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Dissipation effects in spin-Hall transport of electrons and holes
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We investigate the spin-Hall effect of both electrons and holes in semiconductors using the Kubo formula in
the correct zero-frequency limit taking into account the finite momentum relaxation time of carriers in real
semiconductors. This approach allows us to analyze the range of validity of recent theoretical findings. In
particular, the spin-Hall conductivity vanishes for vanishing spin-orbit coupling if the correct zero-frequency
limit is performed.
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[. INTRODUCTION in the case of the aforementioned spin-Hall effect, the off-
diagonal elements of the charge conductivity tensor are the
In the recent years, an increasing interest in spinsame in magnitude but differ in sign. Therefore, this antisym-
dependent phenomena in semiconductors has developedgtric conductivity tensor has the same components in all
mostly in the field of spin electronics, which has by now orthogonal coordinate systems, and in this sense the transport
become a major branch of solid-state researéiOne of the ~ Properties are isotropic. This is different from charge trans-
most investigated issues in this field is the influence of spinPort of electrons in quantum wells as investigated recently,
orbit coupling on various transport properties of both elec-Ref. 12. In such systems, the presence of spin-orbit coupling
trons and holes. Many of these studies were inspired by thef both the RashBa and the Dresselhatfstype leads to
paradigmatic proposal of a spin field-effect transistor due tgnisotropic dispersion relations and Fermi contours. This fea-
Datta and Da¢;for recent work in this direction see, e.g., ture leads to symmetric off-diagonal elements in the conduc-
Refs. 5-13. Most recently, interesting theoretical studies ofiVity tensor and therefore to preferred eigendirections for
the spin-Hall effect have been performédi® This effect ~charge transport-**This predicted effect offers a possibility
amounts in a spin currerfas opposed to a charge curnent to detect spin-orbit coupling by measuring diffusive spin-
driven by an electric field perpendicular to it. In the presentunpolarized charge currents in a Hall-type geometry, which
paper we reexamine these findings using the Kubo formulghould be a comparatively simple experimental task.
with full frequency dependence, treating both the case of This paper is organized as follows. In Sec. Il we summa-
electron$® and holes**®and analyze the range of validity of rize elementary properties of linear-response theory as given
previous theoretical results obtained for the case of direc®y the Kubo formula. This technique is applied then in Sec.
current. Here it is crucial to perform the correct zero-!ll to spin-Hall transport of electrons in a quantum well in
frequency limit taking into account an imaginary part of thethe presence of Rashba spin-orbit coupling. In Sec. IV we
frequencies occurring the Kubo formula. investigate the case of bulk holes described by the Luttinger
The notion of the spin-Hall effect in systems of itinerant Hamiltonian in the spherical approximation. We end with
spinful carriers was considered first by Dyakonov and Pérel conclusions in Sec. V.
in the early seventies, and, independently, in a more recent
paper by HirscH® In these studies the predicted spin-Hall || KUBO FORMULA AND ZERO-FREQUENCY LIMIT
effect is due to spin-orbit effects influencing scattering pro-
cesses upon static impurities. Following the terminology Our present study of spin-Hall effect of electrons and
used if>*Sthis is referred to as thextrinsicspin-Hall effect  holes in semiconductors is based on the usual Kubo formula
since it depends on impurity scattering. This is in contrast tovith full frequency dependence for a spatially homogeneous
theintrinsic spin-Hall effect predicted very recently in Refs. electric field?
14-16 which is entirely due to spin-orbit coupling terms in
the single-particle carrier Hamiltonian and independent of sz e o
d h .. . , - i(w+in)t
any scattering process. As we shall see below, this distinction xy (@)= A(w+in) fo €
between intrinsic and extrinsic effects becomes ambiguous in
the limit of weak spin-orbit coupling when lifetime effects of

carrier quasiparticles have to be taken into account. XZ f(sﬂ(k))<k,ul[1f’z(t),vy(OHIk,m,
Yet another type of spin-Hall effect was studied recently ko
by Meier and Los¥ in a two-dimensional Heisenberg model (1)
consisting of isolated spins, in contrast to the itinerant-carrier
systems mentioned before. where we have assumed zero temperafused and nonin-

