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Polaron formation for nonlocal electron-phonon coupling: A variational wave-function study
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We introduce a variational wave function to study the polaron formation when the electronic transfer integral
depends on the relative displacement between nearest-neighbor sites giving rise to a nonlocal electron-phonon
coupling with optical phonon modes. We characterize the polaron crossover by analyzing ground-state prop-
erties such as the energy, the electron-lattice correlation function, the average phonon occupation, and the
quasiparticle spectral weight. Variational results are found in good agreement with numerical exact diagonal-
ization of small clusters,and follow the correct perturbative result at weak coupling. We determine the po-
laronic phase diagram and we find that the tendency towards strong localization is hindered from the patho-
logical sign change of the effective next-nearest-neighbor hopping.
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I. INTRODUCTION

Significant electron-phonon~el-ph! interactions have bee
experimentally detected in many materials of wide intere
such as manganites,1 fullerenes,2 carbon nanotubes,3,4 and
cuprates.5 In many of these cases, the el-ph interaction giv
rise to polaronic features. A polaronic state results in f
when the electrons are strongly coupled to lattice distorti
therefore increasing their effective mass and leading t
state with low mobility. Increasing the el-ph coupling, th
spatial extension of the lattice deformation decreases6 and
the polaron can vary its size fromlarge to small. The single
polaron problem of one electron interacting with the latt
degrees of freedom has been studied in detail, and allowe
to understand in the detail the physics leading to the form
tion of polaronic states. In particular, it has been shown t
the self-trapping process, which lead to the formation of
larons, is not a phase transition, but just a continuous cr
over with no broken symmetry.7 In the case of the Holstein
model,8 where quantum vibrations interactlocally with the
electrons, the crossover from large to small polaron has b
extensively studied by several numerical techniques9–15 and
variational approaches.16–18In particular, all the ground-stat
properties of the Holstein model can be described with g
accuracy by a variational approach18 based on a linear supe
position of Bloch states that describe weak and strong c
pling polaron wave functions.

The case of nonlocal interactions, that in general are a
present in real materials, is much less understood. The
pling with acoustical phonons has been studied in orde
explain the anomalous transport properties of nonlocal e
tations, such as solitons and polarons, in various o
dimensional systems.19–22In particular, the tight-binding Su
Schrieffer-Heeger~SSH! model19 was introduced to explain
the transport properties of quasi-one-dimensional polym
as polyacetylene where the CH monomers form chains
alternating double and single bonds. In this case the loca
tion is due to a large shrink of two particular bonds a
corresponding large hopping integral between the sites. A
result, the hopping between the two occupied sites and
0163-1829/2004/69~17!/174301~8!/$22.50 69 1743
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surrounding ones is reduced resulting in a tendency towa
localization.

Our purpose here is to examine the single polaron form
tion in a model where both~Holstein! local and~SSH! non-
local el-ph interactions are present. Due to the complexity
the model, we start the analysis using a perturbative
proach that, although it can not capture the full mu
tiphononic nature of the polaron, it has proved a remarka
useful tool in understanding the el-ph physics.12,22In particu-
lar, we characterize the ground-state properties of the sys
evaluating the energy, the electron-lattice correlation fu
tion and the quasiparticle spectral weight, in order to prov
signatures of the polaron formation. In the limit when loc
el-ph interactions are much stronger or weaker than nonlo
el-ph interactions our model reduces to the standard Hols
model and to the SSH model with a dispersionless pho
spectrum, respectively. Then we start an accurate analys
the nonlocal limit case, this case being not yet fully exa
ined. Recently, the fully adiabatic regime of this model h
been used to explain changes in carbon-nanotube length
function of charge injection.4 Furthermore the nonlocal cas
has been previously studied by one of us using exact dia
nalization of small clusters up to four lattice sites, where
anomalous optical absorption has been identified.12 In par-
ticular, in Ref. 12 it is shown that the strong-coupling so
tion is characterized by an unphysical sign change of
effective next-nearest-neighbor hopping which is miss
when acoustical phonons are considered.21

