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Dissipation effects in spin-Hall transport of electrons and holes
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~Received 21 January 2004; published 21 April 2004!

We investigate the spin-Hall effect of both electrons and holes in semiconductors using the Kubo formula in
the correct zero-frequency limit taking into account the finite momentum relaxation time of carriers in real
semiconductors. This approach allows us to analyze the range of validity of recent theoretical findings. In
particular, the spin-Hall conductivity vanishes for vanishing spin-orbit coupling if the correct zero-frequency
limit is performed.
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I. INTRODUCTION

In the recent years, an increasing interest in sp
dependent phenomena in semiconductors has develo
mostly in the field of spin electronics, which has by no
become a major branch of solid-state research.1–3 One of the
most investigated issues in this field is the influence of sp
orbit coupling on various transport properties of both el
trons and holes. Many of these studies were inspired by
paradigmatic proposal of a spin field-effect transistor due
Datta and Das;4 for recent work in this direction see, e.g
Refs. 5–13. Most recently, interesting theoretical studies
the spin-Hall effect have been performed.14–16 This effect
amounts in a spin current~as opposed to a charge curren!
driven by an electric field perpendicular to it. In the prese
paper we reexamine these findings using the Kubo form
with full frequency dependence, treating both the case
electrons15 and holes,14,16and analyze the range of validity o
previous theoretical results obtained for the case of di
current. Here it is crucial to perform the correct zer
frequency limit taking into account an imaginary part of t
frequencies occurring the Kubo formula.

The notion of the spin-Hall effect in systems of itinera
spinful carriers was considered first by Dyakonov and Per17

in the early seventies, and, independently, in a more re
paper by Hirsch.18 In these studies the predicted spin-H
effect is due to spin-orbit effects influencing scattering p
cesses upon static impurities. Following the terminolo
used in15,16 this is referred to as theextrinsicspin-Hall effect
since it depends on impurity scattering. This is in contras
the intrinsic spin-Hall effect predicted very recently in Ref
14–16 which is entirely due to spin-orbit coupling terms
the single-particle carrier Hamiltonian and independent
any scattering process. As we shall see below, this distinc
between intrinsic and extrinsic effects becomes ambiguou
the limit of weak spin-orbit coupling when lifetime effects o
carrier quasiparticles have to be taken into account.

Yet another type of spin-Hall effect was studied recen
by Meier and Loss19 in a two-dimensional Heisenberg mod
consisting of isolated spins, in contrast to the itinerant-car
systems mentioned before.

Spin-orbit coupling also induces off-diagonal compone
of the conductivity tensor for charge transport. An importa
example is the anomalous Hall effect as it occurs in se
conductors in the presence of magnetic impurities.20 Here, as
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in the case of the aforementioned spin-Hall effect, the o
diagonal elements of the charge conductivity tensor are
same in magnitude but differ in sign. Therefore, this antisy
metric conductivity tensor has the same components in
orthogonal coordinate systems, and in this sense the trans
properties are isotropic. This is different from charge tra
port of electrons in quantum wells as investigated recen
Ref. 12. In such systems, the presence of spin-orbit coup
of both the Rashba21 and the Dresselhaus22 type leads to
anisotropic dispersion relations and Fermi contours. This f
ture leads to symmetric off-diagonal elements in the cond
tivity tensor and therefore to preferred eigendirections
charge transport.11,12This predicted effect offers a possibilit
to detect spin-orbit coupling by measuring diffusive sp
unpolarized charge currents in a Hall-type geometry, wh
should be a comparatively simple experimental task.

This paper is organized as follows. In Sec. II we summ
rize elementary properties of linear-response theory as g
by the Kubo formula. This technique is applied then in S
III to spin-Hall transport of electrons in a quantum well
the presence of Rashba spin-orbit coupling. In Sec. IV
investigate the case of bulk holes described by the Luttin
Hamiltonian in the spherical approximation. We end w
conclusions in Sec. V.

