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Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface
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We demonstrate that the factorization of the tunneling transmission into the product of two surface trans-
mission functions and a vacuum decay factor allows one to generalize Jullie`re’s formula and explain the
meaning of the ‘‘tunneling density of states’’ in some limiting cases. Using this factorization we calculate
spin-dependent tunneling from clean and oxidized fcc Co surfaces through vacuum into Al using the principal-
layer Green’s-function approach. We demonstrate that a monolayer of oxygen on the Co~111! surface creates a
spin-filter effect due to the Co-O bonding which produces an additional tunneling barrier in the minority-spin
channel. This changes the minority-spin dominated conductance for the clean Co surface into a majority-spin
dominated conductance for the oxidized Co surface.
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I. INTRODUCTION

Spin-dependent tunneling~SDT! in magnetic tunnel
junctions ~MTJ’s! is a dynamically developing area of re
search that attracted a lot of attention due to promising
plications in nonvolatile random access memories and n
generation magnetic field sensors~for a recent review of
SDT see Ref. 1!. The experimental efforts have succeeded
achieving large reproducible tunneling magnetoresistanc
MTJ’s2 but also raised fundamental questions regarding
nature of SDT. One such question is the role of t
ferromagnet/insulator interfaces in controlling the spin pol
ization ~SP! of the tunneling conductance defined asP
5(G↑2G↓)/(G↑1G↓), whereGs5(e2/h)(ki

Ts(ki) is the

conductance for spin channels, Ts is the transmission func
tion, andki is the transverse component of the wave vec

Commonly the expected spin dependence of the tunne
current is deduced by considering the symmetry of the Bl
states in the bulk ferromagnetic electrodes and the com
band structure of the insulator.3,4 By identifying those bands
in the electrodes that are allowed by symmetry to cou
efficiently to the evanescent states decaying most slowl
the barrier one can predict the SP of the conductance. H
ever, this approach has two deficiencies. First, it assumes
the barrier is sufficiently thick so that only a small focus
region of the surface Brillouin zone~SBZ! contributes to the
tunneling current. For realistic MTJ’s with a barrier thickne
of about 1 nm this assumption is usually unjustified. Seco
symmetry considerations alone applied to bulk materials
not always sufficient to predict the SP. It is critical to ta
into account the electronic structure of the ferromagn
barrier interfaces which, as it was shown bo
experimentally5 and theoretically,6 controls SDT.

An important mechanism by which the interfaces affe
the SP of the tunneling current is the bonding between
ferromagnetic electrodes and the insulator.7 This effect was
put forward to explain positive and negative values of tu
0163-1829/2004/69~17!/174408~7!/$22.50 69 1744
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neling magnetoresistance depending on the applied vol
in MTJ’s with Ta2O5 and Ta2O5 /Al2O3 barriers8 and to
elucidate the inversion of the SP in Co/SrTiO3 /
La0.67Sr0.33MnO3 MTJ’s.9 So far there are no theoretica
studies explaining the microscopic origin of this pheno
enon.

In this paper we report the results of first-principles c
culations of SDT from clean and oxidized Co surfac
through vacuum into Al and demonstrate the crucial role
the bonding between Co and O atoms at the surface. T
system was chosen for investigation because the MT
based on alumina have predominantly O-termina
Co/Al2O3 interfaces.10 By replacing alumina by vacuum w
can ignore the complexity of the atomic structure of t
amorphous alumina and focus on effects of surface ox
tion. Moreover, this system can be directly studied us
spin-polarized STM.11

We show that a monolayer of oxygen on the Co surfa
creates a spin-filter effect due to the Co-O bonding by p
ducing an additional tunneling barrier in the minority-sp
channel. This reverses the sign of the SP from negative
the clean Co surface to positive for the oxidized Co surfa
revealing the decisive role of interface bonding in SDT.

