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Two-dimensional analogs of the H2
¿ ion in stationary electric fields

Mikhail V. Ivanov* and Reinhard Schinke
Max-Plank-Institut fu¨r Strömungsforschung, Bunsenstrasse 10, D-37073 Go¨ttingen, Federal Republic of Germany

~Received 9 July 2003; published 12 April 2004!

We calculate energies and lifetimes for two two-dimensional analogs of the hydrogen molecular ion H2
1 in

external static electric fields directed along the axis of the system. They are two positive Coulomb impurity
centers with one electron in a narrow two-dimensional quantum well and the electron in a double quantum dot.
For state 2psu we obtain oscillating dependencies of the ionization rateG on the electric-field strengthF and
the distance between centersR. We explain the oscillation picture by an interference of the electronic wave
between two centers. The oscillations decrease faster for a pair of quantum dots with short-range attractive
potentials than for a pair of Coulomb centers. The latter is due to the fact that long-range Coulomb potentials
form a kind of channel preventing a dissipation of the electronic density sidewards from the axis of the system.

DOI: 10.1103/PhysRevB.69.165308 PACS number~s!: 73.63.Kv, 73.50.Fq, 73.23.Hk, 33.55.Be
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I. INTRODUCTION

The properties of both neutral and charged donors in n
row quantum wells are a subject of considerable interest
ing several decades.1–8 In very narrow wells a neutral dono
can be considered as a two-dimensional~2D! analog of the
hydrogen atom. A frequently used compound for experim
tal investigations~see, for example, Refs. 7 and 8! of such
systems is layers of GaAs/AlGaAs. The high mobility, i.
small effective mass of electrons and the comparatively la
dielectricity constant of this and many other semiconduc
materials, facilitate to study strong electric-field effects in t
laboratory. Investigations of quantum dots of various orig
including their behavior in external electric fields is also
point of many experimental and theoretical works. An inve
tigation of the electronic properties of ensembles of don
or quantum dots is natural in this context. Effects of elec
fields on these ensembles can affect various propertie
semiconductors including their conductivity.

In this work we restrict ourselves to the simple
ensemble of two quantum dots or two Coulomb impur
centers and consider the behavior of an electron in suc
system.

In this formulation the problem is a close analog to t
problem of the hydrogen molecular ion H2

1 in an electric
field. The latter problem was investigated in recent years
a number of interesting physical results were reported.
most impressive results were obtained for electric fie
parallel to the molecular axis. They are the oscillati
dependencies of the ionization rateG of the state 2psu on
the electric-field strengthF and the internuclear distanceR.
These dependencies are clearly visible in Fig. 5 of Refs
To get a better basis for comparison of 2D and 3D ca
following in next sections we provide in Fig. 1 our resu
for the hydrogen molecular ion, obtained by a solution
the corresponding 3D Schro¨dinger equation by the metho
described in the following section and in Refs. 10. Mo
of existing interpretations of this phenomenon9,11–13address
one or two major maxima of the ionization rateG to
an interaction of a quasistationary state localized at
of the nuclei with broad resonance states at the second
However, this argumentation does not explain the nea
0163-1829/2004/69~16!/165308~9!/$22.50 69 1653
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periodic character of the functionG(R) and the decrease
of its period with F. A different point of view on this
phenomenon, based on an analysis of a phase of the w
function, is presented in Ref. 14. But all the calculations
the latter work are carried out for a simple one-dimensio
model. These details concerning the H2

1 ion were an addi-
tional reason for investigating two-dimensional system
similar to H2

1.

