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Ballistic hot-electron transport in nanoscale semiconductor heterostructures: Exact self-energy
of a three-dimensional periodic tight-binding Hamiltonian

Ian Appelbaum*
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA

and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Tairan Wang and J. D. Joannopoulos
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

V. Narayanamurti
Division of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 0213

~Received 1 December 2003; published 2 April 2004!

As the length scale for semiconductor heterostructures approaches the regime of the lattice constant, our
current theory for calculating ballistic hot-electron transport becomes inapplicable. In this case, a method such
as the Green’s function formalism should be used to calculate ballistic electron transmission functions from the
exact, periodic lattice potential. We present a method for directly calculating the exact surface Green’s function
for three-dimensional periodic leads which is necessary for such a scheme. Except in cases of high crystal
symmetry, the method is limited by the difficulty to solve a nonsymmetric matrix Riccati equation.
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I. INTRODUCTION

Ballistic hot-electron transport in semiconductor hete
structures has been the subject of much research for dec
This research has been enabled especially by the deve
ment of devices such as the solid-state hot-elect
transistor1 and the tunneling hot-electron transfer amplifier2,3

Furthermore, local scale study of buried semiconductor h
erostructures has been made possible by the applicatio
ballistic electron emission spectroscopy,4–6 a scanning tun-
neling probe technique.

Regardless of the method, the mechanism for hot-elec
generation via tunnel-junction emission in all cases is ess
tially identical. Hot electrons are injected through a base m
terial, over a barrier, and into a semiconductor collector
heterostructure can be placed in the base itself7 or in the
collector,8 close to the base-collector interface. Much wo
in this field has focused on ballistic transport through sin
barriers,9 double resonant barriers,10 quantum dots,11 and
superlattices.12–14 A well-developed theory has been impl
mented to predict the observed voltage-current relation to
actual transmission function through the structure by mak
use of the bulk conduction-band offsets and effect
masses.15–17

Despite the agreement of the current theory with obser
transport features, it is still quite impossible to correctly p
dict the results of ballistic electron transmission through p
nar heterostructures with extremely small length sca
within these schemes. This is because when the disc
translational symmetry of the bulk semiconductor lattice
broken by heterostructure boundaries after only a few u
cells, electronic band structureof the thin layer has little
meaning. In order to calculate the transmission funct
through such a heterostructure, the system must be tre
exactly, with a realisticthree-dimensionalpotential modeling
the actual periodic landscape the electrons travel in, ra
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than one-dimensional models with bulk approximations
each layer and band offset relations for each boundary. T
task requires a powerful method capable of transmiss
function calculation, such as the Green’s function Fisher-L
formalism.18–20 Of course, the true potential must take in
account the many-body effects of electron-electron inter
tion. For simplicity, and to focus on the impact of periodicit
in this work we assume that these interactions can be tre
as an effective potential.

II. FORMALISM

The basic idea behind this method is that the transmiss
coefficient can be calculated from a Green’s functionG
5(E2H)21, whereH is the Hamiltonian operator andE is
the electron kinetic energy. Of course, the Hamiltonian
the ‘‘open’’ systems used in scattering calculations has i
nite extent in real space, so the explicit manipulation of t
Green’s function is impossible. Therefore, we break
problem into manageable parts, treating the finite hete
structure itself explicitly in the real-space basis, and find
an ‘‘analytic’’ self-energy to account for the effect of th
semi-infinite leads which couple propagating electron sta
to the heterostructure ‘‘conductor.’’21 Once this self-energy is
known, the transmission function can be calculated using
well-known Fisher-Lee relation:

T5Tr@GpGGqG†#,

where

G5 i @S2S†#

and the subscriptsp andq denote the incoming and outgoin
leads, respectively.S represents the self-energy.
©2004 The American Physical Society01-1
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III. BASIS

Because we are segregating portions of the Hamilton
spatially, we use the space basis for our calculation. In
space basis, the Hamiltonian operator is discretized on a
tial lattice. The potential-energy operator is diagonal, but
kinetic-energy operator is not. We can use the discrete
ond derivative to express the one-dimensional~1D! kinetic-
energy operator in this basis,

2\2

2m

d2f i

dx2
5

2\2~ f i 1122 f i1 f i 21!