II. SURFACE TRANSMISSION FUNCTIONS

We approach the tunneling problem in the spirit of pert
bation theory.12 We consider the system consisting of ‘‘left
and ‘‘right’’ leads separated by a relatively thick barrier a
assume that two-dimensional translational periodicity
transverse directions is preserved for both electrodes inc
ing their surfaces~although it may be different for each elec
trode!. Each Bloch wave with a transverse wave vectorki

L

coming from the left lead has a decay tail in the vacuu
composed of the waves with transverse wave vectorski

L

1Gi whereGi are the reciprocal-lattice vectors of the SB
of the left lead.13 At sufficient distances from the surfac
~typically just a few lattice parameters for low-index su
©2004 The American Physical Society08-1
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K. D. BELASHCHENKO et al. PHYSICAL REVIEW B 69, 174408 ~2004!
faces! all waves withGiÞ0 vanish and may be neglecte
On the other hand, the wave vectorki

R is conserved at the
right lead surface. This means thatki is conserved across th
entire system even if there is no common in-plane periodi
and ki

L , ki
R are defined with respect to different SBZ’s.

this case, each tunneling eigenstate is almost identical t
evanescent plane wave in the central region of the barrie

For a givenki the transmission function is the sum of th
transmission coefficients for all tunneling eigenstates co
sponding to all incoming Bloch waves with thiski in the left
electrode. At the same time, each transmission coefficien
a given eigenstate contains a sum over outgoing states in
right electrode with the sameki . Let us choose a referenc
plane in the vacuum region at a sufficient distance from
surface of an electrode, so that the eigenstates for allki are
already indistinguishable from the barrier eigenstates at
plane~see Fig. 1!. For each tunneling eigenstate the amp
tude of the barrier eigenstate between the reference plan
the only parameter coupling the left and right electrod
Then, theS-matrix element coupling the states in the tw
electrodes may be written as

Spq
s 5Spr

s Srr 8Sr 8q
s , ~1!

wherep is the incoming andq the outgoing Bloch state in th
left and right lead, respectively,r and r 8 denote the same
vacuum eigenstate at the left and right reference planes,
we omitted the dependence onki for all the S-matrices for
brevity. The vacuumS-matrix Srr 8 simply describes the ex
ponential decay of the wave function in the vacuum. N
that no summation is implied in Eq.~1!, because the stater is
uniquely defined byki . The simple product ofS-matrices in
Eq. ~1! without any multiple-scattering terms is a cons
quence of our assumption that the barrier is sufficien
thick. Thus, we see that the transmission functionT(ki) of
the MTJ is factorized:

FIG. 1. Geometry of a tunnel junction with a vacuum barri
The top graph schematically shows the potential barrier for e
trons at the Fermi level. Dashed lines show the positions of
reference planes assigned to the electrodes for the calculation o
surface transmission functions. Each scattering state is describe
four amplitudes:Ap of the incoming Bloch wave;Br , Br8 of the
surviving evanescent wave at the reference planes assigned t
left and right electrodes; andCq of the transmitted Bloch wave in
the right electrode~there may be several transmitted waves!. The
bottom scheme depicts atomic layers in the electrodes and
labeling used in the text.
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Ts~ki!5tL
s~ki!exp@22k~ki!d#tR

s~ki!. ~2!

Here we replaceduSrr 8u
2 by its explicit exponential form

with

k~ki!5S 2mf

\2
1ki

2D 1/2

, ~3!

where f is the work function,d is the distance betwee
reference planes assigned to the electrodes as show
Fig. 1. All information about the properties of individua
surfaces is described by thesurface transmission function
~STF’s! tL

s , tR
s :

tL~ki!5(
p

UBr

Ap
U2

, tR~ki!5(
q
UCq

Br 8
U2

, ~4!

where the four amplitudes characterize the behavior of t
neling eigenstates at the two surfaces~see Fig. 1!. The dif-
ferent definitions oftL and tR are due to the fact that the
pertain to different boundary conditions. Specifically,tL and
tR stem from the matching of Bloch wave functions with th
vacuum eigenstates, decaying and growing into the vacu
respectively. The definition oftL implies the solution of a
scattering problem for the incoming wave with amplitu
Ap , andBr is the amplitude of this scattering eigenstate
the reference plane in the vacuum. On the other handtR
describes an inverse scattering problem in which the ex
nentially decaying wave in the vacuum with amplitudeBr 8 at
the reference plane is scattered on the right surface; hereCq
is the amplitude of the outgoing Bloch stateq in the right
electrode for this ‘‘eigenstate.’’ Note that physically, th
state is forbidden because it grows to infinity in the vacuu
but it is still a formal solution of the Schro¨dinger equation
with the specified boundary condition at infinity.