Spin-orbit coupling also induces off-diagonal componentg€racting carriers, which allows to formulate the two-body
of the conductivity tensor for charge transport. An importantGreen’s function entering the conductivity Kubo formula in
example is the anomalous Hall effect as it occurs in semiterms of single-particle operatoré is the volume of the
conductors in the presence of magnetic impuritfddere, as  system,e is the elementary charge, aridsM(IZ)) is the T
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=0 Fermi distribution function for energy (k) at wave o)==y w)

vectork in a dispersion branch labeled hy. The velocity o 2
o k;

operators are given bo}=i[H,F]/h wherer is the position - (6)
. t . . . K 4 * )t 2ak 2
operator, andt is the single-particle Hamiltonian not includ- ™ m” Jk (w+i7)2— a
ing the external electric field. The spin-current operdtor 7 h
the Dirac picturg for spin moment polarized along the here
direction and flowing in thex direction is given by w
jS#(t) =€t i (g7, +p,sP)e M ) N 2m* mt | ° ,_m*
x 2 x U ' ki = git|—=| a°F—a (7
h? h? h?

wheres is the spin operator. The right-hand side of E).
has to be understood in the limit of vanishing imaginary part@are the Fermi momenta on the two dispersion branches for
7>0 in the frequency argument. This imaginary part in thepositive Fermi energg;>0. In the presence of scattering on
frequency reflects the fact that the external electric field isstatic random impurities, the imaginary part-0 in the fre-
assumed to be switched on adiabatically starting from thuency argument is given, to lowest order in the Rashba
infinite past of the system, and it also ensures causality progsoefficient and the impurity potential, by the inverse of the
erties of the retarded Green’s function occurring in Eqg. momentum relaxation time. This is certainly a very intuitive
In general, and as we will discuss in more detail below, theesult; however, let us sketch a formal proof for this asser-
limiting process»—0 does not commute with other limits, tion. The time-dependent spin-current operator in the pres
and, in particular, the dc limitv—0 has to be taken with ence of Rashba coupling reads

care”® In the presence of random impurity scattering, the

retarded two-body Green’s function in E(l) will generi- 87/
cally have a frequency argument with positive imaginary A= 2m*
part? In this case the limity— 0 is unproblematic, and the

imaginary part of the frequency argument is just due to im-where the time evolution includes impurity scattering. To
purity scattering and/or othdmany-body effects. Generi- lowest order in the spin-orbit coupling and the impurity scat-
cally, and as we will discuss in more detail below, the imagi-tering we have
nary part»>0 corresponds to a finite carrier quasiparticle

lifetime.

o’ (t)px(t), ®

XA~ - aH(HpR(t), ©)
Ill. ELECTRONS WITH RASHBA COUPLING . . . .
where the time evolution o&{ is only due to the Hamil-

Sinova et al!® have considered the spin-Hall effect of tonjan (3) and evaluated in the above express{én while
noninteracting electrons confined to_ the tvyo—dimensionabg(t) contains the impurity scattering but not the spin-orbit
(xy) plane of a quantum well and being subject to Rashbgoupling. Now it is useful to note that, in order to compute
spin-orbit coupling? the expectation values in the Kubo formula Ed), only
matrix elements of the time-dependent momentum operator
pg(t) which are diagonal in the wave vector index are
needed. This enables to apply superoperator techniques de-
veloped in Ref. 24 yielding

— 62 @ y X
H= py— + 5 (Pxo? —pya), )

wherem* is the effective massy the Rashba coefficient,
and the other notations are standard. We note that in systems 0/+)7 -~ a—Qotn0 . _ra—t/Ty0 .

where both the Rashba and the Dresselhaus spin-orbit L) ]i~=Le (O ie=le TP Ok, (10
coupling?? are present, various interesting transport effectsvhere(), is the scattering master operator in lowest order of
can arise from the interplay of these two terms, for recenthe scattering potentiaf. It is the same operator as it occurs
studies see, e.g., Refs. 5, 7-9, 11, 12. For simplicity, howas the scattering term in the usual Boltzmann equation when
ever, we shall concentrate here on the Rashba term only. Thevaluated in lowest oder via Fermi's golden rule. For impu-

