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lonic displacement correlations from the zero-point motion of pressurized solid argon
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We have performed first-principles calculations of the elastic constants and phonon dispersion for solid
argon at pressures ranging from 3.1 GPa to 70 GPa. We also report our calculation of the spatial correlation
function for the ground state and its pressure dependence. Arbitrary Cartesian displacements and lattice-site
separations are considered. Analytical results, which rely only on knowledge of the elastic constants, are
compared with results based on the calculated phonon dispersion throughout the Brillouin zone, and agree
satisfactorily. The correlations are presented for pressures ranging from 3.1 GPa to 70 GPa, and the results
suggest that the anharmonic character of the crystal’s ground state is more significant at low pressure.
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[. INTRODUCTION and would not be prominent in a system such as argon. How-

ever, at zero temperature, nonzero values of the correlation

Equal-time, ion-ion correlation functions have been offunctions can generally be attributed solely to the quantum-
theoretical interest since the early days of theoretical latticé"echanical zero-point motion of the ground state. .

dynamics-? The autocorrelations appear in the Debye- We have calculated the ground-state correlations in solid

Waller factor and crystal melting criterid, and the two-site  &790n. for arbitrary lattice-site separation, usifg current

. ) ' first-principles methods an¢2) analytic expressions from
correlations are related to a variety of measurable eﬁeCtﬁong—known approximations to the phonon spectfsigon
They have been shown to imprint “extra spots” on the dif-j5 3" convenient choice for the calculation of these correla-

fuse, elastic x-ray scattering background arising from therons |t is an insulating crystal with a single atom in the unit
mal fluctuations® and more recently, experiments concern-ce|l and so complications associated with optical phonons
ing their relevance to extended x-ray-absorption fineang a Fermi surface need not be addressed. A comparison of
structuré and electronic motidh have been performed. results obtained via the two approaches is interesting as a
Bond-charge models have been used to calculate a few of thautual check on the modern technique, where the results are
correlations in covalent semiconductdrs. highly numeric in nature, and the more traditional analytic
Perhaps of particular theoretical interest, the correlatiormethods, which are computationally transparent but rely on
functions are relevant to lattice dynamics beyond the harmore approximate assumptions.
monic approximation. A body of theoretical work over the
last five years marks a breakthrough in the first-principles Il. PRESSURIZED SOLID ARGON
considerations of anharmonic effe&?§,13a_nd the correlation  agyanced spectroscopic techniques probing materials at
functions can be applied to the calculation of related mat”’high pressure have recently allowed detailed experimental
elements. As an illustration of this, a term in the pmemia'investigation of structural properties of solid argdnt®
energy which is cubic in ionic displacements hybridizes theyhich is of interest as a fundamental solid. The equation of
crystal's ground state with a state in which a mode is occustate, and the pressure dependence of elastic constants and
pied by a single phonon. The corresponding matrix elemenphonon dispersion have been reported. These investigations
can be expressed as a phased sum of fourth-order correland accompanying pair potential calculations have been
tions multiplied by appropriate anharmonic potential coeffi-complimented by first-principles studies which rely on
cients. These fourth-order correlations can be contracted intdensity-functional theorl/??‘23 There is general agreement
products of pairwise correlations over the ground statebetween the theoretical and experimental results, and the de-
which we evaluate here. In a related connection betweegree of correspondence increases at higher pressures. This
anharmonic perturbation theory and the correlation funcimay be expected, since density-functional theory accounts
tions, Van Hove has posited the ratio of the autocorrelatiorfor electronic correlations only when there is charge-density
length to ion separation as the expansion parameter witbverlap, and hence cannot model strict van der Waals
which to rank the multiphonon processés. effects® and at lower densities, or lower pressures, the rela-
Commonly, the zero-point ionic motion’s greatest experi-tive importance of the van der Waals forces obviously grows.
mental significance is in the study of the lightest elements, Nevertheless, the theoretically obtained properties are rea-
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25 ' ' ] the value is, respectively, 29 meV and 53 meV, and the cor-
responding densities are 3.2 gftand 4.6 g/cr.

