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Two-dimensional analogs of the H ion in stationary electric fields
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We calculate energies and lifetimes for two two-dimensional analogs of the hydrogen moleculgf ion H
external static electric fields directed along the axis of the system. They are two positive Coulomb impurity
centers with one electron in a narrow two-dimensional quantum well and the electron in a double quantum dot.
For state Do, we obtain oscillating dependencies of the ionization faien the electric-field strength and
the distance between centdRsWe explain the oscillation picture by an interference of the electronic wave
between two centers. The oscillations decrease faster for a pair of quantum dots with short-range attractive
potentials than for a pair of Coulomb centers. The latter is due to the fact that long-range Coulomb potentials
form a kind of channel preventing a dissipation of the electronic density sidewards from the axis of the system.

DOI: 10.1103/PhysRevB.69.165308 PACS nuntber73.63.Kv, 73.50.Fq, 73.23.Hk, 33.55.Be

[. INTRODUCTION periodic character of the functioh(R) and the decrease
of its period with F. A different point of view on this

The properties of both neutral and charged donors in naphenomenon, based on an analysis of a phase of the wave
row quantum wells are a subject of considerable interest dufunction, is presented in Ref. 14. But all the calculations of
ing several decadés? In very narrow wells a neutral donor the latter work are carried out for a simple one-dimensional
can be considered as a two-dimensio(@D) analog of the model. These details concerning thg kbn were an addi-
hydrogen atom. A frequently used compound for experimentional reason for investigating two-dimensional systems,
tal investigationgsee, for example, Refs. 7 andl & such  similar to |—g
systems is layers of GaAs/AlGaAs. The high mobility, i.e.,
small effective mass of electrons and the comparatively large
dielectricity constant of this and many other semiconductor  Il. FORMULATION OF THE PROBLEM AND THE
materials, facilitate to study strong electric-field effects in the METHOD OF SOLUTION
laboratory. Investigations of quantum dots of various origins
including their behavior in external electric fields is also a
point of many experimental and theoretical works. An inves-
tigation of the electronic properties of ensembles of donor
or quantum dots is natural in this context. Effects of electric
fields on these ensembles can affect various properties of

The Schrdinger equation for an electron confined in the
plane &,y) and moving in the field of two Coulomb centers
t points (- R/2,0) and R/2,0) and a constant uniform elec-
ric field F pointing along thex direction is given by

semiconductors including their conductivity. X 2 2 ) e2
In this work we restrict ourselves to the simplest - —+— |-
ensemble of two quantum dots or two Coulomb impurity 2umo | ox*  gy?)  k\(x+R2)%+y?
centers and consider the behavior of an electron in such a 5
system. e lelFXy=Ey. @
In this formulation the problem is a close analog to the k\V(x—RI2)2+y? '

problem of the hydrogen molecular ionyHin an electric
field. The latter problem was investigated in recent years an

a number of interesting physical results were reported. Thg yhe gielectric constant, areis the charge of the electron.
most impressive results were obtained for electric f'eld§305itionsE0 and half-widthsI'/2 of resonances can be ob-
parallel tolthe molegulgr axis. They are the OSC'"atmgtained from complex eigenvalues of the enerBy=E,
dependencies of the ionization rdfeof the state o, on —iI'/2. These eigenvalues have to correspond to solutions of

the electric-field strengtk and the internuclear distanée : ; ;

. S Eq. (1) having the asymptotics of an outgoing wave. At the
These dependencies are clearly visible in Fig. 5 of RefS. 9556 time the value l/gives the average lifetime of corre-
To get a better basis for comparison of 2D and 3D case

Sponding quasistationary states. Equatibncan be rewrit-
following in next sections we provide in Fig. 1 our result b 94 y quation

) . . ten in effective atomic units as
for the hydrogen molecular ion, obtained by a solution of
the corresponding 3D Schdimger equation by the method
described in the following section and in Refs. 10. Most 1/ a2 92 1
of existing interpretations of this phenomerdh *address - 5(_2 + —2> - —
one or two major maxima of the ionization rafe to ox= ay V(X+R2)%+y
an interaction of a quasistationary state localized at one
of the nuclei with broad resonance states at the second one. - _Fx
However, this argumentation does not explain the nearly \/(X—R/Z)Lryz

S{Ihere,u is the effective mass of the electronnm, units, x

p=Ey. @
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The spatial coordinates are scaled in this situation as
x(Z,F)=x(1F/Z%)/Z.

