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Micromagnetic analysis of exchange-coupled hard-soft planar nanocomposites
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A complete magnetic phase diagram for exchange-coupled planar hard-soft nanocomposites has been ob-
tained in the frame of a one-dimensional micromagnetic model describing the dependence of the properties
along the growth direction. The phase diagram in terms of layer thicknesses provides information on the type
of demagnetization processes and the critical fields at which nucleation and reversal take place. The basic
criterion to this purpose is the analytical expression we have obtained of the critical susceptibility at the
nucleation field. The phase diagram is divided into three regions: the exchange-spring (E®ynttte rigid
composite magnetRM), and the decoupled magnéddM). The main boundary line is an U-shaped line
corresponding to divergence of the critical susceptibility. The diagram also reports the isocritical field lines
both for the nucleation and the reversal field. These lines bifurcate along the RM boundary line. The essential
characteristics of the phase diagram are directly connected with the intrinsic properties of the chosen soft and
hard materials. With increasing ratio between the anisotropy constants of soft to hard phases the ES region is
reduced until it disappears at a critical value. The model includes as limiting cases the classical problems of the
planar soft inclusion in a bulk magnet and of the domain-wall depinning at the hard-soft interface.
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I. INTRODUCTION of the exchange-spring magnet, Knelleral! proposed a
qualitative one-dimensional model that takes into account the

In the present technological scenario the microsystenmagnetostatic and exchange interactions among different
technologies are becoming more and more important witlgrystallographically coherent grains. However, the magneti-
particular focus on microelectromechanical systemszation reversal and coercivity mechanisms of real bulk sys-
(MEMS) and micromachines. Typical applications are seniems certainly depend on the microstructural details, such as
sors, actuators, accelerometers, re|ays, bioMEMS, rfMEMSt’he three-dimensional Spatial distribution of the two phases.
and microfluidic and microwave devices. In this context theOn the other hand, the layered structures can be more prop-
development of MEMS based on high performance perma€rly modeled as one-dimensional structures, because they
nent magnets is very promising. This goal has stimulate@ghow variations in the magnetic properties predominantly
research towards the development of new concepts in permalong the growth direction. Therefore, an additional advan-
nent magnetism, without any constraints concerning the mdage of these systems is to allow a realistic estimate of the
terial cost. In recent years some attention has been devoted #fimate gain in performance that may potentially be realized
composite magnets combining the best properties of a soft
and a hard magnetic material via exchange coupling on a ——
nanometric scaléexchange-spring magnesee Fig. 1 be- X A H
low). In particular it has been shown that oriented planar
composite systems in the form of multilayers offer in prin-
ciple the possibility of achieving the 1 MJntheoretical
limit for the energy density® The planar magnetic nano- 9 T
composites are technologically relevant, at least in perspec- % o X
tive. As an example, the millisize engines and microactuators Sy / > [ hard
have great potentialities in fields like bioengineering. Other B S <y G — Xg
applications could concern high-density magnetic recording 9 ¥

. . 4 1 soft
and microwave integrated devices. /

A multilayer is an intrinsically simple ideal system with -
an easily controllable and reproducible structure. In particu-
lar, thin-film growth allows the control of layer thickness
and, in principle, it provides a mean for crystallographic
alignment of the hard-phase easy axis. The dimensional scale
parameter is the ferromagnetic exchange lerigfh which
can be considered as roughly proportional to the domain wall - 5
(DW) average thickness. In the case of very hard magnets,
this quantity is only a few nanometers, while it is of the order
of several tenths of nm for soft magnetic materials, such as FIG. 1. Basic scheme for the one-dimensional micromagnetic
a-Fe. In order to predict the macroscopic magnetic behaviocontinuum model of the planar hard-soft nanocomposite.
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in exchange-spring bulk magnets. straightforward” although there are some attempts to realize

Recent studies on hard/soft bilayers and multilaypta- ~ Co/Sm-Co superlatticé®:}” From a different point of view,
nar exchange-spring maghéiave shown that the flux rever- other authors explored the possibility of modulating the in-
sal occurs in general in two stages beginning at well definetensity of interfacial exchange, by exploiting the phenom-
critical fields: the nucleation fieléH.;, at which the mag- enon of interdiffusion between Co/CoPt bilayé&ts® Fol-
netic moments start to deviate reversibly and nonuniformiylowing a different approach, thin-film nanocomposite
from the easy direction; the reversal figlg, that promotes magnets were obtained by randomly dispersing soft-
the irreversible rotation of the whole system. inclusions in an oriented hard matA%?*

In order to gain a deep insight into the magnetization Starting from a different viewpoint, Astt a real-
reversal process of the hard-soft composite magnet, we haveed a model system constituted by alternate layers of simple
developed a one-dimensional micromagnetic model and cataterials(elemental Fe and Gdut with special care for the
culated the analytical expression of the differential susceptiinterface condition. For this purpose, they have employed
bility at the nucleation field. The dependence of this quantityultra high-vacuum deposition technigudglectron-beam
on the structural parameters allows to define the magnetievaporation with very low deposition rates to obtain clean
phase diagram of the planar hard-soft composite. In this diaand sharp interfaces. Furthermore, they have investigated the
gram, boundary critical lines separate the different regimesffect of the layer thickness on the structural and magnetic
corresponding to distinct reversal mechanisms. The predigaroperties of Fe/Co multilayers having a constant number of
tions of the model are here compared with existing experilayers and a given Fe/Co thickness ratio. The obtained sys-
mental data and with the results of other theoretical analyseems show a single-phase-like behavi@most bistable
reported in the literature. The model, far from the nanometriovith a steep magnetic reversal. The recoil susceptibility of all
scale, also includes important aspects of classic systems suttte studied multilayers approaches the slope of the major
as soft inclusions in a hard bulk. Finally some consideration$oop at remanence, as in a classical permanent magnet.
are given concerning the best conditions for obtaining per-
manent magnets with the highest energy density. Before the
presentation of our model, in Sec. Il we give an overview of IIl. THEORETICAL MODELS
the main endeavors to realize permanent magnets in the form . o )
of planar magnetic nanocomposite systems, followed by a The literature on the theory of magnetization reversal in
detailed analysis of the theoretical models especially devefultilayered exchange-coupled thin film structures can be

oped to describe the magnetic behavior of these systems. classified by the following schemé) continuum-approach
micromagnetic model& -2’ which allow one to deduce ana-
lytic expressions of relevant parameter§j) discrete
model$®28-2%that are useful for very thin filmsjii) compu-

Il. INTRODUCTORY OVERVIEW tational approaches based on solving the dynamic equation
of motion>%3tand(iv) first-principles calculations, aimed at
Yetermining the band-energy structdfe.

The inhomogeneous distribution of the magnetization is

nerally to be expected in such a manner that at equilibrium

e magnetization is always parallel to the film plane and
thus the problem can be considered as one dimensional along
an axis perpendicular to the multilayer plane. As a conse-
rcﬁ.lence of the chosen in-plane distribution of the magnetic
moments, corresponding to Bloch-wall-type configurations,
the stray fields are vanishing.

| 22-24

The first attempts to realize a planar exchange-sprin
magnet focused on isotropic systems, either bila§ers,
trilayers®’ or multilayers®=° constituted by Sm-Co or Nd-
FeB as the hard phase and Fe, NiFe, and Co as the s
phase. Shi-Shen Yaret all*!? studied extensively the
NigoFe,o/ SmygFe;o system, by varying over a wide range
both the hard- and the soft-layer thicknesses. Other autho
followed a different approach, involving the growth of the
nanocomposite thin films Co/Sm-Cdref. 13, Co/Pr-Co
(Ref. 14, and Fe/FePtRef. 15, obtained by rapid thermal
annealing of multilayered structures. In this case, the final
two-phase nanostructured film shows the exchange-
hardening behavior although keeping no trace of the original The use of the continuum approximation for the
layered structure. These first endeavors have shown the femultilayer problem is justified down to thicknesses of a few
sibility of a multilayer nanocomposite magnet, but on theatomic layer€>?’ Within this approach, models have been
other hand, they have also stressed the difficulties existing omainly utilized to deduce analytically the instability field in
the way of achieving the ideal 1 MJfnmagnet®e.g., the some special cases, such as the two-coupled-layers problem,
interfacial roughness, which can influence the exchange codirst addressed by Gotet al?® In their model, the spin con-
pling between layePsand the alignment of their easy axes. figuration inside the isotropic soft layer corresponds to a con-

An attempt to overcome the latter problem was the epitinuous rotation, as in Bloch walls. The spins in the hard
taxial growth of Co/Sm-Co and Fe/Sm-Co bilayers obtainedsubstrate with infinite anisotropy are assumed to remain par-
by sputtering depositiotf. In principle, the stacking of bilay- allel, therefore imposing the boundary condition to the soft-
ers of this type should produce a soft/hard multilayer havindayer magnetization. Through the analytical solution of the
essentially the same properties of the component bilayer, iEuler equation, Gotet al?® deduce the shape of the theoret-
the reversal process occurs homogeneously. However, theal magnetization curve. In particular, they express the an-
growth of multilayers of this kind seems now not so gular distribution of magnetization vector in the soft layer in

A. Continuum models
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terms of Jacobi elliptic functions. They individuate a critical field, at which the collinearity is broken and the reversible
value of the field (instability field, usually called the process startéhe exchange-bias fieldand a second critical
exchange-bias fiejccorresponding to the initial deviation of field corresponding to the irreversible switch of the whole
the spins in the soft layer from the parallelism with respect tosystem. The hysteresis behavior of the system can be consid-
the spins of hard layer. This field is inversely proportional to€red as a single-phase magnetic behavior. On the contrary, in
the squared soft-layer thickness. The same authors also coffle extreme case, corresponding 2 7y, the hard and
sidered the more general case of two exchange-coupled filng9ft phase can be considered as decoupled and the hysteresis
with different uniaxial anisotrop§. but did not explicitly ~ cycle is typical of a two-phase system, with two different
reduce the problem to a set of elliptic integrals, due to thgeversal fields. In this region, the magnetization reversal
complexity of mathematical expressions. They deduced intakes place by rotation of the moments independently and
stead approximate solutions in special caSé8such as, the irreversibly in the hard and soft phases and the hard-phase
limit of vanishing hard-layer thickness with infinite anisot- reversal field decreases with an inverse powedof

ropy (degenerate hard filmwith the condition of a constant A remarkably different analytical approach is that based
thickness-anisotropy produtt. Hagedor?® further devel- on the analogy between quantum mechanics and
oped the above model by investigating the stability of equi-nicromagnetics>*°In essence, the micromagnetic equation
librium magnetic configurations by deducing an analyticalwhich is obtained by the minimization of free energy corre-
expression for the second variation of the magnetic energygponds to the Schdinger’s equation for a particle moving in
which he evaluated through numerical calculations. a three-dimensional potential of the fornK(r)/uoM(r).