Each surface may be considered as forming the left or
right interface of the junction. It is straightforward to sho
that, just as in the case of a transmission matrix connec
the propagating states in the two electrodes,14 the require-
ment of flux conservation results in the reciprocity conditi
tL(ki)5tR(ki)[t(ki) for any ~laterally periodic! surface, as
long as an appropriate normalization of the wave function
chosen. Specifically, all Bloch waves in the electrodes sho
be normalized for unit flux, while the vacuum eigensta
should be normalized for unit ‘‘imaginary flux’’k/m. The
easiest way to establish this reciprocity condition is to pro
it for free electrons in a semi-infinite potential well, and th
to use this free-electron system as a second electrode
junction. Since the total transmission function for a tw
electrode system is reciprocal,14 this proves the above reci
procity condition for the STF. Note that this proof does n
rely on time-reversal symmetry, because time reversal a
replaceski by 2ki . However, this symmetry gives anothe
useful relationt(ki ,H)5t(2ki ,2H) whereH is the exter-
nal magnetic field.

It is easy to see from Eq.~4! with the chosen unit flux
normalization that the STF is proportional to the Fermi-lev
value of theki- and energy-resolved charge density for t

.
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EFFECT OF INTERFACE BONDING ON SPIN- . . . PHYSICAL REVIEW B 69, 174408 ~2004!
given spin, which is generated by the incoming Bloch sta
and taken at the reference plane~any localized surface state
are excluded!. Indeed, the energy-resolved charge dens
may be written as

rs~r ,E!5
1

Ni
(
ki

rs~r ,ki ,E!, ~5!

where theki- and energy-resolved charge density is

rs~r ,ki ,E!5(
p

ucskip
F ~r !u2, ~6!

where the summation is over the incoming Bloch states w
the givenki andE, and the superscriptF emphasizes that th
scattering eigenstatesckip

F are normalized so that the incom

ing Bloch waves carry unit flux normal to the interface. S
ting Ap51 in Eq. ~4!, we see thatt(ki) is given by Eq.~6!
wherer is taken at the reference plane@since we neglect al
components withGiÞ0 at the reference plane,r(r ,ki ,E)
does not depend onr i , the location within this plane#.

Although we considered a vacuum tunneling barrier,
analysis can be extended to other physically important ca
of insulating barriers. Indeed, the main requirement for
validity of Eqs.~1! and~2! is that the complex band structur
be predominantly carried by a single evanescent wave
eachki . At a minimum, this premise must hold for the ‘‘ac
tive’’ regions of the SBZ that contribute appreciably to t
tunneling current. This means that other tunneling sta
must have a notably larger imaginary part of the wave vec
compared to the dominant one. In the case of a vacu
barrier, this amounts to the neglect of all vacuum eigenst
with GiÞ0. In practice this criterion is well satisfied fo
sufficiently thick wide-gap tunnel barriers, such
sp-bonded oxides. However, for any particular barrier, t
assumption has to be carefully verified by checking the co
plex band structure of the barrier for the presence of ad
tional slowly decaying states in the active regions of
SBZ. It is important to note that the area of the active reg
quickly shrinks as the barrier thickness is increased,4 indicat-
ing that the single evanescent state criterion will often lead
an additional requirement of ‘‘sufficient thickness’’ of th
barrier. Note that this requirement is not related to a sim
one stemming from the neglect of backscattering.

The factorization~2! allows us to study tunneling betwee
completely different electrodes. For practical purposes,
STF can be calculated usingTs(ki) obtained for a symmetric
MTJ by factoring out the vacuum decay factor for the giv
choice of reference planes, and then taking the square
The resulting STF’s for different surfaces may then be c
volved with an appropriate vacuum decay factor, e
(22kd), to obtain the transmission functions for asymmet
MTJ’s. In particular,Ts(ki) for the antiparallel magnetiza
tion of the two electrodes~and the tunneling magnetoresi
tance! can be found from the up- and down-spin STF’s c
culated from the transmission function for the paral
magnetization.
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III. GENERALIZATION OF JULLIE ` RE’S FORMULA

Tunneling magnetoresistanceR is often discussed in term
of Jullière’s formula15

R5
2PLPR

12PLPR
, ~7!

