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Polaron formation for nonlocal electron-phonon coupling: A variational wave-function study
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We introduce a variational wave function to study the polaron formation when the electronic transfer integral
depends on the relative displacement between nearest-neighbor sites giving rise to a nonlocal electron-phonon
coupling with optical phonon modes. We characterize the polaron crossover by analyzing ground-state prop-
erties such as the energy, the electron-lattice correlation function, the average phonon occupation, and the
quasiparticle spectral weight. Variational results are found in good agreement with numerical exact diagonal-
ization of small clusters,and follow the correct perturbative result at weak coupling. We determine the po-
laronic phase diagram and we find that the tendency towards strong localization is hindered from the patho-
logical sign change of the effective next-nearest-neighbor hopping.
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[. INTRODUCTION surrounding ones is reduced resulting in a tendency towards
localization.

Significant electron-phonofel-ph) interactions have been Our purpose here is to examine the single polaron forma-
experimentally detected in many materials of wide interesttion in a model where botfHolstein local and(SSH non-
such as manganitésfullerenes’ carbon nanotubel! and local el-ph interactions are present. Due to the complexity of
cuprates. In many of these cases, the el-ph interaction giveshe model, we start the analysis using a perturbative ap-
rise to polaronic features. A polaronic state results in facproach that, although it can not capture the full mul-
when the electrons are strongly coupled to lattice distortiontiphononic nature of the polaron, it has proved a remarkably
therefore increasing their effective mass and leading to aseful tool in understanding the el-ph physié$?In particu-
state with low mobility. Increasing the el-ph coupling, the lar, we characterize the ground-state properties of the system
spatial extension of the lattice deformation decrehsesl  evaluating the energy, the electron-lattice correlation func-
the polaron can vary its size frotarge to small The single tion and the quasiparticle spectral weight, in order to provide
polaron problem of one electron interacting with the latticesignatures of the polaron formation. In the limit when local
degrees of freedom has been studied in detail, and allowed @-ph interactions are much stronger or weaker than nonlocal
to understand in the detail the physics leading to the formael-ph interactions our model reduces to the standard Holstein
tion of polaronic states. In particular, it has been shown thamodel and to the SSH model with a dispersionless phonon
the self-trapping process, which lead to the formation of pospectrum, respectively. Then we start an accurate analysis of
larons, is not a phase transition, but just a continuous crosshe nonlocal limit case, this case being not yet fully exam-
over with no broken symmetryln the case of the Holstein ined. Recently, the fully adiabatic regime of this model has
model® where quantum vibrations interaltically with the  been used to explain changes in carbon-nanotube length as a
electrons, the crossover from large to small polaron has beemnction of charge injectiof.Furthermore the nonlocal case
extensively studied by several numerical techniu®sand  has been previously studied by one of us using exact diago-
variational approache$-*In particular, all the ground-state nalization of small clusters up to four lattice sites, where an
properties of the Holstein model can be described with greaanomalous optical absorption has been identiffetth par-
accuracy by a variational approatibased on a linear super- ticular, in Ref. 12 it is shown that the strong-coupling solu-
position of Bloch states that describe weak and strong couion is characterized by an unphysical sign change of the
pling polaron wave functions. effective next-nearest-neighbor hopping which is missing

