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Micromagnetic analysis of exchange-coupled hard-soft planar nanocomposites
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A complete magnetic phase diagram for exchange-coupled planar hard-soft nanocomposites has been ob-
tained in the frame of a one-dimensional micromagnetic model describing the dependence of the properties
along the growth direction. The phase diagram in terms of layer thicknesses provides information on the type
of demagnetization processes and the critical fields at which nucleation and reversal take place. The basic
criterion to this purpose is the analytical expression we have obtained of the critical susceptibility at the
nucleation field. The phase diagram is divided into three regions: the exchange-spring magnet~ES!, the rigid
composite magnet~RM!, and the decoupled magnet~DM!. The main boundary line is an U-shaped line
corresponding to divergence of the critical susceptibility. The diagram also reports the isocritical field lines
both for the nucleation and the reversal field. These lines bifurcate along the RM boundary line. The essential
characteristics of the phase diagram are directly connected with the intrinsic properties of the chosen soft and
hard materials. With increasing ratio between the anisotropy constants of soft to hard phases the ES region is
reduced until it disappears at a critical value. The model includes as limiting cases the classical problems of the
planar soft inclusion in a bulk magnet and of the domain-wall depinning at the hard-soft interface.

DOI: 10.1103/PhysRevB.69.174401 PACS number~s!: 75.50.Ww, 75.60.Jk, 75.60.Ej, 75.70.Cn
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I. INTRODUCTION

In the present technological scenario the microsys
technologies are becoming more and more important w
particular focus on microelectromechanical syste
~MEMS! and micromachines. Typical applications are se
sors, actuators, accelerometers, relays, bioMEMS, rfMEM
and microfluidic and microwave devices. In this context t
development of MEMS based on high performance perm
nent magnets is very promising. This goal has stimula
research towards the development of new concepts in pe
nent magnetism, without any constraints concerning the
terial cost. In recent years some attention has been devot
composite magnets combining the best properties of a
and a hard magnetic material via exchange coupling o
nanometric scale~exchange-spring magnet,1 see Fig. 1 be-
low!. In particular it has been shown that oriented plan
composite systems in the form of multilayers offer in pri
ciple the possibility of achieving the 1 MJ/m3 theoretical
limit for the energy density.2,3 The planar magnetic nano-
composites are technologically relevant, at least in persp
tive. As an example, the millisize engines and microactua
have great potentialities in fields like bioengineering. Oth
applications could concern high-density magnetic record
and microwave integrated devices.

A multilayer is an intrinsically simple ideal system wit
an easily controllable and reproducible structure. In parti
lar, thin-film growth allows the control of layer thicknes
and, in principle, it provides a mean for crystallograph
alignment of the hard-phase easy axis. The dimensional s
parameter is the ferromagnetic exchange lengthl ex, which
can be considered as roughly proportional to the domain w
~DW! average thickness. In the case of very hard magn
this quantity is only a few nanometers, while it is of the ord
of several tenths of nm for soft magnetic materials, such
a-Fe. In order to predict the macroscopic magnetic beha
0163-1829/2004/69~17!/174401~19!/$22.50 69 1744
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of the exchange-spring magnet, Knelleret al.1 proposed a
qualitative one-dimensional model that takes into account
magnetostatic and exchange interactions among diffe
crystallographically coherent grains. However, the magn
zation reversal and coercivity mechanisms of real bulk s
tems certainly depend on the microstructural details, suc
the three-dimensional spatial distribution of the two phas
On the other hand, the layered structures can be more p
erly modeled as one-dimensional structures, because
show variations in the magnetic properties predominan
along the growth direction. Therefore, an additional adv
tage of these systems is to allow a realistic estimate of
ultimate gain in performance that may potentially be realiz

FIG. 1. Basic scheme for the one-dimensional micromagn
continuum model of the planar hard-soft nanocomposite.
©2004 The American Physical Society01-1
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in exchange-spring bulk magnets.
Recent studies on hard/soft bilayers and multilayers~pla-

nar exchange-spring magnet! have shown that the flux rever
sal occurs in general in two stages beginning at well defi
critical fields: the nucleation fieldHc1 , at which the mag-
netic moments start to deviate reversibly and nonuniform
from the easy direction; the reversal fieldHc2 that promotes
the irreversible rotation of the whole system.

In order to gain a deep insight into the magnetizat
reversal process of the hard-soft composite magnet, we h
developed a one-dimensional micromagnetic model and
culated the analytical expression of the differential susce
bility at the nucleation field. The dependence of this quan
on the structural parameters allows to define the magn
phase diagram of the planar hard-soft composite. In this
gram, boundary critical lines separate the different regim
corresponding to distinct reversal mechanisms. The pre
tions of the model are here compared with existing exp
mental data and with the results of other theoretical analy
reported in the literature. The model, far from the nanome
scale, also includes important aspects of classic systems
as soft inclusions in a hard bulk. Finally some considerati
are given concerning the best conditions for obtaining p
manent magnets with the highest energy density. Before
presentation of our model, in Sec. II we give an overview
the main endeavors to realize permanent magnets in the
of planar magnetic nanocomposite systems, followed b
detailed analysis of the theoretical models especially de
oped to describe the magnetic behavior of these system

II. INTRODUCTORY OVERVIEW

The first attempts to realize a planar exchange-sp
magnet focused on isotropic systems, either bilayer4,5

trilayers,6,7 or multilayers,8–10 constituted by Sm-Co or Nd
FeB as the hard phase and Fe, NiFe, and Co as the
phase. Shi-Shen Yanet al.11,12 studied extensively the
Ni80Fe20/Sm40Fe60 system, by varying over a wide rang
both the hard- and the soft-layer thicknesses. Other aut
followed a different approach, involving the growth of th
nanocomposite thin films Co/Sm-Co~Ref. 13!, Co/Pr-Co
~Ref. 14!, and Fe/FePt~Ref. 15!, obtained by rapid therma
annealing of multilayered structures. In this case, the fi
two-phase nanostructured film shows the exchan
hardening behavior although keeping no trace of the orig
layered structure. These first endeavors have shown the
sibility of a multilayer nanocomposite magnet, but on t
other hand, they have also stressed the difficulties existin
the way of achieving the ideal 1 MJ/m3 magnet,2,3 e.g., the
interfacial roughness, which can influence the exchange c
pling between layers6 and the alignment of their easy axes

An attempt to overcome the latter problem was the e
taxial growth of Co/Sm-Co and Fe/Sm-Co bilayers obtain
by sputtering deposition.16 In principle, the stacking of bilay-
ers of this type should produce a soft/hard multilayer hav
essentially the same properties of the component bilaye
the reversal process occurs homogeneously. However,
growth of multilayers of this kind seems now not s
17440
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straightforward,17 although there are some attempts to real
Co/Sm-Co superlattices.10,17 From a different point of view,
other authors explored the possibility of modulating the
tensity of interfacial exchange, by exploiting the pheno
enon of interdiffusion between Co/CoPt bilayers.18,19 Fol-
lowing a different approach, thin-film nanocomposi
magnets were obtained by randomly dispersing s
inclusions in an oriented hard matrix.20,21

Starting from a different viewpoint, Astiet al.22–24 real-
ized a model system constituted by alternate layers of sim
materials~elemental Fe and Co! but with special care for the
interface condition. For this purpose, they have employ
ultra high-vacuum deposition techniques~electron-beam
evaporation! with very low deposition rates to obtain clea
and sharp interfaces. Furthermore, they have investigated
effect of the layer thickness on the structural and magn
properties of Fe/Co multilayers having a constant numbe
layers and a given Fe/Co thickness ratio. The obtained
tems show a single-phase-like behavior~almost bistable!
with a steep magnetic reversal. The recoil susceptibility of
the studied multilayers approaches the slope of the m
loop at remanence, as in a classical permanent magnet.

III. THEORETICAL MODELS

The literature on the theory of magnetization reversal
multilayered exchange-coupled thin film structures can
classified by the following scheme:~i! continuum-approach
micromagnetic models,25–27which allow one to deduce ana
lytic expressions of relevant parameters,~ii ! discrete
models16,28,29that are useful for very thin films,~iii ! compu-
tational approaches based on solving the dynamic equa
of motion,30,31 and~iv! first-principles calculations, aimed a
determining the band-energy structure.32

The inhomogeneous distribution of the magnetization
generally to be expected in such a manner that at equilibr
the magnetization is always parallel to the film plane a
thus the problem can be considered as one dimensional a
an axis perpendicular to the multilayer plane. As a con
quence of the chosen in-plane distribution of the magn
moments, corresponding to Bloch-wall-type configuratio
the stray fields are vanishing.

A. Continuum models

The use of the continuum approximation for th
multilayer problem is justified down to thicknesses of a fe
atomic layers.25,27 Within this approach, models have bee
mainly utilized to deduce analytically the instability field i
some special cases, such as the two-coupled-layers prob
first addressed by Gotoet al.25 In their model, the spin con-
figuration inside the isotropic soft layer corresponds to a c
tinuous rotation, as in Bloch walls. The spins in the ha
substrate with infinite anisotropy are assumed to remain
allel, therefore imposing the boundary condition to the so
layer magnetization. Through the analytical solution of t
Euler equation, Gotoet al.25 deduce the shape of the theore
ical magnetization curve. In particular, they express the
gular distribution of magnetization vector in the soft layer
1-2
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terms of Jacobi elliptic functions. They individuate a critic
value of the field ~instability field, usually called the
exchange-bias field! corresponding to the initial deviation o
the spins in the soft layer from the parallelism with respec
the spins of hard layer. This field is inversely proportional
the squared soft-layer thickness. The same authors also
sidered the more general case of two exchange-coupled
with different uniaxial anisotropy,25 but did not explicitly
reduce the problem to a set of elliptic integrals, due to
complexity of mathematical expressions. They deduced
stead approximate solutions in special cases,33,34such as, the
limit of vanishing hard-layer thickness with infinite aniso
ropy ~degenerate hard film!, with the condition of a constan
thickness-anisotropy product.25 Hagedorn26 further devel-
oped the above model by investigating the stability of eq
librium magnetic configurations by deducing an analyti
expression for the second variation of the magnetic ene
which he evaluated through numerical calculations.

