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Updated tests of scaling and universality for spin-spin correlations in the two- and three-
dimensional spin-S Ising models using high-temperature expansions

P. Butera* and M. Comi
Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica, Universita` di Milano-Bicocca, 3 Piazza della Scienza,

20126 Milano, Italy
~Received 9 December 2003; published 19 May 2004!

We have extended, from order 12 through order 25, the high-temperature series expansions~in zero magnetic
field! for the spin-spin correlations of the spin-S Ising models on the square, simple-cubic and body-centered-
cubic lattices. On the basis of this large set of data, we confirm accurately the validity of the scaling and
universality hypotheses by resuming several tests which involve the correlation function, its moments and the
exponential or the second-moment correlation lengths.
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I. INTRODUCTION AND CONCLUSIONS

Moderate-length high-temperature~HT! expansions
~through order 12! and low-temperature~LT! expansions for

the spin-spin correlation function~sscf! G(rW,T;S) of the
nearest-neighbor Ising models with general spinS were first
computed1–3 three decades ago on various lattices in tw
dimensions~2D! and in 3D. Motivations for the study o
these models came not only from their direct phenome
logical interest, but mainly from the conjecture4 that, in a
given space dimension, the exponents characterizing
critical behavior are independent both of the lattice struct
and of the spin magnitudeS. This conjecture was the firs
step towards the modern notion of universality class. In
same years also the hypothesis of critical scaling5 was put
forward. Many studies1–3,6–13of the mentioned HT and LT
series were devoted to test the validity and the main con
quences of these basic hypotheses.4–6,13–19Although the re-
sults sometimes were not as precise as was hoped, or cov
only the S51/2 case, the scaling tests suggested that
critical sscf is a homogeneous function of appropriate v
ables, while the universality tests indicated that the criti
indices and suitable combinations20 of critical amplitudes are
independent of the spinS and lattice structure. A few year
later, the first substantial extension21,22 of HT Ising series in
3D @through order 21 on the body-centered-cubic~bcc! lat-
tice only# did not make higher expansion coefficients ava
able for the sscf, but only for its two lowest even mome
and therefore various tests could not be repeated and
dated.

We are now resuming the HT part of those pioneer
analyses in order to improve their extent and accuracy
taking advantage of our recent extension23–25 from order 12
through order 25 of the HT expansions for the sscf of
Ising model with general spinS, in 2D on the square~sq!
lattice and in 3D on the simple-cubic~sc! and the bcc lat-
tices. From these data we have also derived series for re
quantities, in particular for a variety of moments of the ss
which are computed through order 25, and for the expon
tial ~or ‘‘true’’ ! correlation length defined via the exponent
decay of the sscf, which, however, can be extended o
through order 19. For reasons of space we have not tabu
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in this paper the series analyzed, but have included them
our on-line library24 of HT data for the spin-S Ising model in
order to make them more widely available for further stud
Since this is the largest body of series data so far compu
for these systems, we have already been studying othe
pects of them in previous papers. In particular, in Ref. 23
have accurately confirmed that the residual weak spin dep
dence observed26 in lower-order studies of the susceptibilit
exponentg and of the correlation-length exponentn in 3D
on the bcc lattice, should not be ascribed to small violatio
of universality, but can be simply explained away as nume
cal inaccuracies due to expected non-negligible sp
dependent corrections to the leading scale behavior. M
over we have tested the universality of several amplitu
combinations obtaining similar results. In Ref. 25 an ana
gous survey of universal quantities was performed in 2D
the sq-lattice case. Shorter series~but only for theS51/2
case! had been analyzed in Ref. 27.

From the evidence presented here we can conclude
our HT data for the sscf have by now reached an extens
sufficient to make the use of modern series-extrapola
techniques possible and generally reliable. Therefore we
able to exhibit more convincingly both in 2D and in 3
many expected properties related to scaling and univers
also in some cases in which the old analyses led to incon
sive or not very precise results.

The rest of the paper is organized as follows. In Sec. II
shall outline the main features of the model, introduce o
notations and conventions, and very briefly recall the sca
and universality properties expected for the sscf along w
the corresponding tests discussed in full detail by the ab
cited papers.6–12 Therefore, in Sec. III we can restrict ou
selves to only a few comments on the numerical results.

II. THE SPIN- S ISING MODELS

The spin-S Ising models with nearest-neighbor interactio
are defined by the Hamiltonian

H$s%52
J

2 (
(rW,rW8)

s~rW !s~rW8!2h(
rW

s~rW !, ~1!
©2004 The American Physical Society16-1
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where J is the exchange coupling, ands(rW)5sz(rW)/S with
sz(rW) a classical spin variable at the lattice siterW, taking the
2S11 values2S,2S11, . . . ,S21,S. The sum runs over
all nearest-neighbor pairs of sites. For simplicity, the near
neighbor lattice spacing will be set equal to 1 everywhe
We shall consider expansions in the usual HT variableK
5J/kBT whereT is the temperature,kB the Boltzmann con-
stant, andK will be called ‘‘inverse temperature’’ for brevity
In the critical region we shall also refer to the standa
‘‘reduced-temperature’’ variable t(S)512Tc(S)/T51
2K/Kc(S).

We shall study the HT expansion of the~connected! sscf
defined as

G~rW,T;S!5^s~0W !s~rW !&c . ~2!

In order to estimate numericallyG(rW,T;S) asT→Tc1, we
have allowed for its expected6,28 behavior: in the 2D case

G~rW,T;S!'G~rW,Tc ;S!2E1~rW;S!t~S!ln t~S!1••• ~3!

and in the 3D case

G~rW,T;S!'G~rW,Tc ;S!2E1~rW;S!t~S!12a1••• . ~4!

HereE1(rW;S) is the critical amplitude of the leading singu
lar correction,a50.110(1)~Ref. 23! denotes the critical ex
ponent of the specific heat in 3D and the dots indic
higher-order corrections.