II. KUBO FORMULA AND ZERO-FREQUENCY LIMIT

Our present study of spin-Hall effect of electrons a
holes in semiconductors is based on the usual Kubo form
with full frequency dependence for a spatially homogene
electric field,23

sxy
S,z~v!5

e

A~v1 ih!
E

0

`

ei (v1 ih)t

3(
kW ,m

f „«m~kW !…^kW ,mu@ j x
S,z~ t !,vy~0!#ukW ,m&,

~1!

where we have assumed zero temperatureT50 and nonin-
teracting carriers, which allows to formulate the two-bo
Green’s function entering the conductivity Kubo formula
terms of single-particle operators.A is the volume of the
system,e is the elementary charge, andf («m„kW )… is the T
©2004 The American Physical Society15-1
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50 Fermi distribution function for energy«m(kW ) at wave
vector kW in a dispersion branch labeled bym. The velocity
operators are given byvW 5 i @H,rW#/\ whererW is the position
operator, andH is the single-particle Hamiltonian not includ
ing the external electric field. The spin-current operator~in
the Dirac picture! for spin moment polarized along thez
direction and flowing in thex direction is given by

j x
S,z~ t !5eiHt/\ 1

2 ~szvx1vxs
z!e2 iHt/\, ~2!

wheresW is the spin operator. The right-hand side of Eq.~1!
has to be understood in the limit of vanishing imaginary p
h.0 in the frequency argument. This imaginary part in t
frequency reflects the fact that the external electric field
assumed to be switched on adiabatically starting from
infinite past of the system, and it also ensures causality p
erties of the retarded Green’s function occurring in Eq.~1!.
In general, and as we will discuss in more detail below,
limiting processh→0 does not commute with other limits
and, in particular, the dc limitv→0 has to be taken with
care.23 In the presence of random impurity scattering, t
retarded two-body Green’s function in Eq.~1! will generi-
cally have a frequency argument with positive imagina
part.23 In this case the limith→0 is unproblematic, and the
imaginary part of the frequency argument is just due to
purity scattering and/or other~many-body! effects. Generi-
cally, and as we will discuss in more detail below, the ima
nary parth.0 corresponds to a finite carrier quasipartic
lifetime.

III. ELECTRONS WITH RASHBA COUPLING

Sinova et al.15 have considered the spin-Hall effect
noninteracting electrons confined to the two-dimensio
(xy) plane of a quantum well and being subject to Rash
spin-orbit coupling,3,21

H5
pW 2

2m*
1

a

\
~pxs

y2pys
x!, ~3!

where m* is the effective mass,a the Rashba coefficient
and the other notations are standard. We note that in sys
where both the Rashba and the Dresselhaus spin-
coupling3,22 are present, various interesting transport effe
can arise from the interplay of these two terms, for rec
studies see, e.g., Refs. 5, 7–9, 11, 12. For simplicity, h
ever, we shall concentrate here on the Rashba term only.
Hamiltonian~3! has two energy branches,

«6~kW !5
\2k2

2m*
6ak ~4!

with eigenstates

^rWukW ,6&5
eikW rW

AA

1

A2
S 1

6eix(kW )D , ~5!

wherex(kW )5arg(2ky1 ikx). By a straightforward calcula
tion one obtains for the spin-Hall conductivity
16531
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S,z~v!52syx

S,z~v!

52
e

4p

a

m*
E

kf
1

kf
2

dk
k2

~v1 ih!22S 2ak

\ D 2 , ~6!

where

kf
65A2m*

\2
« f1S m*

\2 D 2

a27
m*

\2
a ~7!

are the Fermi momenta on the two dispersion branches
positive Fermi energy« f.0. In the presence of scattering o
static random impurities, the imaginary parth.0 in the fre-
quency argument is given, to lowest order in the Rash
coefficient and the impurity potential, by the inverse of t
momentum relaxation time. This is certainly a very intuitiv
result; however, let us sketch a formal proof for this ass
tion. The time-dependent spin-current operator in the pr
ence of Rashba coupling reads

j x
S,z~ t !5

\

2m*
sz~ t !px~ t !, ~8!

where the time evolution includes impurity scattering.
lowest order in the spin-orbit coupling and the impurity sc
tering we have

j x
S,z~ t !'

\

2m*
s0

z~ t !px
0~ t !, ~9!

where the time evolution ofs0
z is only due to the Hamil-

tonian ~3! and evaluated in the above expression~6!, while
px

0(t) contains the impurity scattering but not the spin-or
coupling. Now it is useful to note that, in order to compu
the expectation values in the Kubo formula Eq.~1!, only
matrix elements of the time-dependent momentum oper
px

0(t) which are diagonal in the wave vector index a
needed. This enables to apply superoperator techniques
veloped in Ref. 24 yielding

@px
0~ t !#kWkW'@e2V0tpx

0~0!#kWkW5@e2t/tpx
0~0!#kWkW , ~10!