The elastic constants are reported through evaluation of
the low-momentum speeds of sound from the calculated dis-
persion relations. At 6.7 GPa, the constants are computed
twice, the second method entails monitoring of the total en-
ergy over a range of internal strains. The two values are
identical to the numerical accuracy reported fgr, and
differ by about 20% forc,, andcy, (for ¢4, the strain-derived
value is lower and foc,, the strain-derived value is higher
The calculated elastic constants for various crystal pressures

FIG. 1. Calculated phonon dispersion of argon at 3.1 GPa for &€ C11=36 GPa, c1,=24 GPa, andcy,=16 GPa at 3.1
few high-symmetry lines, and experimental data from Ref 15. GPa; c1;=54 GPa, c,,=38 GPa, andc,,=23 GPa at 6.7

GPa; ¢1,=72 GPa, c1,=50 GPa, andc,,=33 GPa at 10
sonable even to nearly ambient pressure when th&Pa; andcy;=270 GPa,c;,=200 GPa, and4,=130 GPa
generalized-gradient functional is employed. The local-at 70 GPa. Our values for the elastic constants differ from
density approximatiof* with which the present results are those of some earlier studies by more than 50% at 3.1 GPa.
calculated, has been shown to give an equation of state dfhe agreement improves at higher pressures to about 10% at
poorer agreement with measurement than the generalizedd GPa.
gradient approximatioff Indeed, at lower pressures, the as-
sociated densities we report are 10% to 15% higher than |v. EXACT FORMULAS FOR THE CORRELATION
those obtained from experiment. In addition to the local- FUNCTION
density approximation, our calculations are performed with ) i i
pseudopotentials and a plane-wave b&xié’ All values we . The_ d|spla(_:e_:men_t of an ion at lattice sRealong Carte-_
report were checked for convergence with respect to'an d|re<_:t|_on|_ IS written as the sum over phonon creation
Brillouin-zone sampling and plane-wave cutoff. and annihilation operators, indexed by wave vector and

The pressures we report are evaluated by first calculatingranch:
points along a total energy vs volume curve, and then obtain-
ing a best fit to the Murnaghan equation of state. At 3.1 and _ :i ik-R h t _

. . . iR € (akv+afkv)ukvl ’ (1)
6.7 GPa, the values are checked by introducing an internal JN & 2Mwy,,
strain. When the solid is pressurized, the energy deiisi . .
modified from its equilibrﬁjm valueE,, by a Iinggr as WZ| where the right-hand side makes reference to phonon polar-

as quadratic term with the uniaxial strain parametgr, E ization, and dto sqgare rfolottsf of th.f lonic dmass(,j phtonon fre-
=E0—Pe11+%cllefl. The coefficient in the quadratic term quency, and number of lattice sit¢er independent wave

. . . . vectors in the denominators.
is the standardly defined elastic constant. The linear term The ground-state expectation value of the product of two

represents work done as the volume varies with the strain . R
- such operators, defined to be the ground-state ion-ion corre-
and the coefficienP represents the pressure. The pressures .
. i X : ation, is
obtained from the strain calculation and from the equation o
state agree to within 10%.

Energy (meV)

r X r L

1 .
(Xir+sXjR) = N kZ el Ui Uiy » 2

Ill. PHONON DISPERSION AND ELASTIC CONSTANTS ZMeyy
because only terms first creating and then annihilating the
Same phonon are nonzero, and because of the relation,
U_x,=Ug,. The vectorguy,} form an orthonormal, diago-

nal basis for the dynamical matrix(k), and its eigenvalues

fu_nctional theory using Wave-commensurgte superc_ells. I'?;lre the squares of the phonon frequencies, implying the re-
this work we do not sample the anharmonic contributions t9.tions '

the forces, a task which, in principle, is also manageable.