Hamiltonian(3) has two energy branches, rity potentials being isotropic in real space, the momentum
px is an exact eigenfunction df}y, and the eigenvalue is
. h%k? given by the well-known inverse momentum relaxation time
(k)= om* +ak (4) 1/7(e) Refs. 24 and 25 which in general depends on the
o energys(IZ). To lowest order in the Rashba coupling, this
with eigenstates energy argument can be replaced with the Fermi energy in
e 1 the absence of _spin—orbit i_nteraction. We note t_hat this mo-
(FIK, =)= er 1 ) 5) mentum relaxation rate #/is the same as obtained in the
A 2 2elx ) standard diagrammatic approach and thus contains the vertex

_ correction” However, this vertex correction vanishes for
where y(k) =arg(—k,+iky). By a straightforward calcula- short-range isotropic scatterers. The above argumentation re-
tion one obtains for the spin-Hall conductivity fers to the Rashba Hamiltonid8) for conduction-band elec-
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trons; similar considerations can be performed in the case of IV. HOLES IN THE VALENCE BAND OF III-V
valence-band holes to be discussed further below. SEMICONDUCTORS

For @=0, but finite momentum relaxation rater%0, Murakami, Nagaosa, and Zhang have investigated spin-

Eq. (6) yields Hall transport in three-dimensional bulk systems of holes in
Sz Sz the valence band of 1Il-V semiconductdfsThese authors
7y (0)=~0y5(0) used a phenomenological semiclassical theory to describe
e e 47 e cog, | 1 adiabatic hole dynamics. Their work was revisited most re-
— " iamt _R( + R_f> 1 cently by Culceret al® within the framework of a semiclas-
8w 32m er hlT (fil 7)? sical theory of wave packet dynamics. Here we will evaluate

(11) the spin-Hall conductivity using the rigorous Kubo formula
(1). Our starting poirf*'®is Luttinger’s four-band Hamil-
where we have introduced the “Rashba energyy tonian for heavy and light holes in the spherical
=m* a?/%2. Clearly, this is the energy which has to be com-approximatior,’
pared with the energy scale = of the impurity scattering in
order to obtain the correct zero-frequency limit of the spin-

Hall conductivity. If the impurity scattering is weak com- _ 1 S oy - 2,
pared to spin-orbit coupling;gr/A>1, we have the expan- H= 2m| | 72T 2 72|P 272(p-9)7. (14
sion

hl7\? Here m is the bare electron mass, anfl are spin-
o (E) ' (12) 3/2-operators. The dimensionless Luttinger paramgieand
v, describe the valence band of the specific material with
where we have additionally assumed that the Fermi energgffects of spin-orbit coupling being included if,. The
g¢ is larger or at least of the same order &g, which is  eigenstates of Eq14) can be chosen to be eigenstates of the
usually the case in experimental situations. The zeroth-ordexelicity operaton = (k- S)/k. The heavy holes correspond to
contributione/8 is the result obtained by Sinowt al. us-  \ =+3/2, while the light holes hava=*1/2. From the
ing directly a zero-frequency perturbative expression for tha<ubo formula (1) one finds for the frequency-dependent

spin-Hall current neglecting effects of a finite electron quasi-spin-Hall conductivity after lengthy but elementary calcula-
particle lifetime,[cf. Eq. (8) in Ref. 15. Remarkably, this tions

value is universal in the sense that it is independend .of
Therefore, it predicts a finite spin-Hall conductivity even in
the limit of vanishing spin-orbit couplingg— 0, which is e 2 o
certainly an unphysical feature. However, this paradox can aff(w)= - —2(5) (y1+2v,) v, f lfdk
be resolved by the observation that the above two limiting T K
processes do not commute. In fact, in the opposite limit

er7/fi<1 the lowest order of the second term on the rhs of %
Eq. (6) cancels the first one, and the spin-Hall conductivity is o, [2h L\
given in leading order by (@+i/m) = vk

e e (#l7)?
Sz -
7y (0) 8m 647w ere;

k4

(15

EREf 2

e
O_S,Z ) _

T (72

Thus, to obtain the correct dc spin-Hall conductivity, the
“Rashba energy”sg=m* o?/#? should be compared with kil — /Z_ms 1 (16)
the energy scalé/+ of the impurity scattering. leg>#%/7 f h2 "y +2y,

the spin-Hall conductivity is close to its “universal” value

e/8m, while it vanishes for small spin-orbit coupling and

finite impurity scattering. In epitaxially grown GaAs quan- are the Fermi wave numbers for heavy and light holes, re-
tum wells mobilitiesu =er/m* of order 100 mi/Vs can rou-  SPectively. Again it is instructive to consider the case for
tinely be achieved, corresponding to values#ér of order ~ weak spin-orbit coupling;y,<y;. For y,=0 we havek{