The correlation-function momentmn(T;S) of order n is
defined as

mn~T;S!5(
rW

urWun^s~0W !s~rW !&c ~5!

~for n,0 the sum extends torWÞ0).
The expected asymptotic behavior ofmn(T;S) as

T→Tc1 is

mn~T;S!'mn
1~S!t~S!2(g1nn)@11an

1~S!t~S!u1•••#.
~6!

In 2D the exponentu of the leading singular correction i
larger than unity, while in 3D a recent simultaneous stud29

of a set of models in the Ising universality class has s
gested the very precise estimateu50.517(4).

The scattering function, namely the Fourier transform
G(rW,T;S),

Ĝ~kW ,T;S!5(
rW

exp@2 ikW•rW#G~rW,T;S!, ~7!

for kW50 yields the zero-field reduced susceptibility

Ĝ~0W ,T;S!5m0~T;S!5x~T;S!5(
rW

^s~0W !s~rW !&c . ~8!

The second-moment correlation length is defined ind spatial
dimensions by
17441
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f

jsm
2 ~T;S!5

m2~T;S!

2dx~T;S!
5

d ln Ĝ~kW ,T;S!

dk2 U
k50

. ~9!

For T.Tc the sscf is exponentially decreasing for larger and
therefore following Ref. 6, beside the ‘‘second-moment’’ co
relation length we can also define the inverse ‘‘exponenti
~or ‘‘true’’ ! correlation length in the directioneW as

keW~T;S!52 lim
r→`

1

r
lnuG~reW ,T;S!u. ~10!

Since the singularity ofĜ(kW ,T;S) closest to the real axis
in the complexk plane is located at6 ikeW(T;S), the expo-
nential correlation length can be obtained by solvi
recursively9 the equation

Ĝ~ ikWeW ,T;S!2150. ~11!

Rather than working directly withkeW(T;S) which is not an
ordinary power series inK, it is expedient6 to form the quan-
tity

jeW
2
~T;S!5

f 2

2@cosh~ f keW !21#
~12!

which is an ordinary power series inK. In Eq. ~12! f is a
geometrical factor depending on the unit vectoreW and on the
lattice considered. In particular, ifeW is directed along a lattice
axis, we havef 51 for the sq and the sc lattices, whilef
51/A3 for the bcc lattice.

So far, 3D data for this quantity were published exc
sively for S51/2, and did not extend beyond order 15 in t
sc-lattice case30 or beyond order 10 in the bcc-lattice case9

In 2D the HT expansion can be computed exactly6,28 for S
51/2, but no data have been published forSÞ1/2. In Ref.
24, we have tabulated the expansion ofjeW

2(T;S) through or-

der 19 foreW directed along a lattice axis, in the case of the
sc, and bcc lattices and withS51/2,1,3/2,2,5/2,3,̀.

In order to avoid possible confusion, it should be point
out that in Ref. 6 ourjeW

2 was denoted byL28(eW ), while the

symbol jeW was used to denotekeW
21 . Our notation might be

more suggestive since ourjeW
2 compares very closely with

jsm
2 . Indeed, the true and second-moment correlation leng

are almost identical in magnitude above the critical tempe
ture. In particular on the sq lattice, wheneW is directed along
a lattice axis, the HT expansion coefficients ofjeW

2 and jsm
2

coincide through sixth order forS51/2, through fourth order
for S51, and through second order for higher values of
spin. In 3D, in the sc-lattice case, the expansion coefficie
of jeW

2 and jsm
2 coincide through seventh order forS51/2,

through fifth order forS51 and through third order for
higher values ofS. In the case of the bcc lattice, the expa
sion coefficients coincide through third order for all values
the spin. Moreover, up to the maximum order of our comp
tation, the noncoinciding coefficients differ by less th
0.1%.
6-2
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The two correlation lengthsjeW and jsm are expected to
share the same critical exponentn so that their asymptotic
behavior whenT→Tc1 can be written as

jsm~T;S!' f sm
1 ~S!t~S!2n@11asm

1 ~S!t~S!u1•••# ~13!

and

jeW~T;S!' f 1~S!t~S!2n@11a1~S!t~S!u1•••#. ~14!

Here the critical amplitudef 1(S) is independent ofeW ,
since the sscf becomes spherically symmetric near the c
cal point. The ratio

Qj
1~S!5 f 1~S!/ f sm

1 ~S! ~15!

is a universal combination of critical amplitudes,20 i.e., it is
expected to depend only on the lattice dimensionalityd, but
not on the spinS or the lattice structure.

For T→Tc10 and in zero magnetic field, the sscf is e
pected to exhibit the asymptotic structure

G~rW,T;S!'~1/r !d221hAl~S!D0„Cl~S!r /jsm~T;S!…1•••

~16!

when bothr andjsm are much larger than the lattice spaci
~with arbitraryr /jsm). Equation~16! together with these as
sumptions onr andjsm is usually referred to as the ‘‘strong
scaling hypothesis’’~while it is called the ‘‘weak-scaling hy-
pothesis,’’ if its validity is restricted to ther→` limit with
fixed r /jsm). In Eq. ~16!, h is the critical exponent describ
ing the decay of the sscf at the critical point,D0(x) is called
the critical scaling function,Al(S) andCl(S) are scale fac-
tors. The dots indicate subcritical corrections proportiona
a positive power of some irrelevant field. The scaling fun
tion D0(x) is expected to be universal: its structure does
depend on the particular model under study provided tha
belongs to a given universality class. On the contrary
scale factorsAl(S),Cl(S) depend on the spin and the lattic
l. The validity of the asymptotic structure Eq.~16! was veri-
fied analytically32 for the spinS51/2 Ising model in 2D.

For the scattering functionĜ(kW ,T;S) the analogous scal
ing form asT→Tc1 can be written as

Ĝ~kW ,T;S!'Al8~S!t~S!2gD̂08„Cl8~S!k2jsm
2
…1••• . ~17!