whereV0 is the scattering master operator in lowest order
the scattering potential.24 It is the same operator as it occu
as the scattering term in the usual Boltzmann equation w
evaluated in lowest oder via Fermi’s golden rule. For imp
rity potentials being isotropic in real space, the moment
px is an exact eigenfunction ofV0, and the eigenvalue is
given by the well-known inverse momentum relaxation tim
1/t(«) Refs. 24 and 25 which in general depends on
energy«(kW ). To lowest order in the Rashba coupling, th
energy argument can be replaced with the Fermi energ
the absence of spin-orbit interaction. We note that this m
mentum relaxation rate 1/t is the same as obtained in th
standard diagrammatic approach and thus contains the ve
correction.23 However, this vertex correction vanishes f
short-range isotropic scatterers. The above argumentatio
fers to the Rashba Hamiltonian~3! for conduction-band elec
5-2



e

m

in
-

-

rg

rd

th
s

in

ca
in
m
o
is

he

e
d
n-

he

he
a
m
a

in-

pin-
in

ribe
re-
-
ate
la

al

ith

the
o

nt
la-

re-
for

.

uc-
e
sult
uch

DISSIPATION EFFECTS IN SPIN-HALL TRANSPORT . . . PHYSICAL REVIEW B 69, 165315 ~2004!
trons; similar considerations can be performed in the cas
valence-band holes to be discussed further below.

For v50, but finite momentum relaxation rate 1/t.0,
Eq. ~6! yields

sxy
S,z~0!52syx

S,z~0!

5
e

8p
2

e

32p

\/t

«R
•tan21F4

«R

\/t S 118
«R« f

~\/t!2D 21G ,

~11!

where we have introduced the ‘‘Rashba energy’’«R
5m* a2/\2. Clearly, this is the energy which has to be co
pared with the energy scale\/t of the impurity scattering in
order to obtain the correct zero-frequency limit of the sp
Hall conductivity. If the impurity scattering is weak com
pared to spin-orbit coupling,«Rt/\@1, we have the expan
sion

sxy
S,z~0!5

e

8p
2

e

64p

~\/t!2

«R« f
1OF S \/t

«R
D 2G , ~12!

where we have additionally assumed that the Fermi ene
« f is larger or at least of the same order as«R , which is
usually the case in experimental situations. The zeroth-o
contributione/8p is the result obtained by Sinovaet al. us-
ing directly a zero-frequency perturbative expression for
spin-Hall current neglecting effects of a finite electron qua
particle lifetime, @cf. Eq. ~8! in Ref. 15#. Remarkably, this
value is universal in the sense that it is independent ofa.
Therefore, it predicts a finite spin-Hall conductivity even
the limit of vanishing spin-orbit coupling,a→0, which is
certainly an unphysical feature. However, this paradox
be resolved by the observation that the above two limit
processes do not commute. In fact, in the opposite li
«Rt/\!1 the lowest order of the second term on the rhs
Eq. ~6! cancels the first one, and the spin-Hall conductivity
given in leading order by

sxy
S,z~0!5

e

p

«R« f

~\/t!2
1OF S «R

\/t D 2G . ~13!

Thus, to obtain the correct dc spin-Hall conductivity, t
‘‘Rashba energy’’«R5m* a2/\2 should be compared with
the energy scale\/t of the impurity scattering. If«R@\/t
the spin-Hall conductivity is close to its ‘‘universal’’ valu
e/8p, while it vanishes for small spin-orbit coupling an
finite impurity scattering. In epitaxially grown GaAs qua
tum wells mobilitiesm5et/m* of order 100 m2/Vs can rou-
tinely be achieved, corresponding to values for\/t of order
0.01 meV. This is safely smaller than typical values for t
Rashba energy reported from experiments26–34being of order
0.1, . . .,1.0 meV. However, it should be noted that t
Rashba coefficient is typically proportional to an extern
electric field applied in the growth direction of the quantu
well. Therefore, also smaller values of the Rashba energy
possible where the finite momentum relaxation time will
fluence the value of the spin-Hall conductivity.
16531
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IV. HOLES IN THE VALENCE BAND OF III-V
SEMICONDUCTORS

Murakami, Nagaosa, and Zhang have investigated s
Hall transport in three-dimensional bulk systems of holes
the valence band of III-V semiconductors.14 These authors
used a phenomenological semiclassical theory to desc
adiabatic hole dynamics. Their work was revisited most
cently by Culceret al.16 within the framework of a semiclas
sical theory of wave packet dynamics. Here we will evalu
the spin-Hall conductivity using the rigorous Kubo formu
~1!. Our starting point14,16 is Luttinger’s four-band Hamil-
tonian for heavy and light holes in the spheric
approximation,35

H5
1

2m F S g11
5

2
g2D pW 222g2~pW •SW !2G . ~14!