We have solved Eq(2) by a multidimensional finite-
difference method. It is presented in detail in Refs. 17-19
(bound states, see also its applications for Hartree-Fock cal-
culations of atoms in strong magnetic fielj&'and for some
other systent$?) and in Refs. 10 and 24—2@uasistation-
ary states in external electric fields

The applications in electric fields include the first calcu-
lation of energies and half-widths of levels of theg Hno-
lecular iorf* and detailed calculations for the hydrogen atom
in parallel electric and magnetic fiel#$.In Refs. 10 and
24-26 we have developed different approaches for calcula-
tion of wave functions with the asymptotics of an outgoing
wave. Two of these approaches, i.e., a boundary condition
method*?° and smooth exterior complex scalitfyare ap-

FIG. 1. Half-widths of levels S0 (dashed ling and 200y, plicable for the two-center problem considered here. For
(solid ling) of the hydrogen molecular ion Hin a longitudinal  mgost of the calculations presented below we used the smooth
electr_ic fie_ld F=0.1 as functions of the internuclear distarRe  ayterior complex scaling, which provides essential advan-
Atomic units. tages in the calculations.

In contrast to variational calculations we are not restricted
%y using a particular ansatz for the wave function but per-

The units of energy, length, field strength, and time ar

—2 -1 -9 2 -3 - W\ :
pr (27.2) eV, ';“71(5-2% 10717) cm,  wx *(5.14  form a full grid solution to the Schitbnger equation that
x10°) Viem, andx?u"*(2.42<10" ") sec. When we con- gjiows us to control and to estimate the remaining minor

sider a case of two quantum dots possessing non-Coulombigsyjiations from the exact eigenfunctions and eigenvalues.
attractive potentiald/(x,y), we have to substitute the two one of elements of this control consists in employing the
first potential terms in Eq(2) by an expression Richardson’s proceduré which provides a reliable estima-
tion of numerical errors.
V(x+RI2y)+V(x=Ri2y). 3 Equation(2) was solved on rectangular meshes in Carte-
sian coordinates x(y). A typical size of meshes in the
resent calculations for Coulomb centers was, e.g., 100
odes in they direction and 3000 in the direction. The
number of nodes for thecoordinate depends on the electric-

For F>0 the external electric field destroys the symmetry
between the two centers. In result, the potential energy of th
electron in the vicinity of the center{R/2,0) becomes, gen-
erally speaking, higher than in 'ghe corresponding vjciniFy Offield strength and increases with decreadingalues. Thus,
the center R/2,0). In the followmg we have to distinguish the meshes contain more nodes than those used in our calcu-
these two Coulomb centers. To this end we refer to the centgliions of 3D system&24-25The difference is due to higher

at (—R/2,0) as to the upper one, and the centerR2(0)  gffect of Coulomb singularities on the precision of calcula-

will be nott_ad as th? lower one. . tions in 2D Schrdinger equations compared to 3D ones.
Useful information for the limitsR—o and R—O0 This effect could be roughly evaluated as