If the scale factorsAl8(S),Cl8(S) are specified adopting th
normalization conditions

D̂08~0!51, S dD̂08~x!

dx
D

x50

521, ~18!

one can write6 ask→0

Ĝ~0W ,T;S!/Ĝ~kW ,T;S!51/g1„kjsm~T;S!…

511jsm
2 ~T;S!k2

2S4~T,S!jsm
4 ~T;S!k4

1S6~T,S!jsm
6 ~T;S!k61O~k8!,

~19!

where the functiong1„kjsm(T;S)… is universal and thus the
quantities
17441
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S4~T,S!5c4

m4~T;S!m0~T;S!

m2
2~T;S!

21, ~20!

S6~T,S!5c6

m6~T;S!m0
2~T;S!

m2
3~T;S!

22S4~T,S!21 ~21!

with c451/4 andc651/36 for d52, while c453/10 and
c653/70 for d53, have finite universal values a
T→Tc1.

All S2n(T,S), as well as the differencejeW
2
2jsm

2 , vanish6

in the mean-field related approximations. Therefore the m
nitudes of these quantities at the critical point can be take
a measure of the deviation of a given system from Gaus
behavior, which turns out to be very small on the HT side
the critical point.

More generally, it was observed13 that the scaling hypoth-
esis, Eq.~16!, implies that, at the critical point, the ratios

Rm,n;r ,s~T;S!5
mm~T;S!mn~T;S!

m r~T;S!ms~T;S!
~22!

with m1n5r 1s are universal. These ratios are dominat
by the critical singularity also for negative values of the i
dicesm,n,r ,s provided that each index exceeds221h, as
follows from Eq.~6!.

Finally, the determination of the amplitudeE1(rW;S) of
the leading singularity of the sscf@see Eqs.~3! and~4!# gives
another opportunity to perform universality and scaling tes
In order that the structure of Eqs.~3! and~4! be compatible11

with the strong-scaling hypothesis, Eq.~16!, the amplitudes
E1(rW;S) must scale asr z with z5(12a)/n122d2h,
namely

E1~rW;S!'E0
1~S!r z ~23!

for large enoughr, independently of the spin and the lattic
structure. In 2D the valuez50.75 is expected, while in 3D
adopting our recent estimate23 of the values of the
correlation-length exponentn50.6299(2) and of the expo
nenth50.036(1), weshould havez50.3765(10).

III. NUMERICAL RESULTS

Let us first observe that, due to the leading singular c
rections in Eqs.~3! and~4!, whose amplitudesE1(rW;S) grow
with r as indicated by Eq.~23!, determining accurately
G(rW,Tc ;S) @as well asE1(rW;S) itself# is a rather delicate
matter for which it is crucial to rely on sufficiently man
expansion coefficients. We should also consider that
number of nontrivial coefficients in our series decreases w
increasingr, and correspondingly the precision of our es
mates ofG(rW,Tc ;S) @and E1(rW,S)] deteriorates. In Refs
6-3
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TABLE I. Our estimates of the critical-point valuesG(rW,Tc ;S) of the spin-spin correlation function fo
the nearest-neighbor Ising models with spinS51/2,1,3/2,2,̀ on the sq, sc, and bcc lattices. For comparis
with our results, the first column labeled@S51/2# shows the only available previous estimates. In the cas
the sq lattice, we have cited the exact~Refs. 6 and 35! values. In the case of the nearest-neighbor correla
@r 5(1,0,0)# on the sc lattice, we have reported in the first column the estimate obtained using our num
procedure with the seriesO(K45) of Ref. 36 and have also cited a value~Ref. 37! obtained in a recent
high-precision Monte Carlo simulation. In the remaining cases we have reported the estimates of R
obtained from seriesO(K12). We are not aware of previous calculations forS.1/2.

Lattice rW @S51/2# S51/2 S51 S53/2 S52 S5`

sq ~1,0! 0.707107 . . . a 0.7071~1! 0.5806~3! 0.517~1! 0.481~1! 0.338~1!

~1,1! 0.636620 . . . a 0.6366~1! 0.5207~4! 0.463~1! 0.431~1! 0.303~1!

~2,0! 0.594715 . . . a 0.5947~2! 0.486~1! 0.433~1! 0.402~1! 0.282~2!

~2,1! 0.573159 . . . a 0.573~1! 0.467~1! 0.417~2! 0.387~2! 0.272~2!

~2,2! 0.540380 . . . a 0.540~1! 0.442~1! 0.393~2! 0.365~2! 0.256~4!

sc ~1,0,0! 0.330200~5!b 0.33020~6! 0.24203~6! 0.20756~6! 0.18918~6! 0.12886~6!

~1,0,0! 0.33017~3!c

~1,1,0! 0.208~2!d 0.2086~1! 0.1529~1! 0.1311~1! 0.1194~1! 0.08141~5!

~1,1,1! 0.164~4!d 0.1633~1! 0.1197~1! 0.1027~1! 0.0936~1! 0.0638~1!

~2,0,0! 0.162~4!d 0.1608~2! 0.1178~2! 0.1010~2! 0.0921~2! 0.0627~1!

~3,0,0! 0.104~7!d 0.1017~3! 0.0746~2! 0.0639~2! 0.0581~2! 0.0396~1!

bcc ~1,1,1! 0.2735~7!d 0.27265~5! 0.19653~5! 0.16763~5! 0.15243~5! 0.10341~5!

~2,0,0! 0.200~2!d 0.19971~5! 0.14394~5! 0.12278~5! 0.11165~5! 0.07575~5!

~2,2,0! 0.157~2!d 0.15627~5! 0.11269~5! 0.09614~5! 0.08743~5! 0.05934~5!

~3,1,1! 0.129~3!d 0.12751~5! 0.09193~5! 0.07843~5! 0.07132~5! 0.04839~5!

