the aluminum. However, this fact does not necessarily lead to
domain wall responds to Changes of the external “force"ConCIUSionS about the relaxational dynamiCS of domain walls
2Mgh. If the domain wall response to the applied field is in other metals in which Condon domains occur. A general-
rapid, the inertial effects are negligible. At frequencies lowized conclusion on the type of dynamics of domain walls is
enough compared to the domain wall resonant frequency th@ot evident. The type of dynamics of domain walls remains
motion of the domain wall behaves as a simple relaxatior®n Open problem requiring further clarification.
with the real and imaginary parts of the susceptibility
VIl. MAGNETIZATION REORIENTATION IN SILVER

1
X'(w):Xomy (41) To construct theT-H phase diagram in silver we pat
=1 in Eq.(5) and plot the dependence ®fon H.%®
or The curves in Fig. 1 form the geometric place of points of

X"(w):XolJr—z- (42 diamagnetic phase transitions for different Dingle tempera-
(07) tures(from 0 K to 1 K) reflecting the degree of purity of the

The calculation ofw,r gives 4y3a/w2. This expression is Sample in silver: outside the bell-shape curve the homoge-
distinct from that derived in Ref. 19 for the 2D electron gas,N€ous phase takes place, while the ordered phase is located
J3/4m, and includes the reduced amplitude of dHVA oscil-inside the bell. The_ mterphase curves separate the two
lations,a depending on temperature, magnetic field, and siz&hases. The phase diagram is constructed on the basis of Eq.
sample for a thin specimen. For the data,r=1. The re- (5) equal to unity. '_I'he_ range of existence of the ordered
sponse type is therefore unclear. However, increasing the r@hase decreases with increasing the Dingle temperature. As

duced amplitude may lead @,7>1 and provide the reso- W€ stated in Sec. Il, the region of high magnetic fields in the
nance response. In the opposite casg<1, which also phase diagram exhibits a more pronounced size-dependent

may be reached by changing temperature and magnetic fielﬁ,ﬁea' In this range of fields the bulk phase-transition tem-
the eddy currents pattern appear to move along as though RE"ature is given 7

was attached to the moving domain wall. Thus, the inertial 2

effect is negligible, and the domain wall motion is over- T _[6[agexp(—ATp)—1]] '

X : S . 43
damped. For this reason, the consideration in Sec. Il is d N (43
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FIG. 1. The temperature-magnetic-field phase diagram in silver FIG. 3. The phase-transition temperature in the slab is presented
for different Dingle temperatures. The bulk phase transifignis 2 @ function of the slab thickne$s(L). The phase-transition tem-

given in K, the magnetic field is given in Tesla, T. The curve 1 perature is given in K units at six different Dingle temperatures
denotesT,=0K, 2—1K. from 0 K to 1 K in theregion of high magnetic fields in silver:

1-0K, 2-0.2K, 3-0.4K, 4-0.6K, 5-0.8K, 6-1K. The

. . . thicknessL is given in micrometer.
In this case the largest shift of the phase-transition tempera-

ture should take place.

In Fig. 2 the phase-transition temperature in the sla
Ts(H) is shown as a function of the magnetic-field value at Tl
zero Dingle temperature at two ranges of comparatively low" 4"~ he oh . in the slab i
fields and comparatively high fields at different values of the In Fig. 3 the p ase-transition temperature in the siab is
slab thickness from m to 10 um in silver. For construct- presente_zd as a function of the slab th'CkF‘@@L) fo_r dif-
ing the plot equationb), (6), and(7) are used. It is seen that fgrent Dmglg te.”‘per?‘t“r.es o0 K tp 1 K in theregion of
the phase-transition temperature decreases with increasi h magnetic fields in silver. Equatl_o(ﬁ) and(7) are used
the magnetic-field value. The growth in the Dingle tempera- f the plot construction. The graph is the phase diagram for

ture leads to decreasing the phase-transition temperature. Tgée (zjonfr;ned §a|rnplet. (;deer thﬁ Sgrvlestthe ran?e othEe ﬁr'
analytic results are obtained in these two cases. In this figur ered pnase 1S located Tor each Lingie temperature. the ho-
mogeneous phase is situated above and to the left of the

curves. It is seen that the phase-transition temperature in the
slab decreases with decreases of the slab thickness reaching

| zero at a definite thickness. This minimum thicknéssg,
3 depends on the magnetic field and the Dingle temperature.
34 2 The graph is plotted for high magnetic fields of the bulk
1 100
< o ] |
= 804
70—.