In this work we improve the previous numerical analys
considering a six-site lattice and introduce a variational wa
function to investigate the thermodynamic limit of the sy
tem. The variational approach is based on a linear supe
sition of Bloch states that provide an excellent description
the lattice deformations on left and right bond of the polaro
respectively. The wave function closely resembles a va
tional state previously proposed for the study of the Holst
model18 and for the SSH case it allows to describe polar
features in good agreement with exact numerical diago
ization results. The variational approach recovers the pa
logical behavior of the effective next-nearest-neighbor h
©2004 The American Physical Society01-1
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ping pointing out that the nonphysical region of paramet
always prevents a strongly localized solution. We also
plicitly show that, when the phonon frequency is not rea
small, the considered nonlocal SSH interaction supplie
tendency to localize for the single carrier which can be m
effective than the Holstein localization.

The scheme of the paper is the following. In Sec. II w
present the model and set down the notation. In Sec. III
discuss perturbative calculations showing the role of S
el-ph coupling with respect to the Holstein contribution. Se
tion IV is devoted to the presentation of the variation
method in the limit of nonlocal el-ph interactions and
comparison with the exact diagonalization results. Sectio
reports our concluding remarks.

II. THE MODEL

In extremely general terms, the interaction between e
tron and harmonic lattice deformations is described by
Hamiltonian

H5 (
i , j ,s

ci ,s
† t i , j~$xk%!cj ,s1(

i

pi
2

2M
1(

i , j

xiKi , j xj

2

1(
i ,s

ei~$xk%!ci ,s
† ci ,s , ~1!

whereci ,s
† (ci ,s) is the fermion creation~destruction! opera-

tor, s is the spin index,t i , j ($xk%) is the electronic transfe
integral for fixed lattice deformations$xk%, M is the ionic
mass,Ki , j is the spring constant matrix, andei($xk%) is the
local energy of the electron. For small deviations from t
equilibrium positions of the lattice we can approxima
t i , j ($xk%) and ei($xk%) to be linear functions of the lattice
displacements$xk% obtaining a general model with el-ph in
teractions. In particular, limiting the hopping to neare
neighbor sites of a linear chain, we make the assumptio

tn11,n~$xk%!52t1a~xn112xn! ~2!

typically employed for the derivation of the el-ph SSH inte
action term, and

ei~$xk%!5a1xi ~3!

generally used in order to deduce the local el-ph Holst
interaction. If spinless electrons and dispersionless Eins
phonons are considered, the model becomes

H52t(
i

~ci
†ci 111ci 11

† ci !1v0(
i

ai
†ai1Hint , ~4!

whereHint is

Hint5gv0(
i

~ci
†ci 111ci 11

† ci !~ai 11
† 1ai 112ai

†2ai !

1g1v0(
i

ci
†ci~ai

†1ai !, ~5!
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with ai
† (ai) the phonon creation~destruction! operator and

v0 the quantum of vibrational energy per site. The quan
g5a/A2Mv0

3 is the SSH coupling that we mainly discuss
this work, while g15a1 /A2Mv0

3 is the Holstein local
electron-phonon coupling. We study the coupling of a sin
electron to lattice deformations using units such that the
tice spacinga51 and\51.

III. PERTURBATION THEORY

Weak-coupling perturbation theory in the electron-phon
coupling has proved a remarkably useful tool in understa
ing the el-ph physics. Besides the obvious ability to descr
the weakly interacting regime, the perturbative approach
in fact provided some guidelines to understand the con
tions for polaron formation in the Holstein model. More e
plicitly, the polaron crossover occurs around the coupl
value for which the perturbative approach breaks down.12

Here we focus on the case of one electron in a o
dimensional chain. If the el-ph terms are smaller than b
the hopping term and the bare phonon term (g,g1! t̃ ,1 and
t̃ 5t/v0), they can be treated as perturbations of the unp
turbed HamiltonianH05Hkin1Hph .