II. FORMULATION OF THE PROBLEM AND THE
METHOD OF SOLUTION

The Schro¨dinger equation for an electron confined in th
plane (x,y) and moving in the field of two Coulomb cente
at points (2R/2,0) and (R/2,0) and a constant uniform elec
tric field F pointing along thex direction is given by

F2
\2

2mm0
S ]2

]x2
1

]2

]y2D 2
e2

kA~x1R/2!21y2

2
e2

kA~x2R/2!21y2
2ueuFxGc5Ec, ~1!

wherem is the effective mass of the electron inm0 units,k
is the dielectric constant, ande is the charge of the electron
PositionsE0 and half-widthsG/2 of resonances can be ob
tained from complex eigenvalues of the energyE5E0
2 iG/2. These eigenvalues have to correspond to solution
Eq. ~1! having the asymptotics of an outgoing wave. At t
same time the value 1/G gives the average lifetime of corre
sponding quasistationary states. Equation~1! can be rewrit-
ten in effective atomic units as

F2
1

2 S ]2

]x2
1

]2

]y2D 2
1

A~x1R/2!21y2

2
1

A~x2R/2!21y2
2FxGc5Ec. ~2!
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The units of energy, length, field strength, and time
mk22(27.2) eV, km21(5.2931029) cm, m2k23(5.14
3109) V/cm, andk2m21(2.42310217) sec. When we con-
sider a case of two quantum dots possessing non-Coulom
attractive potentialsV(x,y), we have to substitute the tw
first potential terms in Eq.~2! by an expression

V~x1R/2,y!1V~x2R/2,y!. ~3!

For F.0 the external electric field destroys the symme
between the two centers. In result, the potential energy of
electron in the vicinity of the center (2R/2,0) becomes, gen
erally speaking, higher than in the corresponding vicinity
the center (R/2,0). In the following we have to distinguis
these two Coulomb centers. To this end we refer to the ce
at (2R/2,0) as to the upper one, and the center at (R/2,0)
will be noted as the lower one.

Useful information for the limits R→` and R→0
can be obtained from solutions of an equation for a o
center problem,

F2
1

2 S ]2

]x2
1

]2

]y2D 2
Z

r
2FxGc5Ec, ~4!

where Z is the charge of the Coulomb center andr 5(x2

1y2)1/2. For F50 this equation has well-known analyt
solutions15 with energy levels forming a 2D Coulomb serie
with energies

En52
Z2

2~n21/2!2
, ~5!

where n51,2,3, . . . . Numerical solutions of Eq.~4! for
F.0 are obtained in Ref. 16 forZ51. Results for other
Z values can be easily obtained by means of a sca
relation

E~Z,F !5Z2E~1,F/Z3!. ~6!

FIG. 1. Half-widths of levels 1ssg ~dashed line! and 2psu

~solid line! of the hydrogen molecular ion H2
1 in a longitudinal

electric field F50.1 as functions of the internuclear distanceR.
Atomic units.
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The spatial coordinates are scaled in this situation
x(Z,F)5x(1,F/Z3)/Z.

We have solved Eq.~2! by a multidimensional finite-
difference method. It is presented in detail in Refs. 17–
~bound states, see also its applications for Hartree-Fock
culations of atoms in strong magnetic fields20,21and for some
other systems22,23! and in Refs. 10 and 24–26~quasistation-
ary states in external electric fields!.

The applications in electric fields include the first calc
lation of energies and half-widths of levels of the H2

1 mo-
lecular ion24 and detailed calculations for the hydrogen ato
in parallel electric and magnetic fields.10 In Refs. 10 and
24–26 we have developed different approaches for calc
tion of wave functions with the asymptotics of an outgoi
wave. Two of these approaches, i.e., a boundary condi
method24,25 and smooth exterior complex scaling,10 are ap-
plicable for the two-center problem considered here. F
most of the calculations presented below we used the sm
exterior complex scaling, which provides essential adv
tages in the calculations.

In contrast to variational calculations we are not restric
by using a particular ansatz for the wave function but p
form a full grid solution to the Schro¨dinger equation that
allows us to control and to estimate the remaining min
deviations from the exact eigenfunctions and eigenvalu
One of elements of this control consists in employing t
Richardson’s procedure,18 which provides a reliable estima
tion of numerical errors.