60
| 50
0 . . ; ;

T T T 40 «

t}he results are “sewn” and are seen to form the common
phase diagram also giving information about the range of

i 10

I-min (um)

H (T) 7
20
FIG. 2. The phase-transition temperature in the Jiglhl) as a 104
function of the magnetic-field value at zero Dingle temperature at
two ranges: the left wing describes the region of comparatively low 30
fields in the bulk phase diagram,T4>1, T4 is the bulk phase- H (T)
transition temperature, the right wing describes the region of com-
paratively high fields in the bulk phase diagranT,y<1, at differ- FIG. 4. The magnetic-field dependence of the minimal slab
ent values of the slab thickness fromuin to 10 um in silver (ten thicknessL ,;; given in micrometer is presented in the case of
curves. The analytic results are obtained for the two cases. Thestrong fields and at different Dingle temperatures from 0 Kto 1 K in
data in the two ranges are “sewn” and are seen to form the commosilver: 1-0K, 2—0.2 K, 3-0.4 K, 4-0.6 K, 5-0.8K, 6—1K.
phase diagram also giving information about the rangeTfec 1. The magnetic-field value is given in Tesla, T.
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p (rel. units)
u (rel. units)

0.0

. 0.0 T T
0 1 2 3 4 0 10 20 30 40

T (K) L (um)
FIG. 5. The mobility of domain wallg is shown as a function FIG. 6. The mobility of domain wallg is presented as a func-

of temperature at the magnetic field 30 T and different Dingle temion of the slab thicknesk at different Dingle temperatures and at
peratures frm 0 K to 1 K insilver: 1-0K, 2—0.2K, 3-0.4K,  magnetic field 30 T and temperagul K in silver: 1-0K, 2
4-0.6K, 5-0.8K, 6—1K. Mobility is given in units of —0.2K, 3-0.4K, 4-0.6K, 5-0.8K, 6—1K. The mobility is
32 ky. given in units of 3%/ k.

: . . systems. The curves end when the reorientation is complete
phase diagram. Depending on the Dingle temperature thﬁ/

h - in the slab h he b nd the magnetization has only one direction. It is seen that
P ase—trans!t!on temperature in t e slab reaches t.e Ute deterioration of sample purity reflected in growth of the
phase—.transmon temperature starting fro.m t.he_‘ slab thICI(nesﬁingle temperature reduces the range of the domain exis-
approximately gqual to 10@m. Above this I|m!t va]ue the tence cutting the region of the allowed fields at which the
sample properties are the bulk ones. Below this thickness t

¢ the bulk size-ind dent i o-domain region takes place.
Crossover occurs rom the bulk size-independent properties gjnce the temperature dependence of the resonant fre-
to the finite-size ones.

) o . ency coincides with that of mobility, the temperature and
In Fig. 4 the magnetic-field dependence of the m|n|malqu y coincl " Ty peratu

lab thicknesd. . i dinth ¢ field size curves of the frequency in relative units are similar to
slab thickness. ., is presented in the case of strong fields,co presented in Figs. 5 and 6.

and at different Dingle temperatures 1firo0 K to 1 K in
silver. It increases with increases in the magnetic-field value.
We use Eqs(5), (6), and(7) for the graph construction. VIil. CONCLUSIONS

In Fig. 5 the mobility of domain wallg. is shown as a e finite-size effect on the diamagnetic phase-transition
function of temperature at the magnetic field 30 T and dif-temperature is considered in high quantizing magnetic fields

ferent Dingle temperatures from 0 K to 1 K in silver. Mobil- i 3 sjab. Critical slab thickness is found below which the
ity is given in units of 3 /aky. Equations(36), (24), and  magnetic ordering disappears. The shift of the phase-
(25) are used for the calculation. The mobility increases as

the temperature is lowered. It tends to zero at the phase- 15-
transition temperature exhibiting the critical temperature de-
pendence. The effect of critical slowing down takes place in
the domain wall mobility.