Figure 1 displays theoretical phonon dispersion along a few Uit

high-symmetry lines for a crystal at 3.1 GPa, and how it > LI”J:[D‘l’z(k)]ij

compares to experimental dispersion along the (100) direc- v @ky

tion at the same pressure. The uncertainty in the experimeny,q

tal data points is less thah1l meV. Our result and the dis-

crepancy from experiment is quite similar to that of other f _

recent local-density approximation wotkOur correspond- <XiR+SXjR>:m > e D Mk)]; . ()

ing theoretical density is 2.7 g/GmAt 6.7 GPa, or a density :

of 3.0 g/lcnd, the frequency of the longitudinal mode at the The result is that the dynamical matrix contains all the infor-
Brillouin-zone boundary along (100) increases to 26 meVmation necessary to calculate the ion-ion correlation func-
from the value 21 meV at 3.1 GPa. At 10 GPa and 70 GPaons.

The phonon dispersion is calculated through a diagonal
ization of the dynamical matrix, which is calculated with
lowest-order Hellmann-Feynman foré@sand density-
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V. APPROXIMATE FORMULAS nents of a deformation field;(R) within the crystal, and the
ndeformations vary slowly, the local energy density of a cubic

A cautious analysis of the correlations benefits from a .
System can be writtéf as

analytic check on the numeric results derived from the abov

expressions. The primary concern with the numerical results 1 au\2 1 U Ju:\2
. ; : ) . B i i j

is the singularity which occurs in E¢3) ask tends to zero. U= EC“Z (—R) +5Ca > > (?+—R)
Further, the coherent nature of the contributions to the cor- T IR TS VIR IR

relations from small-momentum wave vectors may indicate U U
sensitivity to the sampling about tHe point. For these rea- +Cp Y —R' ?’

sons as well as for the sake of comparing exact and heavily T i<t IRi IR,

computational results with common approximations in hanwherec,,, c,,, andc,, are the elastic constants.
dling the phonon spectrum, such as the Debye model, we gjowly varying deformations can be treated with a con-

perform a systematic analysis of the correspondence betwegiyum model, where the Fourier transform of the strain field
the two. The comparison also provides a measure of anisofs defined as

ropy’s effect on the correlations.

Three approximations bridge the transition from the ex- 1 3 iker
pression in Eq(3) to an analytically treatable case. Two of ui(k)= Q_Oj d*rui(re ' ®)
the approximations are well known from the Debye model: . . .
taking the acoustic, small-momentum linear dispersion ag"d{o is the crystal volume. The dynamical matrix is

4

valid throughout the whole Brillouin zone, and approximat- 1 92U

ing the Brillouin zone itself as a sphere of the same volume. Dij(k)=— =70k (6)

The other approximation forces an isotropic condition on the p dui(—k)du;(k)

elastic constants. wherep is the mass density, and the eigenvalues of the dy-

The linear-dispersion approximation can be expressedamical matrix are the squares of the phonon frequencies.
through examination of the small-momentum expansion ofVorking out the equations of motion from E@), the small-
the dynamical matrix. If we consider the Cartesian compoimomentum dynamical matrix for acoustic phonons is

L C1aki+ Cad k32,+ k2) (C1otCaa)kyky (CiotCagkyk,
D(k)=— (C12t Caa)kiky 011k32/+ Cas k>2<+ k?) (CiztCaa)kyk, . (7)
(C127F Caa)kyk, (CiotCankyk,  CyukZ+Can(ki+K?)

The second approximation is that of an isotropic crystal:successive approximation is made, we monitor its effect on

the correlation function by making a numerical calculation,

C11= C12+ 2Cyy. (8)  and then perform the algebraic computation for the analyti-

cally treatable approximations. Numerical calculations are
done for the following caseg1) exact realistic calculation,

(2) legitimacy of the small-momentum phonon spectrum, Eq.