Equation~2! was solved on rectangular meshes in Car
sian coordinates (x,y). A typical size of meshes in the
present calculations for Coulomb centers was, e.g.,
nodes in they direction and 3000 in thex direction. The
number of nodes for thex coordinate depends on the electri
field strength and increases with decreasingF values. Thus,
the meshes contain more nodes than those used in our c
lations of 3D systems.10,24–26The difference is due to highe
effect of Coulomb singularities on the precision of calcu
tions in 2D Schro¨dinger equations compared to 3D one
This effect could be roughly evaluated as

dE'E
V0

1

r
ucu2dV,

where the regionV0 is, e.g., a circle~2D! or a sphere~3D! of
a radiusr 0 centered at the singularity. Ifucu2 does not vanish
as r 0→0, thendE5O(r 0

2) in a 3D case andO(r 0
1) in 2D.

Therefore, in the present calculations we need thic
meshes to achieve the same precision as in the 3D case
second reason for using thicker meshes is the numerical
resentation of fast oscillating wave functions. As one can
in the following sections, this is especially important f
largeR values.

III. TWO COULOMB CENTERS

In Fig. 2 we present a plot of the potential energy of
electron for two different central potentialsV considered in
this paper. For a system of two Coulomb centers~2! pre-
sented in this section we show also the positions of the 1ssg
8-2
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TWO-DIMENSIONAL ANALOGS OF THE H2
1 ION IN . . . PHYSICAL REVIEW B 69, 165308 ~2004!
and 2psu levels. At F50 and large~but finite! distancesR
between the centers the level 2psu lies somewhat higher
than the ground state 1ssg . As R→` these states becom
degenerate. Their wave functions have equal densities aF
50 in the vicinities of both centers. The difference betwe
these two wave functions is that the wave function of t
1ssg has no zeros, whereas the wave function of the 2psu
changes its sign atx50. The corresponding states atF.0
can be referenced according to a noncrossing rule. A
result, the ground state retains the name 1ssg . For not
very smallR andF values the corresponding electronic de
sity is concentrated practically around the right~the lower!
center in Fig. 2. On the other hand, the electronic den
of the state 2psu concentrates near the left~the upper!
Coulomb center.

Our results for the two states 1ssg and 2psu are pre-
sented in the following figures. In the upper panel of Fig
we depict the real parts of the energy of these states fo
broad range of electric-field strengths. For the electro
states 1ssg and 2psu these field strengths correspond bo
to the regime of underbarrier tunneling of the electronF
<1) and to the overbarrier regime (F.1) for the electron
leaving the system. ForR.3 the functionsE0(R) form an
evident fanlike picture, corresponding to the two grou
states of the electron in separate potential wells.
R,1 these dependencies correspond to the ground an
excited states of the united system. In the region betw
R51 and R53 one can see a picture of a transformati
between these two scenarios. All the dependenciesE0(R) for
the 1ssg state for largeR values do not reveal any deviation
from linearity. The same takes place for the state 2psu at
fields corresponding to the regime of tunneling. On the ot
hand, for strong electric fields the dependencies of the
part of the energy of the state 2psu contain oscillations,
corresponding much more visible oscillations of the ima

FIG. 2. Potential energy of an electron in a two-dimension
two-center system atR510, F50.5, andy50 for two Coulomb
centers~solid lines! and two Gaussian potential wells~dotted line!.
The horizontal lines present the real parts of energies of the 1ssg

and 2psu levels in the system of two Coulomb centers. Effecti
atomic units.
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nary part of the energy of this state, presented in the lo
panel of Fig. 3.

These oscillations are the most interesting feature of
functions G/2(R). Their presence does not depend on t
electric-field strength including both regimes of the und
barrier tunneling and overbarrier ionization. The whole ran

FIG. 3. Real and imaginary parts of the energy of an electron
a two-dimensional system of two Coulomb centers as functions
the distanceR between the centers for various electric-fie
strengths. States 1ssg and 2psu . Effective atomic units.