The background of the above-described approach is thi particular the treatment of the multilayer limit is analo-
problem of calculating the nucleation field of a ferromag-gous to the periodic multiple quantum well probleione
netic crystal with inclusions having lower uniaxial magneto-dimensiona), leading to the implicit equation for the nucle-
crystalline anisotropy>*® For example, a one-dimensional ation field [see Eq.(A11)] as a function of hard and soft-
model was developed by Aharafiijn which a crystal ex- layer thicknesses and of intrinsic parameters of the two
tending infinitely in all directions is considered, including a phases? At this place we should also cite an earlier treat-
zero-anisotropy slab of finite width. The procedure to obtainment of the problem of inhomogeneous nucleation in peri-
an analytical expression for the nucleation field essentiallpdic hard-soft multilayers based on the Kronig-Penney
relies on the solution of the linearized Brown's equations. Amodel;* allowing the derivation of the linearized micromag-
further evolution of these models was proposed bynetic equation as a one-dimensional Sdimger’s equation.
Abraham®’ where a bulk crystal is covered by a surface
layer having zero anisotropy, but different exchange and

In recent years Leineweber and Krofiter”*® examined The micromagnetic approach suffers of some limitations,
the case of a soft layer with finite thickness sandwiched bepartly because the complete solution of the variational prob-
tween two infinite hard layers. They derived expressions folem is possible only by approximation and numerical meth-
the angular orientation of the magnetization vector throughods, and partly because it is based on a continuum model of
out the layers, both with and without an applied magnetizingmatter, which becomes inaccurate when the layers thickness
field, as a function of the intrinsieexchange, magnetocrys- is very small. The discrete models assume the one-
talline anisotropy and extrinsiqthickness characteristics of  dimensional character of the reversal mode and have been
the layers. On the basis of these results, the authors deducgfplied to explain the observed magnetic behavior of
the remanence, reversal field and maximum energy produ@ixchange-spring  bilayet§1’2%42 triple-layers®  and
of the triple-layer system. They calculated the reversal fieldnultilayers?®*? The basic assumption is that the magnetic
(they called this field “nucleation fieldH) as a function of  properties are considered to be constant within a “sheet” or
the soft-layer half-thicknesgtherein denotedds) and de-  “layer” parallel to the interfaces and to depend only on a
duced that this critical field coincides with the hard-layerplane indexi, which corresponds to the coordinate perpen-
anisotropy field, if 2i; is below thehard Bloch wall thick-  dicular to the planes. Most authors assume that such layers
nessw o= mwVAL/Ky. In this region, the value ofi, does are separated by a distance equal to the lattice parameter. In
not depend on the particulal; value, and the system can these models the coupling only occurs between neighboring
develop a complete exchange coupling between the twélayers” and may be described, e.g., by an energy per unit
phases. Furthermore the hysteresis loop is rectangular as smrface are&® On this basis Amatet al?° demonstrated that
the case of a pure hard bulk, with only one critical field, andon increasing the nanostructuration of the multilayer, that is,
the magnetization reversal is only due to a rotation mechaen increasing the number of alternate layers while keeping
nism. A different behavior is instead deduced @fsds of the  constant the total thickness and the hard/soft ratio, both the
order of one or a fewrs,, whenH,, turns out to decrease coercivity field and the maximum energy product are en-
steeply with increasing. This situation corresponds to the hanced.
so-called exchange-coupled pha&a which an inhomoge- A different approach is based on the magnetodynamic
neous (irreversiblg rotation mechanism predominates the Landau-Lifshitz equation for distributed ferromagnetic film
magnetization reversal, following a reversible process causeslystems 3! The explicit purpose of the authors was to over-
by the exchange coupling. The hysteresis loop is no moreome the complications of the quasistatic descriptroainly
rectangular in shape and one can distinguish a first criticatoncerning the verification of the stability of the solutions
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obtained from energy minimizati¢pim the case of distributed The magnetization of both layers is supposed to lie gen-
systems such as films with laminar magnetization. The auerally in the film plane. Hence in Eq1l) no demagnetizing
thors claim the dynamic solutions to be less complicate andield contribution to the free energy has been taken into ac-
more convenient, even including the problem of stability. count. In the case of an exchange-coupled multilayer with
perpendicular anisotropy, a further energy contribution due
to stray fields should be introduced into the model in form of
a demagnetizing anisotropy constant for each Iayé?m(
Following the guidelines of the micromagnetic approach,= #oM?/2). In this case the magnetic field is applied anti-
we handled the problem of the physical existence of the soparallel to thex axis and the intrinsic anisotropy constaKis
lutions arising from variational calculus by utilizing an heu- should be substituted by the corresponding total anisotropy
ristic viewpoint, essentially based on the study of the magconstantsLizKi—,quiZ/Z, where a positiveK; indicates
netic susceptibility in correspondence to the critical fiéftls. that thex axis is an easy axis. A further assumption is fidat
We calculated indeed the analytical expression of the differin both layers lies in thexy plane and the anglé) is the
ential susceptibility £.) at the critical field that corresponds orientation angle oi; with respect to the positive direction
to the start of flux reversghereafter called nucleation field of x axis. This means that the problem has again a one-
H¢1, as usual in the micromagnetic treatnf@nton the basis  dimensional character with one degree of freedgncom-
of a one-dimensional micromagnetic model of the exchangeponent ofM;) and the mathematical treatment presented be-
spring multilayer. The value of. is an important parameter low also applies to the case of perpendicular anisotropy. In
characterizing the type of reversal process and it is of parparticular, in the limitK,=K,, M;=M,, the system re-
ticular interest the evaluation of its dependence on the propduces to a classic infinite slab with perpendicular anisotropy
erties of the soft and the hard phases and on structural pgsee Ref. 45, p. 194 Our assumptions are consistent with
rameters. this case characterized by a spin reversal triggered by the
The adopted model considers the exchange-springucleation of a uniform rotation mode at a critical fiettg
multilayer as composed by alternate soft and hard layers pet= (2K — uoM?2)/uoM (Ref. 46. So we expect that the one-
pendicular to thex axis (see the scheme in Fig).IThe two  dimensional approach we utilize in the model is also appro-
component layers are supposed to have uniaxial anisotrogyriate for describing the nucleation process in the exchange-
with parallel easy axes both lying in the film plane along thecoupled multilayer with remanent saturated state
z axis (Fig. 1). The search for solutions is limited to those perpendicular to the film plane. However this description
which are periodical, so that the median planes of the layersould be no more adequate in the region far from saturation.
are symmetry planes for the magnetic structure. The pro particular the second critical field,, at which the com-
posed approach i$) based on a continuum model of matter, plete reversal of the whole system occurs, could substantially
(i) it does not take explicitly into account temperature ef-differ from the values predicted by the model because the
fects, except for the fact they are implicit in the magneticsystem could take advantage of the additional degree of free-
parameters normally utilized in a micromagnetic treatmentdom (z component oiM;).
(iii) it also neglects the time dependence of magnetization, The determination of equilibrium state is a variational
thus considering a quasistatic magnetization reversal, angroblem. In this particular case, one has to consider the pe-
(iv) it does not consider the possible contribution of surfaceriodic boundary conditionsdd¥/dx)=0 for x=x,; and x
and interface anisotropy. In the case of an applied magnetie-x, and A;(d®/dx)|,— %o _=A,(d¥/dx)|4- Xg* for x=x,.
field H opposite to thez axis, the expression of the Gibbs the |ast condition corresponds to the Weierstrass-Erdmann
free energy can be written as law along the surface normal, which is also cited in Ref. 27.
The absence of an explicit dependencexasf the integrand
allows to directly obtain from the Euler equation a first order
+K; sir? 9| dx

IV. THE ADOPTED MODEL

integral, which reads

+MOMiH cosd

: dd)? :
(1) MoMiH(COSﬁ_COSﬁi)‘FKiSW]z ﬁ_Al a _Ki S|n2 ’ﬂi

=0, @

where indexes 1 and 2 refer to the soft and hard layer, re-
spectively, andxy, X;, andx, denote the position of the from which
interface and of two contiguous median plagg. 1), 9(x)

is the angle between theaxis and the magnetization vector dd : .
M, andA, is the exchange stiffness constant of lai€Fhe ax Veri(cosd—cosdy) + Bi(sin’ 9 —sir? §),  (3)
magnetocrystalline anisotropy term is limited to the second

order. We also define the quantities=(Xo—X1), t,=(Xx,  Wherei=1 for x;<x<xXy andi=2 for xo,<x<X, and «;
—Xg), Which represent half of the respective layer thick-=puoM;H/A;, Bi=K;/A;. The boundary angles ang for
nesses. x=X; and ¥, for x=Xo. Because we are interested in the
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behavior for small angular deviations around the figld,  which corresponds to the equilibrium condition for the ex-