can be obtained from solutions of an equation for a one-
center problem,

1
5E~f —|¢|2dV,
Qof

5 b=Ey @

1(&2+¢92) Z .
—+—|-=—Fx
ax?  ay?) 1

where the regiofi) is, e.g., a circlé2D) or a spheré3D) of
_ ,  aradiusrg centered at the singularity. I#|? does not vanish
whezr?lzz is the_chargg of the. Coulomb center ang (x  asry—0, then 5E=O(r(2)) in a 3D case an(tD(ré) in 2D.
+y9)~ Eor_ F=0 this equation has well-known analytic Therefore, in the present calculations we need thicker
sqluhoné with energy levels forming a 2D Coulomb series eghes to achieve the same precision as in the 3D case. The
with energies second reason for using thicker meshes is the numerical rep-
5 resentation of fast oscillating wave functions. As one can see
E—_ Z ) in the following sections, this is especially important for
n 2(n—1/2)2" large R values.
where n=1,2,3.... Numerical solutions of Eq(4) for
F>0 are obtained in Ref. 16 far=1. Results for other
Z values can be easily obtained by means of a scaling In Fig. 2 we present a plot of the potential energy of an
relation electron for two different central potentials considered in
this paper. For a system of two Coulomb centélks pre-
E(Z,F)=Z%E(1F/Z%). (6) sented in this section we show also the positions of they1

Ill. TWO COULOMB CENTERS
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FIG. 2. Potential energy of an electron in a two-dimensional
two-center system a@=10, F=0.5, andy=0 for two Coulomb
centers(solid lineg and two Gaussian potential welldotted ling.
The horizontal lines present the real parts of energies of tug 1
and Do, levels in the system of two Coulomb centers. Effective
atomic units.

sumd eovd vovmd vovmd 2l 2

and 2o, levels. AtF=0 and large(but finite) distancesR
between the centers the levep@, lies somewhat higher

than the ground statesiry. As R— these states become 0 2 4 6 8 10 12 14 16 18 20
degenerate. Their wave functions have equal densitiés at R

=0 in the vicinities of both centers. The difference between o )
these two wave functions is that the wave function of the FIG. 3. Real and imaginary parts of the energy of an electron in
1so, has no zeros, whereas the wave function of the2 31 twc:j—_ditmensgngl t?ftemtﬁf two C;oulorfnb centers aslfurthtic;_nsl,dof
changes its sign at=0. The corresponding states ft-0 € distancer between the centers for various electric-fie
can be referenced according to a noncrossing rule. As glrengths. Statessirg and 2, . Effective atomic units.

result, the ground state retains the namarl For not
very smallR andF values the corresponding electronic den-
sity is concentrated practically around the rigtite lowe)

sl voned voumd soved ol o

nary part of the energy of this state, presented in the lower
panel of Fig. 3.

center in Fig. 2. On the other hand, the electronic densmfun-[:?iiii lgfz(:glg?tlopﬁeﬁrifgseenmc?t dlgéirisc;“tngefs:#geor?ft::ee
f th ncentr near the lefth oo ' . . )

of the state oy concentrates near the lefthe upper electric-field strength including both regimes of the under-

Coulomb center. barrier t i d barrier ionizat The whol
Our results for the two statessé, and 2o, are pre- arrier tunneling and overbarrier ionization. The whole range

sented in the following figures. In the upper panel of Fig. 3
we depict the real parts of the energy of these states for a
broad range of electric-field strengths. For the electronic
states 3oy and 2o, these field strengths correspond both
to the regime of underbarrier tunneling of the electrén (
<1) and to the overbarrier regimé& 1) for the electron
leaving the system. FdR>3 the functionskEy(R) form an
evident fanlike picture, corresponding to the two ground
states of the electron in separate potential wells. For
R<1 these dependencies correspond to the ground and a
excited states of the united system. In the region between
R=1 andR=3 one can see a picture of a transformation
between these two scenarios. All the dependerigi¢R) for 10" = y — T T T T T
the Iso state for largeR values do not reveal any deviations 0 2 4 6 8 F1{0 12 14 16 18
from linearity. The same takes place for the stapsrg at

fields corresponding to the regime of tunneling. On the other FIG. 4. Imaginary parts of energies of statessrd (dashed ling
hand, for strong electric fields the dependencies of the realnd 2o, (solid ling) in a two-dimensional system of two Coulomb
part of the energy of the statepa, contain oscillations, centers as functions of the distarRéoetween centers =0.2. Ef-
corresponding much more visible oscillations of the imagi-fective atomic units.
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FIG. 7. Same as Fig. 4 fdF=0.7.