Here m is the bare electron mass, andSW are spin-
3/2-operators. The dimensionless Luttinger parameterg1 and
g2 describe the valence band of the specific material w
effects of spin-orbit coupling being included ing2. The
eigenstates of Eq.~14! can be chosen to be eigenstates of
helicity operatorl5(kW•SW )/k. The heavy holes correspond t
l563/2, while the light holes havel561/2. From the
Kubo formula ~1! one finds for the frequency-depende
spin-Hall conductivity after lengthy but elementary calcu
tions

sxy
S,z~v!52

e

p2 S \

mD 2

~g112g2!g2•E
kf

l

kf
h

dk

3
k4

~v1 i /t!22S 2\

m
g2k2D 2 , ~15!

where

kf
h/ l5A2m

\2
« f

1

g172g2
~16!

are the Fermi wave numbers for heavy and light holes,
spectively. Again it is instructive to consider the case
weak spin-orbit coupling,g2!g1. For g250 we havekf

h

5kf
l 5:kF

05A2m« f /g1\2, and therefore the integral in Eq
~15! vanishes for finite 1/t.0 and all frequenciesv. Thus,
as before for the case of electrons, the dc spin-Hall cond
tivity vanishes for vanishing spin-orbit coupling if a finit
momentum relaxation rate is taken into account. This re
is in contrast to statements in Refs. 14 and 16, where s
dissipation effects were neglected. Specifically, forv50 we
have
5-3
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sxy
S,z~0!5

e

4p2

g112g2

g2
•S kf

h2kf
l

2E
kf

l

kf
h

dk
1

11S 2

\/t

\2

m
g2k2D 2D . ~17!

The remaining integral is elementary leading to a rather
dious expression which shall not be given here. However,
see that the value of the above integral is governed by
ratio of \/t and the ‘‘spin-orbit energy’’«soª\2g2(kf

0)2/m
52« fg2 /g1, sincekf

0 is a typical wave number in the inte
gration interval. If\/t@«so the spin-Hall conductivity van-
ishes as

sxy
S,z~0!5

e

p2
4kf

0S «so

\/t D 2 g2

g1
1OF S «so

\/t D 4

,S «so

\/t D 2S g2

g1
D 2G ,

~18!

where we have also assumed that the ratiog2 /g1 is small as
it is usually the case.36 In the opposite case\/t!«so one
finds

sxy
S,z~0!5

e

4p2

g112g2

g2
H kf

h2kf
l 1

~kf
0!4

12 F S 1

kf
hD 3

2S 1

kf
l D 3G

3S \/t

«so
D 2J 1OF S \/t

«so
D 4G . ~19!

We note that the zeroth order of this result agrees with
expression given in Ref. 16 for the dc spin-Hall conductiv
neglecting dissipation effects,37 but differs from the result
reported in Ref. 14. On the present stage we cannot comm
on the question whether this difference is an artifact of
semiclassical approach used in Ref. 14, whereas the pre
S.
.

.

ys
-

16531
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result is obtained from a rigorous linear-response the
given by the Kubo formula with full frequency dependenc

Let us illustrate our results on the typical example giv
in Ref. 14, where a GaAs sample with hole densityn
51019 cm23, corresponding to a Fermi energy of the ord
of a few ten meV, and a mobility ofm5et/m*
550 cm2/V s. To obtain an upper bound fort we takem* to
be the heavy-hole mass,m* '0.5 m, corresponding tog1
'7 andg2'2.5 for GaAs.36 This leads to a lower estimat
for \/t being also of the order of a few ten meV. Thus, in t
above scenario, the finite momentum relaxation timet must
be taken into account when calculating the spin-Hall cond
tivity, differently from the approach in Ref. 14.

V. CONCLUSIONS

We have studied the spin-Hall transport of electrons a
holes in semiconductors using the Kubo formula in the c
rect zero-frequency limit taking into account the finite m
mentum relaxation time of carriers in real semiconducto
This approach allows to analyze the range of validity of
cent theoretical findings.14–16In particular, the spin-Hall con-
ductivity is found to vanish for vanishing spin-orbit couplin
if the correct zero-frequency limit is performed. In the ca
of conduction band electrons in the presence of Rashba s
orbit coupling in a high-mobility quantum well, spin-orb
interaction dominates, for typical experimental for the rash
coefficient, the effects of momentum relaxation, and
spin-Hall conductivity is close to its ‘‘universal’’ value a
predicted in Ref. 15. This situation can be different for typ
cal p-doped bulk samples, where dissipation can subs
tially affect the spin-Hall transport.
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