The background of the above-described approach is
problem of calculating the nucleation field of a ferroma
netic crystal with inclusions having lower uniaxial magne
crystalline anisotropy.35,36 For example, a one-dimension
model was developed by Aharoni,35 in which a crystal ex-
tending infinitely in all directions is considered, including
zero-anisotropy slab of finite width. The procedure to obt
an analytical expression for the nucleation field essenti
relies on the solution of the linearized Brown’s equations
further evolution of these models was proposed
Abraham,37 where a bulk crystal is covered by a surfa
layer having zero anisotropy, but different exchange a
magnetization.

In recent years Leineweber and Kronmu¨ller27,38examined
the case of a soft layer with finite thickness sandwiched
tween two infinite hard layers. They derived expressions
the angular orientation of the magnetization vector throu
out the layers, both with and without an applied magnetiz
field, as a function of the intrinsic~exchange, magnetocrys
talline anisotropy! and extrinsic~thickness! characteristics of
the layers. On the basis of these results, the authors ded
the remanence, reversal field and maximum energy pro
of the triple-layer system. They calculated the reversal fi
~they called this field ‘‘nucleation field’’Hn) as a function of
the soft-layer half-thickness~therein denotedds) and de-
duced that this critical field coincides with the hard-lay
anisotropy field, if 2ds is below thehard Bloch wall thick-
nesspdh5pAAh /Kh. In this region, the value ofHn does
not depend on the particulards value, and the system ca
develop a complete exchange coupling between the
phases. Furthermore the hysteresis loop is rectangular
the case of a pure hard bulk, with only one critical field, a
the magnetization reversal is only due to a rotation mec
nism. A different behavior is instead deduced if 2ds is of the
order of one or a fewpdh , whenHn turns out to decreas
steeply with increasingds . This situation corresponds to th
so-called exchange-coupled phase,38 in which an inhomoge-
neous ~irreversible! rotation mechanism predominates t
magnetization reversal, following a reversible process cau
by the exchange coupling. The hysteresis loop is no m
rectangular in shape and one can distinguish a first crit
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field, at which the collinearity is broken and the reversib
process starts~the exchange-bias field!, and a second critica
field corresponding to the irreversible switch of the who
system. The hysteresis behavior of the system can be con
ered as a single-phase magnetic behavior. On the contrar
the extreme case, corresponding to 2ds@pdh , the hard and
soft phase can be considered as decoupled and the hyste
cycle is typical of a two-phase system, with two differe
reversal fields. In this region, the magnetization rever
takes place by rotation of the moments independently
irreversibly in the hard and soft phases and the hard-ph
reversal field decreases with an inverse power ofds .

A remarkably different analytical approach is that bas
on the analogy between quantum mechanics
micromagnetics.39,40 In essence, the micromagnetic equati
which is obtained by the minimization of free energy corr
sponds to the Schro¨dinger’s equation for a particle moving i
a three-dimensional potential of the form 2K1(r )/m0M (r ).
In particular the treatment of the multilayer limit is anal
gous to the periodic multiple quantum well problem~one
dimensional!, leading to the implicit equation for the nucle
ation field @see Eq.~A11!# as a function of hard and soft
layer thicknesses and of intrinsic parameters of the t
phases.39 At this place we should also cite an earlier trea
ment of the problem of inhomogeneous nucleation in pe
odic hard-soft multilayers based on the Kronig-Penn
model,41 allowing the derivation of the linearized micromag
netic equation as a one-dimensional Schro¨dinger’s equation.

B. Other models

The micromagnetic approach suffers of some limitatio
partly because the complete solution of the variational pr
lem is possible only by approximation and numerical me
ods, and partly because it is based on a continuum mode
matter, which becomes inaccurate when the layers thickn
is very small. The discrete models assume the o
dimensional character of the reversal mode and have b
applied to explain the observed magnetic behavior
exchange-spring bilayers,16,17,29,42 triple-layers,43 and
multilayers.29,42 The basic assumption is that the magne
properties are considered to be constant within a ‘‘sheet’
‘‘layer’’ parallel to the interfaces and to depend only on
plane indexi, which corresponds to the coordinate perpe
dicular to the planes. Most authors assume that such la
are separated by a distance equal to the lattice paramete
these models the coupling only occurs between neighbo
‘‘layers’’ and may be described, e.g., by an energy per u
surface area.28 On this basis Amatoet al.29 demonstrated tha
on increasing the nanostructuration of the multilayer, that
on increasing the number of alternate layers while keep
constant the total thickness and the hard/soft ratio, both
coercivity field and the maximum energy product are e
hanced.

A different approach is based on the magnetodyna
Landau-Lifshitz equation for distributed ferromagnetic fil
systems.30,31The explicit purpose of the authors was to ove
come the complications of the quasistatic description~mainly
concerning the verification of the stability of the solutio
1-3
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obtained from energy minimization! in the case of distributed
systems such as films with laminar magnetization. The
thors claim the dynamic solutions to be less complicate
more convenient, even including the problem of stability.

IV. THE ADOPTED MODEL

Following the guidelines of the micromagnetic approa
we handled the problem of the physical existence of the
lutions arising from variational calculus by utilizing an he
ristic viewpoint, essentially based on the study of the m
netic susceptibility in correspondence to the critical fields44

We calculated indeed the analytical expression of the dif
ential susceptibility (xc) at the critical field that correspond
to the start of flux reversal~hereafter called nucleation fiel
Hc1 , as usual in the micromagnetic treatment45!, on the basis
of a one-dimensional micromagnetic model of the exchan
spring multilayer. The value ofxc is an important paramete
characterizing the type of reversal process and it is of p
ticular interest the evaluation of its dependence on the p
erties of the soft and the hard phases and on structura
rameters.

The adopted model considers the exchange-sp
multilayer as composed by alternate soft and hard layers
pendicular to thex axis ~see the scheme in Fig. 1!. The two
component layers are supposed to have uniaxial anisot
with parallel easy axes both lying in the film plane along t
z axis ~Fig. 1!. The search for solutions is limited to thos
which are periodical, so that the median planes of the lay
are symmetry planes for the magnetic structure. The p
posed approach is~i! based on a continuum model of matte
~ii ! it does not take explicitly into account temperature
fects, except for the fact they are implicit in the magne
parameters normally utilized in a micromagnetic treatme
~iii ! it also neglects the time dependence of magnetizat
thus considering a quasistatic magnetization reversal,
~iv! it does not consider the possible contribution of surfa
and interface anisotropy. In the case of an applied magn
field H opposite to thez axis, the expression of the Gibb
free energy can be written as

G5 (
i 51,2

~21! iE
x0

xi FAi S dq

dx D 2

1m0MiH cosq

1Ki sin2 qGdx, ~1!

where indexes 1 and 2 refer to the soft and hard layer,
spectively, andx0 , x1 , and x2 denote the position of the
interface and of two contiguous median planes~Fig. 1!, q(x)
is the angle between thez axis and the magnetization vecto
M , andAi is the exchange stiffness constant of layeri. The
magnetocrystalline anisotropy term is limited to the seco
order. We also define the quantitiest15(x02x1), t25(x2
2x0), which represent half of the respective layer thic
nesses.
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The magnetization of both layers is supposed to lie g
erally in the film plane. Hence in Eq.~1! no demagnetizing
field contribution to the free energy has been taken into
count. In the case of an exchange-coupled multilayer w
perpendicular anisotropy, a further energy contribution d
to stray fields should be introduced into the model in form
a demagnetizing anisotropy constant for each layer (Ki

dm

5m0Mi
2/2). In this case the magnetic field is applied an

parallel to thex axis and the intrinsic anisotropy constantsKi
should be substituted by the corresponding total anisotr
constantsLi5Ki2m0Mi

2/2, where a positiveKi indicates
that thex axis is an easy axis. A further assumption is thatM i
in both layers lies in thexy plane and the angleq is the
orientation angle ofM i with respect to the positive directio
of x axis. This means that the problem has again a o
dimensional character with one degree of freedom~y com-
ponent ofM i) and the mathematical treatment presented
low also applies to the case of perpendicular anisotropy
particular, in the limitK15K2 , M15M2 , the system re-
duces to a classic infinite slab with perpendicular anisotro
~see Ref. 45, p. 194!. Our assumptions are consistent wi
this case characterized by a spin reversal triggered by
nucleation of a uniform rotation mode at a critical fieldHc
5(2K2m0M2)/m0M ~Ref. 46!. So we expect that the one
dimensional approach we utilize in the model is also app
priate for describing the nucleation process in the exchan
coupled multilayer with remanent saturated sta
perpendicular to the film plane. However this descripti
could be no more adequate in the region far from saturat
In particular the second critical fieldHc2 , at which the com-
plete reversal of the whole system occurs, could substant
differ from the values predicted by the model because
system could take advantage of the additional degree of f
dom ~z component ofM i).

The determination of equilibrium state is a variation
problem. In this particular case, one has to consider the
riodic boundary conditions (dq/dx)50 for x5x1 and x
5x2 and A1(dq/dx)ux5x025A2(dq/dx)ux5x01 for x5x0 .
The last condition corresponds to the Weierstrass-Erdm
law along the surface normal, which is also cited in Ref. 2
The absence of an explicit dependence onx of the integrand
allows to directly obtain from the Euler equation a first ord
integral, which reads

m0MiH~cosq2cosq i !1Ki sin2 q2Ai S dq

dx D 2

2Ki sin2 q i

50, ~2!

from which

dq

dx
5Aa i~cosq2cosq i !1b i~sin2 q2sin2 q i !, ~3!

where i 51 for x1,x,x0 and i 52 for x0,x,x2 and a i
5m0MiH/Ai , b i5Ki /Ai . The boundary angles areq i for
x5xi and q0 for x5x0 . Because we are interested in th
1-4
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behavior for small angular deviations around the fieldHc1 ,
Eqs. ~3! are then expanded up to the fourth order inq and
become

dq

Auq22q i
2u

F11
pi

2
~q21q i

2!G5dxAUb i2
a i

2 U, ~4!

where

p15
a128b1

12~2b12a1!
,

p25
a228b2

12~a222b2!
. ~5!

In Eqs. ~4!, the argument of the modulus has negative s
for the soft layer (q,q1) and positive sign for the hard
layer (q.q2). The obtained equations are then integra
between the extrema, which areq5q1 and q5q0 for the
soft layer, q5q0 and q5q2 for the hard layer, and the
corresponding values for variablex ~see Ref. 47!.

Then we obtain two linear equations for the soft and
hard layer in terms of higher order infinitesimal variablesh j
( j 50,1,2) that define the deviations of anglesq j from their
unperturbed values corresponding to the onset of instab
at H5Hc1 . The magnetic field itself is expressed in terms
an infinitesimal reduced variablet5(H2Hc1)/Hc1 , that
vanishes whenH5Hc1 ~see Appendix A!. A third equation is
obtained by considering the boundary condition atx5x0 ,
s

ri
em
b

e
sl

17440
n

d

e

ty
f

which corresponds to the equilibrium condition for the e
change forces. Thus we obtain a system of three linear e
tions in the anglesh j . At H5Hc1 ~i.e., t50) it becomes a
system of homogeneous linear equations: the condition
that the determinantD of the coefficient matrix is vanishing
leading to an implicit equation for the critical fieldHc1 ~see
Appendix A!. For tÞ0 a mathematical relation is obtaine
between the infinitesimal fieldt and anglesq j @see Eq.
~A10!#, which in turn allows to obtain an expression of th
slope ofM (H) at the nucleation fieldHc1 .

Appendix B reports the calculation of the infinitesim
decrease of the reduced magnetization,dm5dM /Ms (Ms is
the saturation magnetization of the whole system! which is
proportional toq0

2 through a factorG, which is a function of
the layer thicknesses and the magnetic parameters. The
reduced susceptibility is@Appendix B, Eq.~B5!#

x̃5
dm

t
5

q0
2G

t
. ~6!

Equation~A10! of Appendix A yields the ratioq0
2/t and thus

the volume susceptibility at the critical fieldHc1 ~in SI units!
turns out to be

xc5
dM

dH
5

dmMs

~H2Hc1!
5

q0
2GMs

Hc1t
5x̃

Ms

Hc1
~7!

or, equivalently,44
xc5H M1F t1

cos2~ t1g1!
1

tan~ t1g1!

g1
G1M2F t2

cosh2 ~ t2g2!
1

tanh~ t2g2!

g2
G

3p1

cos2~ t1g1! F 2t1g1

sin~2t1g1!
11G2

3p2

cosh2~ t2g2! F 2t2g2

sinh~2t2g2!
11G12~p12p2!

J
3H a1F 1

g1
2 1

2t1

g1 sin~2t1g1!G1a2F 1

g2
2 1

2t2

g2 sinh~2t2g2!G J •F 1

4Hc1~ t11t2!G , ~8!
urs
of

In
rve
f

whereg1 andg2 are defined in Appendix A as functions ofa
andb.

V. THE MAGNETIC PHASE DIAGRAM

The dependence ofxc on the structural parameters allow
to define a phase diagram in the (t1 ,t2) plane. Figure 2 rep-
resents the phase diagram of a typical exchange-sp
multilayer, calculated for the case of a Fe/Sm-Co syst
with the same layer intrinsic parameters already utilized
Fullerton et al.16 (M151.7 MA/m, M250.55 MA/m, K1
5102 J/m3, K255 MJ/m3, A152.8310211 J/m, and A2
51.2310211 J/m). Starting from the thick layers region, th
critical susceptibility is positive and increases continuou
ng
,

y

y

when reducing the half-layer thicknesst1 and t2 , until xc

diverges along a critical line (xc→`). This line corresponds
to the onset of instability and, in the region below it,xc

becomes negative, indicating that the flux reversal occ
irreversibly. This critical condition separates the regime
the so-called exchange-spring magnet~ES,xc.0) from that
of the magnetically rigid composite magnet~RM, xc,0),
which is very similar to a conventional oriented magnet.
the latter, the reversible portion of the demagnetization cu
on the left of Hc1 ~usually interpreted to be indicative o
‘‘exchange-spring behavior’’! is absent.

The first critical fieldHc1 is the solution of the implicit
equation~A11! of Appendix A. Givent1 and t2 , this is an
equation inH throughg1 andg2 , and it is usually solved by
using the simple method of bisection~see Ref. 48, p. 353!. In
1-5
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this way theHc1 lines have been traced on the magne
phase diagram. The curves corresponding to constant va
of the critical susceptibilityxc in the (t1 ,t2) plane are found
by a similar method: givent1 , we find the corresponding
point of the iso-xc curve with the bisection, by lettingt2
vary. Since expression~8! for xc also depends onHc1 , we
have to solve equation~A11! for each step of the bisection
In order to trace theHc2 curves, we first have to calculate th
demagnetization curves~see Appendix C!. The condition to
determine this critical field is the divergence of the reversi
susceptibility, a criterion discussed in detail by Hubert a
Rave.49

The lines of constant critical fieldsHc1 andHc2 are pre-
sented in Fig. 2 over the half-layer thicknessest1 and t2 ,
together with the line of constant critical susceptibilityxc
→` (x` line!, which separates the RM regime from the E
regime. In the RM regime the isocritical field lines forHc1
andHc2 coincide, while there is a bifurcation of these lin
on thex` line and a separation in the ES region. With t
material parameters used, the RM region correspond
rather small thicknesses for both layers, of the order of a
nm. In general, by setting a specific value of the soft-la
half-thicknesst1 , Hc1 becomes larger by increasingt2 .
However, due to the fact that theHc1 lines show a vertical
asymptote, by increasing the hard-layer thickness beyon
certain value,Hc1 changes no more.

Another system that has been proposed as a pos
exchange-coupled planar composite is Fe/NdFeB. The p
diagram for a Fe/NdFeB infinite multilayer is shown in Fi
3~a!, based on the material parameters given in Ref.
(M151.7 MA/m, M251.28 MA/m, K154.33104 J/m3,
K254.3 MJ/m3, A152.5310211 J/m, A257.7
310212 J/m). If we extend the phase diagram to the reg
of large soft half-layer thicknesses@Fig. 3~a!#, we observe
that thex` line assumes a typical U shape. This line prese
two vertical asymptotes, corresponding to particular val

FIG. 2. Magnetic phase diagram in the plane of half-layer thi
nessest1 ~soft! andt2 ~hard! for the case of a Fe/Sm-Co multilaye
with parameters M151.7 MA/m, M250.55 MA/m, K1

5102 J/m3, K255 MJ/m3, A152.8310211 J/m, A251.2
310211 J/m ~from Ref. 16!. The figure reports the criticalx` line
(xc→`, dotted line! together with the lines of constant critical fiel
Hc1 ~solid! andHc2 ~dashed!.
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of the soft-layer thickness. As a consequence, if we focus
attention to the case of relatively large hard-layer thic
nesses, the phase diagram is subdivided into three reg
~1! On the left of first asymptote, the system is in the R
regime dominated by the hard phase, that is, with large c
cal fields.~2! On the right of the second asymptote, the sy
tem is in a decoupled regime@decoupled magnet~DM!#,
where the hard and soft phases behave as almost indepe
components.~3! The intermediate region pertains to th
usual ES regime. In the decoupled region the nucleation fi
Hc1 does not mark the starting of a reversible detachmen
the magnetic moments from saturated state: it indicates
stead the occurrence of the irreversible switching of the s
phase, which is followed by a similar process involving t
hard phase at the fieldHc2 . The corresponding demagnet
zation curve is typical of a two-phase system, as prefigu
in Refs. 1 and 38. For Fe/Sm-Co system, the second asy
tote occurs at very larget1 values~of the order of 200 nm!.

Figure 3~a! also reports the iso-critical lines correspon
ing to the reversal fieldHc2 . Note that those lines corre

-

FIG. 3. ~a! Fe/NdFeB composite system~data from Ref. 27!:
magnetic phase diagram in the plane of half-layer thicknesset1

~soft! andt2 ~hard!. The U-shaped dotted line represents the criti
x` line (xc→`). The figure also reports theHc1 ~solid! and Hc2

lines~dashed!, which coincide in the RM region~left-bottom side of
the diagram!. ~b! Same as~a! but with an enlarged scale, in order t
give evidence to theHc2* line corresponding to the value 542.7340
kA/m: this line discriminates theHc2 lines having a vertical asymp
tote from those having horizontal asymptote~two examples are
traced on the diagram, see text!. The figure also shows the differen
regions in which the U-shaped critical line and the bifurcation li
subdivide the phase diagram. The bifurcation line~dotted line! de-
notes the boundary between coupled and decoupled systems.
1-6
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sponding to fields above a specific valueHc2* show a vertical
asymptote, while those referring to a field lower thanHc2*
present a horizontal asymptote. This critical field val
(Hc2* 5542.73404 kA/m with the utilized material param
eters! can be obtained by imposing that both layer thic
nesses are infinite: the corresponding iso-Hc2 curve appears
to have an oblique asymptote in the region of large thi
nesses. It is worth noting@Fig. 3~b!# that a very small change
of this critical field valueHc2* in either directions, even on
the eighth digit (Hc2* 60.04 A/m), gives rise to isocritica
field curves that are practically coincident up to a cert
point, where they bifurcate taking either a vertical or an ho
zontal asymptote. Figure 4 reports the calculated thickn
positions of the horizontal and vertical asymptotes, resp
tively, as a function of the critical fieldHc2 . The divergence
of both curves occurs at the critical field valueHc2* .

Another peculiar characteristic of the obtained phase
gram, as can be seen from Fig. 3~a!, is that the bifurcation of
the Hc1 and Hc2 lines occurs exactly in correspondence
the critical line x` only for fields above a specific valu
~about 210 kA/m, with the utilized material parameters!. For
fields lower than this value, the bifurcation occurs along
line that branches out of the critical linex` . This ‘‘detach-
ment’’ of the bifurcation from thex` critical line can be
visualized by plotting on the phase diagram the bifurcat
points corresponding to different field values, as it can
deduced from Fig. 3~a!. One obtains thus a critical line@Fig.
3~b!#, called the bifurcation line, which is nearly horizont
and denotes the boundary between coupled and decou
systems. Below this line the system is exchange coupled
particular it is a rigid magnet dominated by the soft pha
that is, with small critical fields. Above the bifurcation th
hard and soft phases behave as nearly independent co
nents~DM regime!. The bifurcation line converges into th
left-hand side of the U-shaped critical line to a tri-critic
point G. The definition of the decoupled magnet is inheren
subject to certain arbitrariness. We have considered in
present analysis a decoupled system as the one for w
uHc1u<uHc2u while xc,0. Another possible definition could

FIG. 4. Fe/NdFeB composite system~data from Ref. 27!: hard-
layer half-thickness positiont2 of the horizontal asymptotes for th
Hc2 lines, as a function of theHc2 value. On the same figure it i
also reported the soft-layer half-thickness positiont1 of the vertical
asymptotes for theHc2 lines. The discontinuity corresponds to th
critical field Hc2* 5542.7340384 kA/m~see Fig. 3!.
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be connected with the introduction of a third critical field
which the irreversible transition occurs when the satura
and the intermediate states have equal free energy. In
case we could have again a two-step demagnetization c
in the region whereuHc1u.uHc2u and the new bifurcation
line would be shifted to lowert2 values while converging on
the same tricritical pointG.

Figure 5 shows the isocritical susceptibility lines superi
posed to the magnetic phase diagram of the Fe/NdFeB
nite multilayer, with the hard-layer thickness on a logarit
mic scale, in order to put in evidence the peculiar behavio
the limit of very large hard-layer thickness. In this limit, th
iso-xc lines are still open lines and tend to concentrate cl
to the U-shaped critical line. This means that for very thi
hard-layer thicknesses, the critical susceptibility of comp
ite system is practically zero for all soft-layer thickness
except in a very narrow region around the vertical asym
totes, where it diverges. This fact reflects the obvious
cumstance thatxc is a weighted average of the susceptibili
contribution of both components~hard and soft!. With in-
creasing hard-layer thickness the demagnetization pat
tends to be invariant and involves the same volume, whic
a decreasing fraction of the whole system.

VI. DEPENDENCE OF THE MAGNETIC PHASE
DIAGRAM ON MATERIAL PARAMETERS

Let us examine first the effect of an increasing soft-lay
anisotropy on the phase diagram. Starting from the ani
ropy ratior5K1* /K2 as in the case of Fig. 2~Fe/Sm-Co!, the
phase diagram modifies as shown in Fig. 6~a!. The two as-
ymptotes of the critical linex` approach one another o
increasingr, until they meet for a particular valuer8 ~for
soft/Sm-Co it is about 0.06, while in the case of the so
NdFeB multilayer it is 0.034!, so that the region of existenc
of the ES magnet vanishes. So the U-shaped curve colla
in a half-line starting from the tricritical pointG, where it
links up with the bifurcation line thus forming a unique ne

FIG. 5. Fe/NdFeB composite system~data from Ref. 27!: mag-
netic phase diagram in the plane of half-layer thicknessest1 ~soft!
and t2 ~hard!. On the diagram the U-shaped dotted line represe
the x` line, and the other lines~solid! are isocritical susceptibility
lines. The hard-layer thickness scale is logarithmic.
1-7
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ASTI, SOLZI, GHIDINI, AND NERI PHYSICAL REVIEW B 69, 174401 ~2004!
boundary line separating the RM and DM regions. With f
ther increase ofr.r8 the new boundary line moves upward
to the right in the phase diagram, progressively reducing
DM region @Fig. 6~c!#. At a second special value~see Sec.
IX !

r95
J1

J2

HA1*

HA2
5

J1

J2

1

~112j12Aj!
, ~9!

wherej5A1J1 /A2J2 , the region at infinite thickness of bot
phases (t1 ,t2→`) becomes RM, so that forr.r9 the DM
region either disappears or becomes an island in the p

FIG. 6. Soft/Sm-Co composite system~starting data from Ref.
16!: ~a! modification of thex` line in the magnetic phase diagra
on varying ther5K1* /K2 ratio, with fixedK2 . ~b! Soft-phase half-
thickness position of first and second asymptotes of thex` line as a
function of r. The positiont151.23 nm represents the limit fo
K1→0. The two asymptotes coalesce at a critical ratior5r8
50.06, corresponding tot152.8 nm: for higher values ofr the ES
phase disappears.~c! Phase diagram forr.r8 ~broken lines repre-
sent the new boundary lines separating RM and DM phases!. For
comparison we have also included the phase diagram for a v
r50.05,r8, with thex` line ~solid! and the bifurcation line~bro-
ken!.
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diagram. The numerical values ofr9 are 0.096 for soft/
NdFeB and 0.148 for soft/Sm-Co.

The variation of the anisotropy ratio has little effect on t
soft half-layer thickness position of the first asymptote, wh
strongly influences the position of second asymptote. T
fact is summarized in Fig. 6~b!, where the asymptote’s pos
tions in the phase diagram are reported as a function
K1 /K2 ratio for the case of the soft/Sm-Co system. In t
limit of vanishing soft phase anisotropy, the positiont1 of
first asymptote tends to a value~1.23 nm!, which is close to
the exchange lengthd25AA2 /K2 of the hard Sm-Co phas
~about 1.55 nm!, while the position of the second asympto
tends to infinite thickness.

In the particular caseK150, K25K, A15A25A, J1
5J2 , the position of the first asymptote turns out to
t1AK/A50.985013, in good agreement with the bounda
thickness between the continuous and discontinuous jum
the magnetization at nucleation as reported by Aharo35

(t1AK/A50.984). The positions of the two asymptotes c
lapse, as already stressed, forK1 /K250.06, in correspon-
dence to a soft half-layer thickness of 2.8 nm for the case
the soft/Sm-Co system@Fig. 6~b!#.

We also analyzed how the position of the first asympt
is influenced by the variation of exchange constants. A
first attempt, we fixedK1 andK2 to the initial values of Ref.
16 and changed eitherA1 or A2 . The results for the case o
the soft/Sm-Co system are reported in Figs. 7~a! and 7~b!,
from which it can be inferred thatA1 determines the stron
gest variation of the asymptote position: about 70% fo
change of a factor 10 of theA1 /A2 ratio.

ue

FIG. 7. Soft/Sm-Co composite system~starting data from Ref.
16!: ~a! soft-phase half-thickness position of first asymptote of
x` line as a function of theA1 /A2 ratio, with A2 fixed. ~b! Soft-
phase half-thickness position of first asymptote of thex` line as a
function of theA2 /A1 ratio, with A1 fixed. The dots on the lines
represent the starting values ofA1 andA2 taken from Ref. 16.
1-8
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VII. THE CALCULATED DEMAGNETIZATION CURVES

The procedure for tracing by numerical calculations
demagnetization curves of an exchange-coupled multilaye
reported in Appendix C. Figure 8 reports the calculated
magnetization curves for a Fe/Sm-Co system, with the sa
intrinsic parameters utilized by Fullertonet al.16 In this case
the curves refer to the same Sm-Co layer thickness~20 nm!
and different Fe layer thicknesses in the range 1–20 nm
in Fig. 10~a! of Ref. 16. The calculation was performed co
sidering a tilting angle of 3° between the easy axis and
field direction, as in Fullertonet al.16 The comparison of
calculated curves with those reported in the cited refere
gives a good agreement concerning the shape and theHc1
andHc2 values down to a soft-layer thickness of about 5 n
that is, for systems lying in the ES region. However, w
observe an increasing discrepancy for the calculatedHc2
value on reducing the 2t1 value below 5 nm.

The values ofHc1 andHc2 as functions of the soft-laye
thickness are reported in Fig. 9, together with the cor
sponding critical field values calculated in Fullertonet al.16

There is good agreement forHc2 , especially at large thick-
nesses, while ourHc1 values seem to be slightly larger tha
those obtained in Fullertonet al.16 The transition to the RM
regime appears in both calculations to occur at roughly
same thickness 2t1'2 nm. Amatoet al.,29 on the basis of a
discrete micromagnetic model, calculated the demagne
tion curves for the Fe/Sm-Co exchange-spring multilay
utilizing the same data given by Fullertonet al.16 The com-
parison of the results from our model and those of Am
et al.29 is difficult because they consider afinite multilayer
system, with constant total thickness and different nanost
turation degree, that is, different number of layers. Furth
more, because the systems of Amatoet al.29 start and finish
with a hard layer, they show a symmetry that we can
exactly reproduce: this is true in particular for the syste
with a small number of layers. Nevertheless, we numeric
calculated, on the basis of our model, the demagnetiza

FIG. 8. Demagnetization curves for the case of a Fe/Sm
multilayer, with parametersM151.7 MA/m, M250.55 MA/m,
K15102 J/m3, K255 MJ/m3, A152.8310211 J/m, A251.2
310211 J/m ~data from Ref. 16!. The hard-layer thickness (2t2) is
fixed at 20 nm and those of the soft layer (2t1) are indicated~in
nm! on the curves. The calculation was performed considerin
tilting angle of 3° between the easy axis and the field direction, a
Ref. 16.
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curves for infinite multilayers having the same layer thic
nesses of the finite systems considered by Amatoet al.29 The
only exception is the case of trilayer (n53) for which we
have also calculated the curve considering the system
composed by two symmetrical bilayers having half thic
nesses 10 nm/10 nm. These curves are reported in Fig. 1
be compared with Fig. 2 of Ref. 29 and the deduced val
of the critical fieldsHc1 and Hc2 are compared in Table
with the corresponding values of Amatoet al.29 Our critical
fields Hc1 andHc2 are larger than those deduced by Ama
et al.,29 independently of the nanostructuration degree. F
thermore, our system enters the RM regime for smaller v
ues of the nanostructuration degree of the multilayer. Ho
ever, the general features of the demagnetization curves
out to be similar. In general, from this comparative analy
we can say that the continuous micromagnetic appro
gives reliable results down to layer thicknesses of a f
atomic layers.

o

a
in

FIG. 9. Comparison between the calculated critical fieldsHc1

~continuous line! andHc2 ~dashed line! and the corresponding val
ues obtained in Ref. 16, as functions of the soft-layer thickn
(2t1), having fixed the hard-layer thickness at 20 nm. Open d
monds,Hc1 ; open dots,Hc2 .

FIG. 10. Series of calculated demagnetization curves for infin
Fe/Sm-Co exchange-spring multilayer having the same la
thicknesses of the finite systems of Ref. 29. Then value reported on
the curves represents the nanodispersion index, as defined in
29, that is,n53 corresponds to a trilayer,n55 to a pentalayer, and
so on. The numbers in parentheses represent the soft and hard
layer thickness expressed in nm.
1-9
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VIII. COMPARISON WITH EXPERIMENTAL DATA

The magnetic behavior of a planar magnetic nanocomp
ite described in the previous paragraphs, in particular
demagnetization processes, can in principle be convenie
compared with experimental results on real systems. Am
the observed phenomena we believe that the nucleation a
critical field Hc1 in the ES region is properly described b
the present model because the system undergoes a se
order transition to a reversible state, so that it is in a fav
able condition to be insensitive to localized defects
inhomogeneities.50 These are instead known to be of maj
importance in the coercivity mechanisms involving an ir
versible transition~Brown paradox!. As a matter of fact the
values of theHc2 field that the model predicts are based on
condition of instability of inhomogeneous rotation proces
and are strictly valid for a perfectly homogeneous system
other words our model does not include inverse dom
nucleation and propagation, at least for the case of a pro
exchange-coupled system, i.e., in the ES and RM states.
consequence the obtainedHc2 values are to be intended as a
upper limit for the real reversal field, in a way similar to th
switching field in the Stoner-Wohlfarth model.

We made an attempt to compare the hysteresis cycle
the Ni80Fe20/Sm40Fe60 system reported in Ref. 11 with thos
deduced from our model, on the basis of the following m
terial parameters: the saturation magnetization of both ph
(M15860 kA/m, M25286 kA/m, from Ref. 12! and the an-
isotropy constant~assumed to be zero! of Ni80Fe20. The
other quantities~exchange constants of both phases and
isotropy constant of the hard phase! were considered as fre
parameters in a best-fit procedure concerning the soft-
hard-layer thickness dependence ofHc1 , as deduced from
Figs. 3 and 4 of Ref. 11. The results of the best fit are sho
in Figs. 11~a! and 11~b!, corresponding to a given 2t1 value
~57.6 nm! and to a given 2t2 value ~100 nm!, respectively.
The obtained values of the free parameters areK252.2
3104 J/m3 andA15A256.5310212 J/m.

For the above explained reasons, it has to be underl
that we only took into account the experimental hystere
cycles that manifestly are in the ES regime and for which

TABLE I. The calculated critical fieldsHc1 andHc2 compared
with the corresponding values obtained in Ref. 29. Then value
represents the nanodispersion index, as defined in Ref. 29, th
n53 corresponds to a trilayer,n55 to a pentalayer, and so on. Th
soft and hard half-layer thickness is expressed in nm.

H
~MA/m!

Nanodispersion index

n511 n59 n57 n55 n53 n53
soft/hard layer thickness

2/1.7 2.5/2 3.3/2.5 5/3.4 10/10 10/5

Hc1
a 1.79 1.42 0.99 0.60 0.21 0.21

Hc1
b 2.24 1.90 1.49 0.93 0.36 0.36

Hc2
a 1.77 1.54 1.31 1.18 1.07 1.07

Hc2
b 2.24 1.90 1.54 1.21 1.13 1.04

aRef. 27.
bThis work.
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identify the nucleation field with the critical fieldHc1 of our
model. In these cycles it turns out that the reversal occur
fields substantially lower than the theoreticalHc2 values
@Figs. 11~a! and 11~b!#. It is worth noting that this discrep
ancy is progressively reduced on increasing both layer th
nesses, i.e., approaching the DM regime@see Fig. 11~b!#.
With 2t1.60 nm and 2t25100 nm we have a substantia
agreement between experimental and theoretical value
Hc2 , which appear to be independent of the soft-layer thi
ness. This limit ofHc2 corresponds amazingly to the doma
wall depinning field at the hard-soft interface as described
the next section.

An example of demagnetization curves for different so
layer thicknesses, calculated by using the obtained mate
parameters, is shown in Fig. 12, where the hard-layer th
ness is fixed at 100 nm. They are in qualitative agreem
with the experimental curves particularly on the reversi
portion where there is a slight difference in the avera
slope. Moreover Fig. 13 reports the phase diagram of
Ni80Fe20/Sm40Fe60 system obtained from our theory, wit
the critical linex` , which is compared with the critical line
reported in Fig. 7 of Ref. 11, defining the transition fro
single-switching process to exchange-spring process. I
evident that there is a pronounced discrepancy between

FIG. 11. Comparison between calculated and experime
~from Ref. 11! critical fieldsHc1 andHc2 for a series of exchange
spring bilayers and trilayers based on the Ni80Fe20/Sm40Fe60 sys-
tem:~a! in the case of a fixed soft-layer thickness 2t1557.6 nm,~b!
in the case of a fixed hard-layer thickness 2t25100 nm. The open
symbols refer toHc1 , while the filled symbols toHc2 ; triangles
refer to data taken from Ref. 11 and circles refer to our calculatio
The material parameters were considered as free parameters
best-fit procedure, with the exception of the saturation magnet
tion of both layers and the anisotropy constant of Ni80Fe20, as-
sumed to be zero. The obtained values of the free parameter
K252.23104 J/m3 and A15A256.5310212 J/m. The lines are
guides for the eyes.
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two curves, particularly in the low soft-layer thickness r
gion. We explain this difference by admitting that in gene
for the experimental hysteresis loops~Fig. 4 of Ref. 11! ex-
hibiting a single switching the reversal occurs before the s
tem could reach the instability condition at the nucleat
field. This irreversible switching could be ascribed to an
homogeneous reversal caused by extrinsic factors, while
model gives, as an upper limit, an irreversible switching fi
Hc2 only based on rotation processes. Domain observat
have been indeed recently performed on Ni80Fe20/Sm40Fe60
exchange-spring films using Kerr microscopy in appli
magnetic fields.51 On the other hand the critical curve re
ported in Fig. 7 of Ref. 11 can be considered at most as
empirical fitting curve of the experimental results. As a m
ter of fact the theoretical interpretation given in Ref. 11
inconsistent because it is based on an inverse power law@Eq.
~1!# with exponent 1.75. The point is that this power depe
dence, as explained in Ref. 27, does not refer to the con
tional definition of the nucleation field given in microma
netism, but rather to the irreversible switching fie

FIG. 12. Series of calculated demagnetization curves
Ni80Fe20/Sm40Fe60 multilayers ~data from Ref. 11! in the ES re-
gime, in the case of a fixed hard-layer thickness 2t25100 nm for
different soft-layer thicknesses 2t1 .

FIG. 13. Phase diagram of the Ni80Fe20/Sm40Fe60 system~data
from Ref. 11!, with the critical linex` ~triangles and dash-dotte
line! compared with the critical line~solid line! for the transition
from single-switching process to exchange-spring process,
reported in Fig. 7 of Ref. 11. The material parameters utilized
trace the phase diagram were deduced from a best-fit procedure~see
Fig. 11!.
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according to the meaning given to the term ‘‘nucleation’’
Ref. 27~see also next section!.

IX. THE LIMIT OF A HARD BULK WITH A SOFT
PLANAR INCLUSION

As outlined in Sec. III, the problem of reduction of th
nucleation field in a hard bulk containing a soft planar inc
sion was first discussed by Aharoni and, later, Abraham
the basis of a micromagnetic one-dimensional model,35,37

which is rather similar to that adopted by Leineweberet al.27

for the hard-soft exchange-coupled triple layer~where the
infinite extension of the hard layers makes the system a h
bulk!. Moreover, the same model was also utilized by Go
et al.25 with the only difference that the soft layer is consi
ered coupled to a hard bulk only on one side. In princip
the results of all these models should be obtained from
model in the limit case of a very thick~ideally infinite! hard
layer. Note that both Aharoni35 and Gotoet al.25 assumed a
zero-anisotropy soft layer.

As already outlined in Sec. V, for large hard-layer thic
nesses the phase diagram appears to be subdivided into
regions by the vertical asymptotes of the critical linex` : the
hard-dominated RM region, the ES region, and the s
dominated DM region. We report in Fig. 14 the soft-lay
thickness dependence of the critical fieldsHc1 andHc2 in the
case of a Fe/NdFeB composite, having set a large valu
the hard-layer thickness (t25100 nm). The two vertical as
ymptotes correspond in this case tot15t1A52.15 nm
'(p/2)d2 , wherepd2 represents the hard-layer Bloch wa
width, and t15t1B516.3 nm: the asymptote positions a
indicated in Fig. 14 by dashed lines. Inside the RM reg
the critical fields coincide, as expected, and the characte
Hc1 in the DM region is modified with respect to the E
region, because it represents here a true reversal field fo
soft layer, that is, the starting of an irreversible process.

For the case of a NdFeB/Fe/NdFeB trilayer, Leineweb

f

as
o

FIG. 14. Fe/NdFeB composite system~data from Ref. 27!: soft
half-layer thickness dependence of critical fieldsHc1 and Hc2 , in
the case of a thick hard layer (t25100 nm). The critical fields are
normalized to the hard-layer anisotropy field, whilet1 is normalized
to the hard-layer DW half width (p/2)d2 . The vertical dashed lines
represent the boundaries of different regions in the magnetic p
diagram~see Fig. 3!.
1-11
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et al. calculated the soft-layer thickness dependence of
field at which the irreversible inversion occurs~Fig. 4 of Ref.
27!. Our analysis shows the following~see Fig. 14!. ~i! For
t1,(p/2)d2 , the nucleation fieldHc1 is rather different from
the anisotropy field of the hard layerHA252K2 /J2 , except
thatHc1 reaches the value ofHA2 only whent1→0. ~ii ! It is
reduced by a factor 3 whent15t1A . This means that even
very thin soft layer coating on a hard bulk dramatically r
duces the nucleation~or reversal! field in the RM regime.
~iii ! The nucleation fieldHc1 asymptotically tends to the
value of the soft-layer anisotropy fieldHA152K1 /J1 , as ex-
pected. These results are in contradiction to the beha
shown in Fig. 4 of Ref. 27, where the reversal field is co
stant for t1,(p/2)d2 , while for t1.10(p/2)d2 we cannot
observe neither forHc1 nor for Hc2 the inverse power-law
behavior}(t1)21.75, as reported in Ref. 27.

The limit of Hc2 for t1→` corresponds to the domain
wall depinning field at the hard-soft interface,52 which is an
important coercivity mechanism in the case of a hard b
enclosing a soft inclusion. In bulk permanent magnets,
depinning of a domain wall may be the rate limiting step
flux reversal, thus representing a more realistic mechan
as compared to intrinsic nucleation~characterized by the an
isotropy field!.53 Nucleation centers exist indeed on surfac
and along hard-soft grain boundaries~in the very common
case of presence of soft phase inclusions!, which obviate the
onset of the intrinsic process.

In this particular case it is possible to obtain an analyti
expression of the reversal fieldHc2 . To this purpose we as
sume botht1 andt2→`, a situation corresponding to a ha
bulk exchange-coupled to a soft bulk at the interface. We
in general in the case of a system in the DM regime~except
when K1 /K2 is above a certain value, as explained in S
VI !, and we are considering the intermediate state after
reversal of the soft phase, so that we assumeq15p and
q250. The system of equations is given by Eq.~3! plus Eq.
~A7!. From this an equation inH andq0 is obtained:

F~H,q0!5@A2J2~cosq021!2A1J1~cosq02cosq1!#H

2~A1K12A2K2!sin2 q01A1K1 sin2 q150.

~10!

The condition for Hc2 is dH/dq050 that implies
]F(H,q0)/]q050. Elimination of q0 between the latter
equation and Eq.~10! allows one to obtain the following
equation forH:

~A2J22A1J1!2H224~A2K22A1K1!~A2J21A1J1!H

14~A2K22A1K1!250. ~11!

The only solution having physical meaning is the lower o
It provides the analytical expression of the domain-wall d
pinning fieldHDW ~Ref. 52!:
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HDW52
A2K22A1K1

A2J21A1J112AA1A2J1J2

. ~12!

In the case of a Fe/NdFeB system, Eq.~12! gives HDW
50.543 MA/m, which is about 10% of the hard-phase a
isotropy fieldHA2 . Table II reports the calculated DW de
pinning field HDW for different hard-soft composites: it i
worth noting that the obtained values are in all cases of
order of 10–20% with respect to the hard-phase anisotr
field.

The reversal field calculated by Aharoni in Ref. 3
~therein termed ‘‘coercive force’’! for the caseK150, K2
5K, A15A25A, J15J2 , as already mentioned in Sec. V
can be considered as a particular case of Eq.~12!, which
givesHDW50.25HA2 , in agreement with the value reporte
in Ref. 35. It should be emphasized that the periodic bou
ary conditions at the basis of the present treatment are
sistent with the boundary conditions assumed in the abo
mentioned work.

To summarize, we were not able to reproduce the res
of the analysis of Leineweberet al. as a limit of our model
for very larget2 values. Nevertheless, the results reproduc
in Fig. 14 compare well with those of Fig. 1 of Ref. 3
where the nucleation field and the coercive~reversal! field
are reported as functions of the soft-layer size in redu
units. The agreement is even better for very thin soft laye

There is however, in principle, a possible physical situ
tion that is not included in the abovementioned perio
boundary conditions for the composite multilayer. As w
have seen these conditions imply a reversal mechanism
volving the whole system in a cooperative rotation proce
the displacement of a domain wall isa priori excluded for a
RM and an ES state, while a DW depinning process at
hard-soft interface occurs in the case of DM phase. A diff
ent situation can in principle be envisaged by assuming
tiparallel domains at infinity as a boundary condition: in th
case the periodicity of the system is in fact lost. The study
the multilayer under these new circumstances could th
new light on the coercivity mechanism of the domain w
pinning. A similar situation was considered in the treatme
of Friedberg and Paul54 concerning domain wall pinning pro
cess in a bulk uniaxial magnet, having a planar soft inc

TABLE II. The calculated domain wall depinning fieldHDW for
different hard-soft composites. The intrinsic magnetic parame
are taken from Refs. 16 and 27. Co-soft represents an extrem
fine-grained Co with anisotropy constant reduced by a factor 13.

composite
HDW

~MA/m!
HA2

~MA/m!
HDW /HA2

~%!

Fe/NdFeBa 0.540 5.347 10.10
Co/NdFeBa,b 0.669 5.347 12.52
Fe/Sm-Cob 2.011 14.469 13.90

Co-soft/Sm-Cob 3.021 14.469 20.88
Co/Sm-Cob 2.859 14.469 19.76

aParameters taken from Ref. 27.
bParameters taken from Ref. 16.
1-12
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MICROMAGNETIC ANALYSIS OF EXCHANGE-COUPLED . . . PHYSICAL REVIEW B69, 174401 ~2004!
sion, to be compared with the classical nucleation mec
nism in the bulk.35 In the case of a composite multilayer, th
condition of antiparallel domains should correspond to c
sider the propagation of a domain wall throughout the sys
and eventually to observe an intrinsic type of coercivity, d
to the matching between the DW width and the layer thi
nesses. The analogy is with the proper ‘‘intrinsic coercivit
connected with the DW pinning in a homogeneous magn
crystal having very high anisotropy and thus narrow dom
walls. The intrinsic coercivity originates from the modulatio
of the DW energy by the lattice periodicity.55

Having introduced the depinning field we can reconsi
here the modifications of the magnetic phase diagram
varying the anisotropy ratior, as explained in Sec. VI. In
particular, there is a critical valuer5r9 for which the DM
phase disappears at infinite thickness of both phases@see Eq.
~9!#. In order to obtain this critical value the condition is th
the depinning field equals the critical fieldHc1 , which in this
limit coincides with the soft phase anisotropy field. Hen
we have the equation

2
A2K22A1K1

A2J21A1J112AA1A2J1J2

5
2K1

J1
~13!

which yields

HA1

HA2
5

1

~112j12Aj!
, ~14!

wherej5A1J1 /A2J2 . Expression~14! provides the critical
valuer9 given by Eq.~9!.

As a final remark we have verified the agreement of
model with the one of Gotoet al.25 In that model the
exchange-bias field, which corresponds to the nuclea
field Hc1 of our treatment, results to be inversely propo
tional to the squared soft-layer thickness. In order to co
pare the two models, we fixed the soft-layer anisotropy t
very low value (1026), while the hard-layer anisotropy wa
chosen equal to that of Sm-Co in Ref. 10. Furthermore,
thickness ratiot2 /t1 was kept equal to 103. We obtained a
perfect agreement between the results of our treatment in
limit and the power law predicted by the model of Go
et al., concerning the soft-layer thickness dependence
Hc1 .

X. THE MAXIMUM ENERGY PRODUCT

Although the exchange-spring shows such an interes
reversibility property it is not perhaps the best condition
achieve the maximum energy density, which is a prerequi
for a high-performance permanent magnet. It is likely th
the best composite permanent magnet should be realize
the RM state because the magnetization remains at its m
mum value in the presence of a reverse field.

A. Optimum „BH …max : a convenient criterion

The analysis of the phase diagram for the Fe/Sm
multilayer ~Fig. 2! allows us to deduce that an RM syste
with significant technical parameters is expected for la
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thicknesses of about 8 and 3 nm, for the soft and hard c
ponents respectively.44 In this case,Hc1 would be of the
order of 1 MA/m, while the average remanent magnetizat

Mr5~M1t11M2t2!/~ t11t2! ~15!

turns out to be close to 1.4 MA/m, with a correspondi
(BH)max of about 0.6 MJ/m3.

In general, if we are interested in obtaining a multilay
with the largest possible layer thicknesses in the RM regi
then an optimum point in the phase diagram should exist
the maximum energy product. This point must be on thex`

critical line and is determined from the conditionHc1
5Mr /2. As an example we have utilized the phase diagr
calculated for the Fe/NdFeB system~Fig. 3! to obtain the
optimum point corresponding to (BH)max: the deduced val-
ues are t154.4 nm, t251.8 nm, Hc150.8 MA/m, and
(BH)max50.8 MJ/m3. For real samples, one has to consid
the influence of extrinsic factors on the coercive behav
such as, the imperfect moment orientation of the hard lay
which could reduce considerably the coercive field with
spect to the critical fieldHc1 , and then the energy produc
~see below!.

B. The limit of extreme nanostructuration

A further possibility offered by the phase diagram is
analyze the region of very thin layers, in the neighborhood
the origin, corresponding to the limit of smallt1 and t2 , as
compared to (a1/2)21/2 and (b2)21/2, respectively~see Sec.
IV !. In such conditions the magnetic moments rotation
almost uniform andHc1 approaches the value of an effectiv
anisotropy field

H̄A52~K1t11K2t2!/m0~M1t11M2t2!, ~16!

that is the weighted average of the anisotropy fields of
two phases. This condition is equivalent to an extreme na
structuration of the multilayer, which, in principle, could a
low us to achieve very high-energy products.16,29In this case,
it could be of interest to evaluate the soft-phase volume fr
tion l5t1 /(t11t2) for an optimum (BH)max, in correspon-
dence to a given hard material. To define the ‘‘optimum
energy product, we refer again to the criterionHc15Hc1*

5Mr /2, in this case withHc1'H̄A . By substituting the
above conditions in Eq.~15! we obtain an equation inl ~Ref.
44!:

~M12M2!2l212FM2~M12M2!12S K2

m0
2

K1

m0
D Gl1M2

2

24
K2

m0
50. ~17!