of I'/2 in the lower panel of Fig. 3 covers more than tenstate o, as R—« has an analogous origin and results

decimal orders. In comparison with the real part of the enfrom decreasing the binding energy of this excited state in

ergy the values and oscillations b2 are negligibly small  the limit of the “united atom.” A slow convergence df/2

for small F values. This explains the absence of visible os-for the state $04 to the limit R—o results from the long-

cillations of the real part of the energy for relatively weak range character of the Coulomb potential and a slow de-

electric fields. On the other hand, at strong electric fields therease of the influence of the neighboriagpe) center as

real and imaginary parts of the energy have comparable mag—

nitudes and the oscillations %2 are reflected in the behav-  One can see in Fig. 3 that the oscillations IoR for

ior of Eq(R). For each separate value of the electric-fielddifferent F form a regular picture, so that it is possible to
strength the amplitude of oscillations decreases with increasdentify corresponding maxima and minima of tRé2(R)

ing R values. In the limit of infinitely separate centers the for differentF values. Aside from the decrease of the ampli-
value I'/2 for the state Po, tends to the value, which is tude of oscillations of /2(R) for state 2o, with increasing
characteristic for the ground state of a separate center arRithe important feature of these functions is a decrease of the
dependent o values. Numerical values for this limit are period of the oscillations with increasifjandF values. The
given in Ref. 16. This feature is more visible in Figs. 4—11,latter feature leads to more and more sharp maxima and
where we present/2(R) for both 2po, and Isoy states. minima in the corresponding plots when increasing the
The data in Figs. 4-11 are presented on various scales thalectric-field strength. These features are good visible in
allow one to see different details of the behavior of functionsrigs. 3—12. Rather similar features can be seen for a hydro-
I'/2(R) for these two states. gen molecular ion Bl in Fig. 1 and in special works in the

Opposite to the state pizr, the function I'/2(R) for |iterature addressing directly this problém:=** A picture

the state %oy has no oscillations and reveals only a similar to Fig. 3 can be seen in Ref.(Bigs. 3 and 5 The
sharp decrease &—0 and a slow convergence to a limit as main difference between the 3D hydrogen molecular ion,
R—. The first feature is associated with a sharp growth ofconsidered in the cited papers, and its 2D analog, which we
the binding energy of the electron &—0. (For F=0  study here, consists in faster decrease of the oscillations of
and R=0 the energy of the ground state is8 a.u. in  T'/2 at largeR in the 3D system. This difference can be seen
contrast toE=—2 a.u. forR=«). An increase ofl'/2 for  in Fig. 11. Along with 2D curves foF =F,p,=2 we present

T T T T T T T T T T T T
12 3 45 6 7 8 9

FIG. 6. Same as Fig. 4 fdF=0.4.
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FIG. 9. Same as Fig. 4 fdF =1.2. FIG. 11. Solid and dashed lines are same as Fig. &feg.0.

Dash-dotted line is scaled’(=20"°R, T'=207"I') dependence

in this figure a curve for statepg?r, of the 3D hydrogen X
molecule. Due to different binding energies of the electron in/Z(R) for state Do, (dash-dotted lingof the 3D hydrogen mo-
ecular ion forF=0.1. Effective atomic units.

2D and 3D systems the characteristic electric-field strengths

providing similar effects are different_ for these systems. Inshould correspond to the shape of the broad resonances
order to make 2D and_3D dependenmes (_:omparable the Iattg the lower potential well. Thus, as one can see in Fig. 3
have to b_e scaled. It is possible to do this % means by relafhese resonances must be very l:;road at sfatd become

tion (6) with a formal parametef = (Fp/Fsp) ™™ In Fig. 11 narrower when increasing the electric-field strength.
we give thg 3D curve foF3p=0.1. Comparing to Fig. 12the Moreover, our results allow one to obtain that the widths of
I' values in Fig. 11 have an additional multiplier °20 all these resonances are to be proportional to the value

whereas theR values are multiplied by 203, : ) ) : )
The faster distinguishing of oscillations and maybe Iower\/E' This contradicts a well-known picture for both a hydro

o . i . ~'gen atom in strong electric field$;**'which is actual for
precision of calculations could make conditions for explain the hydrogen molecular ion, and for a two-dimensional