where PL , PR are the ‘‘spin polarizations’’ of the left and
right electrodes. Equation~7! may be derived assuming tha
Gs}rL

srR
s , where rL

s , rR
s are the ‘‘tunneling densities o

states’’ of the electrodes, and the spin polarization is defi
asP5(r↑2r↓)/(r↑1r↓). The popularity of this formula is
due to the fact that it usually agrees reasonably well w
experiment, as long as the spin polarizations, which are
rectly related to the tunneling densities of states, are ta
from Meservey-Tedrow experiments16 with the same barrier
as that used in the given MTJ. However, the validity of J
lière’s formula has been debated for a long time, and
reasons for its apparent agreement with experiment are
clear. The physical meaning of the tunneling density of sta
is also unclear, but it is obvious both from elementary qu
tum mechanics17 and from experiments that the tunnelin
properties of a magnetic heterostructure are determined
by the ferromagnet alone, but rather by the ferromagn
barrier combination and by the structure of the interface
number of explicit first-principles calculations for idealize
MTJ’s without disorder confirmed this fact~see, e.g., Ref.
18!. However, it was suggested19 that phase decoherence du
to disorder which is always present in realistic MTJ’s m
recover the factorization of the tunneling conductance in
product of transport densities of states, which are essent
equal to the regular densities of states at the surfaces o
electrodes if there are no resonant localized states in the
rier. Moreover, it was shown20 within a single-band tight
binding-model that in the limit of strong disorder one reco
ers Jullière’s formula ~7! by identifying PL , PR with the
measurable spin polarizations of the tunneling current for
same electrode/barrier systems. Therefore, it seems that
are good reasons for the widespread use of Jullie`re’s formula,
and it is highly desirable to elucidate these reasons.

Let us explore the connection between Eq.~2! and Jul-
lière’s formula~7!. In Eq. ~2! the simple product of the tun
neling densities of states is replaced by a convolution
STF’s, which explicitly include the effects of bulk densitie
of states and of the surface structure. Thus we can cons
Eq. ~2! as a generalization of Jullie`re’s formula for an ideal
MTJ with no disorder.

However, we may go further and identify limiting case
where Eq.~2! can be directly related to Jullie`re’s formula,
providing formal definitions of the tunneling densities
states of the electrodes appropriate for these cases. First,
sider the case of a disordered insulating barrier. Such a
rier may be characterized by its eigenstates, half of which
decaying from left to right, and the other half from right
left. Although these eigenstates do not have a conserveki
anymore, it is still clear that tunneling will be dominated b
Feynman paths that do not ‘‘loop back,’’ because each p
carries a weight decaying exponentially with its length~see
below!. Therefore, we may still write an expression simil
8-3
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to Eq.~1! neglecting backscattering, but now we should s
up over all barrier eigenstates~now defined in real space!.
Within this formulationSrr 8 is still diagonal because it de
scribes the decay of a single eigenstate.

The weight of a Feynman path in the imaginary-tim
functional integral often used for tunneling problems21 ~with
Euclidean action written in its reduced Maupertuis form; s
e.g., Ref. 22! is given by exp@2*k(l)dl# up to a prefactor,
where the integral is taken along the path,k5@2m(V
2E)#1/2 and V(r ) is the potential. In an ordered insulato
many paths with similar weights contribute to the path in
gral resulting in the formation of the complex band structu
However, in a disordered insulator the tunneling current m
be dominated by Feynman paths running close to a relati
small number of ‘‘easy’’ paths with locally maximum
weights, i.e., by imaginary-time classical paths.21,22 If there
is only one such channel or one class of channels with s
lar properties~e.g., due to surface roughness!, Eq. ~2! will
produce Jullie`re’s formula wherers is simply the Fermi-
level value of the energy-resolved charge density given
Eq. ~6! integrated overki and taken at some reference po
within the channel.~Now each term describes the scatteri
eigenstate corresponding to the single incoming Bloch w
with the givenki .) Like STF, this quantity does not depen
on the properties of the other side of the barrier. This c
clusion agrees with the results of Ref. 20 showing that
tunneling current through a strongly disordered barrier
dominated by a small number of random configurations,
that Jullière’s formula is also recovered in this limit.

Now consider the case when disorder is weak close to
interfaces, but remains strong in the insulator. Obviously,
S-matrix of the disordered insulator inki representation will
be essentially a random matrix, and after averaging Eq.~2!
thus yields Jullie`re’s formula withrs}(ki

ts(ki). This case
is the easiest from the computational point of view, beca
the STF’s may be directly calculated for aki-conserving
MTJ.