FIG. 4. Imaginary parts of energies of states 1ssg ~dashed line!
and 2psu ~solid line! in a two-dimensional system of two Coulom
centers as functions of the distanceR between centersF50.2. Ef-
fective atomic units.
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MIKHAIL V. IVANOV AND REINHARD SCHINKE PHYSICAL REVIEW B 69, 165308 ~2004!
of G/2 in the lower panel of Fig. 3 covers more than t
decimal orders. In comparison with the real part of the
ergy the values and oscillations ofG/2 are negligibly small
for small F values. This explains the absence of visible o
cillations of the real part of the energy for relatively we
electric fields. On the other hand, at strong electric fields
real and imaginary parts of the energy have comparable m
nitudes and the oscillations ofG/2 are reflected in the behav
ior of E0(R). For each separate value of the electric-fie
strength the amplitude of oscillations decreases with incre
ing R values. In the limit of infinitely separate centers t
value G/2 for the state 2psu tends to the value, which is
characteristic for the ground state of a separate center
dependent onF values. Numerical values for this limit ar
given in Ref. 16. This feature is more visible in Figs. 4–1
where we presentG/2(R) for both 2psu and 1ssg states.
The data in Figs. 4–11 are presented on various scales
allow one to see different details of the behavior of functio
G/2(R) for these two states.

Opposite to the state 2psu the function G/2(R) for
the state 1ssg has no oscillations and reveals only
sharp decrease asR→0 and a slow convergence to a limit a
R→`. The first feature is associated with a sharp growth
the binding energy of the electron asR→0. ~For F50
and R50 the energy of the ground state is28 a.u. in
contrast toE522 a.u. forR5`). An increase ofG/2 for

FIG. 6. Same as Fig. 4 forF50.4.

FIG. 5. Same as Fig. 4 forF50.3.
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state 2psu as R→` has an analogous origin and resu
from decreasing the binding energy of this excited state
the limit of the ‘‘united atom.’’ A slow convergence ofG/2
for the state 1ssg to the limit R→` results from the long-
range character of the Coulomb potential and a slow
crease of the influence of the neighboring~upper! center as
R→`.

One can see in Fig. 3 that the oscillations ofG/2 for
different F form a regular picture, so that it is possible
identify corresponding maxima and minima of theG/2(R)
for differentF values. Aside from the decrease of the amp
tude of oscillations ofG/2(R) for state 2psu with increasing
R the important feature of these functions is a decrease of
period of the oscillations with increasingR andF values. The
latter feature leads to more and more sharp maxima
minima in the corresponding plots when increasing
electric-field strength. These features are good visible
Figs. 3–12. Rather similar features can be seen for a hy
gen molecular ion H2

1 in Fig. 1 and in special works in the
literature addressing directly this problem.9,11–13 A picture
similar to Fig. 3 can be seen in Ref. 9~Figs. 3 and 5!. The
main difference between the 3D hydrogen molecular i
considered in the cited papers, and its 2D analog, which
study here, consists in faster decrease of the oscillation
G/2 at largeR in the 3D system. This difference can be se
in Fig. 11. Along with 2D curves forF5F2D52 we present

FIG. 7. Same as Fig. 4 forF50.7.

FIG. 8. Same as Fig. 4 forF51.0.
8-4
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TWO-DIMENSIONAL ANALOGS OF THE H2
1 ION IN . . . PHYSICAL REVIEW B 69, 165308 ~2004!
in this figure a curve for state 2psu of the 3D hydrogen
molecule. Due to different binding energies of the electron
2D and 3D systems the characteristic electric-field streng
providing similar effects are different for these systems.
order to make 2D and 3D dependencies comparable the l
have to be scaled. It is possible to do this by means of r
tion ~6! with a formal parameterZ5(F2D /F3D)1/3. In Fig. 11
we give the 3D curve forF3D50.1. Comparing to Fig. 1 the
G values in Fig. 11 have an additional multiplier 202/3

whereas theR values are multiplied by 2021/3.
The faster distinguishing of oscillations and maybe low

precision of calculations could make conditions for expla
ing only the first of the maxima in curvesG(R) in papers,
cited above~two first maxima in Ref. 9!. The explanation
was based on a conjecture that a separate Coulomb pote
well has broad resonances lying at relatively high energ
and the maxima take place at points of intersections of
parts of energies of these resonances with the relatively
row level 2psu . Such an explanation can be very reasona
in many cases, but it does not explain two or three ma
features of the picture obtained for the hydrogen molecu
ion and its two-dimensional analogs. They are the periodi
of maxima and minima, the sine-shaped form of depend
cies for largeR values, and the fact that the period of th
oscillations decreases whereas the maxima become narr
with increasing the electric-field strength. It should be no
that if the cited hypothesis were true, the shape of max

FIG. 9. Same as Fig. 4 forF51.2.