This condition reduces E@7) to projections onto longitudi-
nal and transverse modes:

Cuk? . Cuk? o (7)., and(3) Eq. (7) gnd iso_tropy vyith regard to lattice prop-
D(k)= [K)(k|+ (1—1k){k]), (9 erties, Eq(8). The isotropic elastic constants are selected to
P meet Eq.(8) and so as to not affect their average value or

and makes the speed of sound independent of wave vectofhat of the bulk modulus, givingcy;=69 GPa, ¢y,
The third, Debye-like approximation defines a sphere of=33 GPa, and,,=18 GPa. o
radiuskDB and rep|aces the Brillouin-zone integration with When the substitution of a sphere for the actual Brillouin

integration over the sphere volume, implying zone is joined with the conditions, Eqg) and(8), Eq. (3)
becomes
4 3

?kDB:QBZ' (10) h 3, ik-S p klk]

(s 950) =g | 0PRSS

2mQg; k*\ Veq,

VI. ANALYTICAL AND NUMERICAL RESULTS AT 6.7 k25 —kk:
GPa - M) : (11)
Veas

Via the three approximations above, we can make a step-
wise transition from realistic argon to a model system withThe integration is performed over the sphere of ELf).
analytical expression of the correlation function. As eachMaking the following definitions:
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full callculation C . I full callculation +
0012 F+ small-momentum approximation x - 0.012 | . small-momentum approximation X -
. - + isotropic approximation  * . ... isotropic approximation = *
o ¥ analytic form - NSE x..,ﬂ. analytic form -
~ 0008  "* b ~  0.008 % 1
e * e ¥
0.004 | S | . 0.004 | S| .
0 } *-*. e -J;*l*#s: M HA IR 0 ' l *5 §i %3 1% nl MMy PRI
0.012 F+ . 0.012 | . .
N a Fx
S 0008 - X . S 0.008 [ -} .
I 3 = %
N 0.004 | i“!& | - = 0004 k| -
0 x*txuf#i**-ﬂu****aﬂ********* 0r R B SO SV SRR
0 5 10 15 20 25 30
0.012 - 7 Ion Separation (q,)
e
= 0008 . i -
- FIG. 3. Independent, nonzero displacement-displacement corre-
e lations along the lattice-separation directi@®0) at 6.7 GPa. Plots
0.004 - l T are for correlations in which both ions are displaced alongxthe
PNPEY 2.2 T l e direction (top), an.d for both. ions. displaced along tlyedirection
0 5 10 15 20 25 30 (bottom). Correlations for orientations not shown are zero by sym-

metry or symmetry equivalent to those shown. The nearest sites are
represented by arrows. The crosses represent the full calculation
FIG. 2. Independent displacement-displacement correlationgnd the dashed line represents the analytical result. The intermedi-
along the lattice-separation directi¢hl0) at 6.7 GPa. Plots are for ate approximations are represented by the diagonal créssesl-
correlations in which both ions are displaced alongxtdirection ~ momentum approximatigrand by the stargsmall-momentum ap-
(top), for both ions displaced along tlzadirection(middle), and for ~ proximation and isotropic approximatipn
one ion displaced along thedirection and the other along the L .
direction(bottom). Correlations for orientations not shown are zero and fori#] the result is
by symmetry or symmetry equivalent to those shown. The nearest % 4o 3 sing
sites are represented by arrows. The crosses represent the full cal-
culation and the dashed line represents the analytical result. The
intermediate approximations are represented by the diagonal (13
crossegsmall-momentum approximatiprand by the starg¢small-
momentum approximation and isotropic approximation

Ton Separation (a,)

(XiR+szR>:m =2 Vil T—COS¢—2 :

Figures 2 and 3 represent the nonzero correlations be-
tween ions whose separations lie in the direction of near
neighbors for a crystal held at a pressure of 6.7 GPhe