The case of nonlocal interactions, that in general are alswhen acoustical phonons are considered.
present in real materials, is much less understood. The cou- In this work we improve the previous numerical analysis
pling with acoustical phonons has been studied in order t@onsidering a six-site lattice and introduce a variational wave
explain the anomalous transport properties of nonlocal excifunction to investigate the thermodynamic limit of the sys-
tations, such as solitons and polarons, in various onetem. The variational approach is based on a linear superpo-
dimensional system'S-2?In particular, the tight-binding Su- sition of Bloch states that provide an excellent description of
Schrieffer-HeegefSSH modef® was introduced to explain the lattice deformations on left and right bond of the polaron,
the transport properties of quasi-one-dimensional polymersespectively. The wave function closely resembles a varia-
as polyacetylene where the CH monomers form chains ofional state previously proposed for the study of the Holstein
alternating double and single bonds. In this case the localizanodef® and for the SSH case it allows to describe polaron
tion is due to a large shrink of two particular bonds andfeatures in good agreement with exact numerical diagonal-
corresponding large hopping integral between the sites. As ization results. The variational approach recovers the patho-
result, the hopping between the two occupied sites and thiegical behavior of the effective next-nearest-neighbor hop-
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ping pointing out that the nonphysical region of parameters
always prevents a strongly localized solution. We also ex-
plicitly show that, when the phonon frequency is not really

small, the considered nonlocal SSH interaction supplies a
tendency to localize for the single carrier which can be more
effective than the Holstein localization.

The scheme of the paper is the following. In Sec. Il we
present the model and set down the notation. In Sec. Ill we
discuss perturbative calculations showing the role of SSH
el-ph coupling with respect to the Holstein contribution. Sec-

tion IV is devoted to the presentation of the variational 0 5 10 15 20

method in the limit of nonlocal el-ph interactions and its t/o,

comparison with the exact diagonalization results. Section V

reports our concluding remarks. FIG. 1. Second-order correction to the gound-state energy, Eq.

(6), as a function of the adiabatic inverse ratip for g=g;=1

(solid line). The dashed line is the SSH-like contributian=1 and

g,=0), the dot-dashed line is the Holstein contributigr=0 and
In extremely general terms, the interaction between elecd1=1).

tron and harmonic lattice deformations is described by the

Il. THE MODEL

Hamiltonian with a;r (a;) the phonon creatiofdestruction operator and
wq the quantum of vibrational energy per site. The quantity
p; XiKi iX; g=al\2M w03 is the SSH coupling that we mainly discuss in
_ T A%
H—HZU Ci,ati,j({xk})cj,(ﬂrZ M +.2, > this work, while g;=a,/\2Mw3 is the Holstein local

electron-phonon coupling. We study the coupling of a single
electron to lattice deformations using units such that the lat-

, L . :
+§, &i({XidH)Ci.oCior @D tice spacinga=1 and%=1.
whereciT’U (ci,») is the fermion creatioidestruction opera- IIl. PERTURBATION THEORY
tor, o is the spin indexf; j({x4}) is the electronic transfer ) ) )
integral for fixed lattice deformation§x,}, M is the ionic Weak-coupling perturbation theory in the electron-phonon

mass K ; is the spring constant matrix, ar&{({x,}) is the f:oupling has provgd a remarkably useful tooI_ip understand—
local energy of the electron. For small deviations from theind the el-ph physics. Besides the obvious ability to describe
equilibrium positions of the lattice we can approximate the weakly interacting regime, the perturbative approach has
t; j({x) and ei({xJ) to be linear functions of the lattice N fact provided some guidelines to understand the condi-
displacementgx,} obtaining a general model with el-ph in- ONS for polaron formation in the Holstein model. More ex-

teractions. In particular, limiting the hopping to nearest-Plicitly, the polaron crossover occurs around the coupling

neighbor sites of a linear chain, we make the assumption Value for which the perturbative approach breaks déwn.
Here we focus on the case of one electron in a one-

the1a({Xi) = —t+ a(Xn 1= Xn) ()  dimensional chain. If the el-ph terms are smaller than both
_ ' o _ the hopping term and the bare phonon temygg<t,1 and
typically employed for the derivation of the el-ph SSH mter-;zt/wo), they can be treated as perturbations of the unper-

action term, and turbed HamiltoniarH = Hyin+H .-
The second-order correction to the energy of the ground
&i({xd) = a1X; 3 state is given by

generally used in order to deduce the local el-ph Holstein
interaction. If spinless electrons and dispersionless Einstein
phonons are considered, the model becomes

1+2t—1+4t

'fZ

-97 ! (6)
Y14t

while the perturbative correction to the free bangd=

AE(0)=—¢g?