It is instructive to compare this result with the conclusio
of Mathon and Umerski19 on the applicability of Jullie`re’s
formula obtained using the transfer Hamiltonian formalis
Our approach shares in common with Ref. 19 the neglec
multiple reflections across the junction. However, the
sumption of constant matrix elements~hopping integrals! for
all Bloch waves made in Ref. 19 completely removes
physical effects connected with orbital- and spin-depend
bonding at interfaces. This obviously contradicts the exp
mental findings showing that the spin polarization of the tu
neling current and magnetoresistance strongly depend on
type of barrier used.1 In our approach, the STF’s for th
electrodes allow us to encapsulate the effects of the inter
structure and provide the proper dependence of the tunne
current on barrier type. Jullie`re’s formula obtained in the
limiting case of full decoherence inside the insulator is e
pressed in terms of the spin polarization actually measure
the Meservey-Tedrow experiment~assuming that the supe
conductor acts as an ideal, nonbiased spin detector!.

Finally, for very thickki-conserving barriers the tunnelin
current may be carried predominantly by a close vicinity
17440
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some specialki points in the SBZ~e.g., theG point!. In this
case, the tunneling density of states is simply equal to
value ofT(ki) at thiski .

It is not cleara priori whether any one of these thre
limiting cases is directly applicable to realistic MTJ’s, a
though it seems that disorder in the insulator together w
the ‘‘channelization’’ of the tunneling current are both like
to play a major role. However, the emergence of Jullie`re’s
formula in these different scenarios suggests that it may
tually have a rather wide range of applicability. In gener
the tunneling density of states should be identified with so
appropriately averaged energy-resolved charge density ta
at the Fermi level at a sufficient distance from the interfa
within the barrier. Unlike the bulk density of states, th
function fully takes into account the relevant properties
the surface.

IV. TUNNELING FROM CLEAN AND OXIDIZED Co „111…
SURFACES THROUGH VACUUM INTO Al

We calculated the transmission functions using
principal-layer Green’s-function approach23 based on the
tight-binding linear muffin-tin orbital method~TB-LMTO! in
the atomic sphere approximation~ASA! and the transmission
matrix formulation of Ref. 24. Local density approximatio
~LDA ! was used in all calculations. All atomic potentia
were determined self-consistently using the supercell
proach within the TB-LMTO-ASA method. The vacuum ba
rier was modeled using empty spheres in the positions
responding to the continuation of the crystal lattice of t
electrodes. We have also performed full-potential LMT
calculations25 which confirmed all main features of the ban
structure of the oxidized Co~111! surface discussed below.

We checked the validity of factorization~2! by calculating
Ts(ki) for ~100!- and ~111!-oriented fcc Co electrodes with
parallel magnetizations, taking the square root, and conv
ing t↑(ki) with t↓(ki). Then, the result was compared wi
the independent calculation for the antiparallel configurat
in a range of energies. The agreement was always exce
~better than 1%!, except for a couple of specific energies f
a ~100! MTJ with four vacuum ‘‘monolayers’’~ML ! where
narrow resonances appear in the minority channel.26 If the
vacuum barrier is extended to 8 ML, excellent agreemen
restored.

Using the factorization~2! we investigated the SP of th
conductance from ferromagnetic electrodes to a nonmagn
material, Al~111!, which served as a detector of the tunneli
SP in the spirit of the Meservey-Tedrow experiments.16 As
expected, the calculated STF of Al is free-electron-like, h
ing almost perfect Gaussian shape originating from
vacuum decay factor up to the reference plane. Theref
this surface may be considered as equally transparent fo
Bloch waves, and the total transmission function for a M
with Al spin-detector electrode is essentially a product of
other electrode’s STF and the vacuum decay factor.

First, we discuss the properties of a Co/vacuum/Al M
with a clean Co~111! surface. Figures 2~a! and 2~b! show the
ki-resolved transmission for the majority- and minority-sp
electrons within the SBZ of Co~111!. The Fermi surface of
8-4
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EFFECT OF INTERFACE BONDING ON SPIN- . . . PHYSICAL REVIEW B 69, 174408 ~2004!
Co viewed along the@111# direction has holes close to theḠ
point with no bulk states in both spin channels, which resu
in zero conductance in this area. The majority-spin transm
sion @Fig. 2~a!# varies rather smoothly and is appreciab
over a relatively large area of the SBZ. On the other ha
the minority-spin transmission@Fig. 2~b!# has a narrow
crown-shaped ‘‘hot ring’’ around the edge of the Ferm
surface hole. The analysis of layer andki-resolved density of
states~DOS! shows that it is not associated with surfa
states,26 but is related to the enhancement of bulkki-resolved
DOS near the Fermi-surface edge@compare Fig. 2~b! with
Fig. 4~c!#.