~2,2,2! 0.131~3!d 0.12914~5! 0.09315~5! 0.07945~5! 0.07224~5! 0.04903~5!

aReference 6.
bReference 36.
cReference 37.
dReference 33.
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7, 12, and 33, due to the small number of coefficients av
able at that time, a generalized Neville extrapolation of
partial sums had to be used for determiningG(rW,T;S) and
E1(rW;S) in the vicinity of Tc . Taking advantage of our new
series, we can now improve substantially the numerical
summation of the HT series by resorting to first- or seco
order inhomogeneous differential approximants34 ~DA’s! bi-
ased withKc(S). ~Here and in what follows we have adopte
the values of the critical temperatures tabulated in Refs
and 25.! It does not come as a surprise that our procedu
are slightly less efficient in 2D than in 3D, probably due
the presence of logarithms in the leading correction term
the critical asymptotic behavior, Eq.~3!, and also that in 3D
the bcc-lattice series always yield the most accurate res
If we restrict to 1.0,r ,6.0 the relative uncertainty of ou
estimates of the critical sscf should generally remain w
below 1%. In 2D this can be guessed by comparing
estimates ofG(rW,Tc ;S) obtained from our seriesO(K25)
with the known exact results in the sq-lattice case6,35 for S
51/2 and safely assuming that the precision does not d
riorate too fastly when higher values ofS are considered. In
3D no exact results are available, but the HT series for
nearest-neighbor correlation function was recen
extended36 through order 45 in the sc-lattice case forS
51/2. Therefore, in this case, we are able to compare
estimate at order 25 with the result obtained by applying
17441
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same numerical procedures to the series extended thro
order 45.~It would be very interesting if the improved finite
lattice technique devised for this remarkable calculat
could be generalized as effectively beyond first-neighbor c
relations and to generalS.! We should also mention that
completely consistent alternative estimate of the critical
lattice nearest-neighbor sscf has been obtained37 in a recent

high-precision Monte Carlo study. For other values ofrW in
the sc-lattice case and in the bcc-lattice case our results
only be compared with calculations33 using the old series
O(K12). Table I lists our estimates ofG(rW,Tc ;S) with their
apparent uncertainties for a small sample of values ofrW and
S. Previous estimates of the critical sscf from shorter ser
which are available only forS51/2, are shown for compari
son in the first column, labeled@S51/2#, of this table. In
Figs. 1, 2, and 3 we have plotted our estimates
ln@G(rW,Tc ;S)# vs ln(r) for 1<r<5 with S51/2,1,3/2,2 in the
cases of the sq, sc, and bcc lattices, respectively. We h
also shown by continuous lines the results of one-param
fits to the leading asymptotic behaviors ln@G(rW,Tc ;S)#'c(S)
2(d221h)ln(r) expected for larger. We have taken only
c(S) as a free parameter and fixedh50.25 in 2D andh
50.036 in 3D.
Both in 2D and in 3D, we have estimated alsoE1(rW;S) from
the amplitude of the singularity of the second temperat
6-4
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UPDATED TESTS OF SCALING AND UNIVERSALITY . . . PHYSICAL REVIEW B69, 174416 ~2004!
derivative of G(rW,T;S), again using inhomogeneous firs
and second-order DA’s biased withKc(S) and a. Our esti-
mates ofE1(rW;S) for a small sample of values ofrW andSare
shown in Table II. They are compared with the exac
known values6 for S51/2, in the case of the sq lattice, o
with a few old estimates11 from shorter series, in the case

FIG. 1. Estimates ofG(rW,Tc ;S) on the sq lattice. The meanin
of the symbols is as follows. Triangles,S51/2; squares,S51;
rhombs,S53/2; circles,S52. The spinS points are shifted verti-
cally by the quantity 1/22S in order to make the figure more leg
ible. The continuous lines represent fits to the leading asympt

behaviors lnG(rW,Tc ;S)'c(S)2h ln(r) expected for larger. We have
takenc(S) as a fit parameter and fixedh50.25.

FIG. 2. Estimates ofG(rW,Tc ;S) on the sc lattice. The meanin
of the symbols is the same as in Fig. 1. The spinSpoints are shifted
vertically by the quantity 1/22S in order to make the figure mor
legible. The continuous lines represent fits to the leading asymp

behaviors lnG(rW,Tc ;S)'c(S)2(11h)ln(r) expected for larger. We
have takenc(S) as a fit parameter and fixedh50.036.
17441
the sc and bcc lattices. A comparison with the exact result
2D and with our estimate using the mentioned high-or
calculation in the sc lattice36 for S51/2 still suggests that
for all values ofS, the relative accuracy of our estimate
should not be generally worse than 1%.

In Figs. 4, 5, and 6 forS51/2,1,3/2,2 we have plotted
ln@E1(rW;S)# vs ln(r) in the case of the sq, sc, and bcc lattice
respectively. Forr .4.5 in the case of the sc lattice andr
.6.0 in the case of the bcc lattice, we have not reported
estimates ofE1(rW;S), because the available nontrivial H
coefficients of the sscf are not sufficiently many to allo
estimates at the level of precision above mentioned. In th
figures we have also represented by continuous lines the
sults of one-parameter fits to the leading asymptotic beh
iors ln@E1(rW;S)#'b(S)1z ln(r) expected for larger. We have
taken forz the expected valuesz50.75 in the 2D case and
z50.3765 in the 3D cases, while the free parametersb(S)
have been determined using in the fits only the data witr
*1.8. Indeed, our data show visible deviations fro
asymptotic scaling for sufficiently smallr, particularly so in
the case of the sc lattice, but the asymptotic consistency w
the strong-scaling hypothesis Eq.~23!, is good. The behavior
of E1(rW;1/2) as a function ofr was first studied in Ref. 7
using seriesO(K12) for the face-centered-cubic lattice. I
that analysis bothz and b(1/2) were determined by a two
parameter fit of the numerical results to the leadi
asymptotic behavior under the very simple assumption
the corrections to scaling are negligible even for ‘‘not ve
large’’ r. ~As we have indicated above, our data show th
such a strong assumption is untenable.! The authors of Ref. 7
concluded thatz50.47(6), an estimate in sharp disagree
ment with the valuez50.33(1) expected from the expone

