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Finite-size scaling of power-law bond-disordered Anderson models
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We investigate numerically the nature of energy eigenstates in one-dimensional bond-disordered Anderson
models with hopping amplitudes decreasing-gsx 1/i—j|*. The eigenstates become delocalized whenever
the hopping amplitudes decay slower than By performing an exact diagonalization scheme on finite chains,
we compute the participation ratio of all energy eigenstates. Employing a finite-size scaling analysis, we report
on the relevant scaling exponents characterizing this delocalization transition as well as the level-spacing
distribution at the critical poinw=1. The random hopping amplitudes are taken from both uniform and
random sign distributions. We show that these models display similar critical behavior in the vicinity of
=1. However, the random sign model exhibits an asymptotic delocalization in the limait-e> and the
universal scaling behavior in this regime is also reported.
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[. INTRODUCTION disordered systems can also be induced by the presence of
long-range coupling® 23 Recently, Mirlinet al. introduced
Disordered electronic systems can undergo an Andersote power-law random band matrifRBM) modef®?* de-
transition, as the strength of disorder increases, from a phaseribing one-dimensional electronic systems with random
of extended to localized staté$dowever, when only short- long-range hopping amplitudes with standard deviation de-
range couplings are considered, scaling arguments supportedying as I/ for sites at a distance>b, whereb is a
by numerical and analytical results restrict its occurrence tdypical bandwidth. It was shown that at=1 this model
systems with spatial dimensionalit>2.2 An exception is  presents an Anderson-like transition with all states being lo-
the occurrence of extended states in two-dimensional modefzlized fora>1 and extended for<1. The PRBM model
with broken time-reversal symmetry induced by a strongeffectively describes some features of a series of physical
magnetic field, an important realization being the Andersorsystems such as the quantum Fermi accelefatwvp inter-
critical point associated with the quantum Hall plateauacting particles in a one-dimensioffD) random potentiaP
transition® Another exception is the existence of a metallicand the Luttinger liquid at finite temperaturésamong
phase in two-dimensional systems with preserved timeothers’®?! Further, its simplicity allows for analytical and
reversal symmetry but with broken spin-rotation symmetryextensive numerical studies of the universal scaling behavior
due to the presence of a strong spin-orbit coupfihg.one-  at the vicinity of the Anderson transition. In particular at the
dimensional systems, all one-electron eigenstates remain egritical point «=1, the inverse participation ratio distribu-
ponentially localized for any amount of disorder even withtion, the wave-functions multifractal spectra, and the level
broken time-reversal and spin-rotation symmetries. Localizastatistics have been investigated both analytically and
tion induced by disorder is a feature shared by general physihumerically??* However, the scaling behavior governing
cal systems exhibiting collective excitations such asthe approach to the critical point has not yet been clearly
magnetié¢~’ and vibrationdl® modes. settled. In the limit of very large bandwidti=>1, a pertur-
Disorder can be introduced through a random distributiorbative approach associated with a renormalization group
of on-site potentials and/or off-diagonal hopping amplitudestreatment has predicted that the characteristic length scale
Pure off-diagonal disorder is known to be less effective toshould diverge as lé<(a—1) as « approaches the critical
induce localization than diagonal disorder. In two dimen-point from aboveé® A numerical analysis for the case of
sions, for example, the states are not exponentially localizedntermediate bandwidth provided some support to this pre-
Instead, they present power-law tails characteristic of criticatliction but indicated that the one-parameter scaling hypoth-
states®*? In d=1, the states remain exponentially local- esis may be violated with a distinct exponent governing the
ized, except the one at the band center which exhibits approach to the critical point from beldfwithin the same
stretched exponential envelop&'* One-dimensional sys- spirit of the PRBM, a model for noninteracting electrons in a
tems may support extended states when correlations are i@D lattice with random on-site potentials and random power-
troduced in the disorder distribution. However, short-rangdaw decaying transfer terms was numerically investigated by
correlations can stabilize extended states with no backexploring the finite-size scaling properties of the fluctuations
scattering only at discrete resonance eneriéOn the in the mean level spacirg. It was found that the one-
other hand, long-range correlations can delocalize a finitelectron eigenstates become extended for transfer terms de-
fraction of the collective mode¥:*8In such a case, delocal- caying slower than tf. The correlation length exponent
ization is also more effective in the presence of pure off-governing this transition was estimated to be 2.60(15)
diagonal disorder which requires weaker correlations to supand the same on both sides of the transition. Finally, a model
port extended modés. for noninteracting electrons in a 1D chain with honrandom
Delocalization of collective models in low-dimensional power-law decaying hopping terms and random on-site po-
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tentials has been shown to support extended states at the tparticle-hole symmetry. Two particular distributions \bf;
of the band®3! will be used. The first one is the usual uniform distribution
In this work, we numerically investigate the universal with W;; being chosen randomly in the interva-W,
scaling behavior of the one-dimensional Anderson modek-W]. The second one is the bimodaandom signgsdistri-
with power-law pure off-diagonal disorder. The hopping am-bution whereW;; = =W with the signs being chosen at ran-
plitudes will be chosen from two distinct distributions, dom to give (W;;)=0. As a function of the exponent
namely the uniform and the bimodélandom signsones.  characterizing the decay of the hopping amplitudes, both
Through direct diagonalization of the Anderson Hamiltonianmodels display a localization-delocalization transitionaat
on finite chains, we compute the critical level-spacing statis=1. For off-diagonal terms decaying slower than;1/i.e.,
tics and the average participation number as a function of theor o<1, all states become delocalized. In the limit @f
power-law decay exponent. Using standard finite-size — one recovers the 1D Anderson model with just first-
scaling analysis, the participation number data will be showmeighbors random hopping amplitudes. For the case of uni-
to follow a universal scaling behavior in the vicinity of  formly distributed couplings, the states remain localized.
=1 with the same exponent on both sides of the criticaHowever, when randomness is introduced only in the signs
point, thus supporting the one-parameter scaling hypothesisf the transfer terms, the model with first-neighbors cou-
Furthermore, the random sign model will be shown to ex-plings exhibits just extended Bloch-like eigenstates with the
hibit a second delocalization transitionas-, whose scal- wave-function amplitudes exhibiting random signs. In this