_ T T T
H= _tZ (i Ci+l+ci+1ci)+“’02i ajaitHin, (4 _ptcos) is reported in Appendix A.
We note that for fixed values of the coupling constamts
whereH;,, is and g, the two contributionfSSH-like and Holsteinhave

different behaviors as functions of the inverse adiabatic ratio
T. In particular, as shown in Fig. 1, the Holstein contribution

_ T T T At
Him_g“’OZ (CiCiv1+CiiaCi)(@iyg a1~ 8 — &) to the ground-state energy is always lowlr g=g,) than
the SSH one wheh<t,, with t,,=4+32. In other words,
+91w02 CiTCi(aiT"'ai)’ (5) when the phonon frequency are not really small, the SSH

el-ph coupling is more effective than the Holstein one. The
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reduced effect of the Holstein el-ph coupling wheis small
(antiadiabatic regimepushes the polaron crossover to larger
values of the coupling. = g2wy/2t as the phonon frequency
is increased. Actually, whilee>>1 is the condition for the

polaron crossover in the adiabatic regifie 1, in the anti-

adibatic regimet<1, it has been shown that the crossover
occurs wheng?=1, i.e., for \>1.12141% Recently it has
been shown that this important role of the degree of adiaba-
ticity is not limited to the single polaron problem, but it also
extends to finite densities.

Since polaron formation is not a phase transition and oc-
curs without symmetry breaking, different criteria can be es-
tablished to define the crossover values of the coupling con-
stants which mark the polaronic regime. In the following we
compute some physical quantities which have been often in-
troduced to characterize the polaron crossover.

0,0=1)

x(k

The average phonon occupation numbeNg, E
=1/N(Z;a'a;) is given by <
=
~ ~ =
C 2N [ (1+21) NN (1+21) @ L
A N S (14403 aadl
-0.4 ‘ : :
where\ =g?wy/2t and \;=giwe/2t. From Eq.(7) it turns 0 5 10 15 20

out that the phonon number, as the ground-state energy, is Ve,

more aﬁecteq by the SNSH cgupllng wheg exceeds a given FIG. 2. Left: Correlation functions at nearest-neighbor sites
value. In particular, fot<2 (i.e., wg/t=0.5) the SSH con- the lefy and next-nearest-neighbor sitém the right at k=0 as

tribution is always higher than the Holstein one. functions of the inverse adiabatic ratipfor g=g,=1 (solid line).

Other quantities of great interest to characterize the poThe dashed lines show the SSH-like contributign=(L and g,
laron formation are the electron-lattice correlation functions.— o), the dot-dashed lines the Holstein ongs-Q andg;=1).

In particular, we consider the correlation functiop s

—(etafal ; :

=(cici(a, ;+a. ;) between the electronic density on a ggyy jike contributior{dashed linesis qualitatively different
sitei and the lattice displacement on sité 5, which mea-  fom that of the Holstein oneslot-dashed lines

sures the entanglement of lattice and electronic degrees of The |ast quantity we consider is the quasiparticle spectral
freedom typical of the polaronic state. After a Fourier trans'weightZ(k)=[1—(92(k ) 9|, (k)]—l which measures

formation in the momentum space,lat-0 one has the renormalization of the electron Green’s function due to
the el-ph interaction. The second-order perturbative self-

20; energy. (k,w) is given in Appendix A. Even if the polaronic

Xk=06=0—"""TT=» . . e | ’
1+ 4% regime cannot be attained within lowest-order perturbative

approach, indications on the beginning of the polaronic
~ crossover can be extracted from the spectral weight expres-
2t+1 1 sion. In particular, the polaron crossover is expected to be
V1+41 ' associated with a sharp reduction of this quantity as a func-
tion of the couplings. The expression of the inverse spectral
weight atk=0 is given by