ic

tic

FIG. 3. Estimates ofG(rW,Tc ;S) on the bcc lattice. The meanin
of the symbols is the same as in Fig. 1. The spinSpoints are shifted
vertically by the quantity 1/22S in order to make the figure more
legible. The continuous lines represent fits to the leading asymp

behaviors lnG(rW,Tc ;S)'c(S)2(11h)ln(r) expected for larger. We
have takenc(S) as a fit parameter and fixedh50.036.
6-5



for
on
er
nearest-
ed

imates

P. BUTERA AND M. COMI PHYSICAL REVIEW B69, 174416 ~2004!
TABLE II. Amplitudes E1(rW;S) of the leading singular correction of the sscf near the critical point
the nearest-neighbor Ising models with spinS51/2,1,3/2,2,̀ on the sq, sc, and bcc lattices. For comparis
with our results, the first column of the table labeled@S51/2# shows the available estimates from oth
sources. In the case of the sq lattice, the exact values are taken from Ref. 6. In the case of the
neighbor correlation on the sc lattice@r 5(1,0,0)#, we have reported in the first column our estimate obtain
from the seriesO(K45) of Ref. 36. In the remaining cases, whenever available, we have quoted the est
of Ref. 11 obtained from seriesO(K12). We are not aware of other published calculations forS.1/2.

Lattice rW @S51/2# S51/2 S51 S53/2 S52 S5`

sq ~1,0! 0.561100 . . . a 0.562~1! 0.621~1! 0.623~1! 0.613~1! 0.484~1!

~1,1! 0.793515 . . . a 0.794~1! 0.819~1! 0.812~1! 0.794~1! 0.616~1!

~2,0! 1.0103348 . . . a 1.01~1! 1.02~1! 1.01~1! 0.987~2! 0.759~2!

~2,1! 1.120022 . . . a 1.11~1! 1.13~1! 1.11~1! 1.08~1! 0.826~2!

sc ~1,0,0! 2.252~5!b 2.27~2! 2.16~2! 2.03~2! 1.93~2! 1.42~2!

~1,1,0! 2.38~2!c 3.01~2! 2.72~2! 2.52~2! 2.38~2! 1.72~2!

~1,1,1! 2.86~4!c 3.40~2! 3.03~2! 2.78~2! 2.62~2! 1.90~2!

~2,0,0! 3.16~6!c 3.53~2! 3.14~2! 2.88~2! 2.71~2! 1.95~2!

~3,0,0! 4.36~2! 3.79~2! 3.45~2! 3.24~2! 2.33~2!

bcc ~1,1,1! 2.010c 2.325~5! 2.167~5! 2.022~5! 1.917~5! 1.401~5!

~2,0,0! 2.707~6! 2.442~6! 2.256~6! 2.129~6! 1.545~6!

~2,2,0! 3.126~6! 2.767~6! 2.535~6! 2.384~6! 1.720~6!

~3,1,1! 3.41~1! 2.98~1! 2.72~1! 2.55~1! 1.83~1!

~2,2,2! 3.44~1! 3.01~1! 2.74~1! 2.57~1! 1.84~1!

aReference 6.
bReference 36.
cReference 11.
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totic
valuesn50.638(2) andh50.041(6) generally accepted a
that time. A few years later, forS51/2, the somewhat lowe
estimatez50.39(4) was obtained11 from an analysis of LT
expansions in powers ofu5exp(22K) up to orderu11 and

FIG. 4. Estimates ofE1(rW;S) on the sq lattice. The meaning o
the symbols is the same as in Fig. 1. The spinS points are shifted
vertically by the quantity 1/22S in order to make the figure mor
legible. The continuous lines represent fits to the leading asymp

behaviors lnE1(rW;S)'b(S)1z ln(r) expected for larger. We have
takenb(S) as a fit parameter and fixedz50.75.
17441
u13, on the sc and the bcc lattices, respectively. In this la
study, however, a third fit parameter had been introduce
order to allow for small corrections to the asymptotic scali
behavior ofE1(rW;S). Also this estimate ofz did not agree

tic

FIG. 5. Estimates ofE1(rW;S) on the sc lattice. The meaning o
the symbols is the same as in Fig. 1. The spinS points are shifted
vertically by the quantity 1/22S in order to make the figure more
legible. The continuous lines represent fits to the leading asymp

behaviors lnE1(rW;S)'b(S)1z ln(r) expected for larger. We have
takenb(S) as a fit parameter and fixedz50.3765.
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with the value expected at that time, but is quite compati
with the presently preferred value.

Before any strong confidence in the results of such tw
or three-parameter fits can be justified, we believe, howe
that the HT series should be further extended in order
enlarge significantly the range of values ofr for which
E1(rW;S) can be determined with sufficient accuracy.