2ma2
,

wherea is the lattice resolution. Because of the form of th
representation, in one dimension the Hamiltonian opera
has tridiagonal symmetry. In three dimensions, the Ham
tonian hasblock tridiagonal symmetry, as shown schema
cally for a finite 3D Hamiltonian of a unit cell discretize
into 43434 elements in Fig. 1.

In order to find the self-energy,

S52t2g,

@wheret52\2/2ma2 andg is the surface submatrix of th
semi-infinite (E2H)21 matrix# of three-dimensional semi
infinite ‘‘leads,’’ we must therefore invert a semi-infinite ma
trix with block tridiagonal symmetry to determine the su
face elements which couple the leads to the heterostruc
The calculation of these surface self-energy elements of
periodic Hamiltonians is the ultimate subject of the pres
work.

IV. METHOD

A. One-dimensional constant potential

To illustrate the method for the three-dimensional ca
we begin first with the trivial one-dimensional lead with
constant potential. In this case we have a system which

FIG. 1. Schematic view of a 43434 3D space-basis Hamil
tonian matrix operator. The 2D surface submatrix is shown boxe
the upper-left corner.
16530
n
e
a-
e
c-

or
l-

re.
D
t

,

an

be solved efficiently by conventional methods. However, i
instructive to examine how the theory works for this trivi
example because it provides a convenient touchstone for
method.

The fundamental concept in the method is that the se
infinite periodic matrix we wish to invert can be collapse
into a finite matrix by the very self-energy it is used to ca
culate. Refer to Fig. 2. Because of the semi-infinite nature
the matrix, the shaded portion is identical to the entire m
trix. Therefore, the effect it has on the first element is t
same as the self-energy we wish to calculate. We can c
struct a self-consistent equation for the inverse by adding
unknown self-energy to this first element:

g5~E2H1S!21,

g5~E22t2U2t2g!21

or

2t2g21~E22t2U !g2150.

This can, of course, be solved using the quadratic form

g5
2t1U2E6A~2t2U2E!224t2

2t2
. ~1!

B. One-dimensional periodic potential

From the derivation above, we see that the surfa
Green’s functiong is the first element of the inverse ofE
2H2t2g, whereH is the Hamiltonian of one unit cell of the
potential. In the previous case the unit cell was one elem
but when discrete translational periodicity is present, the
tential is not the same everywhere, so we have a more c
plicated task. However, the form of the Hamiltonian allow
us to use a simple variation on the concept used in the c
stant potential case above.

The convenient inversion method we use in this case
the Cramer’s rule, which asserts that the first element of

in

FIG. 2. In the space-basis nearest-neighbor approximation,
semi-infinite matrixE2H can be collapsed into a finite matrix b
absorbing the self-energy into the first element.
1-2
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inverse of a matrix is thedeterminantof the minor matrix
~excluding the first row and column! divided by thedetermi-
nant of the entire matrix.22

We have seen that in the one-dimensional tight-bind
nearest-neighbor approximation, the Hamiltonian is tridia
nal. Therefore, we can use a recursion relation to separate
the undeterminedg and recover a quadratic equation simil
to the one in the previous simplification. If the determina
of a square minor matrix from thei th diagonal element to the
j th ~for i , j ) is written D( i , j ), we have

D~ i , j !5D~ i , j 21!D~ j , j !2t2D~ i , j 22!. ~2!

In this notation, Cramer’s rule looks like

g5
D~2,N!

D~1,N!
, ~3!

whereN is the size of the unit cell. Combining Eq.~2! and
Eq. ~3!, we have

g5
D~2,N21!~E22t2UN2t2g!2t2D~2,N22!

D~1,N21!~E22t2UN2t2g!2t2D~1,N22!
. ~4!

Now, if we denote the determinants of the finite mat
~without the self-energy term! as D8( i , j ), we see that by
applying the recursion relation again, we can separate ou
unknowng in the above equation in order to solve for it,

g5
D8~2,N!2t2D8~2,N21!g

D8~1,N!2t2D8~1,N21!g
,

or,

2t2D8~1,N21!g21@D8~1,N!1t2D8~2,N21!#g

2D8~2,N!50. ~5!