Xk=0,6=1" —.fg—2(1+27— \/1+4T)—%

X 1+1+4"f 1+ 2t
Xk=06=2="40| =T —(—=| 1~ =
' t 2t V - -
1+at poyiog 2N, G s axd o
2 1 +1+2? - 1+ 2t ( T V1+41 Y(1+40)%?
YWirar o 212 Vi+4i) |

®) while the full momentum dependence &fk) is reported in
Appendix A. As expected the spectral weigh{0) is a

In Fig. 2 we plot the correlation function at nearest-neighbormonotonically increasing function df for a fixed value of
(left) and next-nearest-neighbgight) sites as functions of the couplings. It is interesting to note that the reduction of

the inverse adiabatic ratip for fixed values of the couplings Z(0) due to the SSH-like contribution is more relevant of the
g=0;=1. As expected, the value of the correlation functionHolstein ones fot <2, while in the adiabatic limit, i.e., for

goes to zero for large values of but the behavior of the large value oft, it is very small and slow.

174301-3



PERRONI, PIEGARI, CAPONE, AND CATAUDELLA

PHYSICAL REVIEW B9, 174301 (2004

Strictly speaking, perturbative calculations only correctlyU{’(n+1) andU{’(n—1), in order to take into account the
characterize the small coupling regime. In order to provide alependence of the hopping integral on the relative distance
better insight on the problem of the polaron formation in thebetween two adjacent ions.

systems with nonlocal interactions, in the following we focus

Reflecting the asymmetry of the SSH couplifsfprinking

on the SSH contribution and substantiate our results by anaf the bond on which the electron is localized and stretching

lytic variational calculations and numerical exact data.

IV. VARIATIONAL APPROACH VS EXACT
DIAGONALIZATION

of the neighboring bondswe also define two wave func-

tions that provide a very good description of the lattice de-
formations on left and right bonds of the polaron. Naturally
the left and right directions are relative to the site where the

_ ) ) resence of the electron is more probable. Thus in(EH.
In this section we extend our analysis of the nonlocal SSHhe apexi =L,R indicates theLeft (L) and Right (R) po-

model to the whole range of el-ph couplings using two staniaron wave function, respectively. The wave functienand
dard and well grounded techniques, a variational approach gre related as follows

and exact diagonalization of small clusters. First we intro-
duce the variational wave function. We consider translation-

fien(a) =—f(@)<o,
invariant Bloch states obtained by superposition of localized

states centered on different lattice stéThese wave func- fR_(q)=—f"_(q)>0

. . . k,n—1 q k,n—1 q ’

tions have been introduced in order to study the polaron

formation within the Holstein model where they are able to £(R) ——f(L) ~0
kn+1(a) kn+1(d)>0,

fully capture the features of the Holstein polar8iéin this
work we extend this kind of wave functions to the SSH Ry (L)
interaction model assuming Pk (M)= i (—m). (15

All the variational parameters are determined by minimiz-
ing the expectation value of the Hamiltoniad) with g,

: 1 ) '
() _— ik-n|,, (i)
) \/N zn: eyl (m), (10 =0 on the state€ll). Even though the wave functiohsand
‘ ) i R describe correctly the lattice deformations of the left and
where|y{’(n)) is defined as right side of the polaron, respectively, the mean values of the
_ ) ) ) Hamiltonian on these states are equal. So the relatibbs
[y (n))=elV MFUC=D+ U+ D] gy can be also viewed as those that leave unchanged the energy
functional determined by one wave function.
(i) ik-m.t These two wave functions can be improved by increasing
X% P (METCh . m| e ) the extension of the phonon contributions in El) and of
. o the electron terms in Eq.4). Furthermore, they are not
with the quantityU{(j) given by orthogonal and the off-diagonal matrix elements of the
Hamiltonian between these two states are not zero. This al-
N g ; - lows to determine the ground-state energy by considering as
U= N zq: [fi}(@age Ri—h.c]. (12)  {ial state the linear superpositidiof the wave functions