Having tabulated a wide sample of estimates
G(rW,Tc ;S) andE1(rW;S) with some improvement both in th
extent and the accuracy, with respect to the very few e
mates available in the literature, we are now in the posit
to exhibit more directly the scaling property by examini
the near-critical sscf in ther space. ForT→Tc10, as sug-
gested by Eq.~16!, by a proper choice of the scale facto
Al(S) andCl(S), we should be able to plot the quantities

r d221hG~rW,T;S!'Al~S!D0„Cl~S!r /jsm~T;S!… ~24!

vs r /jsm in such a way that the curves, associated to vari
values ofSand to different lattices, collapse on each other.
Fig. 7, we have plotted ln@rd221hG(rW,T;S)# vs r /jsm(T;S) in
the case of the sq lattice takingrW5(2,0) and S
51/2,1,3/2,2. Our data points refer to the range of tempe
tures for which 1.5&jsm&200. Figure 8 shows the analo
gous plot for ln@rd221hG(rW,T;S)# vs r /jsm in the case of the sc
and bcc lattices. Here we have takenrW5(4,0,0) andS
51/2,1,3/2,2 and have plotted data in the range of temp
tures for which 2.7&jsm&400. Completely consistent re
sults are obtained also for other choices ofrW. As already
observed, within these limitations, the present length of

FIG. 6. Estimates ofE1(rW;S) on the bcc lattice. The meaning o
the symbols is the same as in Fig. 1. The spinS points are shifted
vertically by the quantity 1/22S in order to make the figure mor
legible. The continuous lines represent fits to the leading asymp

behaviors lnE1(rW;S)'b(S)1z ln(r) expected for larger. We have
takenb(S) as a fit parameter and fixedz50.3765.
17441
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HT series appears sufficient to obtain reliable estimates
our results are consistent with the strong-scaling hypoth
to a good approximation.

The very small mismatch of the curves in the extrem
regionsr /jsm!1 or r /jsm@1 which can still be observed i
related ~i! to the fact that the scaling property has
asymptotic character, while in practice the size ofr still can-
not exceed a few lattice spacings if we want to use a dec

tic

FIG. 7. The logarithm of the scaling functionr d221hG(rW,T;S)
vs x5r /jsm(T;S) in the case of the sq lattice. The data repres

the ssfc’s withrW5(2,0) andS51/2,1,3/2,2 in the range of tempera
tures for which 1.5&j(T;S)&200. The meaning of the symbols i
the same as in Fig. 1.

FIG. 8. The logarithm of the scaling functionr d221hG(rW,T;S)
vs x5r /jsm(T;S) in the case of the sc and the bcc lattices. For b

lattices the data represent the ssfc’s withrW5(4,0,0) and S
51/2,1,3/2,2 in the range of temperatures for which 2.7&j(T;S)
&400. The meaning of the symbols is the same as in Fig. 1 for
sc-lattice case. For the bcc-lattice data we have used full symbo
the same shape.
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TABLE III. Estimates ofS4(Tc ;S) @see Eq.~20!# andS6(Tc ;S) @see Eq.~21!# in the case of the sq, sc
and bcc lattices for various values ofS. For comparison, we have also reported a few previous estimates l
in Refs. 31 and 30, indicating the method of calculation and the expected uncertainty, when available
for convenience, we have listed in theS51/2 column also the results of the renormalization group and
optimized continuous-spin calculations which, of course, do not refer to spinS51/2.

Quantity Lattice S51/2 S51 S53/2 S52 S5`

S4(Tc ;S)3104 sq 7.8~3! 7.9~3! 7.9~3! 7.6~3! 7.5~3!

S4(Tc ;S)3104 ~Exact!a sq 7.936796 . . .
S6(Tc ;S)3105 sq 1.1~1! 1.1~1! 1.0~1! 1.1~1! 1.0~1!

S6(Tc ;S)3105 ~Exact!a sq 1.095991 . . .
S4(Tc ;S)3104 sc 3.76~8! 3.9~2! 3.77~8! 3.75~8! 3.7~2!

S4(Tc ;S)3104 bcc 3.75~5! 3.74~5! 3.76~5! 3.76~5! 3.77~5!

S6(Tc ;S)3105 sc 1.0~2! .9~2! 0.9~2! 0.8~2! 0.7~2!

S6(Tc ;S)3105 bcc 0.9~1! 0.86~5! 0.85~5! 0.85~5! .85~5!

S43104 @HT# b sc 3.0~2!

S43104 @HT# c sc 5.5~15!

S43104 @HT# c bcc 7.1~15!

S63105 @HT# b sc 0.5~2!

S63105 @HT# c sc 0.5~2!

S63105 @HT# c bcc 0.9~3!

S43104 ~opt.cont.spin!b sc 3.90~6!

S63105 ~opt.cont.spin!b sc .88~1!

S43104 (e-expans.!b 3.3~2!

S63105 (e-expans.!b 0.7
S43104 ~g-expans.!b 4.0~5!

S63105 ~g-expans.!b 1.3~3!

aReference 30.
bReference 31.
cReference 6.
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number of expansion coefficients in the estimate
G(rW,T;S), ~ii ! to the residual influence of the subcritical co
rections.

We can further test the universality properties of the s
in the k space, namely the critical scattering function,
simply showing thatS4(Tc ;S) and S6(Tc ;S) are indepen-
dent ofSand of the lattice structure. Also these quantities
calculated by first- and second-order DA’s biased w
Kc(S). Since higher-order moments of the sscf~in which the
less accurately known correlations between distant spins
weighted much more than those between near spins! enter
into the definitions, Eqs.~20! and ~21!, the convergence o
the extrapolations is not expected to be very fast, particul
so in the cases of the sq and sc lattices. We should
consider thatS4(Tc ;S) is the very small difference betwee
unity and the critical value of some multiple of a ratio
moments of the sscf, so that a very high accuracy in
estimate of the latter is needed to achieve even a relati
modest precision forS4(Tc ;S). The same remark applie
also in the case ofS6(Tc ;S). In Table III we have collected
our estimates ofS4(Tc ;S) andS6(Tc ;S) in the case of the
sc, sq, and bcc lattices forS51/2,1,3/2,2,̀ . We have also
reported a few previous estimates30,31 from the existing lit-
erature.