The second-order correction to the energy of the grou
state is given by

DE~0!52g2S 112 t̃ 2A114 t̃

t̃ 2 D 2g1
2 1

A114 t̃
, ~6!

while the perturbative correction to the free band«k5
22t cos(k) is reported in Appendix A.

We note that for fixed values of the coupling constantg
and g1 the two contributions~SSH-like and Holstein! have
different behaviors as functions of the inverse adiabatic ra
t̃ . In particular, as shown in Fig. 1, the Holstein contributi
to the ground-state energy is always lower~for g5g1) than
the SSH one whent̃ , t̃ w with t̃ w5413A2. In other words,
when the phonon frequency are not really small, the S
el-ph coupling is more effective than the Holstein one. T

FIG. 1. Second-order correction to the gound-state energy,

~6!, as a function of the adiabatic inverse ratiot̃ , for g5g151
~solid line!. The dashed line is the SSH-like contribution (g51 and
g150), the dot-dashed line is the Holstein contribution (g50 and
g151).
1-2
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reduced effect of the Holstein el-ph coupling whent̃ is small
~antiadiabatic regime! pushes the polaron crossover to larg
values of the couplingl5g2v0/2t as the phonon frequenc
is increased. Actually, whilel.1 is the condition for the
polaron crossover in the adiabatic regimet̃ @1, in the anti-
adibatic regimet̃ !1, it has been shown that the crossov
occurs wheng2.1, i.e., for l@1.12,14,15 Recently it has
been shown that this important role of the degree of adia
ticity is not limited to the single polaron problem, but it als
extends to finite densities.23

Since polaron formation is not a phase transition and
curs without symmetry breaking, different criteria can be
tablished to define the crossover values of the coupling c
stants which mark the polaronic regime. In the following w
compute some physical quantities which have been often
troduced to characterize the polaron crossover.

The average phonon occupation numberNph

51/N^( iai
†ai& is given by

Nph5
2l

t̃
F ~112 t̃ !

A114 t̃
21G12l1 t̃

~112 t̃ !

~114 t̃ !3/2
, ~7!

wherel5g2v0/2t and l15g1
2v0/2t. From Eq.~7! it turns

out that the phonon number, as the ground-state energ
more affected by the SSH coupling whenv0 exceeds a given
value. In particular, fort̃<2 ~i.e., v0 /t>0.5) the SSH con-
tribution is always higher than the Holstein one.

Other quantities of great interest to characterize the
laron formation are the electron-lattice correlation functio
In particular, we consider the correlation functionx i ,d

5^ci
†ci(ai 1d

† 1ai 1d)& between the electronic density on
site i and the lattice displacement on sitei 1d, which mea-
sures the entanglement of lattice and electronic degree
freedom typical of the polaronic state. After a Fourier tran
formation in the momentum space, atk50 one has

xk50,d5052
2g1

A114 t̃
,

xk50,d5152
g

t̃ 2
~112 t̃ 2A114 t̃ !2

g1

t̃
S 2 t̃ 11

A114 t̃
21D ,

xk50,d52522gF1

t̃
1

114 t̃

2 t̃ 3 S 12
112 t̃

A114 t̃
D G

22g1F 1

A114 t̃
1

112 t̃

2 t̃ 2 S 12
112 t̃

A114 t̃
D G .

~8!

In Fig. 2 we plot the correlation function at nearest-neighb
~left! and next-nearest-neighbor~right! sites as functions o
the inverse adiabatic ratiot̃ , for fixed values of the couplings
g5g151. As expected, the value of the correlation functi
goes to zero for large values oft̃ , but the behavior of the
17430
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SSH-like contribution~dashed lines! is qualitatively different
from that of the Holstein ones~dot-dashed lines!.