The phonon distribution functiof{)(q) is chosen as

al
f— k’]
1+ 2t B} cogk) —cogk+q)]’

13

with of) and g{}

| variational parameters. In E(l1), 10)pn

and|0)., denote the phonon and electron vacuum state, re-

spectively, and the variational functiogg’ (m) are assumed
to be

5
HO(m= 2 A1), (14

andL

A DRy + By D)
VAZ+B2+2AB, S,

lgh) = (16)

where|®{V) and|®{?) are the normalized wave functions
L andR weighted by the coefficient8, andB, and
S=(P{0|2(?) (17
is the overlap factor. The wave functiqa6) correctly de-
scribes the properties of the lattice deformations on both the
sides of the polaron and we will find that it is in very good
agreement with the results derived by the exact diagonaliza-
tions on a chain of six sites. Furthermore the variational ap-

where y{)(j) are variational parameters that take into ac-proach involves a number of variational parameters that does
count the broadening of the electron wave function up tonot depend on the length of chain, so it allows to study the
fifth neighbors. It is worth to note that traditional variational thermodynamic limit of the system.

approaches to the Holstein polaron problem uses the local- The minimization procedure is performed in two steps.

ized state(11) where only the on-site operatas{’(n) is

First the energies of the left and right wave functions are

applied. Thus we introduce in the expression of the trialseparately minimized, then these wave functions are used in

wave function the nearest-neighbor displacement operatotbe

minimization procedure of the quantityEy
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22 -0.4
s -2.4 FIG. 4. Correlation functiongy—o s With 6=0 (top left), 6=1
o i (top right and 6=2 (bottom lefy as functions of the SSH coupling
28 — gsiies \ég ] g for t=2.5. Bottom right: Phonon number gsfor the same value
sites . ~ . . . L .
08 o of t. Solid lines are obtained from the variational approach in the
' . thermodynamical limit; dotted lines show Lanczos data; perturba-
_3 , , , K , tive curves from Eqs(8) and(7) with g,;=0 (dot-dashed linesare
0 02 04 06 08 1 plotted for comparison.
g

tive next-nearest-neighbor hopping changes sign opening an
FIG. 3. Ground-state energi(0) as a function of the SSH unphysical region of the parameters. The agreement between
el-ph couplingg for two different values of the inverse adiabatic humerical data and variational approach is very good up to
ratio T=2.5 (left) andt=1 (right). Solid and dotted lines are ob- Vvalues close to the unphysical transition.
tained from the variational approach and the Lanczos data for a In order to characterize the polaron formation we also
six-site lattice, respectively; perturbative curget-dashed lings  analyze the electron-lattice correlation functign, defined
are plotted for comparison. Symbols mark the kink values of thein Sec. Ill. In particular, in Fig. 4 we show the behavior of
energy. Xi,s as a function of the SSH coupling fat=0,1,2 andt
) _ ) =2.5. As expected, variational results and exact numerical
=(yidH[ o/l iy with respect toA, andBy defined in Ed.  gata always recover the perturbative values in the limit of

(16).18 Exploiting the equality small el-ph coupling. Increasingithe monotonic behavior of
the correlation function exhibits a kink, as the ground-state
(WOIH[O) = (P H[ PPy = ey, (18)  energy. In particular, the correlation function at next-nearest-
. neighbor ¢=2) changes sign as the effective hopping, con-
we obtain firming the pathological behavior. At couplings where the

ground-state energy and the correlation function show the

_ ek~ SkExc—|Exe— Skexdl kink, also the average phonon number is characterized by an