In the case of the sq lattice our data suggest the fi
estimatesS4(Tc ;S)57.8(3)31024 and S6(Tc ;S)51.1(1)
17441
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31025, independently ofS and in reasonable agreeme
with the high-precision determinations30 of S4(Tc ;1/2)
57.936 796 . . .31024 and of S6(Tc ;1/2)51.095 991 . . .
31025 obtained by numerical integration of the analytica
known38 sscf of theS51/2 model in 2D. In 3D our results
for the bcc lattice show a definitely smaller uncertainty th
for the sc lattice. They suggest the final estima
S4(Tc ;S)53.8(1)31024 andS6(Tc ;S)50.9(1)31025 in-
dependently of the spinS and lattice structure. Our result
are therefore consistent with the corresponding estimate
the literature, in particular with the valuesS4(Tc)
53.90(6)31024 and S6(Tc)50.88(1)31025 obtained30,31

optimizing the parameters of a continuous-spin model, un
the assumption of universality. Let us also mention th
renormalization-group calculations31 in the e-expansion
scheme to third order yielded the estimatesS453.3(2)
31024 andS650.731025, while, in the coupling-constan
expansion scheme to fourth order, the corresponding res
wereS454.0(5)31024 andS651.3(3)31025.

The results of our analysis of the universal rati
Rm,n;r ,s(Tc ;S) are reported in Table IV. They also show in
dependence of the spin and of the lattice structure withi
good precision. Our series-extrapolation procedure base
first- and second-order DA’s uses only our estimates
Kc(S) and does not need to be biased also withg andn as it
6-8
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TABLE IV. Estimates of the moment ratiosRm,n;r ,s(Tc ;S) @see Eq.~22!# in the case of the sq, sc, and bc
lattices for various values ofS.

Rm,n;r ,s Lattice S51/2 S51 S53/2 S52 S5`

R0,1;1/2,1/2 sq 1.1641~1! 1.1642~1! 1.1642~1! 1.1642~1! 1.1641~1!

R0,1;1/4,3/4 sq 1.1211~1! 1.1211~1! 1.1211~1! 1.1211~1! 1.1210~1!

R23/4,1/4;21/4,21/4 sq 1.299~1! 1.300~1! 1.301~1! 1.300~1! 1.301~1!

R21,21/2;23/4,23/4 sq 1.121~5! 1.124~4! 1.124~4! 1.125~4! 1.126~4!

R0,1;1/2,1/2 sc 1.1320~1! 1.1320~2! 1.1319~1! 1.1319~2! 1.1319~2!

R0,1;1/2,1/2 bcc 1.1320~1! 1.1319~1! 1.1319~1! 1.1319~1! 1.1319~1!

R0,1;1/4,3/4 sc 1.0977~2! 1.0977~2! 1.0976~2! 1.0976~2! 1.0976~2!

R0,1;1/4,3/4 bcc 1.0977~1! 1.0976~1! 1.0976~1! 1.0976~1! 1.0976~1!

R1/2,1/2;1/4,3/4 sc 0.9697~2! 0.9697~2! 0.9698~2! 0.9697~2! 0.9697~2!

R1/2,1/2;1/4,3/4 bcc 0.9697~1! 0.9697~1! 0.9697~1! 0.9697~1! 0.9698~1!

R21,21/2;23/4,23/4 sc 1.084~1! 1.084~1! 1.084~1! 1.084~1! 1.083~1!

R21,21/2;23/4,23/4 bcc 1.083~1! 1.083~1! 1.083~1! 1.083~1! 1.083~1!
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was necessary in the generalized Neville procedure7,12 em-
ployed with the short series of Ref. 13. Considering that
valuesg51.25 andn50.625~or n50.638) of the exponents
accepted at the time of that study are somewhat diffe
from the currently preferred ones and that the extrapolati
are very sensitive to those values, a comparison with
numerical results of Ref. 13 has little meaning.

Finally, we have tested both in 2D and in 3D the sp
independence of the ratioQj

1(S) defined by Eq.~15!. In 3D
also the lattice independence ofQj

1(S) can be tested.
In 2D, on the sq lattice, the nontrivial expansion coe

cients of the ratiojeW
2(T;S)/jsm

2 (T;S) are not sufficiently
many and their behavior is not smooth enough to yield v
accurate results. Therefore our best estimate ofQj

1(S) @by
first-order DA’s biased withKc(S)] cannot be more precis
thanQj

1(S)51.0004(2), independently ofS. Our rough es-
timate is, however, consistent with the more accurate de
mination Qj

1(1/2)51.000 402 . . . obtained in theS51/2
case in which, as already indicated above, very long se
are available21 for jsm

2 (T;1/2), while jeW
2(T;1/2) is exactly

known.6,28

*Electronic address: butera@mib.infn.it
1D.M. Saul, M. Wortis, and D. Jasnow, Phys. Rev. B11, 2571

~1975!; J.P. Van Dyke and W.J. Camp,ibid. 9, 3121~1974!.
2W.J. Camp and J.P. Van Dyke, Phys. Rev. B11, 2579~1975!; W.J.

Camp, D.M. Saul, J.P. Van Dyke, and M. Wortis,ibid. 14, 3990
~1976!.

3P.F. Fox and A.J. Guttmann, J. Phys. C6, 913 ~1973!; D.S.
Ritchie and J.W. Essam,ibid. 8, 1 ~1975!.

4C. Domb and M.F. Sykes, Phys. Rev.128, 168 ~1962!.
5M.E. Fisher, J. Math. Phys.5, 944 ~1964!; B. Widom, J. Chem.

Phys. 43, 3892 ~1965!; 43, 3898 ~1965!; C. Domb and D.L.
Hunter, Proc. Phys. Soc. London86, 1147~1965!.

6M.E. Fisher and R.J. Burford, Phys. Rev.156, 583 ~1967!; H.B.
Tarko and M.E. Fisher, Phys. Rev. B11, 1217~1975!.