¢=KosS, correlation is zero wheneveg has no projection in thg-S
) plane) Four results are plotted representing the sequential
a-—l—(si) approximation from the real crystal to the analytically ame-
! ' nable idealization. The first three plotted results are numeri-
cally calculated, and the final result is analytical. The plots
SS are for the actual crystal at 6.7 GPa, and the three succes-
= sively imposed conditions: use of the small-momentum
S rather than the full form of the dynamical matrix, use of an
isotropic set rather than the real set of elastic constants, and
1 1 ) use of a sphere rather than the actual Brillouin zone. In im-
T— posing the last condition, the transition to the idealization is
C11 \Cas

complete.
and performing the integration, the result fet | is

Yij

*

For demonstration of the extent of agreement between the
four cases, separation distance between ions is treated as a

L A P continuous quantity. The first few actual site-separation dis-
<XiR+SXiR>:m SZ[ \/C—(l—cos(ﬁ) tances are indicated with arrows.
BZ 44
1 VIl. PRESSURE DEPENDENCE OF THE CORRELATION
+E 2a;—1+(a;—1)cos¢ FUNCTION

The correlations are immediately associated with a length
by taking their square root. In Figure 4 the dimensionless

, (12 : . . ;
ratio of the correlation length to the nearest-neighbor dis-

+(2_3(1i)SI(r;¢
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ciated with displacements appearing in the higher-order cor-

gn 0.02 L + 2:; gg: M relations. This is a familiar many-body result, where pertur-
% X 10GPa x bations rise less rapidly than confinement energy as the
2 0.015% o % ; 70GPa & 4 density is increased.
o
g o001t B % .
v a " VIIl. CONCLUSIONS
= 0005 .
3 e !I‘ LI ELAEEE Our study of the pressure dependence of the lattice dy-
0 0 1 2 3 namics and elastic properties of solid argon confirms earlier

findings that the local-density approximation is problematic

at low pressures, and improves at high pressures. We extend
FIG. 4. The square root of thex correlation function plotted  Structural calculations to the ion correlation function. The

with ion separation along thé110) direction, both normalized to @nalytical and exact results correspond as well as may be

nearest-neighbor distance, for various pressures. The tics represéifPected, and straightforward numerical approaches appear
actual lattice sites. sufficient in spite of concerns about sensitivity to sampling

near thel’ point. The impact of the small-momentum ap-

proximation is the largest among the three, and tends to sup-
tance is plotted with the dimensionless, normalized ion-iorpress the autocorrelation function by20%. At the same
separation along thel10) direction. The figure corresponds |attice vector, the correlations for varying displacement ori-
to the exact calculation, E@3). Actual lattice sites are rep- entations are of the same ordgvhere not zero by symme-
resented by the tics in the figure. The delocalization lengthry). While there is an order of magnitude decrease from the
associated with the autocorrelation decreases from 2% tautocorrelation to that of the nearest neighbors, the dimen-
1.5% of the nearest-neighbor distance as the pressure is igionless parameter associated with the correlation decays
creased from 3.1 GPa to 70 GPa. This result, together witimore slowly, from 2% for the on-site correlation to just un-
Van Hove's ansatz, suggests that ground-state anharmonier 1% for nearest ions at 6.7 GPa. Roughly similar behavior
effects are less important at higher pressure. This conjectusgith increasing lattice vector is demonstrated at other pres-
is motivated by recognizing that the higher-ordersures. The dimensionless correlation parameter associated
correlations—which are proportional to products of lower-with the autocorrelation is about 2% at 6.7 GPa, and falls to
order correlations—must diminish more quickly than the pairabout 1.5% at 70 GPa. This suggests that the anharmonic
correlations. Therefore as the pair correlations decrease, thmature of the crystal's ground state is suppressed at higher

Normalized site separation

ions are less and less subject to the anharmonic forces asgmessures.
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