ing behavior will also be reported. case, localization can be induced only by the inclusion of

next-neighbors couplings. Therefore, the random signs

Il. THE POWER-LAW PURE OFF-DIAGONAL 1D model with power-law decaying transfer terms shall present
ANDERSON MODEL a second delocalization transition as—cc.

. . . . . . In the following sections, we are going to provide an ex-
~We consider a single electron in a one-dimensional chaifensjve numerical study of the nature of the one-electron
with open boundaries, described by the Anderson Hamilgigenstates on these two models. The present hopping decay

tonian law is similar to the limit of very small bandwidths of the
N PRBM model, a regime where the universal scaling behavior
HZE i [, (1) governing the approach to the critical point has not been
3l investigated yet. We would like to stress that the present

model also differs from the PRBM model by the absence of

whe_re|i> represents the state with the electron localized aHiagonal disorder. Models with pure off-diagonal disorder
sitei. In the present pure random bond Anderson model, th‘?ire known to exhibit new features not present in models with

on-site potent_ial&i are site independent and _in Ho.f) were. diagonal disorder such as a stretched exponential wave func
taken to bee;=0 without any loss of generality. Disorder is tion in the center of the band in 10Refs. 13 and 1gand

introduced by assuming the hopping amplitutigso be ran-  ,yer jaw scaling of the participation number in D12

domly distributed. For uncorrelated and nearest-neighborg\,e will be particularly interested in employing a finite-size

pure off-diagonal disorder all one-electron eigenstates argcaling analysis of the average participation number to ob-

exponentially localized, except Fhe state at th? band Cent{hin the universal critical exponents governing the Anderson
which has a stretched exponential envelope with the dens'tbfansition at the vicinity ofx=1 as well as the asymptotic

of states presenting a logarithmic singularity at the band CeMelocalization of the random signs model @s .
ter. These features are due to the particle-hole symmetry pre-

sented by bipartite lattice$. Power-law decaying hopping

amplitudes, however, may stabilize truly extended states. We  Ill. DENSITY OF STATES AND CRITICAL LEVEL
will, hereafter, consider STATISTICS
_ @ We used an exact diagonalization scheme to obtain the
tij—Wi]-/I‘ij, (2) .. . . . .
energy spectrum of finite chains with sizes ranging from
wherer;; is the distance between the sifesndj andW;; is =200 up toL = 1600 sites. In order to average over distinct
a random variable. disorder configurations, data from several chains were joined

