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Ballistic hot-electron transport in nanoscale semiconductor heterostructures: Exact self-energy
of a three-dimensional periodic tight-binding Hamiltonian
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As the length scale for semiconductor heterostructures approaches the regime of the lattice constant, our
current theory for calculating ballistic hot-electron transport becomes inapplicable. In this case, a method such
as the Green'’s function formalism should be used to calculate ballistic electron transmission functions from the
exact, periodic lattice potential. We present a method for directly calculating the exact surface Green'’s function
for three-dimensional periodic leads which is necessary for such a scheme. Except in cases of high crystal
symmetry, the method is limited by the difficulty to solve a nonsymmetric matrix Riccati equation.
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[. INTRODUCTION than one-dimensional models with bulk approximations for
each layer and band offset relations for each boundary. This

Ballistic hot-electron transport in semiconductor hetero-task requires a powerful method capable of transmission
structures has been the subject of much research for decadégnction calculation, such as the Green’s function Fisher-Lee
This research has been enabled especially by the develofsrmalism®~2° Of course, the true potential must take into
ment of devices such as the solid-state hot-electro@ccount the many-body effects of electron-electron interac-
transistot and the tunneling hot-electron transfer amplifiér.  tion. For simplicity, and to focus on the impact of periodicity,
Furthermore, local scale study of buried semiconductor hetin this work we assume that these interactions can be treated
erostructures has been made possible by the application a6 an effective potential.
ballistic electron emission spectroscdpy,a scanning tun-
neling probe technique.

Regardless of the method, the mechanism for hot-electron
generation via tunnel-junction emission in all cases is essen- The basic idea behind this method is that the transmission
tially identical. Hot electrons are injected through a base maeoefficient can be calculated from a Green’s functiGn
terial, over a barrier, and into a semiconductor collector. A=(E—H) !, whereH is the Hamiltonian operator arfelis
heterostructure can be placed in the base itsifin the the electron kinetic energy. Of course, the Hamiltonian for
CO||ECtOI’f3 close to the base-collector interface. Much workthe “open” systems used in scattering calculations has infi-
in this field has focused on ballistic transport through singlenite extent in real space, so the explicit manipulation of this
barriers] double resonant barriet§,quantum dots! and  Green’s function is impossible. Therefore, we break the
superlattices>** A well-developed theory has been imple- problem into manageable parts, treating the finite hetero-
mented to predict the observed voltage-current relation to thetructure itself explicitly in the real-space basis, and finding
actual transmission function through the structure by makingin “analytic” self-energy to account for the effect of the
use of the bulk conduction-band offsets and effectivesemi-infinite leads which couple propagating electron states
masses> to the heterostructure “conductofOnce this self-energy is

Despite the agreement of the current theory with observe@inown, the transmission function can be calculated using the
transport features, it is still quite impossible to correctly pre-well-known Fisher-Lee relation:
dict the results of ballistic electron transmission through pla-
nar heterostructures with extremely small length scales
within these schemes. This is because when the discrete
translational symmetry of the bulk semiconductor lattice is h
broken by heterostructure boundaries after only a few unit/"€"®
cells, electronic band structuref the thin layer has little
meaning. In order to calculate the transmission function r=i[2-3"]
through such a heterostructure, the system must be treated
exactly, with a realistithree-dimensiongbotential modeling and the subscripts andq denote the incoming and outgoing
the actual periodic landscape the electrons travel in, rathdeads, respectivel\t represents the self-energy.

Il. FORMALISM

T=Tr[,GI'G'],
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FIG. 2. In the space-basis nearest-neighbor approximation, the
semi-infinite matrixE—H can be collapsed into a finite matrix by
0 10 20 30 40 50 60 absorbing the self-energy into the first element.