As seen from Figs. 2~a! and 2~b! the Fermi-surface hole is
smaller for majority spins. Therefore, the conductan
should become fully majority-spin polarized in the limit o
very thick barriers. However, since the Fermi-surface hole
also quite narrow for minority spins, positive SP is on
achieved at very large barrier thicknessesd;10 nm, while
for typical values ofd;2 nm the SP is about260% and
depends weakly ond.

The oxidized Co surface was modeled by an O monola
placed on top of the Co~111! electrode. The equilibrium
atomic structure of this surface was found using the pseu
potential plane-wave method27 within the generalized gradi
ent approximation. We used both types of stacking:ABCA
andABCB, where the last symbol designates the position
the O monolayer. The O atoms were assumed to lie in s
metric positions above the second~S2! or first ~S1! subsur-
face Co layer, respectively~these layers are shown in Fig.
in the absence of the O monolayer!. We allowed the O layer
and two Co layers~S1 and S2! to relax in the direction nor-
mal to the surface, while the positions of atoms in dee
layers~S3, . . .! were kept fixed. The energies of both equ
librium configurations of oxygen monolayers were found

FIG. 2. ki-resolved transmission~logarithmic scale! from clean
and oxidized Co~111! surfaces through vacuum into Al.~a! Clean
surface, majority spin.~b! Clean surface, minority spin.~c! Oxi-
dized surface, majority spin.~d! Oxidized surface, minority spin
The vacuum layer thickness is 2 nm for clean and 1.7 nm for o
dized Co surface. The first surface Brillouin zone is shown. Un
are 10211 for ~a!, ~b! and 10214 for ~c!, ~d!.
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be very close to each other. All results of interest in t
present context are quite similar for these two stackings.
low all specific data are given for theABCB stacking. The
equilibrium interlayer distances were found to be 2.14
between layers S3 and S2, 2.18 Å between S2 and S1,
1.08 Å between S1 and O layers, compared to 2.07 Å
tween the adjacent Co layers in the bulk. The Co-O bo
length is thus 1.82 Å.

Presence of oxygen at the surface of cobalt raises
question of whether electron correlations similar to tho
characteristic for transition-metal oxides may be stro
enough to induce significant changes in the band structur
the surface. However, the enhancement of correlations in
ides is due to much weaker screening of Coulomb interac
compared to the metallic state. On the other hand, co
atoms below the oxygen monolayer preserve the clo
packed configuration of bulk cobalt except that the th
nearest neighbors out of 12 are absent. Therefore, it is
sonable to expect that screening of Coulomb interaction
the 3d shell is not much weaker compared to the bulk. F
this reason, we believe that LDA electronic structure of t
oxidized Co surface is correct as far as the main features
concerned.

The oxygen monolayer dramatically changes the el
tronic structure of the underlying Co layer making this lay
almost magnetically dead. This change can be unders
from band dispersion plots shown in Fig. 3. For each sp
the free-standing oxygen monolayer would have three ene
bands deriving from 2p states, each doubly degenerate d
to sz reflection symmetry~z is the axis normal to the sur
face!. When the monolayer is deposited onto the Co surfa
the degeneracy is lifted, and two sets of three bands each
formed corresponding to bonding and antibonding mixing
oxygen and cobalt orbitals. The three bonding bands~marked
B in Fig. 3! lie well below the bulk Co 3d band, whereas the
antibonding states are close to the Fermi energyEF . As a
result of this bonding the local DOS for the S1 layer atEF is

i-
s

FIG. 3. Band dispersions along theḠM̄ direction for ~a!
majority- and~b! minority-spin electrons. Energy is referenced fro
EF . The bonding Co-O surface bands are markedB, and the pure
antibonding surface band is markedA.
8-5
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strongly reduced, so that, according to the Stoner criter
magnetism in this layer is almost completely suppressed.
magnetic moment of Co atoms in the S1 layer is o
0.17mB .

Transmission of propagating bulk states from the el
trode through the barrier is very sensitive to the degree
mixing of these states with the antibonding surface sta
This mixing is controlled by a selection rule which follow
from the fact that all bands can be classified as ‘‘even’’
‘‘odd’’ according to their symmetry with respect toḠM̄ re-
flection. Although this classification is exact only along t
ḠM̄ direction, it is approximately valid throughout the enti
SBZ.