Egs. (3) are then expanded up to the fourth orderirand  change forces. Thus we obtain a system of three linear equa-

become tions in the anglesy; . At H=H_, (i.e., 7=0) it becomes a
system of homogeneous linear equations: the condition is

dd Pi 5. w2 a; that the determinank of the coefficient matrix is vanishing,
W 1+ 5('9 +O7) | =dx\/|Bi— 21 (4) leading to an implicit equation for the critical field;; (see
: Appendix A). For 7#0 a mathematical relation is obtained
where between the infinitesimal field and anglesd; [see Eq.
(A10)], which in turn allows to obtain an expression of the
D= a1~ 8B, slope ofM(H) at the nucleation fieldH . .
122B8,—ay)’ Appendix B reports the calculation of the infinitesimal
decrease of the reduced magnetizatiém= SM/Mg (Mg is
o a;— 80 5 the saturation magnetization of the whole systevhich is
P2= 12(ay—2B,)" ® proportional tod?3 through a factoll”, which is a function of

In Egs. (4), the argument of the modulus has negative Signthe layer thicknesses and the magnetic parameters. Then the

for the soft layer @<<d¥;) and positive sign for the hard reduced susceptibility isAppendix B, Eq.(BS5)]

layer (> 1,). The obtained equations are then integrated s 9T

between the extrema, which afe= 9, and 9= 9, for the ¥= om_ -

soft layer, 9=, and 9=, for the hard layer, and the T T

corresponding values for variabe(see Ref. 4Y. ) ] ) .
Then we obtain two linear equations for the soft and theEduation(A10) of Appendix A yields the ratia%/ and thus

hard layer in terms of higher order infinitesimal variablgs ~ the volume susceptibility at the critical fieH, (in SI units

(j=0,1,2) that define the deviations of angkésfrom their  tUrns out to be

unperturbed values corresponding to the onset of instability

atH=H_;. The magnetic field itself is expressed in terms of oM amMg 95TMg My

an infinitesimal reduced variable=(H—H)/H.;, that Xe=SH ~ (H—Ho) Har “Hy (@)

vanishes wheil =H,; (see Appendix A A third equation is

obtained by considering the boundary conditionxatxg, or, equivalently’*

6

51 tan(t;y,) ty tanh(t,y,)
Ml +M2
e cos'(tyy1) Y1 cost (t72) Y2
° 3p; 2t1y1 3p2 2ty 7y,
2 : - 7 : +1|+2(p1—p2)
cos'(tyyq) [Sin(2t;y1) coslt(ty ) [ SIN(2t55)
X[ 1+ 2ty }+ {1+ 2t, ” [ 1 ®
ay—+—————|ta, — . : ,
Uyi yisin(2tyyy) 2y ya2sinh(2tyy,) 4Hca(ty+t5)

wherey,; andy, are defined in Appendix A as functions @f  when reducing the half-layer thickness andt,, until x.
and . diverges along a critical liney;— ). This line corresponds
to the onset of instability and, in the region below j,
becomes negative, indicating that the flux reversal occurs
V. THE MAGNETIC PHASE DIAGRAM irreversibly. This critical condition separates the regime of
the so-called exchange-spring mag(tes, y.>0) from that
The dependence gf, on the structural parameters allows of the magnetically rigid composite magndgM, x.<0),
to define a phase diagram in thig (t,) plane. Figure 2 rep- which is very similar to a conventional oriented magnet. In
resents the phase diagram of a typical exchange-sprinte latter, the reversible portion of the demagnetization curve
multilayer, calculated for the case of a Fe/Sm-Co systemon the left of H.; (usually interpreted to be indicative of
with the same layer intrinsic parameters already utilized by‘exchange-spring behavio)”is absent.
Fullerton et al'® (M;=1.7 MA/m, M,=0.55 MA/m, K, The first critical fieldH; is the solution of the implicit
=107 JIn?, K,=5MJ/n?, A;=2.8x10 1 J/m, and A, equation(A1l) of Appendix A. Givent, andt,, this is an
=1.2x10 1 J/m). Starting from the thick layers region, the equation inH throughy, andy,, and it is usually solved by
critical susceptibility is positive and increases continuouslyusing the simple method of bisecti¢see Ref. 48, p. 353In
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FIG. 2. Magnetic phase diagram in the plane of half-layer thick- 210 75 ES E \ /,/ /
nesses; (sof) andt, (hard for the case of a Fe/Sm-Co multilayer, g ' ' 7" 0.04 Am
with  parameters M;=1.7 MA/m, M,=0.55MA/m, K; NOIR gl <
=10 In?,  K,=5MJIn?, A;=2.8<10 1 Jm, A,=12 Sp A DM )
x 1071 J/m (from Ref. 18. The figure reports the criticay., line . /_ L s
(xc—, dotted ling together with the lines of constant critical field o ERMS T il
H.1 (solid) andH, (dashed 0 10 20 30 40 50 60
t1 (nm)

this way theH; lines have been traced on the magnetic
phase diagram. The curves corresponding to constant values
of the critical susceptibilityy. in the (t1,t,) plane are found
by a similar method: givert;, we find the corresponding
point of the isoy. curve with the bisection, by letting,

FIG. 3. (a) Fe/NdFeB composite systefdata from Ref. 2)
magnetic phase diagram in the plane of half-layer thicknesses
(soff) andt, (hard. The U-shaped dotted line represents the critical

. . Xo line (x.— ). The figure also reports thd ., (solid) andH,,
vary. Since expressio(8) for x. also depends ohi.,, we lines (dasheg, which coincide in the RM regiofleft-bottom side of

have to solve equatiofA1l) for each step of the bisection. e giagram (b) Same aga) but with an enlarged scale, in order to
In order to trace théi., curves, we first have to calculate the giye evidence to thet%, line corresponding to the value 542.73404
demagnetization curveisee Appendix € The condition t0  ka/m: this line discriminates thel, lines having a vertical asymp-
determine this critical field is the divergence of the reversiblagie from those having horizontal asymptdtevo examples are

susceptibility, a criterion discussed in detail by Hubert andyraced on the diagram, see texthe figure also shows the different

Rave®® regions in which the U-shaped critical line and the bifurcation line
The lines of constant critical fieldd.; andH, are pre-  subdivide the phase diagram. The bifurcation lidetted ling de-
sented in Fig. 2 over the half-layer thicknessgesandt,, notes the boundary between coupled and decoupled systems.

together with the line of constant critical susceptibiljpy
—o (x., line), which separates the RM regime from the ES

. ; . i h . of the soft-layer thickness. As a consequence, if we focus the
regime. In the RM regime the isocritical field lines falr,, y a

dH incid hile there is a bif i £ th i attention to the case of relatively large hard-layer thick-
andrHc, coincide, while there 1S a biturcation of these ines nesses, the phase diagram is subdivided into three regions.
on the x., line and a separation in the ES region. With the 1 : L

; . ) On the left of first asymptote, the system is in the RM
material parameters used, the RM region corresponds t%

rather small thicknesses for both layers, of the order of a fewSY'me dominated by the hard phase, that is, with large criti-

nm. In general, by setting a specific value of the soft—layelpal figld_s.(Z) On the right of -the second asymptote, the sys-
half-thicknesst;, Ho, becomes larger by increasing. €M iS in a decoupled regimidecoupled magnetbM)],
However, due to the fact that thé., lines show a vertical where the hard and soft phases behave as almost independent

asymptote, by increasing the hard-layer thickness beyond g?Mponents.(3) The intermediate region pertains to the
certain valueH,, changes no more. usual ES regime. In the decoupled region the nucleation field
Another System that has been proposed as a possib'écl doeS not mark the Starting Of a reVerSible detachment Of
exchange-coupled planar composite is Fe/NdFeB. The pha$ge magnetic moments from saturated state: it indicates in-
diagram for a Fe/NdFeB infinite multilayer is shown in Fig. stead the occurrence of the irreversible switching of the soft
3(a), based on the material parameters given in Ref. 2Pphase, which is followed by a similar process involving the
(M;=1.7 MA/m, M,=1.28 MA/m, K;=4.3x10* J/n?, hard phase at the field.,. The corresponding demagneti-
K,=4.3 MJ/nt, A;=2.5x10" J/m, A,=7.7  zation curve is typical of a two-phase system, as prefigured
x 10712 J/m). If we extend the phase diagram to the regionin Refs. 1 and 38. For Fe/Sm-Co system, the second asymp-
of large soft half-layer thickness¢fig. 3@)], we observe tote occurs at very largg values(of the order of 200 nm
that they.. line assumes a typical U shape. This line presents Figure 3a) also reports the iso-critical lines correspond-
two vertical asymptotes, corresponding to particular valuesng to the reversal fieldH.,. Note that those lines corre-
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FIG. 4. Fe/NdFeB composite systduata from Ref. 2F hard- FIG. 5. Fe/NdFeB composite systefiata from Ref. 2¥ mag-

layer half-thickness positioty of the horizontal asymptotes for the Netic phase diagram in the plane of half-layer thicknesgesoft)

H., lines, as a function of thel., value. On the same figure it is andt, (hard. On the diagram the U-shaped dotted line represents
also reported the soft-layer half-thickness positipwf the vertical the x.. line, and the other lineésolid) are isocritical susceptibility
asymptotes for thél,, lines. The discontinuity corresponds to the lines. The hard-layer thickness scale is logarithmic.

critical field H},=542.7340384 kA/m(see Fig. 3.

be connected with the introduction of a third critical field at
which the irreversible transition occurs when the saturated
X , . i and the intermediate states have equal free energy. In this
preisent a horizontal asymptote. This critical field value,age e could have again a two-step demagnetization curve
(H%,=542.73404 k_A/m Wlth the _ut|I|zed material param- iy the region whergH.y|>|He,| and the new bifurcation
eters can be obtained by imposing that both layer thick-jine \yoyid be shifted to lowet, values while converging on
nesses are infinite: the corresponding lisg-curve appears o same tricritical point.