If we assume a negligible anisotropy for the soft phase,
K150, and that the hard-phase anisotropy constantK2 is
1-13
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ASTI, SOLZI, GHIDINI, AND NERI PHYSICAL REVIEW B 69, 174401 ~2004!
very large with respect tom0M1
2, the solution of Eq.~17!

simply reduces tol'12m0M1
2/4K2 . It turns out that the

soft phase volume ratio is independent of the hard-ph
magnetization. In other words, for a very hard phase,l ap-
proaches unity and the relevance ofM2 in the overall mag-
netization is accordingly reduced. Therefore, in the case
extreme nanostructuration, it would be possible in princi
to utilize hard phases having low or virtually zero magne
zation, i.e., ferrimagnets or even antiferromagnets, to bui
planar nanocomposite magnet with the optimum ene
product. In this case, one might think to exploit the ve
large crystal anisotropy of intermetallic phases such as
heavy rare-earth–transition metal (TbCo5) or the Laves
phases. This principle has recently found practical realiza
in the anti-ferromagnetically coupled DyFe2-YFe2
superlattices,56 grown by molecular beam epitaxy. Moreov
the high degree of nanostructuration implies a large surf
to volume ratio that makes surface or interface anisotrop
further element to come into play.

C. Effect of misalignment

As a further aspect, the orientation of the hard phase
an important role in the overall performance of real magn
From this viewpoint, we have analyzed the effect of the
istence of a nonzero angle« ~deg.! between the soft- and
hard-layer easy axis and the field direction. This situat
resembles that of a real system, in which a distribution of
hard-layer easy axis orientations is likely to be realized.
have observed two distinct behaviors of the systems in

FIG. 15. Series of calculated demagnetization curves for
case of a Fe/Sm-Co multilayer, with the material parameters
ported in Ref. 16, with different angles« ~deg.! between the mag-
netic field direction and the easy-axis direction:~a! in the caset1

5t252 nm ~RM region!; ~b! in the caset1510 nm andt255 nm
~ES region!.
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RM and ES regime. If we consider a multilayer with mater
parameters as in Ref. 16, the reversal fieldHc2 decreases
with increasing the angle« if the system belongs to the RM
regime @Fig. 15~a!#, while the opposite occurs for the E
regime @Fig. 15~b!#. The singularity associated with th
nucleation fieldHc1 is only present for a perfect alignmen
i.e., «50°. A finite angle«, whatever small, actually rule
out the singularity and the kink point is progressive
rounded off. It is a case of a broken symmetry and actua
all the magnetic moments start to rotate immediately a
the application of an infinitesimal field. Figure 16 shows t
effect of a small misorientation on the critical fieldHc2 , in
the case of systems in the RM and ES regimes.

XI. CONCLUSIONS

The magnetic composite can present peculiar magn
properties that are absent in homogeneous phases, in pa
lar depending on the microstructural parameters. In fact th
is the need of a basic phenomenological description o
physical system of this kind. A magnetic phase diagram
terms of important microstructural parameters such as
layer thicknesses, in the case of a planar composite, is a
step in this direction. We have developed a one-dimensio
micromagnetic model of the multilayer exchange-spri
magnet, which leads to a complete magnetic phase diag
for the planar hard-soft nanocomposite, providing a powe
tool for a general overview of its magnetic properties.
particular it gives information on the type of demagnetiz
tion processes and the critical fields at which nucleation
reversal take place. The diagram has in principle a predic
potential on the behavior of particular configuratio
and therefore is useful for the tailoring of these artific
materials.

A key point to this purpose is the analytical expression
have obtained in Eq.~8! for the critical susceptibility at the
nucleation field. Depending on the sign of this quantity,
have a reversible or an irreversible switching, correspond
respectively to the exchange-spring magnet~ES! or to the
rigid composite magnet~RM! regime, for very small soft-

e
e-

FIG. 16. Critical fieldHc2 as a function of the misorientation
angle« ~deg.! between the magnetic field direction and the ea
axis direction for the case of a Fe/Sm-Co multilayer. The two lin
correspond to the cases considered in Fig. 15. TheHc2 values are
normalized to that corresponding to«50°.
1-14
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MICROMAGNETIC ANALYSIS OF EXCHANGE-COUPLED . . . PHYSICAL REVIEW B69, 174401 ~2004!
layer thicknesses. On the side of large soft-layer thicknes
we find again a negative value of the critical susceptibil
but it corresponds now to the condition of decoupled mag
~DM!, in which the irreversible switching occurs in tw
steps, i.e., almost independently in the two phases.
boundary line between the different regimes is an U-sha
line corresponding to divergence of the critical susceptibil
Then for large values of the soft-layer thickness the sys
goes directly from RM to DM phase on increasing the ha
layer thickness, without crossing the ES region. The diag
also reports the iso-critical lines both for the nucleation a
the reversal field. These lines bifurcate along the RM bou
ary line.

Noticeably, for a given hard material the ES phase is p
dicted to occur only below a threshold of the ratio betwe
the anisotropy constants of the two phasesK1 /K2 . For ex-
ample, the threshold is of the order of a few % for the case
Sm-Co and NdFeB hard phases. Well above this limit,
remarkably still far from unity, it happens that even the D
disappears.

The limit of infinite hard-layer thickness gives informa
tion on the behavior of bulk magnets with planar soft inc
sions. It is worth noting that even a soft layer as thin as
hard-phase Bloch wall is enough to cause a fall of the nu
ation field to 1/3 of the hard-phase anisotropy field. The lim
of both infinite hard-and soft-layer thicknesses provides
analytical expression of the critical field pertinent to an i
portant coercivity mechanism of permanent magnets:
domain-wall depinning.

In general, the adopted model is limited to rotational p
cesses: in fact, the deduced values of the reversal fields
systematically larger than the experimental ones. This
clearly due to the fact that the model does not consider
role of domains and DW nucleation and pinning,57 except in
the abovementioned case of the decoupled system. Henc
obtained values of the reversal field should be considere
an upper limit, in analogy with the switching field of th
Stoner-Wohlfarth model with respect to the coercivity of re
bulk magnets. Moreover, because of the chosen o
dimensional ansatz, we excludea priori the possible role of
topological singularities.57

Another intrinsic limitation of our model is that it is base
on the continuum approximation. However, the comparis
with the results of discrete one-dimensional models repo
in the literature shows that the micromagnetic approach
good representation of the real system, down to thicknes
a few atomic layers.

A characteristic, which is common to our model and
practically all the other treatments reported in the literat
and discussed in the present work, is the assumption of
magnetization lying in the film plane. However we have a
considered the implications of admitting a perpendicular
isotropy and we have given some indications how to ap
our analysis to this case.

Furthermore, we have addressed the problem of the t
nical performance of a planar composite permanent mag
The maximum energy density requires the magnetization
be as high as possible, so that best performance is expe
in the RM state. If one wants to conveniently utilize th
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largest layer thicknesses, the optimum (BH)max should be
searched along the RM-ES boundary line. On the other h
it turns out that, in the limit of vanishing layer thickness
and of very large hard-phase anisotropy, an even hig
(BH)max is achievable for an optimum soft-phase volum
fraction ~close to unity! depending only on the soft phas
magnetization. This means that it is possible in principle
employ hard phases having low or virtually zero magneti
tion, i.e., ferrimagnets or even antiferromagnets.

The orientation of the hard phase has an important rol
the overall performance of real systems. We have analy
the effect of a small misalignment of the easy axis and
served that the reversal field decreases with increasing
misorientation angle if the system belongs to the RM regim
while the opposite occurs for the ES regime.

The planar nanocomposite magnets have in perspec
other reasons of interests, such as the role of the microst
ture ~multilayers vs hard-granular layered systems!, the DW
pinning process, and the rediscovery of the intrinsic D
pinning on a mesoscopic scale, by matching microstruct
length scale with domain wall width.
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APPENDIX A: FOURTH-ORDER EXPANSION

We start from Eq.~4!, which is the power expansion up t
the fourth order of Eq.~3!. After integration between the
extrema (q1 ,q0) for the soft layer and (q0 ,q2) for the hard
layer we obtain

q02
p1

4

1

S 11
3

4
p1q1

2D q0~q1
22q0

2!

5q1 cosF ~x02x1!

S 11
3

4
p1q1

2D A
a1

2
2b1G , ~A1!

q01
p2

4

1

S 11
3

4
p2q2

2D q0~q0
22q2

2!

5q2 coshF ~x02x2!

S 11
3

4
p2q2

2D Ab22
a2

2 G . ~A2!

We perform now the substitutionsq j→q j1h j ( j 50,1,2),
where theh j are higher order infinitesimal quantities, an
neglect in the calculations the terms of order higher thanq3,
1-15



s
r,

on
e

-

lect-

ing
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such as,hq2 or h2q. Then, we obtain two linear equation
in the variablesh j , which are, in the case of the soft laye

h02h1 cosF ~x02x1!Aa1

2
2b1G

52q01
p1

4
q0~q1

22q0
2!1q1H cosF ~x02x1!

3Aa1

2
2b1G1q1

2~x02x1!
3p1

4
Aa1

2
2b1

3sinF ~x02x1!Aa1

2
2b1G J ~A3!

and for the hard layer

h02h2 coshF ~x02x2!Ab22
a2

2 G
52q01

p2

4
q0~q0

22q2
2!1q2

3H coshF ~x02x2!Ab22
a2

2 G2q2
2~x02x2!

3
3p2

4
Ab22

a2

2
sinhF ~x02x2!Ab22

a2

2 G J . ~A4!

The next step consists of substituting, in the above equati
the reduced variablesa i ( i 51,2), which are related to th
-
he

th

17440
s,

applied fieldH, with their expression in terms of the infini
tesimal fieldt. a i→a icr(11t), wherea icr is the value ofa i
at H5Hc1 . Furthermore, we introduce the variablesg1cr
5Aa1cr/22b1 andg2cr5Ab22a2cr/2. Similarly, the critical
variablespicr correspond to the expressions forpi with a i
5a icr . As a consequence of these substitutions and neg
ing higher order terms, we transform Eqs.~A3! and ~A4! in

h02h1 cos@~x02x1!g1cr#

52q1t~x02x1!
a1cr

4g1cr
sin@~x02x1!g1cr#1q1

3g1cr

3~x02x1!
3p1cr

4
sin@~x02x1!g1cr#1

p1cr

4
q0~q1

22q0
2!

~A5!

for the soft layer and

h02h2 cosh@~x02x2!g2cr#

52q2t~x02x2!
a2cr

4g2cr
sinh@~x02x2!g2cr#

2q2
3g2cr~x02x2!

3p2cr

4
sinh@~x02x2!g2cr#

2
p2cr

4
q0~q0

22q2
2! ~A6!

for the hard layer. A third equation is obtained by consider
the boundary condition atx5x0 , which corresponds to the
equilibrium condition for the exchange forces
S A1

dq

dx U
x5x02

5 D A1Aa1~cosq02cosq1!1b1~sin2 q02sin2 q1!

5S A2

dq

dx U
x5x01

5 D A2Aa2~cosq02cosq2!1b2~sin2 q02sin2 q2!. ~A7!
By performing the substitutionsq j→q j1h j ( j 50,1,2),
and a i→a icr(11t) ( i 51,2), and considering that the ex
pansion of Eq.~A7! truncated to the second order gives t
additional condition

A1
2~q1

22q0
2!g1

252A2
2~q2

22q0
2!g2

2, ~A8!

we obtain finally a system of three linear equations in
anglesh j :
e

h02h1 cos@~x02x1!g1cr#

5~x02x1!g1crsin@~x02x1!g1cr#

3F2
ta1crq1

2~a1cr22b1!
1

3p1cr

4
q1

3G
1

p1cr

4
q0~q1

22q0
2!,
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h02h2 cosh@~x02x2!g2cr#

5~x22x0!g2crsinh@~x02x2!g2cr#

3F2
ta2crq2

2~2b22a2cr!
2

3p2cr

4
q2

3G
2

p2cr

4
q0~q0

22q2
2!,

q0h0~g1cr
2 A1

21g2cr
2 A2

2!2g1cr
2 q1h1A1

22g2cr
2 q2h2A2

2

5
t

4
@~a2cr

2 A2
22a1cr

2 A1
2!q0

21a1crA1
2q1

22a2crA2
2q2

2#

1
1

6
A2

2~q0
42q2

4!S a2cr

8
2b2D1

1

6
A1

2~q1
42q0

4!

3S a1cr

8
2b1D . ~A9!

SinceD50 it is necessary that the augmented matrix~ob-
tained by adding the column of the right-hand side term!
has the same rank as the matrix of the coefficients. T
condition can be written in the formD850 whereD8 is the
determinant of the square matrix obtained by substitution
the column of the right-hand side terms in place of whic
ever column ofD. Then we substitute the first column o
determinantD with the right-hand side terms of Eqs.~A9!.
The condition of vanishing determinant then reads

2tS a1cr

g1cr
2 1

a2cr

g2cr
2 1

t1a1cr

g1crsin~ t1g1cr!cos~ t1gcr!

1
t2a2cr

g2crsinh~ t2g2cr!cosh~ t2g2cr!
D

1q0
2S 3p1crt1g1cr

sin~ t1g1cr!cos3~ t1g1cr!
2

3p2crt2g2cr

sinh~ t2g2cr!cosh3~ t2g2cr!
D

1q0
2S 3p1cr

cos2~ t1g1cr!
2

3p2cr

cosh2~ t2g2cr!
12p1cr22p2crD50,

~A10!

where t15(x02x1) and t25(x22x0) represent half of the
layer thicknesses.

If we truncate the power expansion of Eq.~3! to the sec-
ond order, we obtain, after integration, a system of th
homogeneous linear equations in the anglesq j . It is worth
noting that the obtained system has the same matrix of c
ficients of system~A9!. The condition of vanishing determi
nantD at H5Hc1 leads to an implicit equation for the criti
cal field

A1g1 tan~ t1g1cr!5A2g2 tanh~ t2g2cr!. ~A11!

Equation~A11! assumes the same form as that obtained
Refs. 2, 26, 37. Moreover, from this expansion to the low
order, we can deduce the relationsq0 /q15cos(t1g1cr) and
q0 /q25cosh(t2g2cr).
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APPENDIX B: INFINITESIMAL VARIATION OF
MAGNETIZATION

From the definitions of the layer magnetizations

Mz5
M1*x1

x0dx cosq1M2*x0

x2dx cosq

~x22x1!
5

M1I 11M2I 2

~x22x1!
,

~B1!

whereM1 andM2 represent the saturation magnetization
the soft and hard layer, respectively, and with

I 15E
x1

x0
dx cosq>2E

x1

x0
cosq

dq

g1Aq1
22q2

,

I 25E
x0

x2
dx cosq>2E

x0

x2
cosq

dq

g2Aq22q2
2

~B2!

considering a power expansion truncated to the second o
The above integrals result

I 15S 12
q0

2

4 cos2@g1~x02x1!#
D ~x02x1!

2
q0

2

4g1
tan@g1~x02x1!#,

I 25S 12
q0

2

4 cosh2@g2~x22x0!#
D ~x22x0!

2
q0

2

4g2
tanh@g2~x22x0!# ~B3!

and therefore the infinitesimal variation of the magnetizat
turns out to be

dM5Ms2Mz5
M1~x02x1!1M2~x22x0!

~x22x1!
2Mz

5
q0

2

4~x22x1! H M1~x02x1!

cos2@g1~x02x1!#
1

M1

g1
tan@g1~x02x1!#J

1
q0

2

4~x22x1! H M2~x22x0!

cosh2@g2~x22x0!#

1
M2

g2
tanh@g2~x22x0!#J , ~B4!

whereMs is the saturation magnetization of the whole sy
tem. The reduced infinitesimal variation ofM is then

dm5
dM

Ms
5

dM ~x22x1!

M1~x02x1!1M2~x22x0!

5q0
2 1

4~M1t11M2t2!
3H M1t1

cos2 @g1t1#
1

M1

g1
tan@g1t1#

1
M2t2

cosh2@g2t2#
1

M2

g2
tanh@g2t2#J 5q0

2G. ~B5!
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APPENDIX C: GENERAL PROCEDURE FOR TRACING
THE DEMAGNETIZATION CURVES

The problem of tracing the demagnetization curve impl
the integration of Eq.~3! with the boundary conditions
(dq/dx)50 andq5q i for x5xi ( i 51,2) andA1(dq/dx)
5A2(dq/dx) and q5q0 for x5x0 . This calculation in-
volves elliptical integrals and is performed by numeric
methods.

For a specific multilayer system, given a particular fieldH
we have to find the anglesq0 , q1 , q2 by solving the system
given by the three equations

F1~q0 ,q1 ,q2 ,H !

5E
q0

q1 dq

Aa1~cosq2cosq1!1b1~sen2 q2sen2 q1!
2t1

50,

F2~q0 ,q1 ,q2 ,H !

5E
q2

q0 dq

Aa2~cosq2cosq2!1b2~sen2 q2sen2 q2!

2t250, ~C1!

F3~q0 ,q1 ,q2 ,H !

5a1~cosq02cosq1!1b1~sen2 q02sen2 q1!

2S A2

A1
D 2

@a2~cosq02cosq2!

1b2~sen2 q02sen2 q2!#50.

Using vector symbols we writeF(Q)50, with F
5(F1 ,F2 ,F3) and Q5(q0 ,q1 ,q2). We use the Newton-
Raphson method, as described in the Numerical Recipes~see
Ref. 48, p. 379!, to find this solution. We start from a tenta
tive valueQstart. In the neighborhood of any nonsingularQ
the functionF(Q) can be expanded in Taylor series

F~Q1dQ!5F~Q!1J•dQ1O~dQ2!, ~C2!

where J5](F1 ,F2 ,F3)/](q0 ,q1 ,q2) is the Jacobian ma
trix of the system. By neglecting terms of orderdQ2 and
higher and by settingF(Q1dQ)50 we obtain a set of linea
equations for the correctionsdQ that move each componen
function of the vectorF closer to zero simultaneously
namely, dQ52J21

•F. The corrections are then added
the starting valueQnew5Qstart1dQ and the procedure is it
erated untiluFu is as small as we want, thus obtaining t
desired value ofQ. With this value we can compute th
magnetizationMz from Eq. ~B1!, once we have obtaine
q(x) after integration of Eq.~3!. We generally start from a
17440
s

l

value of the fieldH0 very close to the nucleation fieldHc1
and from a tentative value of the anglesQtent given by the
nucleation field equations@see Appendixes A, B and Eq.~7!#:

q05Axc~H02Hc1!

GMs
,

q15
q0

cos~ t1g1!
, ~C3!

q25
q0

cosh~ t2g2!

then we compute the right value of the anglesQ0 ~and the
magnetizationM0) with the above-described procedur
Then we increase the field toH1 , take Q0 as the starting
value and computeQ1 ~andM1), and so on. Each step we s
Hn5Hn211step and computeQn usingQn21 as the starting
value. This way we are able to findM for each value ofH, up
to the reversal fieldHc2 . In correspondence of the secon
critical field Hc2 an irreversible jump of the magnetizatio
takes place. This means that a very small increase of the
H leads to very large changes in the values of the anglesq0 ,
q1 , q2 , that is, the first derivativesdq0 /dH, dq1 /dH,
dq2 /dH diverge. The derivatives are given by the vect
equation

S ]q0

]H

]q1

]H

]q2

]H

D 52S ]~F1 ,F2 ,F3!

]~q0 ,q1 ,q2! D
21 ]~F1 ,F2 ,F3!

]H

52J21S ]F1

]H

]F2

]H

]F3

]H

D , ~C4!

where as usualJ represents the Jacobian matrix of the sy
tem. Thus in order to getdq i /dH→`, we must seek the
conditionJ50. The step of the fieldH has to be repeatedly
decreased while approachingHc2 ~since the demagnetizatio
curve becomes very steep! and we stop the procedure whe
the step has become small enough not to affect the valu
the field within the set precision of 1027– 1028. By this
point J has usually decreased by 3 or 4 orders of magnitu
and we consider this to be a convergence to zero.
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