FIG. 10. Same as Fig. 4 forF51.5.
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should correspond to the shape of the broad resona
at the lower potential well. Thus, as one can see in Fig
these resonances must be very broad at smallF and become
narrower when increasing the electric-field streng
Moreover, our results allow one to obtain that the widths
all these resonances are to be proportional to the va
AF. This contradicts a well-known picture for both a hydr
gen atom in strong electric fields,27–29,31which is actual for
the hydrogen molecular ion, and for a two-dimension
donor,16 actual for the 2D system, considered here. For b
systems a monotonous increase of widths of levels at
creasing electric-field strengths is characteristic for a dom
of strong fields. The latter condition is satisfied for all th
excited states in Coulomb potentials for both 2D and
cases for all the field strengths considered here and in Re
and 11–13.

More realistic explanation can be obtained by means
an analysis of the motion of the electron between
potential wells. It is easy to verify that for largeR values
the sequences of positions of maxima and minima in con
ered curves correspond to the asymptotic behavior of
Airy function, which is the solution of the Schro¨dinger
equation for an electron in a uniform electric field. They lo
like25,32

c~z!5AM~j!e2 iQ(j),

j5S z1
E

F D ~2F !1/3, ~7!

whereM (j) andQ(j) are the modulus and phase of the Ai
function, andA is a constant. The asymptotics ofc for z→
1` has the form

c~z!5
A

Ap
j21/4expS 2 i

p

4
1 i

2

3
j3/2D1O~j213/4!. ~8!

Except domains of smallR values the oscillating curves in
Figs. 1 and 3–12 look like the function~8! with z5R and

FIG. 11. Solid and dashed lines are same as Fig. 4 forF52.0.
Dash-dotted line is scaled (R852021/3R, G85202/3G) dependence
G/2(R) for state 2psu ~dash-dotted line! of the 3D hydrogen mo-
lecular ion forF50.1. Effective atomic units.
8-5
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MIKHAIL V. IVANOV AND REINHARD SCHINKE PHYSICAL REVIEW B 69, 165308 ~2004!
with some additional amplitude multipliers and shifts. Equ
tions ~7! and~8! immediately provide the dependence of t
width of maxima in these curves proportional toAF. An
evident connection of the considered phenomenon wit
phase shift of the wave function of an electron passing
segment between two potential wells leads to an explana
of this as an effect of an interference between an incid
electronic wave dropping onto the lower Coulomb center a
a reflected electronic wave. Dependent on the phase
between the two centers an interaction of these waves l
either to an increase or to a decrease of the density of
electronic flux leaving the system. The latter is associa
directly with theG/2 value.

To prove the above assumption we have carried out
investigation of a relation between the amplitude ofG(R)
and the form of the numerical wave function for variousR
values. Results of this investigation are presented in Figs
and 13. In Fig. 12 we present the functionG(R) for state
2psu at F50.5 and mark theR values corresponding to
several first maxima and minima in this curve. For the
points we depict in Fig. 13 the profiles of the imaginary pa
of the corresponding wave functions parallel to the ‘‘molec
lar’’ axis and lying close to it. To make the comparison
wave functions obtained for differentR more convenient
they are shifted along thex axis so that the position of th
lower center corresponds tox50 for all theR values. After
this shift the upper center lies at the point (x52R,y50).
The wave functions are normalized by the conditi
Im c(x52R,y50)50. This condition allows reducing th
calculation of the phase shift with respect to the position
the upper center to a simple counting of zeros and extrem
Im c.