0.01 meV. This is safely smaller than typical values for the= k'f=:k,‘3= J2me(/y,42?, and therefore the integral in Eq.
Rashba energy reported from experiméhit&'being of order  (15) vanishes for finite >0 and all frequencies. Thus,
0.1,...,1.0 meV. However, it should be noted that the as before for the case of electrons, the dc spin-Hall conduc-
Rashba coefficient is typically proportional to an externaltivity vanishes for vanishing spin-orbit coupling if a finite
electric field applied in the growth direction of the quantummomentum relaxation rate is taken into account. This result
well. Therefore, also smaller values of the Rashba energy aiis in contrast to statements in Refs. 14 and 16, where such
possible where the finite momentum relaxation time will in- dissipation effects were neglected. Specifically,dot 0 we
fluence the value of the spin-Hall conductivity. have

R
(m . (13 where
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result is obtained from a rigorous linear-response theory
—— | k; —k'f given by the Kubo formula with full frequency dependence.
4m 72 Let us illustrate our results on the typical example given
in Ref. 14, where a GaAs sample with hole density
=10 cm 3, corresponding to a Fermi energy of the order

_ k?dk 1 (17) of a few ten meV, and a mobility ofu=er/m*
Ky ° 2 : =50 cnf/V's. To obtain an upper bound ferwe takem* to
L 7 m vk be the heavy-hole mass* ~0.5 m, corresponding to/;

o , _ ~7 andy,~2.5 for GaAs>® This leads to a lower estimate
The remaining integral is elementary leading to a rather tesy, 7/ .- being also of the order of a few ten meV. Thus, in the

dious expression which shall not be given here. However, w6 scenario, the finite momentum relaxation timaust
see that the value of the above integral is governed by thgg taen into account when calculating the spin-Hall conduc-
ratio of i/ 7 and the “spin-orbit energysso:=y2(k))/m  tivity, differently from the approach in Ref. 14.

=2¢e5y5/v1, sincek§J is a typical wave number in the inte-

gration interval. Ifi/ > ¢, the spin-Hall conductivity van- V. CONCLUSIONS

ishes as . .
We have studied the spin-Hall transport of electrons and

2 2 holes in semiconductors using the Kubo formula in the cor-
€so0 €so0 Y2 - . . .
7. a5 rect zero-frequency limit taking into account the finite mo-
T TN mentum relaxation time of carriers in real semiconductors.
is approach allows to analyze the range of validity of re-
(18 Th h allows to analyze th f validity of
where we have also assumed that the ratidy; is small as  cent theoretical finding¥'~*®In particular, the spin-Hall con-

it is usually the cas& In the opposite casé/r<sg, one  ductivity is found to vanish for vanishing spin-orbit coupling
finds if the correct zero-frequency limit is performed. In the case

of conduction band electrons in the presence of Rashba spin-

2
e & Y2
Sz — A0 Z80) ‘<2
aS%(0) 7724|<f(—ﬁ/7) L +0

s, e 7t+2v| . (k?)4 1\% [1)° _orbit cqupling i|_f1 a high—mob_ility quantum well, spin-orbit
oy (0)=— ——— ki —ki+ 12 E - F interaction dominates, for typical experimental for the rashba
4a f f coefficient, the effects of momentum relaxation, and the

572 YRR spin-Hall conductivity is close to its “universal” value as

i } +0 (_) ) (19 predicted in Ref. 15. This situation can be different for typi-
€so €so cal p-doped bulk samples, where dissipation can substan-

We note that the zeroth order of this result agrees with th(I,‘IaIIy affect the spin-Hall transport.
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