"?9 only the first (.)f the m_axim_a in curves(R) in PAPETS, 4 5norl® actual for the 2D system, considered here. For both
aidbzgg\éegr\]’vg égﬂg&’;gﬁ;pazg' ;a-[g%gﬁﬂﬁlnba“g?emls stems a monotonous increase of widths of levels at in-
well has broad reso]nances Ving at eelativel hiah eger ie easing electric-field strengths is characteristic for a domain
; ying tvely hig giea¢ strong fields. The latter condition is satisfied for all the
and the maxima take place at points of Intersections of re xcited states in Coulomb potentials for both 2D and 3D
parts of energies of these resonances with the relatively Naksses for all the field strengths considered here and in Refs. 9
row level Zpo,. Such an explanation can be very reasonableand 11-13
IN many cases, t.)Ut I does' hot explain two or three major More realistic explanation can be obtained by means of
features of the picture obtained for the hydrogen moleculagln analysis of the motion of the electron between the
lon and_ its two-dlrr_]e_nsmnal an_alogs. They are the periodicity otential wells. It is easy to verify that for large values
gife:]?c))(;nl]:r a:g \gng&’;ﬁg tsr:zef_:cr;]tatpheai Iﬁrem g‘;iggp;ng]i the sequences of positions of maxima and minima in consid-
> 1or larg ' . P ered curves correspond to the asymptotic behavior of the
oscillations decreases whereas the maxima become narrovalg(ry function, which is the solution of the Schdmger

with _increas_ing the electri_c-field strength. It should be note equation for an electron in a uniform electric field. They look
that if the cited hypothesis were true, the shape of maximg, 2532

Y(2)=AM(&e '),

g:

z+ ;)(291/3, @)

/2

whereM (£) and® (&) are the modulus and phase of the Airy
function, andA is a constant. The asymptotics @ffor z—
+o has the form

+O(E8. (8

A T 2
_ —1/4 i i g32
001 PY(z)= —_Wg ex;{ i 7 +i 3§

Except domains of smal values the oscillating curves in
FIG. 10. Same as Fig. 4 fd¥=1.5. Figs. 1 and 3—-12 look like the functiof®) with z=R and
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FIG. 12. Imaginary part of the energy of statpd, in a _

. . . X Lower center

two-dimensional system of two Coulomb centers as functions of the _
distance R between the centersF=0.5. The numbers over FIG. 13. Imaginary parts of the wave function of stafes in

the maximq and minima give the phase shifts of correspopdin% two-dimensional system of two Coulomb centers for several
wave functions (Fig. 13 between the two centers. Effective maxima and minima of the functidi/2(R) for F=0.5.x=0 is the