The investigation of interference phenomena in this s
tem is much more complicated than in textbook examples
e.g., the optical interference between two boundaries of
dia with different refraction coefficients or the behavior of
quantum particle between two potential barriers. Our pr
lem is two dimensional, the wavelength depends on the s

FIG. 12. Imaginary part of the energy of state 2psu in a
two-dimensional system of two Coulomb centers as functions of
distance R between the centers.F50.5. The numbers ove
the maxima and minima give the phase shifts of correspond
wave functions ~Fig. 13! between the two centers. Effectiv
atomic units.
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tial coordinates, and, the most important, the fields of
Coulomb centers cannot be considered like pointlike obje
This means that when considering the wave functions in F
13 we cannot say that we consider interference of electro
waves at points (2R,0) and (0,0). The origin for calculating
phase shifts is fixed in Fig. 13 at the point (2R,0). On the
other hand, it is more reasonable to expecta priori that ef-
fective positions of the second center forming a picture
the interference have to depend on the energy of the incid
electron and cover some area in the vicinity of the low
Coulomb center. Nevertheless, for all the points marked
Fig. 12, exceptR51.8, it is possible to find a small are
playing the role of an effective center of the reflectio
for a broad range ofR values~and, thus, for a broad rang
of energies of incident electrons!. The position of this
area is marked in Fig. 13 by a bold point arrow. Pha
shifts between this small area and the point (2R,0) are
given in Fig. 12 at the corresponding maxima and minim
One can see that integer numbers ofp correspond to mini-
mal rates of ionization for the state 2psu . Half-integer num-
bers of p provide the highest probabilities for leaving th
system for an electron, initially located near the upp
Coulomb center.

It is reasonable to give here an example of a similar
terference phenomenon, well known for many years. Thi
an elastic scattering of a particle by two atoms.30 The sizes of
atoms are supposed negligibly small compared with the
tanceR between them. As an analog of our problem one c
consider a linear configuration, when the wave vector of
incoming particle is parallel to the line, connecting atoms
follows from the simplest consideration given in Ref. 30 th
the cross section of backward scattering has minima, w
the difference of phases of the initial wave between positi
of the two atoms is

Df5
p

2
1pn, ~9!

e

g
FIG. 13. Imaginary parts of the wave function of state 2psu in

a two-dimensional system of two Coulomb centers for seve
maxima and minima of the functionG/2(R) for F50.5. x50 is the
position of the lower nucleus andx52R is the position of the
upper nucleus. Effective atomic units.
8-6
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TWO-DIMENSIONAL ANALOGS OF THE H2
1 ION IN . . . PHYSICAL REVIEW B 69, 165308 ~2004!
wheren is an integer number. The maxima of the cross s
tion correspond to phase shifts

Df5pn ~10!

between two atoms. In our problem it is reasonable to s
pose that a maximum of the cross section for backward s
tering corresponds to a maximal lifetime of the electron
side the system. This situation must correspond to
minimum of G/2. Analogously, condition~9! has to corre-
spond to maxima ofG/2. We see that these qualitative co
siderations agree with the analysis of the phase shifts of
wave function presented above. Both the phenomenon
question and the latter example could be character
briefly either as an interference of the electronic wave on
centers or as a resonance phenomena in the two-center
tem.

It should be noted that the discussion of the oscillat
character ofG/2(R) for the state 2psu is based on one
dimensional models and cannot reproduce many other
tures of the numerical results obtained in our calculatio
Some of these features we will discuss in the final part of
section.