According to this classification, two of the three surfa
bands are even, and one is odd. On the other hand, the
electron-like band of bulk Co which forms the only Ferm
surface sheet for majority-spin electrons is even, while
minority-spin states on the Fermi-surface sheet closest to
Ḡ point are odd. Even and odd bands are orthogonal
cannot mix.

This selection rule results in the principal difference b
tween the majority- and minority-spin transmission. T
majority-spin bands are shown in Fig. 3~a!. One even and
one odd antibonding surface bands~marked A! are degener-
ate at theḠ point ~at about 0.8 eV aboveEF). At a short
distance from theḠ point both bands enter the continuum
bulk states. The odd band does not mix with the bulk sta
along theḠM̄ line and remains almost flat due to repulsi
from a lower-lying band. On the other hand, the even ba
readily mixes with the free-electron-like majority-spin ba
crossing the Fermi level and completely loses its surface
calization. This is evident from Figs. 4~a! and 4~b! which
show theki-resolved DOS of majority-spin electrons for th
bulklike S6 and surface S1 Co layers. The DOS for the
layer @Fig. 4~b!# is appreciable in the entire area of the SB
where bulk states are available and has no sharp features
might indicate localized surface states. This implies that

FIG. 4. ki-resolved local DOS atEF ~arbitrary units! for the
oxidized Co surface:~a! S6 layer, majority spin;~b! S1 layer, ma-
jority spin; ~c! S6 layer, minority spin;~d! S1 layer, minority spin.
17440
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bulk majority-spin states extend to the very surface of
electrode and therefore can readily tunnel through the bar

The situation is very different for minority-spin state
Although the odd surface band is again almost flat and
aboveEF , the even surface band crossing the Fermi le
does not mix with the odd minority-spin band. As a cons
quence, theki-resolved DOS for Co~S1! layer @Fig. 4~d!# is
large only along the curve lying at the periphery of the SB
where the Co-O antibonding surface band crosses the F
level ~oxygen DOS looks very similar!. As a result, the bulk
minority-spin states responsible for most tunneling transm
sion from the clean surface only extend up to the S2 lay
encountering a band gap in the S1 and oxygen layers. T
an additional tunneling barrier is introduced in the minorit
spin channel, and the total SP of the tunneling transmiss
becomes almost 100% positive, which is evident from Fi
2~c! and 2~d!.

The predicted effect of interface bonding is not limite
only to the Co~111! surface. We have also calculated th
transmission from clean and oxidized Co~100! and Ni~111!
electrodes and found that surface oxidation reverses the
due to the bonding between Co or Ni and O. As it was sho
earlier, the reversal of the SP also occurs for the Fe~100!
surface.28

V. CONCLUSION

We have shown that the problem of calculating the tra
mission function for a sufficiently thick insulating barrier
reduced to the solution of three separate problems, nam
the penetration of the bulk wave functions into the barr
from both sides, and the behavior of the evanescent ba
eigenstates. This separation provides a natural generaliza
of Jullière’s formula. We identified three limiting cases whe
the original Jullière’s formula is recovered. The tunnelin
density of states in this formula is identified with an appr
priately averaged energy-resolved charge density gener
by the bulk Bloch states within the barrier and taken at
Fermi level.

Using the factorization of the transmission function into
product of surface transmission functions and a barrier de
factor we calculated the spin polarization of the tunneli
current from clean and oxidized Co~111! surfaces through
vacuum into Al. We showed that the bonding between
and O atoms at the oxidized surface controls the sp
dependent tunneling by creating an additional barrier
minority-spin electrons, which results in a reversal of t
spin polarization.

Experimentally, the reversal of the SP associated with s
face oxidation may be detected using spin-polarized S
measurements.11 Since the ferromagnetic tip is sensitive
the SP of the total local DOS above the surface~see, e.g.,
Ref. 29!, the tunneling magnetoresistance in the syst
surface/vacuum/tip should change sign when the Co sur
is oxidized. In other words, for the clean Co~111! surface the
tunneling current should be higher when the magnetizati
of the tip and the surface are aligned parallel~the dominating
minority channel is then open!, but for the oxidized surface i
should be higher for the antiparallel configuration.
8-6
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