atomic units. position of the lower nucleus and= —R is the position of the
upper nucleus. Effective atomic units.
with some additional amplitude multipliers and shifts. Equa-
tions (7) and(8) immediately provide the dependence of thetial coordinates, and, the most important, the fields of the
width of maxima in these curves proportional {&. An Coulomb centers cannot be considered like pointlike objects.
evident connection of the considered phenomenon with &his means that when considering the wave functions in Fig.
phase shift of the wave function of an electron passing thd3 we cannot say that we consider interference of electronic
segment between two potential wells leads to an explanatiowaves at points{ R,0) and (0,0). The origin for calculating
of this as an effect of an interference between an incidenphase shifts is fixed in Fig. 13 at the point R,0). On the
electronic wave dropping onto the lower Coulomb center andther hand, it is more reasonable to expegiriori that ef-
a reflected electronic wave. Dependent on the phase shifective positions of the second center forming a picture of
between the two centers an interaction of these waves leadise interference have to depend on the energy of the incident
either to an increase or to a decrease of the density of thelectron and cover some area in the vicinity of the lower
electronic flux leaving the system. The latter is associatedoulomb center. Nevertheless, for all the points marked in
directly with theI'/2 value. Fig. 12, exceptR=1.8, it is possible to find a small area
To prove the above assumption we have carried out aplaying the role of an effective center of the reflection
investigation of a relation between the amplitudeldfR) for a broad range oR values(and, thus, for a broad range
and the form of the numerical wave function for varidRs of energies of incident electronsThe position of this
values. Results of this investigation are presented in Figs. 18rea is marked in Fig. 13 by a bold point arrow. Phase
and 13. In Fig. 12 we present the functibifR) for state  shifts between this small area and the poirtR,0) are
2po, at F=0.5 and mark theR values corresponding to given in Fig. 12 at the corresponding maxima and minima.
several first maxima and minima in this curve. For theseOne can see that integer numbersmotorrespond to mini-
points we depict in Fig. 13 the profiles of the imaginary partsmal rates of ionization for the state#, . Half-integer num-
of the corresponding wave functions parallel to the “molecu-bers of = provide the highest probabilities for leaving the
lar” axis and lying close to it. To make the comparison of system for an electron, initially located near the upper
wave functions obtained for differer® more convenient Coulomb center.
they are shifted along the axis so that the position of the It is reasonable to give here an example of a similar in-
lower center corresponds to=0 for all theR values. After  terference phenomenon, well known for many years. This is
this shift the upper center lies at the poin=—R,y=0). an elastic scattering of a particle by two atoth3he sizes of
The wave functions are normalized by the conditionatoms are supposed negligibly small compared with the dis-
Im (x=—R,y=0)=0. This condition allows reducing the tanceR between them. As an analog of our problem one can
calculation of the phase shift with respect to the position ofconsider a linear configuration, when the wave vector of the
the upper center to a simple counting of zeros and extrema a@ficoming particle is parallel to the line, connecting atoms. It
Im . follows from the simplest consideration given in Ref. 30 that
The investigation of interference phenomena in this systhe cross section of backward scattering has minima, when
tem is much more complicated than in textbook examples ofthe difference of phases of the initial wave between positions
e.g., the optical interference between two boundaries of mesf the two atoms is
dia with different refraction coefficients or the behavior of a
guantum particle between two potential barriers. Our prob-
lem is two dimensional, the wavelength depends on the spa-

~nN —
w

A¢=g+wn, 9)
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wheren is an integer number. The maxima of the cross secheight of the potential barrier separating the domain of a

tion correspond to phase shifts finite classical motion of the electron in the vicinity of a
center and the domain of its infinite motion. This behavior is
Ap=mn (10)  similar to that of the %o state and in this section (ER

<6.15 for F=0.2) the dependencies for stateso} and

between two atoms. In our problem it is reasonable to sup2po, are approximately parallel. Due to a smaller height and
pose that a maximum of the cross section for backward scagpatial extension of the potential barrier for the staperg
tering corresponds to a maximal lifetime of the electron in-the curvel'/2(R) for this state lies higher than that for the
side the system. This situation must correspond to &tate ko,. The maximum of the curve foF=0.2 at the
minimum of I'/2. Analogously, conditior{9) has to corre- point R=6.15 can be associated with a phase shift between
spond to maxima of' /2. We see that these qualitative con- centers equal tom/2. After this point the behavior of
siderations agree with the analysis of the phase shifts of thgye functionI'/2(R) changes and the wave function for the
wave function presented above. Both the phenomenon iminimum atR=8.66 clearly demonstrates the phase shift
question and the latter example could be characterizedqual tor.
briefly either as an interference of the electronic wave ontwo The |ast feature of the functidi/2(R), which we have to
centers or as a resonance phenomena in the two-center Sg(p|ain here, is a faster dampmg of oscillations in a 3D sys-
tem. tem compared with the 2D one. The explanation consists in

It should be noted that the discussion of the oscillatingthe much better possibilities for a spatial dissipation of an
character ofl'/2(R) for the state Poy is based on one- outgoing electronic wave in a 3D space compared with the
dimensional models and cannot reproduce many other fe@p case. In result in the two-dimensional system considered
tures of the numerical results obtained in our calculationsahove the electronic wave dropping from the upper center
Some of these features we will discuss in the final part of thigyag larger density at the lower center than this takes place in
section. a 3D system. As a result, the interference phenomena are