Opposite to the state 2psu , dependenciesG/2(R) for
state 1ssg do not contain any oscillations. This difference
an evident result of the fact that forF.0 the wave function
of state 1ssg is localized in a vicinity of the lower Coulomb
center and due to a high potential barrier owing to the te
2Fz in the Hamiltonian~2! the density of this wave function
at the upper nucleus is negligible small. A smooth increas
the functionG/2(R) for state 1ssg results from a decrease o
the binding energy of this state due to decreasing influenc
the field of the upper Coulomb center asR→`. In this limit
the value ofG/2 corresponds to the ground state of an el
tron in an isolated 2D Coulomb center.16 The oscillating de-
pendencies for the state 2psu have the same limit. Relative
positions of the curves for states 1ssg and 2psu are differ-
ent for regimes of the tunneling (F,1) and the overbarrie
ionization (F.1). For weak fields and arbitraryR values the
rate of ionization for state 2psu is higher than for state
1ssg . For smallR this is due an evident difference in boun
energies between the ground and the excited states. For
R values the cause consists in the fact that due to a lo
range character of the Coulomb potential the potential bar
for tunneling of the 2psu electron is lower and narrowe
than for the 1ssg electron~see Fig. 2!. On the other hand
for an overbarrier ionization in strong electric fields the d
ference in the heights of potential barriers does not play
important role, and when the field strength increases,
oscillating curve for state 2psu tends to oscillate around th
curve for state 1ssg .

Oscillations ofG/2(R) for state 2psu are characteristic
for relatively large distances between the Coulomb cent
Another type of behavior, not associated with oscillations
the wave function between centers, is better visible for low
intensities. For smallR values one can see a fast decrease
the G/2 associated with a drop of the energy of the exci
state 2psu . The next section of this dependence, clea
visible for F50.2 ~Fig. 4!, is associated with increase of th
16530
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height of the potential barrier separating the domain o
finite classical motion of the electron in the vicinity of
center and the domain of its infinite motion. This behavior
similar to that of the 1ssg state and in this section (1.9,R
,6.15 for F50.2) the dependencies for states 1ssg and
2psu are approximately parallel. Due to a smaller height a
spatial extension of the potential barrier for the state 2psu
the curveG/2(R) for this state lies higher than that for th
state 1ssg . The maximum of the curve forF50.2 at the
point R56.15 can be associated with a phase shift betw
centers equal top/2. After this point the behavior of
the functionG/2(R) changes and the wave function for th
minimum at R58.66 clearly demonstrates the phase sh
equal top.

The last feature of the functionG/2(R), which we have to
explain here, is a faster damping of oscillations in a 3D s
tem compared with the 2D one. The explanation consist
the much better possibilities for a spatial dissipation of
outgoing electronic wave in a 3D space compared with
2D case. In result in the two-dimensional system conside
above the electronic wave dropping from the upper cen
has larger density at the lower center than this takes plac
a 3D system. As a result, the interference phenomena
more intensive in a 2D system than in a 3D one. This r
soning allows us to come to the conclusion that these in
ference phenomena are to be even better pronounced in
dimensional systems, e.g., in quantum wires.

IV. TWO QUANTUM DOTS

In this section we consider a system of two quantum d
with potentials

V~x,y!52A exp@2~r /r 0!2#, r 5Ax21y2. ~11!

This form of the potential is close to a real potential existi
in double quantum dots in GaAs/AlGaAs structures.33 In this
paper we do not give detailed calculations for parameterA
and r 0 corresponding to some specific experimental sit
tions and restrict our consideration by a model example
lowing us to compare the behavior of an electron in the s
tems of two Coulomb centers and two quantum dots. I
more theoretical and mathematical aspect this compar
provides a possibility to get an idea about effects of lon
~Coulomb! and short-range, Eq.~11!, potentials in two-center
systems in external electric fields.

To this end we carried out calculations forA55 andr 0
50.85. In the field-free scenario this set of parameters p
vides the energy of the ground-state level in a separate q
tum dot atE522.003 762 and the first~and only! excited
level atE520.038 964. Such kind of a spectrum and a ge
eral form of the potential illustrated by Fig. 2 allow a dire
comparison with calculations of the preceding section wi
out changing scales of the energy, electric-field streng
and R. The results of our calculations forF50.5 are pre-
sented in Fig. 14.