Recently, a particular case of the above Hamiltonian wasnaking up a total number of 3210° states for each chain
numerically investigated. The particle-hole symmetry wassize and power-law exponeatfor both uniform and random
preserved by just allowing hopping between sites separatesign distributions of hopping amplitudes. The bandwidth di-
by an odd number of lattice constaritdt was found that the  verges with increasing system size fo= 1/2,23 with a loga-
density of states singularity is gradually weakened by longrithmic divergence atv=1/2. Above this point, the thermo-
range hopping and that the wave functions present powedynamic limit is well defined.
law decaying tails. Also a critical phase is anticipated for 1  In Fig. 1 we illustrate the main dependence of the density
<a<2 with continuously varying wave-functions correla- of states(DOS) on the power-law decay exponeatfor the
tion exponents. The numerical results further suggest thease of a uniform hopping amplitude distribution. For large
emergence of an ordered phase dor 1. values ofa the DOS converges to the one expected for the

Here, we allow for transfer terms between any pair of1D Anderson model with nearest-neighbors off-diagonal dis-
lattice sites and therefore the present model has a brokesrder. It diverges at the band center where the eigenstate has
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1.0 vergences at the band edgeAN= *2. Disorder becomes
effective in this model through the presence of long-range
0.8 - . 3:?;5; off-diagonal terms. The band-edge singularities become
— =10 rounded-off and the localization of eigenstates introduces
0.6 - fluctuations in the DOS. As this model also presents a delo-
8 calization transition atw=1, fluctuations in the DOS be-
e 04 L come vanishingly small below this critical point.
The eigenstates at the delocalization transition paint
o2 b =1 are critical for any of the above two models. This feature
' makes them ideally suited for the analysis of the critical
. level-spacing statistics. Localized states are distributed in en-
0'0_5_0 ergy following a Poisson law(s) =exp(—s), wheres is the

level spacing measured in units of the mean spacing. It dis-
plays a standard deviations= \(s?)—(s)?=1. Delocal-

ized eigenfunctions repel each other and the level spacing in
this phase obeys the Wigner surmise, which in the present

FIG. 1. Density of states for the Anderson model with power-
law decaying random hopping amplitudes following a uniform dis-
tribution, as obtained from exact diagonalization of chains with .
=1600. Typical values of the decaygexponemare represented. C2S€ takes the forrR(s) =(/2)s exf — (m/4)s?],%* with a
For large values ofr one recovers the DOS of the usual 1D Ander- S_ma”er Standar,d deVIatIC.II.S]S= 0'52,2', At_the Ande_rson tran-
son model with off-diagonal disorder. The smoothnessatl isa  Sition & new universal critical statistics intermediate between
signature of delocalization. Wigner and Poisson has been suggested as a consequence of

the multifractality of critical wave function®~*° Previous

a stretched exponential envelo]ﬁd_arge fluctuations on the ?huen}?):% results have shown that a reasonable overall fit to

DOS reflect the localized nature of the finite-energy eigen-
states. The band edges present exponential tails due to the y
random nature of the underlying Hamiltonian. The inclusion P(s)=Bsexp —As) ©)

of long-range hopping amplitudes at finite valuesrahakes
the cgentra? singpurl)ari%y tc? disappear due to the lack 0fcould be found at the vicinity of the Anderson transition in

particle-hole symmetry. At the critical value=1 there is no cubic lattices when time-reversal and spin-rotation symme-

sign of the original central peak. The smoothness of the DO €S are preserved. The constaatandB are chosen to keep

at smaller values of is connected with the extended nature P(s) normalllzed al‘.I((S}::'L. The above form mtgrpolates
of the energy eigenstates in this regime. between a linear distribution at small level spacings and a

The DOS of the random signs model is depicted in Fig. 2_stretched exponential distribution at largeThe linear start

Since the bimodal distribution has a larger variance, th@f the critical level-spacing distribution is generally ac-

bandwidth is larger in this case than in the model with acepted. However, the largestretched exponential tail is not

uniform distribution. In the regime>1, it converges to the 9enerally accepted and some works have even suggested it to

density of states of the 1D tight-binding model with no dis- bg indeeq¢59j§fonian_ blljt with lar} elxponentigl cofefficri1ent
order, displaying the characteristic parabolic shape with gj@bove unity.=“In particular, analytical expressions for the
level-spacing distribution were derived from an ensemble of

random matrices with (&) (Inx)? potentials, which repro-

05 : [ 005 duce accurately numerical data for the level-spacing distri-
| | 010 bution at the Anderson transition in three-dimensional
041 ‘l | =20 lattices?® with a=2.95 for an ensemble of real symmetric
1 | ——-oa=10 matrices. The random matrix theory predicts a linear behav-
w 23T ior at smalls and an exponential decay fer-1/a. In Fig. 3
Q we show the critical level-spacing distribution as obtained
02+ from the present model with uniformly distributed hopping
amplitudes. Short- and long-dashed lines correspond to the
R T Y 4 R Poisson and Wigner distributions, respectively. Within our
T B R numerical accuracy, the critical distributions of the uniform
o L& . ‘ : N and random signs models coincide. To obtain the level-
-8.0 -4.0 0.0 4.0 8.0 spacing distribution, we used an energy window near the