By 1—S§ (19 anomalous behavior as shown in the bottom right panel of
Fig. 4.
where E,.= (O |H|DP) is the off-diagonal matrix ele-  In order to extract information on the valuesgot which

ment, and|A,/]=|B,/. The matrix elements between the polaron crossover begins, before the opening of the unphysi-
statesyY and y{-) contained in Eq(19) are reported in cal region, we also investigate the behavior of the quasi-
Appendix B. partcle spectral weighZ(0). We find that increasing the
The total energy functiondlL9) is minimized with respect el-ph coupling for fixed values df, the spectral weight starts
to the variational parameters and the optimal ground-stateo drop but it never reaches a really small value before the
energy is plotted in Fig. 3 for a six-site lattice and two dif- unphysical sign change of the hopping occurs. Nevertheless
ferent values of the inverse adiabatic paramétewe also ~ We observe distinct signatures of the tendency towards local-
study the thermodynamic limit and find energy curves veryization, as shown in Fig. 5, whe#0) is plotted as a func-
close to those of the finite system. In order to test the validitytion of g for the fixed valuet =2.5.
of our variational approactVA), we perform exact numeri- We conclude our analysis collecting the obtained data in
cal calculations on small clusters by means of the Lanczothe phase diagram of Fig. 6. It is calculated from the position
algorithm. We improve the previous exact diagonalizationof the kink in the ground-state energy obtained by means of
(ED) analysis of the model, investigating small clusters up tothe variational approactdiamond$ and the exact diagonal-
six sites™® As shown in Fig. 3, each variational and exactization (triangleg. The agreement between the two methods
numerical curve exhibits a kink with increasing the el-phbecomes better moving towards the adiabatic limit. In anal-
coupling. We have checked that at these couplings the effe@egy with the phase diagram obtained for the Holstein
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1 r—— , the crossover region for the transition between weak and
S strong localized polaron solutions. In particular, we found
Yeo,=2.5 e that the pathological sign change of the effective next-
NN nearest-neighbor hopping always precedes a stable strongly
= . localized solution. Such an unphysical region of the model
N | ) ] parameters does not occur in the case of acoustical phonons
- ED being the deformation linked to the particle extension along
—— VA the entire chaif’ However we have also shown that, for
- P .. finite values of the adiabaticity parameter, when the phonon
0.6 . P frequency is not really small, the non lod@SH el-ph in-
teraction is more effective than the loodolstein one in
9 reducing the mobility of the electron. Then our variational
FIG. 5. Spectral weighZ(0) as a function of the SSH el-ph calculations are an interesting starting_poi.nt to examine the
. ~ R . . complex problem of the polaron formation in a model where
couplingg for t=2.5. The solid line is obtained from the varia-

tional approach in the thermodynamical limit; the dotted line showsbo'[h local and nonlocal el-ph interactions are present. In par-

Lanczos data; the perturbative curve from E3).with g, =0 (dot- ticula_r, we emphasize_that the prop_osed varia_\t_ional wave
dashed lingis plotted for comparison. function for the SSH limit can be slightly modified to be

suitable for the treatment of the complex case where both
polaron’® we also mark a crossover region defined as thénteraptions are present. _Detailed future investigation§ _in this
range of parameters for whicA(0) is less than 0.9. As dlrectlo_n are reqwred.' Finally we stress that the val|d|ty' of
shown in Fig. 6, we find that the considered SSH model doeSY" variational results is supported by an accurate analysis of
not present any marked mixing of electronic and phononicexaCt diagonalization datz_i on small clusters_. The agreement
degrees of freedom, being the strongly coupled state pre2etween VAand ED data is good up to coupling values close
vented from the pathology of the model. As far as the fullyt© the unphysical region.
adiabatic limitwy=0 is concerned, we verify that the cross-
over line joins onto the line for the transition to the unphysi-
cal region at the critical valug =0.25, confirming the dis- ACKNOWLEDGMENTS