to have an oblique asymptote in the region of large thick- " rjq, re 5 shows the isocritical susceptibility lines superim-

nesses. Itis worth notinig-ig. 3(b)] that a very small change ,,seq to the magnetic phase diagram of the Fe/NdFeB infi-
of this critical field valueH}, in either directions, even on nite multilayer, with the hard-layer thickness on a logarith-
the eighth digit H,+0.04 A/m), gives rise to isocritical mjc scale, in order to put in evidence the peculiar behavior in
field curves that are practically coincident up to a certainthe limit of very large hard-layer thickness. In this limit, the
point, where they bifurcate taking either a vertical or an hori-jso-y . lines are still open lines and tend to concentrate close
zontal asymptote. Figure 4 reports the calculated thicknesg the U-shaped critical line. This means that for very thick
positions of the horizontal and vertical asymptotes, respechard-layer thicknesses, the critical susceptibility of compos-
tively, as a function of the critical fielti,. The divergence jte system is practically zero for all soft-layer thicknesses,
of both curves occurs at the critical field valt, . except in a very narrow region around the vertical asymp-
Another peculiar characteristic of the obtained phase diatotes, where it diverges. This fact reflects the obvious cir-
gram, as can be seen from Figag is that the bifurcation of cumstance thag, is a weighted average of the susceptibility
the H,; andHe, lines occurs exactly in correspondence tocontribution of both componentéard and soft With in-
the critical line y.. only for fields above a specific value creasing hard-layer thickness the demagnetization pattern
(about 210 kA/m, with the utilized material paramejefr  tends to be invariant and involves the same volume, which is
fields lower than this value, the bifurcation occurs along aa decreasing fraction of the whole system.
line that branches out of the critical ling,. This “detach-
ment” of the bifurcation from they,, critical line can be
visualized by plotting on the phase diagram the bifurcation

points corresponding to different field values, as it can be VI. DEPENDENCE OF THE MAGNETIC PHASE

deduced from Fig. @&). One obtains thus a critical liféig. DIAGRAM ON MATERIAL PARAMETERS
3(b)], called the bifurcation line, which is nearly horizontal

and denotes the boundary between coupled and decoupled Let us examine first the effect of an increasing soft-layer
systems. Below this line the system is exchange coupled: ianisotropy on the phase diagram. Starting from the anisot-
particular it is a rigid magnet dominated by the soft phaseropy ratiop=K7 /K, as in the case of Fig. e/Sm-C9, the
that is, with small critical fields. Above the bifurcation the phase diagram modifies as shown in Figr)6The two as-
hard and soft phases behave as nearly independent componptotes of the critical liney., approach one another on
nents(DM regime. The bifurcation line converges into the increasingp, until they meet for a particular value’ (for
left-hand side of the U-shaped critical line to a tri-critical soft/Sm-Co it is about 0.06, while in the case of the soft/
pointI". The definition of the decoupled magnet is inherentlyNdFeB multilayer it is 0.03% so that the region of existence
subject to certain arbitrariness. We have considered in thef the ES magnet vanishes. So the U-shaped curve collapses
present analysis a decoupled system as the one for whidh a half-line starting from the tricritical poink, where it
|H¢q|<|H¢,| while x.<0. Another possible definition could links up with the bifurcation line thus forming a unique new

sponding to fields above a specific valdg, show a vertical
asymptote, while those referring to a field lower thdf,
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F 1 | X- line as a function of thé\, /A, ratio, with A, fixed. (b) Soft-
~10F ] 10.12 . " ' .
g ! ' phase half-thickness position of first asymptote of theline as a
EN 8 \ ol N function of theA, /A, ratio, with A, fixed. The dots on the lines
S5k 0.07 \'___ e represent the starting values Af and A, taken from Ref. 16.
: diagram. The numerical values @f are 0.096 for soft/
00' P e— NdFeB and 0.148 for soft/Sm-Co.

8§ 10 12 14 16

i (om) The variation of the anisotropy ratio has little effect on the

soft half-layer thickness position of the first asymptote, while
) ) strongly influences the position of second asymptote. This
FIG. 6. Soft/'Sm-Co composite systestarting data from Ref.  f5ct is summarized in Fig.(B), where the asymptote’s posi-
16): (a) modification of they.. line in the magnetic phase diagram tigns in the phase diagram are reported as a function of
on varying thep=K7} /K, ratio, with fixedK,. (b) Soft-phase half- K, /K, ratio for the case of the sof/Sm-Co system. In the
thickness position of first and second asymptotes ofithéne as a limit of vanishing soft phase anisotropy, the positignof
function of p. The positiont;=1.23 nm represents the limit for first asymptote tends to a val@&.23 nnm \’NhiCh is close to
K;—0. The two asymptotes coalesce at a critical raiiep’ the exchange Iength‘zz\/m.of the ,hard Sm-Co phase

=0.06, corresponding t =2.8 nm: for higher values gf the ES . N
phase disappear&) Phase diagram fgs>p’ (broken lines repre- (about 1._55_ n_m Wr_nle the position of the second asymptote
tends to infinite thickness.

sent the new boundary lines separating RM and DM phases \
comparison we have also included the phase diagram for a value N the particular case<;=0, K,=K, A;=A,=A, J;

p=0.05<p’, with the x.. line (solid) and the bifurcation lingbro- ~ =J2, the position of the first asymptote turns out to be
ken). t,VK/A=0.985013, in good agreement with the boundary

thickness between the continuous and discontinuous jump of

boundary line separating the RM and DM regions. With fur-the magnetization at nucleation as reported by Ahdroni
ther increase 0p>p' the new boundary line moves upwards (t1VK/A=0.984). The positions of the two asymptotes col-
to the right in the phase diagram, progressively reducing théapse, as already stressed, #{/K,=0.06, in correspon-
DM region [Fig. 6(c)]. At a second special valugsee Sec. dence to a soft half-layer thickness of 2.8 nm for the case of
IX) the soft/Sm-Co systerfFig. 6(b)].

We also analyzed how the position of the first asymptote
JOHE 3 1 is influenced by the variation of exchange constants. As a
p'= et (9) firstattempt, we fixek; andKj to the initial values of Ref.

JoHpz  J2 (1+42¢+2V8) 16 and changed eithé; or A,. The results for the case of
the soft/Sm-Co system are reported in Fig&) and 71b),
whereé=A1J;/A,J,, the region at infinite thickness of both from which it can be inferred thak; determines the stron-
phases f(; ,t,— =) becomes RM, so that fgs>>p” the DM  gest variation of the asymptote position: about 70% for a
region either disappears or becomes an island in the phaskange of a factor 10 of th&, /A, ratio.

n
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FIG. 8. Demagnetization curves for the case of a Fe/Sm-Co ) - )
multilayer, with parametersM,=1.7 MA/m, M,=0.55 MA/m, FI_G. 9. C_ompanson between _the calculated critical f_|e+t1§
K,=1G JIn?, K,=5MJn?, A,=2.8x10"1Jm, A,=1.2 (contlnuo_us Iln_é andH,, (dashed Ilnieand the correspondlng_ val-

X 10~ J/m (data from Ref. 16 The hard-layer thickness Q@ is ues obtalr?ed m Ref. 16, as functlops of the soft-layer thlckngss
fixed at 20 nm and those of the soft layert{Rare indicatedin (2t1), having fixed the hard-layer thickness at 20 nm. Open dia-
nm) on the curves. The calculation was performed considering &"0Nds,Hci; open dotsHc, .

tilting angle of 3° between the easy axis and the field direction, as in

Ref. 16. curves for infinite multilayers having the same layer thick-
nesses of the finite systems considered by Anea@l *° The
VII. THE CALCULATED DEMAGNETIZATION CURVES only exception is the case of trilayen€ 3) for which we

. _ . have also calculated the curve considering the system as
The pr(_)cec_iure for tracing by numerical calculatlo_ns the_composed by two symmetrical bilayers having half thick-
demagnetization curves of an exchange-coupled multilayer iSasses 10 nm/10 nm. These curves are reported in Fig. 10, to

reported in Appendix C. Figure 8 reports the calculated depe compared with Fig. 2 of Ref. 29 and the deduced values
magnetization curves for a Fe/Sm-Co system, with the Samgs the critical fieldsH,;, andH,, are compared in Table |

intrinsic parameters utilized by Fullertat al*® In this case it the corresponding values of Amat al2® Our critical

thedc(;J_][fves refer tlo the E?Te Sm-Co Ie;]yer thickn@8snm  fio|gs H_, andH., are larger than those deduced by Amato
and diterent ]!:e ?yert 'r? neslsels in the rangefl—Z%nm, 8% al,?® independently of the nanostructuration degree. Fur-
|r_1dF|g. 1(1a).|o. Ref. 1|6' Tf eocz culation \r/]vas performe cdonr—] thermore, our system enters the RM regime for smaller val-
sidering a tilting angle of 3° between the easy axis and hgeg of the nanostructuration degree of the multilayer. How-

field direction, as n Fullertoret al. The comparison of ever, the general features of the demagnetization curves turn
calculated curves with those reported in the cited referencg ;i 1 pe similar. In general, from this comparative analysis

gives a good agreement concerning the shape antithe o can say that the continuous micromagnetic approach

andH., values down to a soft-layer thickness of about 5 NM,gie5 reliable results down to layer thicknesses of a few
that is, for systems lying in the ES region. However, we ;- layers.

observe an increasing discrepancy for the calculategl
value on reducing thet? value below 5 nm.