7M. Ferer, M.A. Moore, and M. Wortis, Phys. Rev. Lett.22, 1382
~1969!.
17441
e

nt
s
e

y

r-

es

In 3D we can use both first- and second-order DA’s bias
with Kc(S). The very smooth bcc-lattice series yield th
most accurate results. Our final estimate isQj

1(S)
51.000 200(3), independently ofS and of the lattice struc-
ture. So far, this ratio could be computed31 only for S51/2
from a 15 term series on the sc lattice, with the res
Qj

1(1/2)51.000 125(50). A more precise estimate31 Qj
1

51.000 199(3) was obtained indirectly~and assuming uni-
versality!, from optimized HT series for a continuous-sp
model on the sc lattice. Within the renormalization-gro
approach,31 the estimateQj

151.000 160(20) was obtained i
the e expansion to third order, while the coupling-consta
expansion technique to fourth order gaveQj

1

51.000 205(30).

ACKNOWLEDGMENTS

The second named author~M.C.! passed away before th
final text of this report was completed, therefore the fi
author is entirely responsible for any errors or omissio
This work was partially supported by the Ministry of Un
versity and Research.

8M.A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Lett.22, 940
~1969!.

9M. Ferer and M. Wortis, Phys. Rev. B6, 3426~1972!.
10H.B. Tarko and M.E. Fisher, Phys. Rev. Lett.31, 926 ~1973!.
11M.E. Fisher and H.B. Tarko, Phys. Rev. B11, 1131~1975!.
12M. Ferer, Phys. Rev. B16, 419 ~1977!.
13M. Ferer, M.A. Moore, and M. Wortis, Phys. Rev. B3, 3911

~1971!.
14M.E. Fisher, Phys. Rev. Lett.16, 11 ~1966!; L.P. Kadanoff, Phys-

ics ~Long Island City, N.Y.! 2, 263 ~1966!; D. Jasnow and M.
Wortis, Phys. Rev.176, 739 ~1968!; P.G. Watson, J. Phys. C2,
1883~1969!; 2, 2158~1969!; R.B. Griffiths, Phys. Rev. Lett.24,
1479 ~1970!; R.B. Griffiths and J.C. Wheeler, Phys. Rev. A2,
1047~1970!; L.P. Kadanoff, Report at the Newport Beach Co
ference 1970~unpublished!; in Proceedings of E. Fermi 1970
School on Critical Phenomena, edited by M.S. Green~Aca-
6-9



ys

-

ev.

a

i-

B

P. BUTERA AND M. COMI PHYSICAL REVIEW B69, 174416 ~2004!
demic, London, 1971!; C. Domb, inStatistical Mechanics at the
Turn of the Decade, edited by E.G.D. Cohen~Dekker, New
York, 1971!; D.D. Betts, A.J. Guttmann, and G.S. Joyce, J. Ph
C 4, 1994~1971!.

15C. Domb, inPhase Transitions and Critical Phenomena, edited
by C. Domb and M.S. Green~Academic Press, London, 1974!,
Vol. 3.

16K.G. Wilson, Phys. Rev. B4, 3174~1971!; 4, 3184~1971!.
17A.Z. Patashinski and V.L. Pokrovskii,Fluctuation Theory of

Phase Transitions~Pergamon, Oxford, 1979!.
18C. Domb,The Critical Point~Taylor & Francis, London, 1996!.
19M.E. Fisher, Rev. Mod. Phys.46, 597 ~1974!; 70, 653 ~1998!.
20V. Privman, P.C. Hohenberg, and A. Aharony, inPhase Transi-

tions and Critical Phenomena, edited by C. Domb and J. Leb
owitz ~Academic Press, New York, 1989!, Vol. 14.

21B.G. Nickel, in Phase Transitions: Cargese 1980, edited by M.
Levy, J.C. Le Guillou, and J. Zinn-Justin~Plenum, New York,
1982!; S. Gartenhaus and W.S. McCullough, Phys. Rev. B38,
11 688~1988!.

22B.G. Nickel and J.J. Rehr, J. Stat. Phys.61, 1 ~1990!.
23P. Butera and M. Comi, Phys. Rev. B65, 144431 ~2002!;

hep-lat/0112049~unpublished!.
24P. Butera and M. Comi, hep-lat/0204007~unpublished!; J. Stat.

Phys.109, 311 ~2002!.
17441
.

25P. Butera, M. Comi, and A.J. Guttmann, Phys. Rev. B67, 054402
~2003!.

26J. Zinn-Justin, J. Phys.~Paris! 42, 783 ~1981!.
27P. Butera and M. Comi, Phys. Rev. B62, 14 837~2000!; 60, 6749

~1999!; 58, 11 552 ~1998!; 56, 8212 ~1997!; Phys. Rev. E55,
6391 ~1997!.

28L. Onsager, Phys. Rev.65, 117 ~1944!.
29Y. Deng and H.W.J. Blo¨te, Phys. Rev. E68, 036125~2003!.
30M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. R

E 60, 3526~1999!.
31V. Martin-Mayor, A. Pelissetto, and E. Vicari, Phys. Rev. E66,

026112~2002!.
32L.P. Kadanoff, Nuovo Cimento B44, 276 ~1966!.
33D.S. Ritchie and M.E. Fisher, Phys. Rev. B5, 2668~1972!.
34A.J. Guttmann, inPhase Transitions and Critical Phenomen,

edited by C. Domb and J. Lebowitz~Academic Press, New
York, 1989!, Vol. 13.

35H. Au-Yang and J.H.H. Perk, Phys. Lett. A110, 131 ~1984!.
36H. Arisue and T. Fujiwara, Nucl. Phys. B~Proc. Suppl.! 34, 240

~1994!; H. Arisue and T. Fujiwara, Phys. Rev. E67, 066109
~2003!.

37E. Luijten, Interaction Range, Universality and the Upper Crit
cal Dimension~Delft University Press, Delft, 1997!.

38T.T. Wu, B.M. McCoy, C.A. Tracy, and E. Barouch, Phys. Rev.
13, 316 ~1976!.
6-10