In Fig. 6 the mobilityu is presented as a function of the
slab thickness at different Dingle temperatures at the mag- %+ 2
netic field 30 T and temperatrl K in silver. It is given in
units of 3¥%ky. Equations(36), (24), and (25) are used
for the calculation. Mobility decreases with decrease in the=
slab thickness tending to zero at the minimal thickness. >

In Fig. 7 theh dependence of the velocity of domain
wallsv (h) is presented in units of the mobility in silver at

—_

0.4

€el. units)

0.2

the magnetic-field value 9 T and temperatur K at two 0.0 . . . ' - 1
Dingle temperatures: 0K 1, 0.2 K—2. The velocity is given o0 o2 o4 . o8 o8 10
in units of h/h,,,. Equations(22) and (17) are used for the A (rel. units)

calculation. Increasing the inertial effect would lead to g 7. The velocity of domain walls in units of v, as a

change in the curvature of the graph indicating a tendencynction of the decrement of the magnetic figd which is the
towards saturation in strong fields upon field increase. Theeviation from the period center of oscillations at magnetic field 9 T
curve shown in this figure is plotted at a field for which the and temperature 1.2 K in silver at zero Dingle temperature. The

damping is strong enough to avoid saturation of the velocityield h is given in Gauss, Gu,, is the limiting velocity of domain
with field increase, characteristic of inertia-response typeavalls.
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transition temperature towards lower temperatures is showaoscillations under the alternative magnetic-field application
to be especially sensitive to the sample thickness in higlis calculated.
magnetic fields corresponding to the right wing of theH
phase diagram.

Dynamics of domain walls of two types are studied. ACKNOWLEDGMENTS
Large-motion or velocity versus applied field is the first )
type. Small-motion of domain walls exhibited in the dynamic ~ The authors are grateful to the Forschungszentriinhju
susceptibility is the second type. The overdamped motioK. Urban, and B. Grushko for their hospitality and to P.
of domain walls is considered in the bulk and film casesWyder for his interest in this work. Helpful conversations
The inertia effect on the wall motion is also examined inwith I. Sheikin and R. Kramer are acknowledged. One of us
the two cases. The mobility of domain walls is derived (A.G.) is indebted to A. Stepanov for stimulating discus-
and estimated. The characteristic frequency of domain wakions.

*Corresponding author. FAX numbet: 972-4-9832167. Email ad- 103 167(1999.

dress: algor@math.haifa.ac.il 23p. Gordon, M. A. Itskovsky, and P. Wyder, J. Phys. Soc. &#).
1D. ShoenbergMagnetic Oscillations in Metal§Cambridge Uni- 136 (1997.
versity Press, Cambridge, England, 1984 24A. Gordon, M. A. ltskovsky, I. D. Vagner, and P. Wyder, Phys.

2A. Privorotskii, Thermodynamic Theory of Domain Structures  Rev. Lett.81, 2787(1998.

(Wiley, New York Israel University Press, Jerusalem, 1976 25A. Gordon, M. A. Itskovsky, and P. Wyder, Phys. Rev.5B,
3J. H. Condon, Phys. Re¥5, 526 (1966. 10 864(1999.
4J. H. Condon and R. E. Walstedt, Phys. Rev. L 211.612(1968. 263, C. Ying, B. J. Mclintyre, and J. J. Quinn, Phys. Re2,H801
5G. Solt, C. Baines, V. S. Egorov, D. Herlach, E. Krasnoperov, and  (1970.

U. Zimmermann, Phys. Rev. Left6, 2575(1996. 27L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetuni@ 153
6G. Solt, C. Baines, V. S. Egorov, D. Herlach, E. Krasnoperov, and  (1935.