The values oH,, andH,, as functions of the soft-layer 13 TR
thickness are reported in Fig. 9, together with the corre- 1p @GS0 G54 .
sponding critical field values calculated in Fullertenal X® ; ! ]
There is good agreement fét,,, especially at large thick- 0.5+ ]
nesses, while our.; values seem to be slightly larger than gw ol
those obtained in Fullertoat al'® The transition to the RM s ]
regime appears in both calculations to occur at roughly the -0.5F ]
same thicknesst2~2 nm. Amatoet al.?° on the basis of a :
discrete micromagnetic model, calculated the demagnetiza- “r
tion curves for the Fe/Sm-Co exchange-spring multilayer, 15t ‘ ‘ ‘ ‘

utilizing the same data given by Fullerten al® The com- 3 0-25 2 15 -1 05 0
parison of the results from our model and those of Amato H (MA/m)

et al?® is difficult because they considerfimite multilayer

system, with constant total thickness and different nanostruc- gy 19, series of calculated demagnetization curves for infinite
turation degree, that is, different numb% of layers. Furtherge/sm-co exchange-spring multilayer having the same layer-
more, because the systems of Amataal™ start and finish  thicknesses of the finite systems of Ref. 29. Thelue reported on

with a hard layer, they show a symmetry that we cannohe curves represents the nanodispersion index, as defined in Ref.
exactly reproduce: this is true in particular for the systemsg, thatisn=3 corresponds to a trilayemn=5 to a pentalayer, and
with a small number of layers. Nevertheless, we numericallyso on. The numbers in parentheses represent the soft and hard half-
calculated, on the basis of our model, the demagnetizatiotayer thickness expressed in nm.
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TABLE |. The calculated critical field$l;; andH., compared 20
with the corresponding values obtained in Ref. 29. Thealue o)
represents the nanodispersion index, as defined in Ref. 29, that is, i 151
n=3 corresponds to a trilayem=>5 to a pentalayer, and so on. The y
soft and hard half-layer thickness is expressed in nm. =10 F
Nanodispersion index = st
n=11 n=9 n=7 n=>5 n=3 n=3 0 ‘ ! ! ! ! s
H soft/hard layer thickness 0 10 20 30 40 50 60 70
(MA/m)  2/1.7 252 3325 534 10/10 10/5 2t, (nm)
50

Hc? 1.79 1.42 0.99 0.60 0.21 0.21

He,® 224 190 149 093 036 0.36 Ch:
Heo? 177 154 131 118 1.07 1.07 Ssob
H,P 224  1.90 1.54 121 113 1.04 w0 b

N 20 i

aRef. 27. mo10 ,
bThis work. E

[ ! ! ! !
VIIl. COMPARISON WITH EXPERIMENTAL DATA 0 20 40 60 80 100 120 140

2¢ (nm)

The magnetic behavior of a planar magnetic nanocompos- 1
ite described in the previous paragraphs, in particular the FIG. 11. Comparison between calculated and experimental
demagnetization processes, can in principle be convenientfjrom Ref. 1] critical fieldsH; andH, for a series of exchange-
compared with experimental results on real systems. Amongpring bilayers and trilayers based on the Réx/SmyoFeso sys-
the observed phenomena we believe that the nucleation at tim:(a) in the case of a fixed soft-layer thicknests 2 57.6 nm,(b)
critical field H., in the ES region is properly described by in the case of a fixed hard-layer thickness2100 nm. The open
the present model because the system undergoes a secofighbols refer toHc,, while the filled symbols tdHc,; triangles
order transition to a reversible state, so that it is in a favor-refer to data taken from Ref. 11 and circles refer to our calculations.
able condition to be insensitive to localized defects OrThe materlal paramgters were cor@dered as free .parameters. in a
inhomogeneitiegc.’ These are instead known to be of major t_)est-flt procedure, with the excgptlon of the saturatlon_ magnetiza-
importance in the coercivity mechanisms involving an irre-tion of both layers and the anisotropy constant ofgR, as-
versible transitionBrown paradox As a matter of fact the SuTed to be zero. The Ob_tamid valuei lozf the free parameters are

. . K,=2.2x10" J/n? and A;=A,=6.5x10"12J/m. The lines are
values of theH , field that the model predicts are based on a_ “.

i . . . . uides for the eyes.

condition of instability of inhomogeneous rotation processesg
and are strictly valid for a perfectly homogeneous system. In
other words our model does not include inverse domairdentify the nucleation field with the critical field ., of our
nucleation and propagation, at least for the case of a propenodel. In these cycles it turns out that the reversal occurs at
exchange-coupled system, i.e., in the ES and RM states. Asfeelds substantially lower than the theoretiddl, values
consequence the obtainkld, values are to be intended as an [Figs. 11a) and 11b)]. It is worth noting that this discrep-
upper limit for the real reversal field, in a way similar to the ancy is progressively reduced on increasing both layer thick-
switching field in the Stoner-Wohlfarth model. nesses, i.e., approaching the DM regipsee Fig. 1b)].

We made an attempt to compare the hysteresis cycles aWith 2t;>60 nm and 2,=100 nm we have a substantial
the NiggFe,o/ SmygFeso system reported in Ref. 11 with those agreement between experimental and theoretical values of
deduced from our model, on the basis of the following ma-H.,, which appear to be independent of the soft-layer thick-
terial parameters: the saturation magnetization of both phasesss. This limit oH., corresponds amazingly to the domain
(M =860 kA/m, M,=286 kA/m, from Ref. 12and the an- wall depinning field at the hard-soft interface as described in
isotropy constantfassumed to be zerwmf NigfFeg. The  the next section.
other quantitiegexchange constants of both phases and an- An example of demagnetization curves for different soft-
isotropy constant of the hard phaseere considered as free layer thicknesses, calculated by using the obtained material
parameters in a best-fit procedure concerning the soft- angarameters, is shown in Fig. 12, where the hard-layer thick-
hard-layer thickness dependencetdf;, as deduced from ness is fixed at 100 nm. They are in qualitative agreement
Figs. 3 and 4 of Ref. 11. The results of the best fit are showmvith the experimental curves particularly on the reversible
in Figs. 1Xa) and 11b), corresponding to a givent2value  portion where there is a slight difference in the average
(57.6 nm and to a given £ value (100 nm, respectively. slope. Moreover Fig. 13 reports the phase diagram of the
The obtained values of the free parameters lge=2.2  NiggFe,p/SmyFes, system obtained from our theory, with
x 10* J/m? and A;=A,=6.5x10"12 J/m. the critical liney.., which is compared with the critical line

For the above explained reasons, it has to be underlineteported in Fig. 7 of Ref. 11, defining the transition from
that we only took into account the experimental hysteresisingle-switching process to exchange-spring process. It is
cycles that manifestly are in the ES regime and for which weevident that there is a pronounced discrepancy between the
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FIG. 12. Series of calculated demagnetization curves of FIG. 14. Fe/NdFeB composite systédata from Ref. 2F soft
NiggFe,o/ SmygFeso multilayers (data from Ref. 11in the ES re-  half-layer thickness dependence of critical fields, andH,, in
gime, in the case of a fixed hard-layer thickne$s=2100 nm for  the case of a thick hard layet,& 100 nm). The critical fields are
different soft-layer thicknessed 2 normalized to the hard-layer anisotropy field, wtiés normalized
to the hard-layer DW half width#%/2) 6, . The vertical dashed lines
represent the boundaries of different regions in the magnetic phase

two curves, particularly in the low soft-layer thickness re'diagram(see Fig. 3.

gion. We explain this difference by admitting that in general

Lqr _the exp_erlmentgl hystere5|s loofisg. 4 of Ref. 11 ex- according to the meaning given to the term “nucleation” in
ibiting a single switching the reversal occurs before the SYSRef 27(see also next sectin

tem could reach the instability condition at the nucleation "~

field. This irreversible switching could be ascribed to an in-

homogeneous reversal caused by extrinsic factors, while our

model gives, as an upper limit, an irreversible switching field  IX. THE LIMIT OF A HARD BULK WITH A SOFT

H., only based on rotation processes. Domain observations PLANAR INCLUSION

have been indeed recently performed ogyN& o/ SmyoFesq

exchange-spring films using Kerr microscopy in applied

magnetic fieldS! On the other hand the critical curve re-

ported in Fig. 7 of Ref. 11 can be considered at most as a

empirical fitting curve of the experimental results. As a mat-

ter of fact the theoretical interpretation given in Ref. 11 isfor the hard-soft exchange-coupled triple layemere the
inconsistent because it is based on an inverse powefHawW . finite extension of the hard layers makes the system a hard

(D] with exponent 1.75. The point is that this power depen'bulk). Moreover, the same model was also utilized by Goto
dence, as explained in Ref. 27, does not refer to the conven 4125 with the only difference that the soft layer is consid-
tional definition of the nucleation field given in micromag- . q coupled to a hard bulk only on one side. In principle
netism, but rather to the irreversible switching field, the results of all these models should be obtained from our
model in the limit case of a very thickdeally infinite) hard

As outlined in Sec. lll, the problem of reduction of the
nucleation field in a hard bulk containing a soft planar inclu-
sion was first discussed by Aharoni and, later, Abraham on
the basis of a micromagnetic one-dimensional mdg&,
which is rather similar to that adopted by Leinewebeal >’

100 layer. Note that both Aharotti and Gotoet al®® assumed a
[ zero-anisotropy soft layer.
80 - As already outlined in Sec. V, for large hard-layer thick-
% 6o [ nesses the phase diagram appears to be subdivided into three
= i regions by the vertical asymptotes of the critical lipe: the
S0l hard-dominated RM region, the ES region, and the soft-
[ dominated DM region. We report in Fig. 14 the soft-layer
20 L && thickness dependence of the critical fiells; andH ., in the
; g case of a Fe/NdFeB composite, having set a large value of
V) P S SRR s the hard-layer thickness =100 nm). The two vertical as-
0 25 50 75 100 125 150 ymptotes correspond in this case tQ=t;,=2.15nm

2, (nem) ~(ml2)68,, wherew 5, represents the hard-layer Bloch wall
FIG. 13. Phase diagram of the gyfe,/SmiFey, system(data ~ Width, andt;=t;5=16.3 nm: the asymptote positions are
from Ref. 11, with the critical liney.. (triangles and dash-dotted indicated in Fig. 14 by dashed lines. Inside the RM region
line) compared with the critical lingsolid line) for the transition ~ the critical fields coincide, as expected, and the character of
from single-switching process to exchange-spring process, aklci in the DM region is modified with respect to the ES
reported in Fig. 7 of Ref. 11. The material parameters utilized toregion, because it represents here a true reversal field for the
trace the phase diagram were deduced from a best-fit proceshere  SOft layer, that is, the starting of an irreversible process.
Fig. 11). For the case of a NdFeB/Fe/NdFeB trilayer, Leineweber