Opposite to the state @r,, dependencied’/2(R) for  more intensive in a 2D system than in a 3D one. This rea-
state ko4 do not contain any oscillations. This difference is soning allows us to come to the conclusion that these inter-
an evident result of the fact that fér>0 the wave function ference phenomena are to be even better pronounced in one-
of state ko is localized in a vicinity of the lower Coulomb dimensional systems, e.g., in quantum wires.
center and due to a high potential barrier owing to the term
—Fzin the Hamiltonian(2) the density of this wave function
at the upper nucleus is negligible small. A smooth increase of
the functionl'/2(R) for state ko, results from a decrease of  In this section we consider a system of two quantum dots
the binding energy of this state due to decreasing influence afith potentials
the field of the upper Coulomb center@s-oo. In this limit
the value ofl'/2 corresponds to the ground state of an elec- V(x,y)=—Aexd — (r/rg)2], r=yx2+y2 (11
tron in an isolated 2D Coulomb cent&The oscillating de-
pendencies for the statgp@, have the same limit. Relative This form of the potential is close to a real potential existing
positions of the curves for statesd, and 2po, are differ-  in double quantum dots in GaAs/AlGaAs structutes this
ent for regimes of the tunneling=(<1) and the overbarrier paper we do not give detailed calculations for parameters
ionization (F>1). For weak fields and arbitrafvalues the andr, corresponding to some specific experimental situa-
rate of ionization for state {20, is higher than for state tions and restrict our consideration by a model example al-
1soy. For smallR this is due an evident difference in bound lowing us to compare the behavior of an electron in the sys-
energies between the ground and the excited states. For largems of two Coulomb centers and two quantum dots. In a
R values the cause consists in the fact that due to a longnore theoretical and mathematical aspect this comparison
range character of the Coulomb potential the potential barrieprovides a possibility to get an idea about effects of long-
for tunneling of the do, electron is lower and narrower (Coulomb and short-range, Egl1), potentials in two-center
than for the ko electron(see Fig. 2 On the other hand, systems in external electric fields.
for an overbarrier ionization in strong electric fields the dif- To this end we carried out calculations far=5 andr
ference in the heights of potential barriers does not play an=0.85. In the field-free scenario this set of parameters pro-
important role, and when the field strength increases, theides the energy of the ground-state level in a separate quan-
oscillating curve for state |20, tends to oscillate around the tum dot atE=—2.003 762 and the firgiand only excited
curve for state $oy. level atE=—0.038 964. Such kind of a spectrum and a gen-

Oscillations of['/2(R) for state Do, are characteristic eral form of the potential illustrated by Fig. 2 allow a direct
for relatively large distances between the Coulomb centersomparison with calculations of the preceding section with-
Another type of behavior, not associated with oscillations ofout changing scales of the energy, electric-field strengths,
the wave function between centers, is better visible for loweand R. The results of our calculations f&¥=0.5 are pre-
intensities. For smaR values one can see a fast decrease oéented in Fig. 14.
theI'/2 associated with a drop of the energy of the excited One can see several features which distinguish the system
state Do ,. The next section of this dependence, clearlyof two quantum dots from the system of two Coulomb cen-
visible for F=0.2 (Fig. 4), is associated with increase of the ters. ForR>3 the real parts of energies of statesr} and

IV. TWO QUANTUM DOTS
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different scales, has similar character of oscillations with a
periodicity very near to that for two Coulomb centers at the
sameF andR values. On the other hand, these oscillations
- decrease with increasing faster than this happens for two

T Coulomb centers. The latter can be explained by a lower
] intensity of the Do, wave function at the lower nucleus for
short-range potentials compared with a pair of Coulomb po-
1 tentials. This is due to the fact that long-range Coulomb po-
‘4'_ ] tentials form a kind of a channel preventing dissipation of
the electronic density sidewards from the axis of the system.
. For small values ofy| the potential in between the nuclei is

' ' L S L SR clearly lower in the Coulomb system, as one can see in Fig.
0 2 4 6re 10 12 14 2, whereas for larggy| the difference between the Coulomb
and the short-range potentials is much smaller.

1079 1
10_5:; : V. CONCLUSIONS
1 1 We have calculated energies and lifetimes for two differ-
o 101 ! 1 ent two-dimensional analogs of the hydrogen molecular ion
~ 0] ! H, in external static electric fields directed along the axis of
i ] the system. Detailed calculations for a pair of Coulomb im-
1074 ! E purity centers in a narrow two-dimensional quantum well are
1 1 carried out for a pair of statess&, and 200, which are the
1074 ! F=0.5 1 ground states of an electron for spatially separated Coulomb
_151; ; T quantum wells. The calculations are performed for a broad
10 0 ' é "1 é ' é 1'0 1'2 4 range of electric-field strengths, including both the regime of
R the underbarrier tunneling of the electron and the overbarrier
regime for the electron leaving the system. The dependencies
0.00005 —— Eo(R) of the real parts of energies form at larGevalues
an easily predictable fanlike picture. For strong electric
fields these dependencies for the stgper? contain oscilla-
tions, corresponding to the much more visible oscillations
= of the imaginary part of the energy of this state. The latter
0.00004 are similar to oscillations obta_ined earlier for the stapef_g
' of the hydrogen molecular ioht'~*® The corresponding
dependencies for the statesd, are simpler and do not
exhibit any oscillations forR—o. A specific feature of
the two-dimensional system considered here consists in
more pronounced and slower decreasing Vitbscillations
0.00003 T T 1 T T T of dependencies for thepzr, state as compared to the

0 2 4 68 10 12 14 3D case.
The phenomenon of nonmonotone dependencies for
FIG. 14. Real and imaginaritwo different scalesparts of the  state 2o, in the hydrogen molecular ion is usually referred
energy of an electron in a system of two quantum dots as functiongy an interaction of a quasistationary state localized at one of
of the distanc& between them foF =0.5. States &oq and 00y.  the nuclei with broad resonance states at the second one.
Effective atomic units. This argument does not explain the near to periodic character
o ] ] of the functionI’(R) and decrease of its period with growing
2poy, presented in Fig. 14, have linear dependencieRon F yalues. We explain the oscillation picture by an interfer-
This linearity is fulfilled with higher precision than in the ence of the electronic wave between two centers. This
case of two Coulomb cente(Big. 2). On the other hand, the interpretation is confirmed by an analysis of phase shifts of
transformation of the behavior &,(R) from the regime of the wave function between the positions of the centers.
separate potential wells to that of one united viRit2 hap-  Thus, we can state that the phenomena considered above
pens also sharper than for two Coulomb centers. This featureriginate from a resonance behavior of the electronic waves
is an evident result of the short-range character of potentigh the molecularlike system as wholes and cannot be associ-
(11), which is negligibly small forR>3. The sharp transi- ated directly with properties of separate parts of the system.
tion in the behavior of the imaginary part of states3, from More pronounced oscillations are due to lesser spatial dissi-
a fast increasing with growing to a constant value indepen- pation of the electronic wave in 2D systems compared to 3D

dent of R taking place atR~3 has the same origin. The ones.
function T'/2(R) for state Do, shown in Fig. 14 in two The second system considered in this paper is a pair of

165308-8



TWO-DIMENSIONAL ANALOGS OF THE H; IONIN . .. PHYSICAL REVIEW B 69, 165308 (2004

guantum dots with Gaussian attractive potentials. The behashort-range Gaussian potentials do not form such a channel.
iors of both real and imaginary parts of the energy for state$n other words we can say that the resonances of the elec-
1soy and 2o, coincide with that for the case of Coulomb tronic wave between the two short-range potentials are less

centers. Distinctions are due to the short-range character @gronounced than between two Coulomb centers.
the potential of quantum dots. The differences are a faster

convergence of (R) to its limit asR— c for state koy and
faster decrease of oscillations of this dependence for state
2poy. The latter is due to the fact that long-range Coulomb
potentials form a kind of a channel preventing dissipation of One of the authorgM.V.l.) gratefully acknowledges fi-
the electronic density sidewards from the axis of the systenmancial support by the Deutsche Forschungsgemeinschatt.
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