U. Zimmermann, Hyperfine Interact04, 257 (1997. 28, P. Malozemoff and J. C. Slonczewskagnetic Domain Walls
’G. Solt, C. Baines, V. S. Egorov, D. Herlach, E. Krasnoperov, and in Bubble Materials(Academic Press, New York, 1979

U. Zimmermann, Phys. Rev. B9, 6834(1999. 23, v, Vonsovskii,Magnetism(Wiley, New York, 1974.
8G. Solt, V. S. Egorov, C. Baines, D. Herlach, and U. Zimmer- *°M. E. Lines and A. M. GlassPrinciples and Application of Fer-

mann, Phys. Rev. B2, R11 933(2000. roelectrics and Related Materiallarendon, Oxford, 19737
G. Solt, C. Baines, V. S. Egorov, D. Herlach, and U. Zimmer- 3!B. Barbara, D. Gignoux, and C. Vettietectures on Modern

mann, J. Appl. Phys387, 7144(2000. Magnetism (Science Press, Beijing/Springer-Verlag, Berlin
05, c. Ying and J. J. Quinn, Phys. Rev. L&®, 231 (1969. 1988.
1A, Gordon and I. D. Vagner, J. Phys.: Condens. Mae8787  *2A. Gordon and P. Wyder, Phys. Rev.@, 224427(2001).

(1990. 33A. Gordon, I. D. Vagner, and P. Wyder, Adv. Phy52, 385
127, Gordon, 1. D. Vagner, and P. Wyder, Phys. Rev4B 658 (2003.

(1990. 34|, M. Lifshitz and A. M. Kosevich, Zh. Eksp. Teor. Fi29, 730
3a. Gordon, 1. D. Vagner, and P. Wyder, Solid State Comnu#). (1959 [Sov. Phys. JETR, 236 (1956)].

401 (1990. 35M. A. Collins, A. Blumen, J. F. Currie, and J. Ross, Phys. Rev. B
YA, Gordon, B. Grushko, I. D. Vagner, and P. Wyder, Phys. Lett. A 19, 3630(1979.

160, 315(1991). 36y, G. Bar'yakhtar, B. A. Ivanov, and M. V. Chetkin, Usp. Fiz.
158, Grushko, A. Gordon, I. D. Vagner, and P. Wyder, Phys. Rev. B Nauk 146, 417 (1985 [Sov. Phys. Usp28, 563(1985].

45, 3119(1992. 87H. J. Williams, W. Shockley, and C. Kittel, Phys. R&0, 1090
6. Gordon, T. Salditt, I. D. Vagner, and P. Wyder, Phys. Rev. B (1950.

43, 3775(1997). 38B. R. Barnard, A. D. Caplin, and M. N. B. Dalimin, J. Phys. F:
M. A. Itskovsky, G. F. Kventsel, and T. Maniv, Phys. Rev58, Met. Phys.12, 719(1982.

6779(1994. 3w, J. Carr, Jr., inMagnetism and Magnetic Materials-1976d-
18 p, Vagner, T. Maniv, and E. Ehrenfreund, Phys. Rev. L&t ited by J. J. Becker and G. H. Lander, AIP Conf. Proc. No. 34

1700(1983. (AIP, New York, 1976, p. 108.
¥R. S. Markiewicz, Phys. Rev. B4, 4172(1986. 40A. Gordon, W. Joss, N. Logoboy, and I. D. Vagner, Physica B
20T, Maniv and I. D. Vagner, Phys. Rev. &L, 2661 (1990. 337, 303(2003.
21A. Gordon, M. A. ltskovsky, and P. Wyder, Phys. Rev5B 812 4!V, 1. Bozhko and E. P. Volskii, Zh. Eksp. Teor. Fi26, 337(1977)

(1997. [Sov. Phys. JETR6, 335(1977)].

22p. Gordon, M. A. Itskovsky, and P. Wyder, Solid State Commun. “’L. R. Testardi and J. H. Condon, Phys. RB{, 3928(1969.

174417-10