174401-11



ASTI, SOLZI, GHIDINI, AND NERI PHYSICAL REVIEW B 69, 174401 (2004

et al. calculated the soft-layer thickness dependence of the TABLE Il. The calculated domain wall depinning fiekdiy,y for

field at which the irreversible inversion occyfsg. 4 of Ref. different hard-soft composites. The intrinsic magnetic parameters
27). Our analysis shows the followingee Fig. 1% (i) For are taken from Refs. 16 and 27. Co-soft represents an extremely
t,<(w/2)5,, the nucleation fieldH ., is rather different from fine-grained Co with anisotropy constant reduced by a factdr 10
the anisotropy field of the hard layét,,=2K,/J,, except

thatH ., reaches the value ¢, only whent;—0. (ii) Itis _ How Ha2 How/Ha,
reduced by a factor 3 when=t,. This means that even a c°MPosite (MA/m) (MA/m) )

very thin soft layer coating on a hard bulk dramatically re- Fe/NdFel 0.540 5.347 10.10
d”L_Jces the nuclez_;ltio(pr reversal field ir_l the RM regime. Co/NdFefP 0.669 5.347 12.52
(iii) The nucleation fle|d'HC1 asymptotlcally tends to the Fe/Sm-C8 2011 14.469 13.90
value of the soft-layer anisotropy fiekx; =2K,/J;, asex- ¢ softysm-cb 3021 14.469 20.88
pected. These results are in contradiction to the behavior -, /5m.c§ 2859 14.469 19.76

shown in Fig. 4 of Ref. 27, where the reversal field is con-
stant fort,<(w/2)d,, while for t;>10(w/2)5, we cannot 2Parameters taken from Ref. 27.
observe neither foH.; nor for Hg, the inverse power-law “Parameters taken from Ref. 16.
behaviore=(t;) "> as reported in Ref. 27.

The limit of H., for t;—o% corresponds to the domain- AKa— AK
wall depinning field at the hard-soft interfatewhich is an How=2 22 T _
important coercivity mechanism in the case of a hard bulk Aydy+AJ+2VA1A.T,
enclosing a soft inclusion. In bulk permanent magnets, the
depinning of a domain wall may be the rate limiting step ofin the case of a Fe/NdFeB system, Hd2) gives Hpy
flux reversal, thus representing a more realistic mechanism:0.543 MA/m, which is about 10% of the hard-phase an-
as compared to intrinsic nucleati¢characterized by the an- isotropy fieldH,,. Table Il reports the calculated DW de-
isotropy field.>® Nucleation centers exist indeed on surfacespinning field Hpyy, for different hard-soft composites: it is
and along hard-soft grain boundarigs the very common worth noting that the obtained values are in all cases of the
case of presence of soft phase inclusjpmsich obviate the order of 10-20% with respect to the hard-phase anisotropy
onset of the intrinsic process. field.

In this particular case it is possible to obtain an analytical The reversal field calculated by Aharoni in Ref. 35
expression of the reversal fieli.,. To this purpose we as- (therein termed “coercive force”for the caseK;=0, K,
sume botht; andt,—, a situation corresponding to a hard =K, A;,=A,=A, J;=J,, as already mentioned in Sec. VI,
bulk exchange-coupled to a soft bulk at the interface. We argan be considered as a particular case of @), which
in general in the case of a system in the DM regif@ecept  givesHp,,=0.25H,,, in agreement with the value reported
whenK; /K is above a certain value, as explained in Secin Ref. 35. It should be emphasized that the periodic bound-
V1), and we are considering the intermediate state after thary conditions at the basis of the present treatment are con-
reversal of the soft phase, so that we assuime-7 and  sistent with the boundary conditions assumed in the above-
¥,=0. The system of equations is given by E8). plus Eq. mentioned work.

(A7). From this an equation iRl and ¥, is obtained: To summarize, we were not able to reproduce the results
of the analysis of Leinewebeat al. as a limit of our model
for very larget, values. Nevertheless, the results reproduced

(12

F(H, %) =[AyJ,(cost,—1)—A;J;(cosdy—cosd,) H in Fig. 14 compare well with those of Fig. 1 of Ref. 35,
) ) where the nucleation field and the coercireversal field
= (A1K1 = AK )i 9o+ AsK, sin? §,=0. are reported as functions of the soft-layer size in reduced

(100  units. The agreement is even better for very thin soft layers.

There is however, in principle, a possible physical situa-

tion that is not included in the abovementioned periodic

The condition for Hy, is dH/dd9,=0 that implies boundary conditions for the composite multilayer. As we
JF(H,94)/d%,=0. Elimination of &, between the latter have seen these conditions imply a reversal mechanism in-
equation and Eq(10) allows one to obtain the following Volving the whole system in a cooperative rotation process:

equation forH: the displacement of a domain wall aspriori excluded for a

RM and an ES state, while a DW depinning process at the

hard-soft interface occurs in the case of DM phase. A differ-

(Apdy— A1) 2H2— 4(AK,— ALK ) (Ado+ Ay H ent situation can in principle be envisaged by assuming an-
tiparallel domains at infinity as a boundary condition: in this
+4(AK,—AK,)?=0. (11 case the periodicity of the system is in fact lost. The study of

the multilayer under these new circumstances could throw

new light on the coercivity mechanism of the domain wall
The only solution having physical meaning is the lower onepinning. A similar situation was considered in the treatment
It provides the analytical expression of the domain-wall de-of Friedberg and Patfl concerning domain wall pinning pro-
pinning fieldHpy, (Ref. 52: cess in a bulk uniaxial magnet, having a planar soft inclu-
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sion, to be compared with the classical nucleation mechathicknesses of about 8 and 3 nm, for the soft and hard com-
nism in the bullé® In the case of a composite multilayer, this ponents respectivef{. In this case,H.; would be of the
condition of antiparallel domains should correspond to conorder of 1 MA/m, while the average remanent magnetization
sider the propagation of a domain wall throughout the system

and eventually to observe an intrinsic type of coercivity, due

to the matching between the DW width and the layer thick- M= (Mt +Myty)/(t;+1p) (15
nesses. The analogy is with the proper “intrinsic coercivity”
connected with the DW pinning in a homogeneous magnetic . .
crystal having very high anisotropy and thus narrow domairfus out to be close to 1.4 MA/m, with a corresponding

walls. The intrinsic coercivity originates from the modulation (BH)max of about 0.6 M/ _ - .
of the DW energy by the lattice periodicity. In general, if we are interested in obtaining a multilayer

Having introduced the depinning field we can reconsidetVith the largest possible layer thicknesses in the RM region,
here the modifications of the magnetic phase diagram off!€N @n Optimum point in the phase diagram should exist for
varying the anisotropy ratip, as explained in Sec. VI. In € maximum energy product. This point must be on xhe
particular, there is a critical value=p" for which the DM critical line and is determined frp_m the condltldﬁl_cl
phase disappears at infinite thickness of both phssesEq.  — M:/2. As an example we have utilized the phase diagram
(9)]. In order to obtain this critical value the condition is that calculated for the Fe/NdFeB systetfig. 3) to obtain the
the depinning field equals the critical fightl,, , which in this ~ OPimum point corresponding tBH) max: the deduced val-
limit coincides with the soft phase anisotropy field. Hencel€S are ti=4.4nm, t,=1.8nm, H¢;=0.8 MA/m, and

we have the equation (BH) max=0.8 MJ/nt. For real samples, one has to consider
the influence of extrinsic factors on the coercive behavior,
AK,— ALK, 2K, such as, the imperfect moment orientation of the hard layers,
2 =5 (13 which could reduce considerably the coercive field with re-
AyJ,+ A+ 2VA1Ad,], 1 spect to the critical field.;, and then the energy product
which yields (see below
Hat 1 (14 B. The limit of extreme nanostructuration
Haz (1+2&+2V8)° A further possibility offered by the phase diagram is to

B . . - analyze the region of very thin layers, in the neighborhood of
where£=A;J,/AzJ,. Expression(14) provides the critical the origin, corresponding to the limit of small andt,, as

value p” given by Eq.(9). - - .
As[; f?nal rerrsllarlg\fve) have verified the agreement of our ompared 10 §,/2) " and (8;) ** respectivelysee Sec.

model with the one of Gotcetal? In that model the V). In su_ch conditions the magnetic moments rotatlon is
. . . ._almost uniform andH ., approaches the value of an effective
exchange-bias field, which corresponds to the nucleation . !
i . anisotropy field
field Hy, of our treatment, results to be inversely propor-
tional to the squared soft-layer thickness. In order to com-
pare the two models, we fixed the soft-layer anisotropy to a
very low value (10°), while the hard-layer anisotropy was
chosen equal to that of Sm-Co in Ref. 10. Furthermore, the

thickness ratid,/t; was kept equal to 0 We obtained a that is the weighted average of the anisotropy fields of the
perfect agreement between the results of our treatment in thigyo phases. This condition is equivalent to an extreme nano-
limit and the power law predicted by the model of Goto strycturation of the multilayer, which, in principle, could al-
et al, concerning the soft-layer thickness dependence ofy us to achieve very high-energy produttg®In this case,
Her. it could be of interest to evaluate the soft-phase volume frac-
tion A=t /(t,+t,) for an optimum BH) ., iN correspon-
X. THE MAXIMUM ENERGY PRODUCT dence to a given hard material. To define the “optimum”

) oo *
Although the exchange-spring shows such an interestin§nergy p.rodu.ct, we ref.er again to the Cr'ter'm%:Hcl
reversibility property it is not perhaps the best condition to=M:/2, in this case withH,;~H,. By substituting the
achieve the maximum energy density, which is a prerequisit@Pove conditions in Eq15) we obtain an equation i (Ref.