One can see several features which distinguish the sys
of two quantum dots from the system of two Coulomb ce
ters. ForR.3 the real parts of energies of states 1ssg and
8-7
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2psu , presented in Fig. 14, have linear dependencies oR.
This linearity is fulfilled with higher precision than in th
case of two Coulomb centers~Fig. 2!. On the other hand, the
transformation of the behavior ofE0(R) from the regime of
separate potential wells to that of one united wellR,2 hap-
pens also sharper than for two Coulomb centers. This fea
is an evident result of the short-range character of poten
~11!, which is negligibly small forR.3. The sharp transi-
tion in the behavior of the imaginary part of state 1ssg from
a fast increasing with growingR to a constant value indepen
dent of R taking place atR'3 has the same origin. Th
function G/2(R) for state 2psu , shown in Fig. 14 in two

FIG. 14. Real and imaginary~two different scales! parts of the
energy of an electron in a system of two quantum dots as funct
of the distanceR between them forF50.5. States 1ssg and 2psu .
Effective atomic units.
16530
re
al

different scales, has similar character of oscillations with
periodicity very near to that for two Coulomb centers at t
sameF and R values. On the other hand, these oscillatio
decrease with increasingR faster than this happens for tw
Coulomb centers. The latter can be explained by a low
intensity of the 2psu wave function at the lower nucleus fo
short-range potentials compared with a pair of Coulomb
tentials. This is due to the fact that long-range Coulomb
tentials form a kind of a channel preventing dissipation
the electronic density sidewards from the axis of the syst
For small values ofuyu the potential in between the nuclei
clearly lower in the Coulomb system, as one can see in
2, whereas for largeuyu the difference between the Coulom
and the short-range potentials is much smaller.

V. CONCLUSIONS

We have calculated energies and lifetimes for two diff
ent two-dimensional analogs of the hydrogen molecular
H2

1 in external static electric fields directed along the axis
the system. Detailed calculations for a pair of Coulomb i
purity centers in a narrow two-dimensional quantum well a
carried out for a pair of states 1ssg and 2psu , which are the
ground states of an electron for spatially separated Coulo
quantum wells. The calculations are performed for a bro
range of electric-field strengths, including both the regime
the underbarrier tunneling of the electron and the overbar
regime for the electron leaving the system. The dependen
E0(R) of the real parts of energies form at largeR values
an easily predictable fanlike picture. For strong elect
fields these dependencies for the state 2psu contain oscilla-
tions, corresponding to the much more visible oscillatio
of the imaginary part of the energy of this state. The lat
are similar to oscillations obtained earlier for the state 2psu
of the hydrogen molecular ion.9,11–13 The corresponding
dependencies for the state 1ssg are simpler and do no
exhibit any oscillations forR→`. A specific feature of
the two-dimensional system considered here consists
more pronounced and slower decreasing withR oscillations
of dependencies for the 2psu state as compared to th
3D case.

The phenomenon of nonmonotone dependencies
state 2psu in the hydrogen molecular ion is usually referre
to an interaction of a quasistationary state localized at on
the nuclei with broad resonance states at the second
This argument does not explain the near to periodic chara
of the functionG(R) and decrease of its period with growin
F values. We explain the oscillation picture by an interfe
ence of the electronic wave between two centers. T
interpretation is confirmed by an analysis of phase shifts
the wave function between the positions of the cente
Thus, we can state that the phenomena considered a
originate from a resonance behavior of the electronic wa
in the molecularlike system as wholes and cannot be ass
ated directly with properties of separate parts of the syst
More pronounced oscillations are due to lesser spatial d
pation of the electronic wave in 2D systems compared to
ones.

The second system considered in this paper is a pai

ns
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TWO-DIMENSIONAL ANALOGS OF THE H2
1 ION IN . . . PHYSICAL REVIEW B 69, 165308 ~2004!
quantum dots with Gaussian attractive potentials. The beh
iors of both real and imaginary parts of the energy for sta
1ssg and 2psu coincide with that for the case of Coulom
centers. Distinctions are due to the short-range characte
the potential of quantum dots. The differences are a fa
convergence ofG(R) to its limit asR→` for state 1ssg and
faster decrease of oscillations of this dependence for s
2psu . The latter is due to the fact that long-range Coulom
potentials form a kind of a channel preventing dissipation
the electronic density sidewards from the axis of the syst
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