FIG. 1. Schematic view of aX¥4x4 3D space-basis Hamil-
tonian matrix operator. The 2D surface submatrix is shown boxed i

the upper-left corner 'be solved efficiently by conventional methods. However, it is

instructive to examine how the theory works for this trivial
example because it provides a convenient touchstone for our
lll. BASIS method. _ _ _
The fundamental concept in the method is that the semi-
Because we are segregating portions of the Hamiltoniainfinite periodic matrix we wish to invert can be collapsed
spatially, we use the space basis for our calculation. In thénto a finite matrix by the very self-energy it is used to cal-
space basis, the Hamiltonian operator is discretized on a spaulate. Refer to Fig. 2. Because of the semi-infinite nature of
tial lattice. The potential-energy operator is diagonal, but thehe matrix, the shaded portion is identical to the entire ma-
kinetic-energy operator is not. We can use the discrete segrix. Therefore, the effect it has on the first element is the
ond derivative to express the one-dimensiofid) kinetic-  same as the self-energy we wish to calculate. We can con-
energy operator in this basis, struct a self-consistent equation for the inverse by adding the
unknown self-energy to this first element:
—h? d*f;  —hA(f - 2f )
mae am@ g=(E-H+3)%

wherea is the lattice resolution. Because of the form of this g=(E-2t—U—t?g)~*
representation, in one dimension the Hamiltonian operator

has tridiagonal symmetry. In three dimensions, the Hamil-or

tonian hasblock tridiagonal symmetry, as shown schemati-

cally for a finite 3D Hamiltonian of a unit cell discretized —t?g?+(E—2t—U)g—1=0.
into 4xX4x4 elements in Fig. 1.
In order to find the self-energy, This can, of course, be solved using the quadratic formula
S =-t%g,

2t+U—E=* {J(2t—U—E)?>—4t?
[wheret=—#%2%/2ma® andg is the surface submatrix of the 9= _q2 : @
semi-infinite €—H) ! matrix] of three-dimensional semi-
infinite “leads,” we must therefore invert a semi-infinite ma-
trix with block tridiagonal symmetry to determine the sur- B. One-dimensional periodic potential
face elements which couple the leads to the heterostructure. From the derivation above, we see that the surface
The calculation of these surface self-energy elements of 3[&reen’s functiong is the first element of the inverse &
periOdiC Hamiltonians is the ultimate SubjeCt of the present_ H —tzg, whereH is the Hamiltonian of one unit cell of the
work. potential. In the previous case the unit cell was one element,
but when discrete translational periodicity is present, the po-
IV. METHOD tential is not the same everywhere, so we have a more com-
plicated task. However, the form of the Hamiltonian allows
us to use a simple variation on the concept used in the con-
To illustrate the method for the three-dimensional casestant potential case above.
we begin first with the trivial one-dimensional lead with a  The convenient inversion method we use in this case is
constant potential. In this case we have a system which catihe Cramer’s rule, which asserts that the first element of the

A. One-dimensional constant potential
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inverse of a matrix is theleterminantof the minor matrix Then, we change variables ¢6=51gS,
(excluding the first row and columivided by thedetermi- P
nant of the entire matrixX? —t29’2+ S Y(El—H,p)Sg —1=0.

We have seen that in the one-dimensional tight-binding . ) . )
nearest-neighbor approximation, the Hamiltonian is tridiago- ThiS matrix equation can be solved using the scalar qua-
nal. Therefore, we can use a recursion relation to separate offfatic formula since every matrix is diagonal. Our solutépn
the undetermined and recover a quadratic equation similar IS €asily recovered by transforming back from the diagonal-
to the one in the previous simplification. If the determinantiZing basis,
of a square minor matrix from thi¢h diagonal element to the
jth (for i<j) is written D(i,j), we have A+SVAZ—4t1s71

9=Sg's =
D(i,))=D(i,j=DD(,)-t*D(,j-2). @ 2t
In this notation, Cramer’s rule looks like where
D(2N) A=El—Hyp
9= BN’ @  and
whereN is the size of the unit cell. Combining E¢R) and A'=S7IAS

Eq. (3), we have

D(2N—1)(E—2t—Uy—t2g) —t2D(2N—2) D. Three-dimensional periodic potential with transverse
= ' N9 ’ ) translational symmetry
D(IN—1)(E—2t—Uy—t?g)—t?D(1N—2)

When we impose periodicity along the transport direction,
we must make use of an inversion method similar to Cram-
er’s rule for the 1D periodic case. However, we have a ma-

ix equation and we are not only interested in calculating the
irst element of the inverse, but the entire block correspond-
ing to the 2D surface of the unit cell. Cramer’s rudees

Now, if we denote the determinants of the finite matrix
(without the self-energy termas D' (i,j), we see that by
applying the recursion relation again, we can separate out t
unknowng in the above equation in order to solve for it,

D'(2N)—t2D’(2N—1)g work for trldlagon_al block matrlcgs, but now we must be
= , careful because, in general, matrices do not commute. The
D’(1N)—t?D'(1N-1)g definition of theblock determinanthen involves the order in

which the sub-blocks are multiplied: the topmost 2D block

or, [i.e., closest to th€l,1) element is always multiplied on the
—t2D'(LN—1)g?+[D’(1LN)+t2D’(2N—1)]g left. We can also make use of the recursion relation used in
' ' ' the 1D case. With these things in mind, we repeat the proce-
-D'(2N)=0. (5) dure for the 1D case, and Eq. 3 becomes
Again, the quadratic formula can be used to find the exact g=D(2N)(D(1N)) L. (6)
solution.

Using the recursion relation, EQ), we have

C. Three-dimensional potential with longitudinal translational
symmetry

Since the surface of a 3D unit cell is two-dimensional, we =D(2N-1)(E-2t—Uy—t?g)—t’D(2N-2),

are now Ioo_king not for a scalar _self-energy, but a matri>§.and by implementing Eq2) again, we get an equation simi-
Correspondingly, instead of solving the scalar quadratnq ; tyo the scalar Eq(5) '

equations of the 1D examples, we must solve a quadratié"

g(D(IN—1)(E-2t—Uy—t2g)—t?D(1N—2))

matrix equation We haye essentially the same equation as gAg+gB+Cg+D=0, @
the 1D constant potential, except that all variables are matri-
ces, where
—t?g%+ (El—Hyp)g—1=0. A=—t2D'(1N-1),
Fortunately, the only coefficient of this quadratic matrix B=D'(1N),

equation which is not proportional to the identity matrix is
the coefficient linear ing. We can easily diagonalize this C=t?D'(2N—1)
matrix by transforming the equation using the diagonalizing ' '
matrix Sand inserting =SS, and

—t2571gSS 1gS+S HElI-H,5)SS tgS—1=0. D=-D'(2N).
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This is a nonsymmetric Riccati equati®NSRB),*3~%for ™y T T

which there is no exact solution in the general case. How- Y'v* Y T yg&
I
/ N

ever, in the case that the potential has full translational sym-
metry in the direction parallel to the surface, each of the
blocks in the Hamiltonian has constant diagonal components.
This essentially means that our solutigwill commute with

A, B, C, andD. It also means thak ™! diagonalize$, C, and

D. We can then use the quadratic formula to find a solution,
proceeding in a similar fashion as in the 1D periodic and 3D
constant potential case,

N

2 barriers |
4 barriers | .
6 barriers \/

8 barriers

Lattice \/

—F+S\F'2-45 DA 1SS! |

= ; 8 J
9 2 0.0 ) I_

whereS is the matrix that diagonalizés=(B+C)A ™! and 0 1 2 3 4
F'=S{B+C)A"!S. Energy [eV]

05

Transmission Probability

_ ) o ) FIG. 3. Comparison of transmission functions of multibarrier
E. Full three-dimensional periodic potential conductors with constant leads and an infinite crystal of identical

As stated previously, the case of a random unit-cell poParriers. Dips in transmission develop into band gaps.

tential vyith no special symmetry, leading to the unsimplifieqers, but the leads themselves have the same perioflicty
NSRE, is an unsolved problem. However, the solution of thi§ng the solution to Eq(5)]. This is the case of an infinite 1D
problem can be_e_lpprommated l?y_ an iterative procedure. O”@rystal. The dips in transmission develop iftand gapse-
such method utilizes Ed6) explicitly. _ o tween which the transmission is unity. In other words, when
The first step to this method is choosing an initial guesspere is a state in the crystal, we can expect it to exist every-
for g and self-consistently iterating the equation to generate § here with the same amplitude because it is an eigenfunction
newg, of the crystal Hamiltonian. Therefore, the probability flux at
one extreme is the same as the other, and there is perfect

_ _ ot 1] 24 _t2 _
9i+1=[D(2N-1)(ElI-2tI-Un—17g) ~t"D(2N—-2)] transport. When there are no states, as in the band gap, there

X[D(IN—1)(El—2tl—Uy—t2g)) can of course be no transport.
Figure 4 shows a comparison of this behavior with an
—t?D(IN-2)]" % (9)  independently calculated band structtft@he band gaps in

) the band structure clearly align with the regions of zero
For convergence to the propeomplexand symmetric  transmission, as expected.

solution, we add a small imaginary component]0” i, to
the energy’ We usego=0 for the first energy but thereafter B. 3D calculations
we use the approximated solution from the previous energy. The case of 3D transverse translational symmetry, when

This perturbative method accelerates the iteration procesge potential is constant in planes perpendicular to the trans-
since the energies at which the transmission function is cal-

culated are usually spaced closely and so successive solt 1
tions should be relatively similar. [

For subsequent calculations, the iteration is terminatecg
when the maximum element of

hd

M L
gAgt+gB+Cg+D -

is less than % 104 o

V. RESULTS

A. 1D calculations 05| -

nsmission

We can now apply the Fisher-Lee formalism to calculate 8
the transmission function of a few one-dimensional poten-F oo
tials. . . L

Figure 3 shows a comparison of calculated transmissior ]%nergy [e\%']
functions of different numbers of 1-eV high, 2-A wide bar-

riers separated by 2 A with constant potential= 0) leads FIG. 4. Comparison of transmission function and independently
and 1 A discretizatiorjusing Eq.(1)], and the case where calculated band structure for a 1D crystal of square barriers. Note
not only the conductor is made up of a superlattice of barrithe alignment offT=0 regions with band gaps.
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1ooF y N - s ——] not identically 1 or O in the band-edge region as for the exact
- methods. Using a smaller imaginary part of the energy, the
& t —0—1D / band edge can be made sharper. However, the convergence
E’E o5k —° 3D Planar |, i of the solution becomes slower. The value used here
B —u— 3D Full (—10 %) gives~0.1 meV resolution, which is usually suf-
£ i 1 ficient.
A
g 050 i
@ VI. CONCLUSION
5 g i To accurately calculate the transmission function of hot
8 ballistic electrons through semiconductor heterostructures, a
= method which treats the system explicitly as a periodic crys-
0.00 u | talline lattice must be used, such as the Fisher-Lee Green'’s
S i - ; ; ; ; function method. Toward this end, we have derived a Riccati

0.465 0.466 0.467 0.468 0.469 0.47 matrix equation for the surface Green’s function of periodic
Energy [eV] leads. In cases of high symmetry, this equation can be solved
FIG. 5. Comparison of transmission functions calculated usingexa}Ctly' .bUt in the general case, a numerical algorlythm Su.Ch
the 1D exact and 3D exa¢tPlanar”) and approximated'Full’ ) &S iteration must be used. O_nce the surfaqe Greens functlon
frameworks for equivalent lattices periodic along the transport di-'S known, 'F can b_e used to find the transmission function for
rection. systems with arbitrary conductors.

This framework can be incorporated into another which
port direction, is equivalent to a 1D periodic system. It pro-Can realistically model t_he electron potential vyithin semicon-
vides us with a means to check our general 3D iterativéluctors. Density-functional theory calculations are well
solution method, Eq(9). Figure 5 shows a comparison of suited for this purpos&*! It may be necessary to include
calculated transmission functions using exact methods of camore self-energy terni¥,as the electron-electron interaction
culating the surface Green’s function for 3D and 1D Hamil-iS not explicitly accounted for in the theory presented here.
tonians of the infinite crystal of 2-A wide, 1-eV high barriers This will allow for a significantly useful application aib
spaced 2 A apart, using 1 A lattice resolutitthe 3D unit  Initio theory to actual nanoscale device modeling.
cell has 4x 4 X 4 discretizatiol, as used previously. We also
compare the results of the general iterative 3D method with
these two methods. We see that the two exact methods
(“1D” and “3D Planar”) coincide exactly, showing a first The authors acknowledge support from the NSF under
band edge consistent to five digi3.467 33 eV. The solu- Grant No. ECS-9906047, and are grateful for helpful com-
tion obtained using Eq9) (“3D Full” ) differs slightly and is  ments from A.J. Laub.
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