for a high-performance permanent magnet. It is likely that44):

the best composite permanent magnet should be realized in

the RM state because the magnetization remains at its maxi-(M ~M,)2\24 2
mum value in the presence of a reverse field. v

Ha=2(Kyty+Koto)/ oMty +Msty), (16)

My(M;—Mjy)+2

Ky, K
—2_ —1) }7\+ M2
Mo Mo

. . L Ky
A. Optimum (BH) . @ convenient criterion —4—==0. (17)

The analysis of the phase diagram for the Fe/Sm-Co Ho

multilayer (Fig. 2) allows us to deduce that an RM system If we assume a negligible anisotropy for the soft phase, i.e.,
with significant technical parameters is expected for layeK;=0, and that the hard-phase anisotropy consténtis
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FIG. 16. Critical fieldH., as a function of the misorientation
anglee (deg) between the magnetic field direction and the easy-
axis direction for the case of a Fe/Sm-Co multilayer. The two lines
correspond to the cases considered in Fig. 15. Hhevalues are
normalized to that corresponding #6=0°.

e A RM and ES regime. If we consider a multilayer with material
-12 -1 -08 -06 -04 -02 0O parameters as in Ref. 16, the reversal field, decreases
H (MA/m) with increasing the angle if the system belongs to the RM

regime [Fig. 15a)], while the opposite occurs for the ES

FIG. 15. Series of calculated demagnetization curves for thegegime [Fig. 15b)]. The singularity associated with the
case of a Fe/Sm-Co multilayer, with the material parameters renucleation fieldH.; is only present for a perfect alignment,
ported in Ref. 16, with different angles(deg) between the mag- i.e., e=0°. A finite angles, whatever small, actually rules
netic field direction and the easy-axis directida} in the caset; out the singularity and the kink point is progressively
=t,=2nm (RM region); (b) in the caset; =10 nm andt,=5nm  rounded off. It is a case of a broken symmetry and actually
(ES region. all the magnetic moments start to rotate immediately after

the application of an infinitesimal field. Figure 16 shows the

very large with respect tquoM3, the solution of Eq(17)  effect of a small misorientation on the critical fietl.,, in
simply reduces to\~1—,u,oM§/4K2. It turns out that the the case of systems in the RM and ES regimes.
soft phase volume ratio is independent of the hard-phase
magnetization. In other words, for a very hard phasep-
proaches unity and the relevanceM$ in the overall mag- XI. CONCLUSIONS
netization is accordingly reduced. Therefore, in the case of
extreme nanostructuration, it would be possible in principle The magnetic composite can present peculiar magnetic
to utilize hard phases having low or virtually zero magneti-properties that are absent in homogeneous phases, in particu-
zation, i.e., ferrimagnets or even antiferromagnets, to build &r depending on the microstructural parameters. In fact there
planar nanocomposite magnet with the optimum energys the need of a basic phenomenological description of a
product. In this case, one might think to exploit the veryphysical system of this kind. A magnetic phase diagram in
large crystal anisotropy of intermetallic phases such as théerms of important microstructural parameters such as the
heavy rare-earth—transition metal (Thoor the Laves layer thicknesses, in the case of a planar composite, is a first
phases. This principle has recently found practical realizatiostep in this direction. We have developed a one-dimensional
in the anti-ferromagnetically coupled Dyf&Fe, micromagnetic model of the multilayer exchange-spring
superlatticeS® grown by molecular beam epitaxy. Moreover magnet, which leads to a complete magnetic phase diagram
the high degree of nanostructuration implies a large surfactor the planar hard-soft nanocomposite, providing a powerful
to volume ratio that makes surface or interface anisotropy 400! for a general overview of its magnetic properties. In
further element to come into play. particular it gives information on the type of demagnetiza-
tion processes and the critical fields at which nucleation and
reversal take place. The diagram has in principle a predictive
potential on the behavior of particular configurations

As a further aspect, the orientation of the hard phase haand therefore is useful for the tailoring of these artificial
an important role in the overall performance of real magnetsmaterials.
From this viewpoint, we have analyzed the effect of the ex- A key point to this purpose is the analytical expression we
istence of a nonzero angle (deg) between the soft- and have obtained in Eq8) for the critical susceptibility at the
hard-layer easy axis and the field direction. This situatiomucleation field. Depending on the sign of this quantity, we
resembles that of a real system, in which a distribution of théhave a reversible or an irreversible switching, corresponding
hard-layer easy axis orientations is likely to be realized. Waespectively to the exchange-spring mag(te®) or to the
have observed two distinct behaviors of the systems in theigid composite magnetRM) regime, for very small soft-

C. Effect of misalignment
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layer thicknesses. On the side of large soft-layer thicknesseargest layer thicknesses, the optimuBH) ., should be

we find again a negative value of the critical susceptibility,searched along the RM-ES boundary line. On the other hand

but it corresponds now to the condition of decoupled magneit turns out that, in the limit of vanishing layer thicknesses

(DM), in which the irreversible switching occurs in two and of very large hard-phase anisotropy, an even higher

steps, i.e., almost independently in the two phases. ThéBH) ., iS achievable for an optimum soft-phase volume

boundary line between the different regimes is an U-shapettaction (close to unity depending only on the soft phase

line corresponding to divergence of the critical susceptibility.magnetization. This means that it is possible in principle to

Then for large values of the soft-layer thickness the syster@mploy hard phases having low or virtually zero magnetiza-

goes directly from RM to DM phase on increasing the hard-ion, i.e., ferrimagnets or even antiferromagnets.

layer thickness, without crossing the ES region. The diagram The orientation of the hard phase has an important role in

also reports the iso-critical lines both for the nucleation andhe overall performance of real systems. We have analyzed

the reversal field. These lines bifurcate along the RM boundthe effect of a small misalignment of the easy axis and ob-

ary line. served that the reversal field decreases with increasing the
Noticeably, for a given hard material the ES phase is premisorientation angle if the system belongs to the RM regime,

dicted to occur only below a threshold of the ratio betweerihile the opposite occurs for the ES regime.

the anisotropy constants of the two phagggK,. For ex- The planar nanocomposite magnets have in perspective

ample, the threshold is of the order of a few % for the case opther reasons of interests, such as the role of the microstruc-

Sm-Co and NdFeB hard phases. Well above this limit, bufure (multilayers vs hard-granular layered systgntse DW

remarkably still far from unity, it happens that even the DM pinning process, and the rediscovery of the intrinsic DW

disappears. pinning on a mesoscopic scale, by matching microstructure
The limit of infinite hard-layer thickness gives informa- length scale with domain wall width.

tion on the behavior of bulk magnets with planar soft inclu-

sions. It is worth noting that even a soft layer as thin as the

hard-phase Bloch wall is enough to cause a fall of the nucle- ACKNOWLEDGMENTS

ation field to 1/3 of the hard-phase anisotropy field. The limit

of both infinite hard-and soft-layer thicknesses provides the ¢ ;helgrﬁsen;ﬂwprtk hafs é)gen iupportngby a FIEB PtrﬁjedCt
analytical expression of the critical field pertinent to an jm-0' the ftalian Ministry o ucation and kesearch, entitie

portant coercivity mechanism of permanent magnets: theMlcrosystems based on magnetic materials structured on a

domain-wall depinning. hanoscopic scale.
In general, the adopted model is limited to rotational pro-
cesses: in fact, the deduced values of the reversal fields are
systematically larger than the experimental ones. This is APPENDIX A1 FOURTH-ORDER EXPANSION

clearly due to the fact that the model does not consider the \ye start from Eq(4), which is the power expansion up to
role of domains and DW nucleation and pinnifigxcept in e fourth order of Eq(3). After integration between the

the abovementioned case of the decoupled system. Hence t8¢iama ©,,9,) for the soft layer and,, 9,) for the hard
obtained values of the reversal field should be considered eléyer we obtain

an upper limit, in analogy with the switching field of the
Stoner-Wohlfarth model with respect to the coercivity of real

bulk magnets. Moreover, because of the chosen one- P1 1 s w2
dimensional ansatz, we excludepriori the possible role of Vo= Fo( 1~ V)
topological singularities’ 1+ —pliﬁ)
Another intrinsic limitation of our model is that it is based 4
on the continuum approximation. However, the comparison (Xo—X1) a;
with the results of discrete one-dimensional models reported =y9,C04 ———~ \/7— B, (AL)

in the literature shows that the micromagnetic approach is a
good representation of the real system, down to thickness of
a few atomic layers.
A characteristic, which is common to our model and to
practically all the other treatments reported in the literature P2

3 2
1+ Zpl’ﬁl

2 2
and discussed in the present work, is the assumption of the Jot 7 3 Dol 95— 92)
magnetization lying in the film plane. However we have also 1+7 pzﬁz)
considered the implications of admitting a perpendicular an-
isotropy and we have given some indications how to apply (Xg—X2) a,
our analysis to this case. =dycosh) =1\ Bm 5 (A2)

Furthermore, we have addressed the problem of the tech-
nical performance of a planar composite permanent magnet.
The maximum energy density requires the magnetization t&Ve perform now the substitution8;— &;+ »; (j=0,1,2),
be as high as possible, so that best performance is expectedhere the»; are higher order infinitesimal quantities, and
in the RM state. If one wants to conveniently utilize the neglect in the calculations the terms of order higher thian

1+ Zp219§>
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such asy9? or 729. Then, we obtain two linear equations applied fieldH, with their expression in terms of the infini-
in the variablesy;, which are, in the case of the soft layer, tesimal fieldr. a;— aj(1+ 7), whereq;, is the value ofy;

at H=Hg,. Furthermore, we introduce the vanable@Cr
@ =\Ja,1/2— B1 andy o= m Similarly, the critical
— 71008 (Xo—=X1) \| 5~ A1

variablesp,., correspond to the expressions for with «;
= a;.. As a consequence of these substitutions and neglect-
ing higher order terms, we transform E@83) and (A4) in

P1
==t — 00(192 95)+ 9, CO{(XO X1) 70— 171 €04 (X0~ X1) Y1l
Ja 3p; |« — 9 7(Xg— X SI Xo— X +93
% 71—,31 +0§(X0_X1)Tl ?l_ L 17(Xo 1) dyre i (Xo—X1) Y1 1Y1cr
[a X ( —x)3p 'Sin (xo— X1) ]+p1°r15‘(132—15‘2)
Xsir{(xo—xl) ?1_'81H (A3) XX, 0~ X1) Vicr olv1~ Vg
and for the hard layer (A5)
for the soft layer and
a3
70~ ﬂzCOSV{(Xo—Xz) B2~ 70~ 172 COSH (Xo—X2) Y2ci]
:_,9O+p Fo(92—93)+ 9, == 9,7(Xo—Xp) yzcrs"’ﬂ(xo X2) Y2arl
X{cosr{(xo—xz) 5 } P (xo=xy) O salo ) 2SIt (X ) ool
P
3p2 az 5 0o(95—93) (A6)

Ba— Sm"{(xo_xz) ,82_?]- (A4)

for the hard layer. A third equation is obtained by considering
The next step consists of substituting, in the above equationshe boundary condition at=x,, which corresponds to the
the reduced variables; (i=1,2), which are related to the equilibrium condition for the exchange forces

dd
( 1& = Al \/al(cosﬁo_ COS’(?]_) + Bl(SInz 1&0_ S|n2 191)
X=Xg—
do : i
=| Argy = | ApVa(€osdg— cost,) + Bo(SiNF do—sir’ 9,). (A7)
X=Xg+
|
By performing the_ substitutionﬁj—>ﬁ_i+ 7j (j=0,1,2), 70— 11 €03 (Xo— X1) Y1cr]
and a;— aj,(1+7) (i=1,2), and considering that the ex-
pansion of Eq(A7) truncated to the second order gives the =(Xo—X1) Y1erSiM (Xo— X1) Y1c/]
additional condition
Ty 3P1er 3
2 2 X| - + 1
AL(DT= 95) v = — AS( 95— 95) 75, (A8) 2(a14—2B1) 4
we obtain finally a system of three linear equations in the plcrﬁo(ﬁz 92 2),

anglesy; :
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70— 172 COSH (Xg— X2) Ya¢rl APPENDIX B: INFINITESIMAL VARIATION OF
MAGNETIZATION

= (X2 X0) Y2¢rSINHL (X0 = X2) Y2cr N
27 7o) Vzer 0 2] Yz From the definitions of the layer magnetizations

| — Ty B 3Pacr 93 X Xz
2(2B5— aae) 4 U2 y _lexldxcosﬁ+M2fX0dxcosﬁ_M1|1+M2|2
Pocr ‘ (X2=X1) (Xg=X1)
- P2 93— 93), &1
whereM; andM, represent the saturation magnetization of
Dom0( V2 A2+ Y2 A2) — 12 0 1 A2 — 2D 1AL the soft and hard layer, respectively, and with
T X X dd
= 7 L(@3cA— Al AD) 95+ a1 AT — apc AT 93] = f “dxcosd=— f ? o8 ———.
X1 X1 YN[ — O
1
AZ(9g— )( 29_ g, +5A§(ﬁ‘1‘—ag‘) J’x2 X do
l,= [ dxcosd=— f cost ———= (B2
a o %o Yo 07— 5
lcr
( - 51) (A9) considering a power expansion truncated to the second order.

The above integrals result
Since A=0 it is necessary that the augmented matok-
tained by adding the column of the right-hand side terms 193
has the same rank as the matrix of the coefficients. This li=|1- 4005[3, (Xo—%1)] (Xo—X1)
.. . . . 1\A0 1
condition can be written in the forld’=0 whereA’ is the
determinant of the square matrix obtained by substitution of

2

0
the column of the right-hand side terms in place of which- - 4—yltar[ Y1(Xo—X1)],
ever column ofA. Then we substitute the first column of
determinantA with the right-hand side terms of Eq§A9). 19(2)
The condition of vanishing determinant then reads [ ( - ) Xo—X
2 4 cosh[ yo(X,—Xo) ] (X2~ %o)
—T< alcr+ a2cr+ tiager g
Vi Yeer  YiaSiN(tyy1c)COStyve) = 4y, Nt 720 xo)] (83)
n Laaaer and therefore the infinitesimal variation of the magnetization
Yaor SINN(tY56) COSHtL Vo) turns out to be
2 3P1ct1Y1er 3P2ctay2er M 1(Xg—X1) + Mo(Xo—Xg)
o sint S(tiyie) SNt Rt M=Ms—M,= - —M;
SiN(t1y1c)COS (L1 Y1)  SINN(t2¥2c) COSI(t2y2cr) (Xo—X1q)
3plcr 3p2(:r ) 132 (X X )
+».92< - +2P1c— 2Paer| =0, 0 nro
o cof(tyy1e)  COSR(tyyge) < Pror “Poer ~A(xp—xp) (co§[yl(x0 )l tar[ 71X~ X0)]
Al10
(A10) ‘92 M 2(X2—Xo)
wheret;=(Xo—X;) andt,=(x,—X) represent half of the 4(x2 X1) | cOSH[ y2(xo—Xg) ]

layer thicknesses.

If we truncate the power expansion of E8) to the sec-
ond order, we obtain, after integration, a system of three
homogeneous linear equations in the angles It is worth
noting that the obtained system has the same matrix of coe
ficients of system{A9). The condition of vanishing determi-
nantA atH=H_., leads to an implicit equation for the criti- SM

M,
+ —tanif yz(xz—xo)]], (B4)
Y2

YvhereM is the saturation magnetization of the whole sys-
tem. The reduced infinitesimal variation bf is then

cal field sm= M _ OM(X2—Xy)
Ms  Mi(Xo—X1) +Ma(Xa2—Xg)
Aryitantyyie) =Azy tanhty yoe) (Al11) , 1 Mit, M,
= ta t

Equation(A11) assumes the same form as that obtained in %4(M1t;+Mot,) {COSZ[Vltl] 7]
Refs. 2, 26, 37. Moreover, from this expansion to the lowest Mot M
order, we can deduce the relatiofig/ ¥, =cost;y;s) and + 2t2 tanr[ t ]] 92T, (B5)
ﬁo/ﬁzz COSh(z'chr) . OSi i [ th ] Y2t 0
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APPENDIX C: GENERAL PROCEDURE FOR TRACING
THE DEMAGNETIZATION CURVES
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value of the fieldH, very close to the nucleation field .
and from a tentative value of the angl®g.; given by the

The problem of tracing the demagnetization curve impliesnuc'e"Jltlon field equatiorisee Appendixes A, B and E)]

the integration of EQq.(3) with the boundary conditions
(d9/dx)=0 and 9= 19; for x=x; (i=1,2) andA,(d9/dx)
=A,(d9¥/dx) and 9=, for x=X,. This calculation in-

volves elliptical integrals and is performed by numerical

methods.
For a specific multilayer system, given a particular field

we have to find the angle$,, 9, ¥, by solving the system
given by the three equations

F1(90,91,92,H)

o do
- L}O Jai(cosd—cosd;) + By (serf 9—serf 9,) ~h
=0,
Fa(do,91,92,H)
[ do
a fﬁz Vay(cosd —cosd,) + B,(sert 9 —serf 9,)

—t2=O, (Cl)

Fa(do,91,92,H)
= a1(c0S9,— Ccosd,) + By(serf Fo—serf §;)

A;\?
- A_l [ as(costy— costd,)

+ B,(serf 9,—serf 9,)]=0.

Using vector symbols we writeF(®)=0, with F
=(F.,F5,F3) and ®=(9,91,9,). We use the Newton-
Raphson method, as described in the Numerical Re¢gees
Ref. 48, p. 379 to find this solution. We start from a tenta-
tive value @, In the neighborhood of any nonsingul@r
the functionF(®) can be expanded in Taylor series

F(O+80)=F(0)+J- §0+0(50?), (C2)

where J=9(F,F5,F3)/d(0¢,0,,9,) is the Jacobian ma-
trix of the system. By neglecting terms of ordé®? and

. Xc(Ho—He1)
PmNTTTM,

cogtyyy)’
~ coshityys,)

then we compute the right value of the angl®g (and the
magnetizationMy) with the above-described procedure.
Then we increase the field td,, take ®, as the starting
value and comput®; (andM ), and so on. Each step we set
H,=H,_;+step and comput®, using®,,_, as the starting
value. This way we are able to fild for each value of, up

to the reversal fieldH.,. In correspondence of the second
critical field H., an irreversible jump of the magnetization
takes place. This means that a very small increase of the field
H leads to very large changes in the values of the angjles
U1, Uy, that is, the first derivativesld,/dH, d9,/dH,
dd,/dH diverge. The derivatives are given by the vector
equation

% (Cy

B,

99,
OH
39 d(F1,F2,F3)\ "t a(F1,F2,F3)
oH :_<a(f}o,ﬁl,62)) H
99,
9H
JF,
9H
4| 9F2
== —q | (C4
JF3
9H

higher and by settin§(®+ §0@) =0 we obtain a set of linear where as usual represents the Jacobian matrix of the sys-
equations for the correction¥d that move each component tem. Thus in order to gedd;/dH—o, we must seek the
function of the vectorF closer to zero simultaneously, conditionJ=0. The step of the fieltH has to be repeatedly
namely, 6@=—J"1.F. The corrections are then added to decreased while approachikty, (since the demagnetization
the starting valu@®,.,,= O« 0@ and the procedure is it- curve becomes very steepnd we stop the procedure when
erated until|lF| is as small as we want, thus obtaining the the step has become small enough not to affect the value of
desired value of®. With this value we can compute the the field within the set precision of 16—10 8. By this
magnetizationM, from Eq. (B1), once we have obtained pointJ has usually decreased by 3 or 4 orders of magnitude,
9(x) after integration of Eq(3). We generally start from a and we consider this to be a convergence to zero.
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