EwW band center corresponding to a fraction of 40% of all eigen-

FIG. 2. Density of states for the Anderson model with power-Stat€s. A spectral unfolding procedure was employed to keep
law decaying random hopping amplitudes with random signs, adhe average level S;Dacmg equal to unity in each segment of
obtained from exact diagonalization of chains witk 1600. Typi- the energy windowi! At short level distances, the distribu-
cal values of the decay exponentre represented. For large values tion depicts a linear behavior. In the inset, the asymptotic
of @ one recovers the DOS of the pure 1D tight-binding Hamil- behavior at large level distances is displayed. It is interme-
tonian. At smalle the DOS becomes similar to that obtained for the diate between the standard exponential with unitary coeffi-
model with uniformly distributed disorder. cient and Gaussian decays. The present data do not have
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FIG. 3. The critical level-spacing distribution function for the
model with uniformly distributed disorder as obtained from direct
diagonalization of chains witlh.=1600 sites after unfolding the
energy spectrum. The short- and long-dashed lines correspond to

uniform

the Poisson and Wigner distributions, respectively. The solid line is 01 r — — bimodal T
the best fit to the analytic expression based on the random matrix

theory with a=2.2 (see main tejt The inset shows that the 0.0 . . L
asymptotic behavior of the critical distribution is intermediate be- "24.0 20 0.0 2.0 4.0
tween Poisson and Wigner forms. (b) E/W

enough accuracy to decide between a fast Poissonian and aF'C- 4- (@ The average participation ratio as a function of en-
stretched exponential decay by just analyzing its asymptotigrgy fora=2. Results for both unl_form and bimodal distributions
decay. Both laws provide reasonable fits of the distributiort. c <Pes em_Ed' The SUperposedﬂnes Co"e.Spor.'d (o the results from
tail. However, the simple form of E¢3) does not provide a chains W.'thL_SOO (das.hed gndL—leoo (S.O"d) S.'tes' Stgteg are
. . . substantially more localized in the model with uniformly distributed
gooq overall fit. On the othe_r hand, the analytic eXpreS.S'orbisorder;(b) the normalized average participation ratio vs energy
provided bY the random _matr'x thgdﬂglvgs. an excellent fit for «=0.5 andL =1600. For both disorder distributio®®/L is of
of the entire curve, with the single fitting parame®@r he order of 1/4 except near the band edges where a few states may
=2.2. This result brings further numerical support in favor jemain localized due to finite-size effects.
of the random matrix prediction for the actual form of the
critical level spacing. The critical level-spacing distribution features related t®®(E) for the two disorder distributions
has a standard deviatiahs=0.595 which is very close to studied. Fora>1 all states are exponentially localized and
the value reported for the PRBM model with both diagonalthe participation number is size independent within the entire
and off-diagonal disorder in the regime of intermediateenergy band. In Fig. @), we represent the results fer
bandwidth*® =2. As uniformly distributed disorder promotes a more ef-
fective localization, the participation ratio is substantially
smaller in this case as compared with the bimodal distribu-
tion. Fora<1 the states become delocalized and the partici-
pation number scales linearly with the chain size. In this
All energy eigenfunction$e,) were also computed dur- regime, represented in Fig(®) for «=0.5, the participation
ing the diagonalization procedure. In order to investigate theatio P(E)/L stays around 1/4 irrespective to the disorder
universal scaling behavior governing the delocalization trandistribution, except near the band edges where the energy
sition, we evaluated the average participation number deeigenstates still remain localized due to finite-size effects
fined as which are more pronounced for this limiting case.
The universal behavior at the vicinity of the delocalization
1 transition can be obtained using finite-size scaling argu-

IV. SCALING ANALYSIS OF THE PARTICIPATION
NUMBER

PE)= v\ . (4)  ments. Exploiting the fact that almost all states within the
E [(n| )|* energy band have the same nature, we computed the average
n=1 value P(«a,L)=(P(E,a,L))g. