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Updated tests of scaling and universality for spin-spin correlations in the two- and three-
dimensional spinsS Ising models using high-temperature expansions
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We have extended, from order 12 through order 25, the high-temperature series exp@mgiemsmagnetic
field) for the spin-spin correlations of the spiising models on the square, simple-cubic and body-centered-
cubic lattices. On the basis of this large set of data, we confirm accurately the validity of the scaling and
universality hypotheses by resuming several tests which involve the correlation function, its moments and the
exponential or the second-moment correlation lengths.
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[. INTRODUCTION AND CONCLUSIONS in this paper the series analyzed, but have included them into
our on-line library* of HT data for the spir8 Ising model in
Moderate-length high-temperaturg HT) expansions order to make them more widely available for further study.
(through order 1Rand low-temperaturé.T) expansions for ~Since this is the largest body of series data so far computed
the spin-spin correlation functiofsscj G(r,T;S) of the for these systems, we have already begn studying other as-
nearest-neighbor Ising models with general spiwere first pects of them in Previous papers. In pqrtlcular, n Ref. 23 we
computed™ three decades ago on various lattices in tWO_have accurately confirmed that the residual weak spin depen-

dimensions(2D) and in 3D. Motivations for the study of dence observeflin lower-order studies of the susceptibility

these models came not only from their direct henomeno?Xponemy and of the correlation-length exponentin 3D
Co . Y ) phen on the bcc lattice, should not be ascribed to small violations
logical interest, but mainly from the conjectfirthat, in a

: . ) - of universality, but can be simply explained away as numeri-
given space dimension, the exponents characterizing thga| inaccuracies due to expected non-negligible spin-

critical behavior are independent both of the lattice Strucwr%ependent corrections to the leading scale behavior. More-
and of the spin magnitud& This conjecture was the first o er we have tested the universality of several amplitude
step towards the modern notion of universality class. In thgompinations obtaining similar results. In Ref. 25 an analo-
same years also the hypothesis of critical scalwas put  gous survey of universal quantities was performed in 2D for
forward. Many studies>°**of the mentioned HT and LT the sq-lattice case. Shorter serigit only for the S=1/2
series were devoted to test the validity and the main consesasg had been analyzed in Ref. 27.
quences of these basic hypothe$es'®>~*°Although the re- From the evidence presented here we can conclude that
sults sometimes were not as precise as was hoped, or covergdr HT data for the sscf have by now reached an extension
only the S=1/2 case, the scaling tests suggested that theufficient to make the use of modern series-extrapolation
critical sscf is a homogeneous function of appropriate varitechniques possible and generally reliable. Therefore we are
ables, while the universality tests indicated that the criticalable to exhibit more convincingly both in 2D and in 3D
indices and suitable combinatidfisf critical amplitudes are  many expected properties related to scaling and universality
independent of the spi§ and lattice structure. A few years also in some cases in which the old analyses led to inconclu-
later, the first substantial extensfori® of HT Ising series in  sive or not very precise results.
3D [through order 21 on the body-centered-cuflicc) lat- The rest of the paper is organized as follows. In Sec. Il we
tice only] did not make higher expansion coefficients avail-shall outline the main features of the model, introduce our
able for the sscf, but only for its two lowest even momentsnotations and conventions, and very briefly recall the scaling
and therefore various tests could not be repeated and upnd universality properties expected for the sscf along with
dated. the corresponding tests discussed in full detail by the above
We are now resuming the HT part of those pioneeringcited paper§-*? Therefore, in Sec. Ill we can restrict our-
analyses in order to improve their extent and accuracy byelves to only a few comments on the numerical results.
taking advantage of our recent extengibr’ from order 12
through order 25 of the HT expansions for the sscf of the
Ising model with general spis, in 2D on the squarésq) Il. THE SPIN- S ISING MODELS
lattice and in 3D on the simple-cubisg and the bcc lat- . . . . . .
tices. From these data we have also derived series for related 1 1€ §p|n8 Ising modgls W!th nearest-neighbor interaction
quantities, in particular for a variety of moments of the sscf &€ defined by the Hamiltonian
which are computed through order 25, and for the exponen-
tial (or “true™) correlation length defined via the exponential J
decay of the sscf, which, however, can be extended only H{s}=—= > s(r)s(r')—h>, s(r), (1)
through order 19. For reasons of space we have not tabulated 2 ) r
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whereJ is the exchange coupling, argqr)=s%(r)/S with , 4o(T;S)  dInG(K,T;S)
SZ(F) a classical spin variable at the lattice sﬁ'etaking the En(TiS) = 2dx(T;S) - di? ' ©
2S+1 values—S,—S+1,...S—1S. The sum runs over k=0

all nearest-neighbor pairs of sites. For simplicity, the nearestFor T> T, the sscf is exponentially decreasing for largand
neighbor lattice spacing will be set equal to 1 everywheretherefore following Ref. 6, beside the “second-moment” cor-
We shall consider expansions in the usual HT varigble relation length we can also define the inverse “exponential”

=J/kgT Wher_eT is the temperaturekB the Boltzmann con-  (or “true” ) correlation length in the directioa as
stant, andK will be called “inverse temperature” for brevity.

In the critical region we shall also refer to the standard ) 1 -
“reduced-temperature”  variable t(S)=1-T.(S)/T=1 ke(T;S)=—lim FIn|G(re,T;S)|. (10)
—KI/K(9). e

We shall study the HT expansion of tfieonnected sscf

Since the singularity o6 (k, T;S) closest to the real axis
in the complexk plane is located at-ikg(T;S), the expo-
nential correlation length can be obtained by solving
recursively the equation

defined as

G(r,T;S)=(s(0)s(r))s. 2

In order to estimate numericalh}(F,T;S) asT—T.+, we AL e o1
have allowed for its expecté@ behavior: in the 2D case G(ike, T;5) " =0. (1D
R R R Rather than working directly wittk(T;S) which is not an

G(r,T;9)~G(r,T¢;S)—E*(r;9t(S)Int(S)+--- (3 ordinary power series iK, it is expedierftto form the quan-

tit
and in the 3D case y
- - - f2
G(r,T;9)~G(r, T¢;S)—E* (S *+.--. (4 (TS= (12
( )~G(r,T¢;S) (r;SLS) 4 £&(T;S) 2 cosh fko)— 1]

which is an ordinary power series K. In Eq (12 fis a
egeometncal factor depending on the unit veaand on the

Here E*(F; S) is the critical amplitude of the leading singu-
lar correction,a=0.110(1)(Ref. 23 denotes the critical ex-
ponent of the specific heat in 3D and the dots indicat

higher-order corrections. lattice considered. In particular, éfis directed along a lattice
The correlation-function momenti,(T;S) of ordernis  axis, we havef=1 for the sq and the sc lattices, whife
defined as =1/{/3 for the bcc lattice.

So far, 3D data for this quantity were published exclu-
sively for S=1/2, and did not extend beyond order 15 in the

pn(T39) =2 [1](s(0)s(M)c (5 sclattice cas¥ or beyond order 10 in the bcc-lattice cdse.
' In 2D the HT expansion can be computed ex&dfyfor S
(for <0 the sum extends to+ 0). =1/2, but no data have been published &# 1/2. In Ref.

The expected asymptotic behavior qi,(T;S) as 24, we have tabulated the expansiongéﬂ;S) through or-

T—=Tct is der 19 fore directed along a lattice axis, in the case of the sq,

. —(y+nv) + o, sc, and bcc lattices and witk=1/2,1,3/2,2,5/2,%.

pa(T;S) =My (SHL(S) " ™ [1+a, (HUS) "+ - ]. © In order to avoid possible confusion, it should be pointed
out that in Ref. 6 our§2 was denoted by\é(é), while the

In 2D the exponend of the leading singular correction is symbol &g was used to denotb» . Our notation might be

larger than unity, while in 3D a recent simultaneous stidy more suggestive since 0L§|2 compares very closely with

of a set of models in the Ising universality class has suggsm Indeed, the true and second-moment correlation lengths

gested the very pfeC'S‘? estimate 0.5144). . are almost identical in magnitude above the critical tempera-
The scattering function, namely the Fourier transform of

ture. In particular on the sq lattice, wheris directed along

G(F1T18)7 . . . .. 2 2
a lattice axis, the HT expansion coefficients &f and &5,
. NN coincide through sixth order f@= 1/2, through fourth order
G(k.T;9) =2 exd —ik-r]1G(r,T;9), () for S=1, and through second order for higher values of the
r spin. In 3D, in the sc-lattice case, the expansion coefficients
for k=0 yields the zero-field reduced susceptibility of £ and £, coincide through seventh order f@=1/2,

through fifth order forS=1 and through third order for
.- - . higher values ofs. In the case of the bcc lattice, the expan-
G(0,T;9)=uo(T;:9)=x(T;S =2 (s(0)s(N)c- (8  sjon coefficients coincide through third order for all values of
' the spin. Moreover, up to the maximum order of our compu-
The second-moment correlation length is defined spatial ~ tation, the noncoinciding coefficients differ by less than
dimensions by 0.1%.
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The two correlafu_on lengthg: and &g, are_expected to 24(T:S) po(T:S)
share the same critical exponentso that their asymptotic 24T,S)=c, > -1, (20
behavior wherT—T.+ can be written as u3(T;S)
Esnl(T;9) = F{(SUS) "T1+ag (U "+ -] (13
and pe(T:9) ug(T;S)
36(T,S) =Coo o " 25 (T,9)—1  (21)

LT~ (U TL+a" (U "+ -] (19 #3(T;9)

_Here the critical amplitudd *(S) is independent o€, c4=1/4 andcg=1/36 for d=2, while c,=3/10 and
since the sscf becomes spherically symmetric near the cr|t|(56:3/70 for d=3, have finite universal values as

cal point. The ratio ToT 4
ot
QI (S)=f7(S)/f5(S) (15) All 3,.(T,S), as well as the diﬁerenc&é—gim, vanisff

is a universal combination of critical amplitud®si.e., itis  in the mean-field related approximations. Therefore the mag-
expected to depend only on the lattice dimensionaljtput ~ Nitudes of these quantities at the critical point can be taken as

not on the spirS or the lattice structure. a measure of the deviation of a given system from Gaussian
For T—T.+0 and in zero magnetic field, the sscf is ex- behavior, which turns out to be very small on the HT side of
pected to exhibit the asymptotic structure the critical point.

R More generally, it was observ&tthat the scaling hypoth-
G(r,T;9)~ (1) 27 TA(S)Do(C(S)I/ £5nl T;S)) + ( | esis, Eq.(16), implies that, at the critical point, the ratios
16

when bothr and &, are much larger than the lattice spacing (T:S)un(T:S)

(with arbitraryr/&,,). Equation(16) together with these as- R (T;5)=Hm 2 22)
sumptions o and &, is usually referred to as the “strong- mmhs K (T:S) pus(T;S)

scaling hypothesistwhile it is called the “weak-scaling hy-
pothesis,” if its validity is restricted to the—oo limit with
fixedr/&sm. In Eq. (16), 7 is the critical exponent describ-
ing the decay of the sscf at the critical poiblg(x) is called  gicesm n,r,s provided that each index exceed® + 7, as
the critical scaling functionA(S) and C,(S) are scale fac-  qj10ws from Eq.(6).

tors. The dots indicate subcritical corrections proportional to Finally, the determination of the amplitude” (7:S) of

a positive power of some irrelevant field. The scaling func- ; ) . g
tion Dy(X) is expected to be universal: its structure does no%he leading singularity of the sstfee Eqs(3) and(4)] gives

. . .another opportunity to perform universality and scaling tests.
depend on the particular model under study provided that i .
belongs to a given universality class. On the contrary thfn order that the structure of E¢S) and(4) be compatibl&

scale factors\(S),C,(S) depend on the spin and the lattice Wi[hat_he strong-scaling hz/ptheSB, H46), the amplitudes
|. The validity of the asymptotic structure EG.6) was veri- E (1;S) must scale ag® with {=(1-a)/v+2-d—7,
fied analytically? for the spinS=1/2 Ising model in 2D. namely

For the scattering functiofB(R,T;S) the analogous scal-
ing form asT—T.+ can be written as E*(r: S)~ES (9)rt (23)

with m+n=r+s are universal. These ratios are dominated
by the critical singularity also for negative values of the in-

G(K,T;9)~A/ (9(S) "DH(C/(SK2E2 )+ . (17)

If the scale factordd/(S),C/(S) are specified adopting the
normalization conditions

for large enoughr, independently of the spin and the lattice
structure. In 2D the valué=0.75 is expected, while in 3D,
adopting our recent estimife of the values of the
A db{)(x) correlation-length exponent=0.6299(2) and of the expo-
D4(0)=1, ( ax ) =-1, (18) nent »=0.03§1), weshould have;=0.3765(10).

x=0

one can writé ask—0
I1l. NUMERICAL RESULTS

G(0,T;9)/G(k,T;9) =19 (k&sn(T: S)) Let us first observe that, due to the leading singular cor-

=1+ &2 (T;S)k? rections in Eqs(3) and(4), whose amplitude& " (r;S) grow
. . with r as indicated by Eq(23), determining accurately
—24(T.9)&n(T; Sk G(r,T¢;S) [as well asE*(r;S) itself] is a rather delicate
+3(T 3)56 (T:S)K8+O(K®) matter for which it is crucial to rely on sufficiently many
’ sm 1 1

expansion coefficients. We should also consider that the
(29 number of nontrivial coefficients in our series decreases with

where the functiony., (k&.(T;S)) is universal and thus the increasingr, :and correspondingly the precision of our esti-
guantities mates ofG(r,T.;S) [and E*(r,S)] deteriorates. In Refs.
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TABLE |. Our estimates of the critical-point vaIu@(F,TC ;S) of the spin-spin correlation function for
the nearest-neighbor Ising models with s@in 1/2,1,3/2,2¢ on the sq, sc, and bcc lattices. For comparison
with our results, the first column label¢8= 1/2] shows the only available previous estimates. In the case of
the sq lattice, we have cited the exéRefs. 6 and 3pvalues. In the case of the nearest-neighbor correlation
[r=(1,0,0)] on the sc lattice, we have reported in the first column the estimate obtained using our numerical
procedure with the serie®(K*%) of Ref. 36 and have also cited a val(Ref. 37 obtained in a recent
high-precision Monte Carlo simulation. In the remaining cases we have reported the estimates of Ref. 33
obtained from serie®(K'?. We are not aware of previous calculations & 1/2.

Lattice P [S=1/2] S=1/2 s=1 S=3/2 S=2 S=o
sq (1,0 070710 ... 0.70741) 0.58063)  0.5171)  0.48%1)  0.3381)
(1,) 0.6366D...2 0.63661) 0.52074)  0.4631)  0.43%1)  0.3031)
(20 059475...2 0.59472) 0.4861)  0.4331) 04041  0.2822)
(2,) 05731%...2 05731 04671 041720 038712  0.2722)
a

(2,2 05403®...2 0.54Q1)  0.4421) 0.3932)  0.3652)  0.2564)
sc (1,00 0.3302005" 0.330206) 0.242036) 0.207566) 0.189186) 0.128866)
(1,00  0.330173)°
(1,1,0 0.2082)¢ 0.20861)  0.15291)  0.13111)  0.11941) 0.081415)
(1,1, 0.1644) 0.16331)  0.11971) 0.10271) 0.09361)  0.063§1)
(2,0,0 0.1624)¢ 0.16082) 0.11782) 0.101G2) 0.09212)  0.06271)
(3,0,0 0.1047)¢ 0.10173)  0.07462) 0.06392) 0.05812)  0.03961)
bce (1,1,)  0.27357)%  0.2726%5) 0.196535) 0.167635) 0.152435) 0.103415)
(2,0,0 0.2002)%  0.199715) 0.143945) 0.122785) 0.1116%5) 0.0757%5)
(2,2,0 0.1572)%  0.156275) 0.112695) 0.096145) 0.087435) 0.059345)
(3,1, 0.1293)%  0.127515) 0.091935) 0.078435 0.071325) 0.048395)
2,22 0.1313)  0.129145) 0.0931%5) 0.0794%5) 0.072245) 0.049035)

8Reference 6.

bReference 36.
‘Reference 37.
dreference 33.

7,12, and 33, due to the small number of coefficients availsame numerical procedures to the series extended through
able at that time, a generalized Neville extrapolation of theorder 45.(It would be very interesting if the improved finite-
partial sums had to be used for determin@gF,T;S) and lattice technique devised for this remarkable calculation
E+(F; S) in the vicinity of T, . Taking advantage of our new couk_j be generalized as effectively beyond first—ngighbor cor-
series, we can now improve substantially the numerical refelations and to genera) We should also mention that a
summation of the HT series by resorting to first- or secondcompletely consistent alternative estimate of the critical sc-
order inhomogeneous differential approximahi®A's) bi- lattice nearest-neighbor sscf has been obtdhieda recent
ased withK ¢(S). (Here and in what follows we have adopted high-precision Monte Carlo study. For other valuesr ah

the values of the critical temperatures tabulated in Refs. 2ge sc-lattice case and in the bec-lattice case our results can
and 25) It does not come as a surprise that our proceduregnly be compared with calculatiofsusing the old series

are slightly less efficient in 2D than in 3D, probably due too(Klz)_ Table | lists our estimates @&(r,T,;S) with their
the presence of logarithms in the leading correction terms to

the critical asymptotic behavior, E(), and also that in 3D apparent uncertainties for a 5"_“'?‘” sample of values ad .
the bcc-lattice series always yield the most accurate result§ F_>reV|ous esttlmates of the critical sscf from shorter Seres,
If we restrict to 1.8<r<6.0 the relative uncertainty of our wh|ch are a\_/allable only fob=1/2, are shown for comparl-
estimates of the critical sscf should generally remain welON N the first column, labele5=1/2], of this ta_ble. In
below 1%. In 2D this can be guessed by comparing thé:'gs'*l’ 2, and 3 we have plotted our estmates of
estimates ofG(F,TC;S) obtained from our serie®(K?5) IN[G(r, T¢:9] vs In() for 1<r<5 W!th S= 1/2’1’3./2'2 in the
with the known exact results in the sg-lattice éaSdor S cases of the sq, SC, and bpc lattices, respectively. We have
= 1/2 and safely assuming that the precision does not det@lso shown by .contmuous Illnes the r.esults Pf one-parameter
riorate too fastly when higher values 8fare considered. In fits to the leading asymptotic behaviord ®&fr,T;;9]~c(9

3D no exact results are available, but the HT series for the” (d—2+7)In(r) expected for large. We have taken only
nearest-neighbor ~ correlation  function was recentlyc(S) as a free parameter and fixeg=0.25 in 2D andz
extended® through order 45 in the sc-lattice case fsr =0.036 in 3D. A

=1/2. Therefore, in this case, we are able to compare ouBoth in 2D and in 3D, we have estimated aBo6(r;S) from
estimate at order 25 with the result obtained by applying theéhe amplitude of the singularity of the second temperature
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FIG. 1. Estimates oG(r*,TC ;S) on the sq lattice. The meaning FIG. 3. Estimates 0¢3(F,TC ;S) on the bcc lattice. The meaning
of the symbols is as follows. Triangle§=1/2; squaresS=1; of the symbols is the same as in Fig. 1. The sppoints are shifted
rhombs,S=3/2; circles,S=2. The spinS points are shifted verti- vertically by the quantity 1/2 S in order to make the figure more
cally by the quantity 1/2 S in order to make the figure more leg- legible. The continuous lines represent fits to the leading asymptotic
ible. The continuous lines represent fits to the leading asymptotigehaviors IrG(F,TC;S)~c(S)—(1+7;)In(r) expected for large. We
behaviors IrG(F,TC;S)wc(S)— nln(r) expected for large. We have  have takerc(S) as a fit parameter and fixeg= 0.036.
takenc(S) as a fit parameter and fixegl=0.25.

the sc and bcc lattices. A comparison with the exact results in
derivative of G(r,T;S), again using inhomogeneous first- 2D and with our estimate using the mentioned high-order
and second-order DAs biased wiky(S) and a. Our esti-  calculation in the sc lattic8 for S=1/2 still suggests that,
mates ofE * (r;S) for a small sample of values ofandSare  for all values ofS, the relative accuracy of our estimates
shown in Table Il. They are compared with the exactlyshould not be generally worse than 1%.
known value8 for S=1/2, in the case of the sq lattice, or  In Figs. 4, 5, and 6 folS=1/2,1,3/2,2 we have plotted
with a few old estimatéé from shorter Series, in the case of |n[E+(r-:S)] VS |n(r) in the case of the sq, sc, and bcc lattices,

respectively. For>4.5 in the case of the sc lattice and
>6.0 in the case of the bcc lattice, we have not reported any

estimates ofE*(r;S), because the available nontrivial HT
coefficients of the sscf are not sufficiently many to allow
estimates at the level of precision above mentioned. In these
figures we have also represented by continuous lines the re-
sults of one-parameter fits to the leading asymptotic behav-
iors INE™(r;9]~b(9+In(r) expected for large. We have
taken for{ the expected values=0.75 in the 2D case and
{=0.3765 in the 3D cases, while the free paramel€iS)

have been determined using in the fits only the data with
=1.8. Indeed, our data show visible deviations from
asymptotic scaling for sufficiently smail) particularly so in

the case of the sc lattice, but the asymptotic consistency with
the strong-scaling hypothesis E&3), is good. The behavior

of E*(F; 1/2) as a function of was first studied in Ref. 7
R T using seriesO(K? for the face-centered-cubic lattice. In
0.0 0.5 It 1]'0 1. that analysis botli andb(1/2) were determined by a two-
mr parameter fit of the numerical results to the leading
FIG. 2. Estimates o6(r,T.;S) on the sc lattice. The meaning asymptotic behavior under the very simple assumption that
of the symbols is the same as in Fig. 1. The sppoints are shifted the corrections to scaling are negligible even for “not very
vertically by the quantity 1/2 S in order to make the figure more large” r. (As we have indicated above, our data show that
legible. The continuous lines represent fits to the leading asymptotisuch a strong assumption is untenablde authors of Ref. 7
behaviors IrG(r,T,;9~c(S—(1+7)In(r) expected for large. We  concluded that =0.476), an estimate in sharp disagree-
have takerc(S) as a fit parameter and fixeg=0.036. ment with the valug =0.33(1) expected from the exponent

359))

In(G_c(r
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TABLE Il. Amplitudes E*(F; S) of the leading singular correction of the sscf near the critical point for
the nearest-neighbor Ising models with s@in 1/2,1,3/2,2¢ on the sq, sc, and bcc lattices. For comparison
with our results, the first column of the table labele®= 1/2] shows the available estimates from other
sources. In the case of the sq lattice, the exact values are taken from Ref. 6. In the case of the nearest-
neighbor correlation on the sc lattife=(1,0,0)], we have reported in the first column our estimate obtained
from the serie©(K*%) of Ref. 36. In the remaining cases, whenever available, we have quoted the estimates
of Ref. 11 obtained from serie®(K'?). We are not aware of other published calculationsSor1/2.

Lattice ; [S=1/2] S=1/2 s=1 S=3/2 S=2 S=w

sq (1,0 0.56110...2 0.5621) 0.621(1) 0.6231) 0.6131) 0.4841)
1,9 0.793556 . ..2 0.7941) 0.8191) 0.8121) 0.7941) 0.6141)
(2,0 1.010338...2 1.011) 1.021) 1.0X(1) 0.98712) 0.7592)
2,9 1.12002.. .2 1.11(1) 1.131) 1.11(1) 1.081) 0.8262)

sc (1,0,0 2.2525)° 2.272) 2.162) 2.032) 1.932) 1.422)
(1,1,0 2.382)° 3.012) 2.722) 2.522) 2.392) 1.722)
(1,1,9 2.864)° 3.402) 3.032) 2.792) 2.622) 1.902)
(2,0,0 3.166)° 3.532) 3.142) 2.892) 2.712) 1.952)
(3,0,0 4.362) 3.792) 3.452) 3.242) 2.332)

bce (1,1, 2.016 2.3255) 21675 2.0225)  1.9175)  1.40%5)
(2,0,0 2.70716)  2.4426) 2.2566) 2.1296)  1.5456)
(2,2,0 3.1266) 2.76716) 2.5356) 2.3846)  1.7206)
(3,1,9 3.41(1) 2.991) 2.721) 2.551) 1.831)
(2,22 3.441) 3.01(1) 2.741) 2.571) 1.841)

%Reference 6.
bReference 36.
‘Reference 11.

valuesr=0.638(2) andy=0.041(6) generally accepted at u'3, on the sc and the bcc lattices, respectively. In this latter
that time. A few years later, fd8= 1/2, the somewhat lower study, however, a third fit parameter had been introduced in
estimate/=0.39(4) was obtainéd from an analysis of LT order to allow for small corrections to the asymptotic scaling

expansions in powers af=exp(-2K) up to orderu™ and  hehavior ofE*(r;S). Also this estimate of did not agree

In(E(r;S))
In(E(r;S))

c. . . ooy N T
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
In(r) Intr)

FIG. 4. Estimates oE*(F; S) on the sq lattice. The meaning of FIG. 5. Estimates oE*(r;S) on the sc lattice. The meaning of
the symbols is the same as in Fig. 1. The spipoints are shifted the symbols is the same as in Fig. 1. The spipoints are shifted
vertically by the quantity 1/2 S in order to make the figure more vertically by the quantity 1/2 S in order to make the figure more
legible. The continuous lines represent fits to the leading asymptotitegible. The continuous lines represent fits to the leading asymptotic
behaviors IrE*(F;S)wb(SH{In(r) expected for large. We have  behaviors IrE*(F;S)wb(S)+§In(r) expected for large. We have
takenb(S) as a fit parameter and fixet=0.75. takenb(S) as a fit parameter and fixet=0.3765.
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FIG. 6. Estimates 0E+(F; S) on the bcc lattice. The meaning of FIG. 7. The logarithm of the scaling functioﬁ’z*”G(F,T;S)
the symbols is the same as in Fig. 1. The spipoints are shifted vs x=r/&,(T;S) in the case of the sq lattice. The data represent
vertically by the quantity 1/2 S in order to make the figure more the ssfc’'s withr = (2,0) andS= 1/2,1,3/2,2 in the range of tempera-
legible. The continuous lines represent fits to the leading asymptotigyres for which 1.5 &(T;S)=<200. The meaning of the symbols is
behaviors IrE*(F;S)%b(S)+§In(r) expected for large. We have the same as in Fig. 1.
takenb(S) as a fit parameter and fixet=0.3765.
HT series appears sufficient to obtain reliable estimates and

with the value expected at that time, but is quite compatible?Ur results are consistent with the strong-scaling hypothesis
with the presently preferred value. to a good approximation. _

Before any strong confidence in the results of such two- The very small mismatch of the curves in the extreme
or three-parameter fits can be justified, we believe, howevef€9ionsr/&s,<1 orr/&sy>1 which can still be observed is
that the HT series should be further extended in order tdelated (i) to the fact that the scaling property has an

enlarge significantly the range of values offor which ~ a@symptotic character, while in practice the size still can-
E*(r:S) can be determined with sufficient accuracy not exceed a few lattice spacings if we want to use a decent

Having tabulated a wide sample of estimates of

N - o~ [T T 1 LIS BN L B L B BN BN B B B

G(r,T.;S) andE™(r;S) with some improvement both in the < Fa . SC-BCC 7]

extent and the accuracy, with respect to the very few esti- - v, _

mates available in the literature, we are now in the position [ "-§ 1

to exhibit more directly the scaling property by examining <L Y i

the near-critical sscf in the space. FoiT—T.+0, as sug- c ‘\&. -

gested by Eq(16), by a proper choice of the scale factors ol *»,._m 7

Ai(S) andC(S), we should be able to plot the quantities e[ ., i

fras L 4\1‘. a

g o [ %"%‘ 7

r4EIG(r,TiS) ~ A (S)Do(CIST £nfTiS)) (29 §7r KR ]

L ’ _

=[ "y,

vsr/ésmin such a way that the curves, associated to various L ‘“"tm;l i

values ofSand to different lattices, collapse on each other. In C “"}lqﬂ

Fig. 7, we have plotted [n?~2*7G(r, ;9] vs r/&5(T;S) in oL | ]
the case of the sq lattice taking=(2,0) and S oo os o T

=1/2,1,3/2,2. Our data points refer to the range of tempera- %
tures for which 1.5 ¢&,,=200. Figure 8 shows the analo-

d—2+ C T R
gous plot for !lﬁr 'GrT.9]vst/&sm |rlthe case of the sc vsx=r/&,(T;S) in the case of the sc and the bc lattices. For both
and bcc lattices. Here we have t‘f"ke'*(“'o’o) andS lattices the data represent the ssfc's with(4,0,0) and S
= 1/2,1,3/2,2.and have plotted data in the range.of tempera- 1/2,1,3/2,2 in the range of temperatures for which<2T;S)
tures for which 2.% &£5,=400. Completelyﬁ consistent ré- <400, The meaning of the symbols is the same as in Fig. 1 for the
sults are obtained also for other choicesrofAs already sc-lattice case. For the bcc-lattice data we have used full symbols of
observed, within these limitations, the present length of thehe same shape.

FIG. 8. The logarithm of the scaling functioﬁ’z*"G(F,T;S)
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TABLE Ill. Estimates of34(T.;S) [see Eq(20)] andX4(T.;S) [see Eq(21)] in the case of the sq, sc,
and bcc lattices for various values &fFor comparison, we have also reported a few previous estimates listed
in Refs. 31 and 30, indicating the method of calculation and the expected uncertainty, when available. Only
for convenience, we have listed in tige=1/2 column also the results of the renormalization group and the
optimized continuous-spin calculations which, of course, do not refer toS$pitv2.

Quantity Lattice S=1/2 S=1 S=3/2 S=2 S=»
3 .(Te:S) x 10t sq 7.83) 7.93) 7.93) 7.6(3) 7.503)
3 4(T.;S) X 10* (Exach? sq 7.93678 . ..
S6(Te:S) X 10° sq 1.11) 1.1(2) 1.0(1) 1.1(1) 1.0(1)
S6(Te;S) X 10° (Exach? sq 1.09599 . ..
S 4(Te;S) x 104 sc 3.768) 3.92) 3.778) 3.758) 3.712)
S 4(Te;S)x 104 bce 3.7%5) 3.745) 3.765) 3.765) 3.775)
36(Te:S) X 10° sc 1.G2) 9(2) 0.92) 0.82) 0.7(2)
36(Te:S) X 10° bce 0.91) 0.865) 0.855) 0.855) .85(5)
3, X 10 [HT]P sc 3.42)
3, X10*[HT] ¢ sc 5.515)
3, X104 [HT] ¢ bcc 7.115)
36X 10° [HT]P sc 0.52)
SeX10° [HT] ¢ sc 0.52)
SeX10° [HT] ¢ bec 0.93)
3.,%x 10 (opt.cont.spilP sc 3.906)
36X 10° (opt.cont.spihP sc .881)
3, X 10 (e-expansg® 3.302)
36X 10° (e-expansg® 0.7
3,X 10" (g-expang® 4.005)
36X 10° (g-expans® 1.33)

8Reference 30.
bReference 31.
‘Reference 6.

number of expansion coefficients in the estimate ofx 1075 independently ofS and in reasonable agreement
G(r',T;S), (i) to the residual influence of the subcritical cor- with the high-precision determinatiofis of 3 ,(T.;1/2)
rections. _ _ _ =7.9367%...x10 * and of 34(T,;1/2)=1.09594 . ..
We can further test the universality properties of the sscf« 10~ obtained by numerical integration of the analytically
in the k space, namely the critical scattering function, by ynowre® sscf of theS= 1/2 model in 2D. In 3D our results

simply showing that,(T.;S) andX¢(Tc;S) are indepen- ¢4 the bee lattice show a definitely smaller uncertainty than
dent ofSand of the lattice structure. Also these quantities arg,, the sc lattice. They suggest the final estimates

calculated by first- and second-order DAs biased with24(-|- :9)=3.8(1)X 10" andS (T, :S)=0.9(1)x 1075 in-
co . co .

Kc(S). Since higher-order moments of the safwhich the dependently of the spi® and lattice structure. Our results

less accurately known correlations between distant SPINS alTe therefore consistent with the corresponding estimates in
weighted much more than those between near sm@nter

: o the literature, in particular with the values ,(T,.)
into the definitions, Eqs20) and (21), the convergence of i - e 4 031
the extrapolations is not expected to be very fast, particularly” 3-90(6)< 107" and % ¢(T¢) =0.88(1)x 10 obtained

so in the cases of the sq and sc lattices. We should alsgPlimizing the parameters of a continuous-spin model, under
consider thal ,(T,;S) is the very small difference between the assumption of universality. Let us also mention that
unity and the critical value of some multiple of a ratio of fenormalization-group - calculatiofis in the e-expansion
moments of the sscf, so that a very high accuracy in thécheme to third order yielded the estimateg=3.3(2)
estimate of the latter is needed to achieve even a relativelyt 10" * and%s=0.7X10"°, while, in the coupling-constant
modest precision fo2 ,(T.;S). The same remark applies €xpansion scheme to fourth order, the corresponding results
also in the case d¥.4(T.;S). In Table Ill we have collected wereS,=4.0(5)x10 % and3=1.3(3)x 10" °.
our estimates o 4(T.;S) and3¢(T,;S) in the case of the The results of our analysis of the universal ratios
sc, s, and bcc lattices f@=1/2,1,3/2,2¢. We have also R, . s(T.;S) are reported in Table IV. They also show in-
reported a few previous estimat®s! from the existing lit-  dependence of the spin and of the lattice structure within a
erature. good precision. Our series-extrapolation procedure based on
In the case of the sq lattice our data suggest the findirst- and second-order DA's uses only our estimates of
estimatesS 4(T.;S)=7.8(3)x10" % and 34(T.;S)=1.1(1)  K.(S) and does not need to be biased also withnd v as it
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TABLE IV. Estimates of the moment ratid®,, .., <(T.;S) [see Eq(22)] in the case of the sq, sc, and bcc
lattices for various values &

Rinnir.s Lattice S=1/2 s=1 S=3/2 S=2 S=w

Ro1:1/2.12 sq 1.16411)  1.16421)  1.16421)  1.16421)  1.16411)
Ro1.1/4.3 sq 1.12111) 112111 112131 1.12111)  1.121G1)
R_ 3414 1414 sq 1.2991) 1.3001) 1.301(1) 1.30011) 1.301(1)
Ry 12 34 30 sq 1.1215) 1.1244) 1.1244) 1.1254) 1.1264)
Ro.1.1/2.1/2 sc 1.13200)  1.132G2)  1.13191)  1.13192)  1.13192)
Ro.1.1/2.1/2 bee 1.13200)  1.13191)  1.13191)  1.13191)  1.13191)
Ro.1:1/4.3/4 sc 1.09772)  1.09772)  1.09762)  1.09762)  1.09762)
Ro.1:1/4.3/4 bee 1.0977)  1.09761)  1.09761)  1.09761)  1.09761)
Ru/2.1/2: 174,374 sc 0.96972)  0.96972)  0.96982)  0.96972)  0.96972)
Ru/2.1/2: 174,374 bee 0.96971)  0.96971)  0.96971)  0.96971)  0.96981)
Ry 134 3m sc 1.0841) 1.0841) 1.0841) 1.0841) 1.0831)
Ro1 123434 bee 1.0881) 1.0831) 1.0831) 1.0831) 1.0831)

was necessary in the generalized Neville procedtfrem- In 3D we can use both first- and second-order DA's biased
ployed with the short series of Ref. 13. Considering that thevith K (S). The very smooth bcc-lattice series yield the
valuesy=1.25 andv=0.625(or »=0.638) of the exponents most accurate results. Our final estimate Qg(S)
accepted at the time of that study are somewhat different1.0002003), independently ofS and of the lattice struc-
from the currently preferred ones and that the extrapolationgure. So far, this ratio could be computéanly for S=1/2
are very sensitive to those values, a comparison with thegom a 15 term series on the sc lattice, with the result
numerical results of Ref. 13 has little meaning. Q;(1/2)= 1.000125(50). A more precise estim’&tdgg
Finally, we have tested both in 2D and in 3D the spin=71.000199(3) was obtained indirectignd assuming uni-
independence of the rati@, (S) defined by Eq(15). In 3D versality, from optimized HT series for a continuous-spin
also the lattice independence @fg(S) can be tested. model on the sc lattice. Within the renormalization-group
In 2D, on the sq lattice, the nontrivial expansion coeffi- approach, the estimat&; = 1.000 160(20) was obtained in
cients of the ratiofé(T;S)/ggm(T;S) are not sufficiently the e expansion to third order, while the coupling-constant

many and their behavior is not smooth enough to yield veryexpansion technique to fourth order gaveQ;
accurate results. Therefore our best estimat@p{S) [by =~ =1.000205(30).
first-order DA's biased wittK(S)] cannot be more precise
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