Again, the quadratic formula can be used to find the ex
solution.

C. Three-dimensional potential with longitudinal translational
symmetry

Since the surface of a 3D unit cell is two-dimensional,
are now looking not for a scalar self-energy, but a mat
Correspondingly, instead of solving the scalar quadra
equations of the 1D examples, we must solve a quadr
matrix equation. We have essentially the same equation
the 1D constant potential, except that all variables are ma
ces,

2t2g21~EI2H2D!g2I 50.

Fortunately, the only coefficient of this quadratic matr
equation which is not proportional to the identity matrix
the coefficient linear ing. We can easily diagonalize thi
matrix by transforming the equation using the diagonaliz
matrix S and insertingI 5SS21,

2t2S21gSS21gS1S21~EI2H2D!SS21gS2I 50.
16530
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Then, we change variables tog85S21gS,

2t2g821S21~EI2H2D!Sg82I 50.

This matrix equation can be solved using the scalar q
dratic formula since every matrix is diagonal. Our solutiong
is easily recovered by transforming back from the diagon
izing basis,

g5Sg8S215
A1SAA8224t2IS21

2t2
,

where

A5EI2H2D

and

A85S21AS.

D. Three-dimensional periodic potential with transverse
translational symmetry

When we impose periodicity along the transport directio
we must make use of an inversion method similar to Cra
er’s rule for the 1D periodic case. However, we have a m
trix equation and we are not only interested in calculating
first element of the inverse, but the entire block correspo
ing to the 2D surface of the unit cell. Cramer’s ruledoes
work for tridiagonal block matrices, but now we must b
careful because, in general, matrices do not commute.
definition of theblock determinantthen involves the order in
which the sub-blocks are multiplied: the topmost 2D blo
@i.e., closest to the~1,1! element# is always multiplied on the
left. We can also make use of the recursion relation use
the 1D case. With these things in mind, we repeat the pro
dure for the 1D case, and Eq. 3 becomes

g5D~2,N!~D~1,N!!21. ~6!

Using the recursion relation, Eq.~2!, we have

g„D~1,N21!~E22t2UN2t2g!2t2D~1,N22!…

5D~2,N21!~E22t2UN2t2g!2t2D~2,N22!,

and, by implementing Eq.~2! again, we get an equation sim
lar to the scalar Eq.~5!,

gAg1gB1Cg1D50, ~7!

where

A52t2D8~1,N21!,

B5D8~1,N!,

C5t2D8~2,N21!,

and

D52D8~2,N!.
1-3
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This is a nonsymmetric Riccati equation~NSRE!,23–26for
which there is no exact solution in the general case. Ho
ever, in the case that the potential has full translational s
metry in the direction parallel to the surface, each of
blocks in the Hamiltonian has constant diagonal compone
This essentially means that our solutiong will commute with
A, B, C, andD. It also means thatA21 diagonalizesB, C, and
D. We can then use the quadratic formula to find a soluti
proceeding in a similar fashion as in the 1D periodic and
constant potential case,

g5
2F1SAF8224S21DA21SS21

2
, ~8!

whereS is the matrix that diagonalizesF5(B1C)A21 and
F85S21(B1C)A21S.

E. Full three-dimensional periodic potential

As stated previously, the case of a random unit-cell
tential with no special symmetry, leading to the unsimplifi
NSRE, is an unsolved problem. However, the solution of t
problem can be approximated by an iterative procedure.
such method utilizes Eq.~6! explicitly.

The first step to this method is choosing an initial gue
for g and self-consistently iterating the equation to genera
new g,

gi 115@D~2,N21!~EI22tI 2UN2t2gi !2t2D~2,N22!#

3@D~1,N21!~EI22tI 2UN2t2gi !

2t2D~1,N22!#21. ~9!