cussion in Ref. 12. We finally notice that, as discussgd in \m C. acknowledges the hospitality and financial support
Ref. 12, both the crossover region boundary, and the instgs; ha Physics Department of the University of Rome “La
bility line obtained by exact diagonalization are only weakly Sapienza,” as well as the INFM, UdR Roma 1 and SMC, and
dependent on the adiabatic ratio, and thais the relevant v\ cofin 2001. ' ’
electron-phonon coupling regardless the valué.cfhis is a

peculiarity of the SSH coupling with respect to the Holstein

one, where the polaron crossover moves to large valuas of APPENDIX A

as the phonon frequency increade&*>2

In the limit of small el-ph couplings, the perturbative

V. CONCLUSIONS second-order correctiahE (k) to the tight-binding free band

energy is
In this work we discussed the features of one electron
nonlocally interacting with optical phonons in a discrete
chain. We introduced a variational wave function to locate

1+ 2tcosk
AE(k)=—4g%wg p
4 412
5t
35 | Unphysical | sin k?
: region +
§°25 _ \/1+4Tc0§<—472(1—c052k)
: T _AT2(1 —
.5l ' Crossover \/1+4tcosk 41%(1—cogk)
; ! region - =
‘ 412
0.5 - APy
0 01 02 03 04 05 06 07 1
A 2
—0iwg — — . (A1)
FIG. 6. Phase diagram for one electron in a six-site lattice. Tri- \/1+4tcosk—4t2(1—coszk)

angles and diamonds correspond, respectively, to the couplings

where the exact numerical ground-state energy and the variational

result have a kink. The dashed line indicates the boundary of thdloreover, using the bare phonon and electronic Green
crossover region, where the spectral weigh®) is less than 0.9.  propagators, the perturbative self-energy reads
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42 in(k —sink]?
Koo)= gNwo2 [sin(k+q)—sink]

( g w—wo—e(k+q)+id

9fwo 1
N G wo—wy—ek+tq)+id’

(A2)

From Eq.(A2) we obtain the momentum dependent spectral

weight

2\
Z(k)“t=1-—|1- ———
t [1+41—4t%(1—cogk)]¥?

41%sirPk(1+ 2tcosk)

(1+2tcosk)

J1+4”f— 41?(1—cogk)
(1+ 2tcosk)

+2\t R .
[1+4t—4t%(1-cogk)]¥?

(A3)

APPENDIX B:

In this appendix we report the matrix elements between

the state$y(¥) and|y{")). These quantities are involved in

the calculation of the ground-state energy within the varia-

tional approach. We find

WO = 2 ¢ P (=m o0 (my) ZiF (my—my),
1,112
(B1)
where the phonon matrix elemenf- R (i —j) is defined as
Z(-R _j):ph<o|e*[UﬁL)(J’)JrU(kL)(J'*l)+Uf<L)(i+1)]
Xe—[u(kR)(i)+u(kR)(i—1)+uff)(i+1)]|0>ph_

(B2)

PHYSICAL REVIEW B 69, 174301 (2004

Then we have

(WOl oy ==t > ¢ B (my) p(my)
mq,my

x[e*ZE"R(my—my+1)

xe *z{-" R (m—m,—-1)],

> o M(my) dP(my)

(W Hun 9Py = — 0o >,
q mg.my

X[wg (K)PZL" 0 (my—my)eldlm=ma),

(B3)

and

(WO Hind V)= A1+ A, (B4)

with A; andA, given by

g

A== 2 Dmy) O (mow (e Z{e P (my

q,mq,my
—my+1)[edMmm (1 —gld) + e 1AM (e 1d-1)]

_Qwg

VN

XZER(my—m,—1)[e9m2(1—€'9)

A, > P (my) sR(myw} (ke

q,mq,Mmy

+eidm-1)g=ia_1)], (BS)

The quantitye, = (i [H[4f") = (AP |H| (D) is easily
derived using the matrix elements given above.
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