The last quantity we consider is the quasiparticle spec
weight Z(k)5@12]S(k,v)/]vuv5«(k)#

21, which measures
the renormalization of the electron Green’s function due
the el-ph interaction. The second-order perturbative s
energyS(k,v) is given in Appendix A. Even if the polaronic
regime cannot be attained within lowest-order perturbat
approach, indications on the beginning of the polaro
crossover can be extracted from the spectral weight exp
sion. In particular, the polaron crossover is expected to
associated with a sharp reduction of this quantity as a fu
tion of the couplings. The expression of the inverse spec
weight atk50 is given by

Z~0!21512
2l

t̃
F12

~112 t̃ !

A114 t̃
G12l1 t̃

~112 t̃ !

~114 t̃ !3/2
, ~9!

while the full momentum dependence ofZ(k) is reported in
Appendix A. As expected the spectral weightZ(0) is a
monotonically increasing function oft̃ , for a fixed value of
the couplings. It is interesting to note that the reduction
Z(0) due to the SSH-like contribution is more relevant of t
Holstein ones fort̃ ,2, while in the adiabatic limit, i.e., for
large value oft̃ , it is very small and slow.

FIG. 2. Left: Correlation functions at nearest-neighbor sites~on
the left! and next-nearest-neighbor sites~on the right! at k50 as

functions of the inverse adiabatic ratiot̃ , for g5g151 ~solid line!.
The dashed lines show the SSH-like contribution (g51 and g1

50), the dot-dashed lines the Holstein ones (g50 andg151).
1-3
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Strictly speaking, perturbative calculations only correc
characterize the small coupling regime. In order to provid
better insight on the problem of the polaron formation in t
systems with nonlocal interactions, in the following we foc
on the SSH contribution and substantiate our results by a
lytic variational calculations and numerical exact data.

IV. VARIATIONAL APPROACH VS EXACT
DIAGONALIZATION

In this section we extend our analysis of the nonlocal S
model to the whole range of el-ph couplings using two st
dard and well grounded techniques, a variational appro
and exact diagonalization of small clusters. First we int
duce the variational wave function. We consider translati
invariant Bloch states obtained by superposition of localiz
states centered on different lattice sites.24 These wave func-
tions have been introduced in order to study the pola
formation within the Holstein model where they are able
fully capture the features of the Holstein polaron.16,18 In this
work we extend this kind of wave functions to the SS
interaction model assuming

uck
( i )&5

1

AN
(

n
eik•nuck

( i )~n!&, ~10!

whereuck
( i )(n)& is defined as

uck
( i )~n!&5e[Uk

( i )(n)1Uk
( i )(n21)1Uk

( i )(n11)]u0&ph

3(
m

fk
( i )~m!eik•mcn1m

† u0&el , ~11!

with the quantityUk
( i )( j ) given by

Uk
( i )~ j !5

g

AN
(

q
@ f k, j

( i ) ~q!aqeiq•Rj2h.c.#. ~12!

The phonon distribution functionf k, j
( i ) (q) is chosen as

f k, j
( i ) ~q!5

ak, j
( i )

112 t̃bk, j
( i ) @cos~k!2cos~k1q!#

, ~13!

with ak, j
( i ) andbk, j

( i ) variational parameters. In Eq.~11!, u0&ph

and u0&el denote the phonon and electron vacuum state,
spectively, and the variational functionsfk

( i )(m) are assumed
to be

fk
( i )~m!5 (

j 525

5

gk
( i )~ j !dm, j , ~14!

where gk
( i )( j ) are variational parameters that take into a

count the broadening of the electron wave function up
fifth neighbors. It is worth to note that traditional variation
approaches to the Holstein polaron problem uses the lo
ized state~11! where only the on-site operatorUk

( i )(n) is
applied. Thus we introduce in the expression of the t
wave function the nearest-neighbor displacement opera
17430
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Uk
( i )(n11) andUk

( i )(n21), in order to take into account th
dependence of the hopping integral on the relative dista
between two adjacent ions.

Reflecting the asymmetry of the SSH coupling~shrinking
of the bond on which the electron is localized and stretch
of the neighboring bonds!, we also define two wave func
tions that provide a very good description of the lattice d
formations on left and right bonds of the polaron. Natura
the left and right directions are relative to the site where
presence of the electron is more probable. Thus in Eq.~11!
the apexi 5L,R indicates theLe f t ~L! and Right ~R! po-
laron wave function, respectively. The wave functionsL and
R are related as follows

f k,n
(R)~q!52 f k,n

(L)~q!,0,

f k,n21
(R) ~q!52 f k,n21

(L) ~q!.0,

f k,n11
(R) ~q!52 f k,n11

(L) ~q!.0,

fk
(R)~m!5fk

(L)~2m!. ~15!

All the variational parameters are determined by minim
ing the expectation value of the Hamiltonian~4! with g1
50 on the states~11!. Even though the wave functionsL and
R describe correctly the lattice deformations of the left a
right side of the polaron, respectively, the mean values of
Hamiltonian on these states are equal. So the relations~15!
can be also viewed as those that leave unchanged the en
functional determined by one wave function.

These two wave functions can be improved by increas
the extension of the phonon contributions in Eq.~11! and of
the electron terms in Eq.~14!. Furthermore, they are no
orthogonal and the off-diagonal matrix elements of t
Hamiltonian between these two states are not zero. This
lows to determine the ground-state energy by considering
trial state the linear superposition18 of the wave functionsR
andL

uck&5
AkuFk

(R)&1BkuFk
(L)&

AAk
21Bk

212AkBkSk

, ~16!

whereuFk
(L)& and uFk

(R)& are the normalized wave function
L andR weighted by the coefficientsAk andBk and

Sk5^Fk
(L)uFk

(R)& ~17!

is the overlap factor. The wave function~16! correctly de-
scribes the properties of the lattice deformations on both
sides of the polaron and we will find that it is in very goo
agreement with the results derived by the exact diagonal
tions on a chain of six sites. Furthermore the variational
proach involves a number of variational parameters that d
not depend on the length of chain, so it allows to study
thermodynamic limit of the system.

The minimization procedure is performed in two step
First the energies of the left and right wave functions a
separately minimized, then these wave functions are use
the minimization procedure of the quantityEk
1-4
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5^ckuHuck&/^ckuck& with respect toAk andBk defined in Eq.
~16!.18 Exploiting the equality

^ck
(L)uHuck

(L)&5^ck
(R)uHuck

(R)&5«k , ~18!

we obtain

Ek5
«k2SkEkc2uEkc2Sk«ku

12Sk
2

, ~19!

where Ekc5^Fk
(L)uHuFk

(R)& is the off-diagonal matrix ele-
ment, and uAku5uBku. The matrix elements between th
statesck

(R) and ck
(L) contained in Eq.~19! are reported in

Appendix B.
The total energy functional~19! is minimized with respect

to the variational parameters and the optimal ground-s
energy is plotted in Fig. 3 for a six-site lattice and two d
ferent values of the inverse adiabatic parametert̃ . We also
study the thermodynamic limit and find energy curves v
close to those of the finite system. In order to test the valid
of our variational approach~VA !, we perform exact numeri
cal calculations on small clusters by means of the Lanc
algorithm. We improve the previous exact diagonalizat
~ED! analysis of the model, investigating small clusters up
six sites.12 As shown in Fig. 3, each variational and exa
numerical curve exhibits a kink with increasing the el-
coupling. We have checked that at these couplings the e

FIG. 3. Ground-state energyE(0) as a function of the SSH
el-ph couplingg for two different values of the inverse adiabat

ratio t̃ 52.5 ~left! and t̃ 51 ~right!. Solid and dotted lines are ob
tained from the variational approach and the Lanczos data f
six-site lattice, respectively; perturbative curves~dot-dashed lines!
are plotted for comparison. Symbols mark the kink values of
energy.
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tive next-nearest-neighbor hopping changes sign openin
unphysical region of the parameters. The agreement betw
numerical data and variational approach is very good upg
values close to the unphysical transition.

In order to characterize the polaron formation we a
analyze the electron-lattice correlation functionx i ,d defined
in Sec. III. In particular, in Fig. 4 we show the behavior
x i ,d as a function of the SSH coupling ford50,1,2 andt̃
52.5. As expected, variational results and exact numer
data always recover the perturbative values in the limit
small el-ph coupling. Increasingg the monotonic behavior o
the correlation function exhibits a kink, as the ground-st
energy. In particular, the correlation function at next-neare
neighbor (d52) changes sign as the effective hopping, co
firming the pathological behavior. At couplings where t
ground-state energy and the correlation function show
kink, also the average phonon number is characterized b
anomalous behavior as shown in the bottom right pane
Fig. 4.

In order to extract information on the values ofg at which
polaron crossover begins, before the opening of the unph
cal region, we also investigate the behavior of the qua
partcle spectral weightZ(0). We find that increasing the
el-ph coupling for fixed values oft̃ , the spectral weight start
to drop but it never reaches a really small value before
unphysical sign change of the hopping occurs. Neverthe
we observe distinct signatures of the tendency towards lo
ization, as shown in Fig. 5, whereZ(0) is plotted as a func-
tion of g for the fixed valuet̃ 52.5.

We conclude our analysis collecting the obtained data
the phase diagram of Fig. 6. It is calculated from the posit
of the kink in the ground-state energy obtained by means
the variational approach~diamonds! and the exact diagonal
ization ~triangles!. The agreement between the two metho
becomes better moving towards the adiabatic limit. In an
ogy with the phase diagram obtained for the Holste

a

e

FIG. 4. Correlation functionsxk50,d with d50 ~top left!, d51
~top right! andd52 ~bottom left! as functions of the SSH coupling

g for t̃ 52.5. Bottom right: Phonon number vsg for the same value

of t̃ . Solid lines are obtained from the variational approach in
thermodynamical limit; dotted lines show Lanczos data; pertur
tive curves from Eqs.~8! and~7! with g150 ~dot-dashed lines! are
plotted for comparison.
1-5
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polaron,18 we also mark a crossover region defined as
range of parameters for whichZ(0) is less than 0.9. As
shown in Fig. 6, we find that the considered SSH model d
not present any marked mixing of electronic and phono
degrees of freedom, being the strongly coupled state
vented from the pathology of the model. As far as the fu
adiabatic limitv050 is concerned, we verify that the cros
over line joins onto the line for the transition to the unphy
cal region at the critical valuel50.25, confirming the dis-
cussion in Ref. 12. We finally notice that, as discussed
Ref. 12, both the crossover region boundary, and the in
bility line obtained by exact diagonalization are only weak
dependent on the adiabatic ratio, and thatl is the relevant
electron-phonon coupling regardless the value oft̃ . This is a
peculiarity of the SSH coupling with respect to the Holste
one, where the polaron crossover moves to large valuesl
as the phonon frequency increases.12,14,15,23

V. CONCLUSIONS

In this work we discussed the features of one elect
nonlocally interacting with optical phonons in a discre
chain. We introduced a variational wave function to loca

FIG. 5. Spectral weightZ(0) as a function of the SSH el-p

coupling g for t̃ 52.5. The solid line is obtained from the varia
tional approach in the thermodynamical limit; the dotted line sho
Lanczos data; the perturbative curve from Eq.~9! with g150 ~dot-
dashed line! is plotted for comparison.

FIG. 6. Phase diagram for one electron in a six-site lattice.
angles and diamonds correspond, respectively, to the coup
where the exact numerical ground-state energy and the variat
result have a kink. The dashed line indicates the boundary of
crossover region, where the spectral weightZ(0) is less than 0.9.
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the crossover region for the transition between weak
strong localized polaron solutions. In particular, we fou
that the pathological sign change of the effective ne
nearest-neighbor hopping always precedes a stable stro
localized solution. Such an unphysical region of the mo
parameters does not occur in the case of acoustical pho
being the deformation linked to the particle extension alo
the entire chain.21 However we have also shown that, fo
finite values of the adiabaticity parameter, when the phon
frequency is not really small, the non local~SSH! el-ph in-
teraction is more effective than the local~Holstein! one in
reducing the mobility of the electron. Then our variation
calculations are an interesting starting point to examine
complex problem of the polaron formation in a model whe
both local and nonlocal el-ph interactions are present. In p
ticular, we emphasize that the proposed variational w
function for the SSH limit can be slightly modified to b
suitable for the treatment of the complex case where b
interactions are present. Detailed future investigations in
direction are required. Finally we stress that the validity
our variational results is supported by an accurate analys
exact diagonalization data on small clusters. The agreem
between VA and ED data is good up to coupling values cl
to the unphysical region.
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APPENDIX A

In the limit of small el-ph couplings, the perturbativ
second-order correctionDE(k) to the tight-binding free band
energy is

DE~k!524g2v0F 112 t̃cosk

4 t̃ 2

1
sin k2

A114 t̃cosk24 t̃ 2~12cos2k!

2
A114 t̃cosk24 t̃ 2~12cos2k!

4 t̃ 2 G
2g1

2v0

1

A114 t̃cosk24 t̃ 2~12cos2k!
. ~A1!

Moreover, using the bare phonon and electronic Gre
propagators, the perturbative self-energy reads

s

i-
gs
al
e
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S~k,v!5
4g2v0

N (
q

@sin~k1q!2sink#2

v2v02«~k1q!1 id

1
g1

2v0

N (
q

1

v2v02«~k1q!1 id
. ~A2!

From Eq.~A2! we obtain the momentum dependent spec
weight

Z~k!21512
2l

t̃
F 12

4 t̃ 2sin2k~112 t̃cosk!

@114 t̃ 24 t̃ 2~12cos2k!#3/2

2
~112 t̃cosk!

A114 t̃ 24 t̃ 2~12cos2k!
G

12l1 t̃
~112 t̃cosk!

@114 t̃ 24 t̃ 2~12cos2k!#3/2
. ~A3!

APPENDIX B:

In this appendix we report the matrix elements betwe
the statesuck

(R)& anduck
(L)&. These quantities are involved i

the calculation of the ground-state energy within the va
tional approach. We find

^ck
(L)uck

(R)&5 (
m1 ,m2

fk*
(R)~2m1!fk

(R)~m2!Zk
(L2R)~m12m2!,

~B1!

where the phonon matrix elementZk
(L2R)( i 2 j ) is defined as

Zk
(L2R)~ i 2 j !5ph^0ue2[Uk

(L)( j )1Uk
(L)( j 21)1Uk

(L)( j 11)]

3e2[Uk
(R)( i )1Uk

(R)( i 21)1Uk
(R)( i 11)]u0&ph .

~B2!
ar
re

.

ev

e
.
.
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Then we have

^ck
(L)uHkinuck

(R)&52t (
m1 ,m2

fk*
(L)~m1!fk

(R)~m2!

3@eikZk
(L2R)~m12m211!

3e2 ikZk
(L2R)~m12m221!#,

^ck
(L)uHphuck

(R)&52v0(
q

(
m1 ,m2

fk*
(L)~m1!fk

(R)~m2!

3@wq* ~k!#2Zk
(L2R)~m12m2!eiq(m12m2),

~B3!

and

^ck
(L)uHintuck

(R)&5A11A2 , ~B4!

with A1 andA2 given by

A15
gv0

AN
(

q,m1 ,m2

fk*
(L)~m1!fk

(R)~m2!wq* ~k!eikZk
(L2R)~m1

2m211!@eiq(m221)~12eiq!1e2 iqm1~e2 iq21!#

A25
gv0

AN
(

q,m1 ,m2

fk*
(L)~m1!fk

(R)~m2!wq* ~k!e2 ik

3Zk
(L2R)~m12m221!@eiqm2~12eiq!

1e2 iq(m121)~e2 iq21!#. ~B5!

The quantity«k5^ck
(L)uHuck

(L)&5^ck
(R)uHuck

(R)& is easily
derived using the matrix elements given above.
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