For convergence to the propercomplexand symmetric
solution, we add a small imaginary component,21026i , to
the energy.27 We useg050̂ for the first energy but thereafte
we use the approximated solution from the previous ene
This perturbative method accelerates the iteration proc
since the energies at which the transmission function is
culated are usually spaced closely and so successive
tions should be relatively similar.

For subsequent calculations, the iteration is termina
when the maximum element of

gAg1gB1Cg1D

is less than 531024.

V. RESULTS

A. 1D calculations

We can now apply the Fisher-Lee formalism to calcul
the transmission function of a few one-dimensional pot
tials.

Figure 3 shows a comparison of calculated transmiss
functions of different numbers of 1-eV high, 2-Å wide ba
riers separated by 2 Å with constant potential (U50) leads
and 1 Å discretization@using Eq.~1!#, and the case wher
not only the conductor is made up of a superlattice of ba
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ers, but the leads themselves have the same periodicity@us-
ing the solution to Eq.~5!#. This is the case of an infinite 1D
crystal. The dips in transmission develop intoband gapsbe-
tween which the transmission is unity. In other words, wh
there is a state in the crystal, we can expect it to exist eve
where with the same amplitude because it is an eigenfunc
of the crystal Hamiltonian. Therefore, the probability flux
one extreme is the same as the other, and there is pe
transport. When there are no states, as in the band gap,
can of course be no transport.

Figure 4 shows a comparison of this behavior with
independently calculated band structure.28 The band gaps in
the band structure clearly align with the regions of ze
transmission, as expected.

B. 3D calculations

The case of 3D transverse translational symmetry, w
the potential is constant in planes perpendicular to the tra

FIG. 3. Comparison of transmission functions of multibarr
conductors with constant leads and an infinite crystal of ident
barriers. Dips in transmission develop into band gaps.

FIG. 4. Comparison of transmission function and independe
calculated band structure for a 1D crystal of square barriers. N
the alignment ofT50 regions with band gaps.
1-4
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port direction, is equivalent to a 1D periodic system. It p
vides us with a means to check our general 3D itera
solution method, Eq.~9!. Figure 5 shows a comparison o
calculated transmission functions using exact methods of
culating the surface Green’s function for 3D and 1D Ham
tonians of the infinite crystal of 2-Å wide, 1-eV high barrie
spaced 2 Å apart, using 1 Å lattice resolution~the 3D unit
cell has 43434 discretization!, as used previously. We als
compare the results of the general iterative 3D method w
these two methods. We see that the two exact meth
~‘‘1D’’ and ‘‘3D Planar’’ ! coincide exactly, showing a firs
band edge consistent to five digits~0.467 33 eV!. The solu-
tion obtained using Eq.~9! ~‘‘3D Full’’ ! differs slightly and is

FIG. 5. Comparison of transmission functions calculated us
the 1D exact and 3D exact~‘‘Planar’’ ! and approximated~‘‘Full’’ !
frameworks for equivalent lattices periodic along the transport
rection.
ev
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rill

D

h

P

16530
-
e

l-
-

h
ds

not identically 1 or 0 in the band-edge region as for the ex
methods. Using a smaller imaginary part of the energy,
band edge can be made sharper. However, the converg
of the solution becomes slower. The value used h
(21026i ) gives'0.1 meV resolution, which is usually suf
ficient.

VI. CONCLUSION

To accurately calculate the transmission function of h
ballistic electrons through semiconductor heterostructure
method which treats the system explicitly as a periodic cr
talline lattice must be used, such as the Fisher-Lee Gre
function method. Toward this end, we have derived a Ricc
matrix equation for the surface Green’s function of period
leads. In cases of high symmetry, this equation can be so
exactly, but in the general case, a numerical algorithm s
as iteration must be used. Once the surface Green’s func
is known, it can be used to find the transmission function
systems with arbitrary conductors.

This framework can be incorporated into another wh
can realistically model the electron potential within semico
ductors. Density-functional theory calculations are w
suited for this purpose.29–31 It may be necessary to includ
more self-energy terms,32 as the electron-electron interactio
is not explicitly accounted for in the theory presented he
This will allow for a significantly useful application ofab
initio theory to actual nanoscale device modeling.
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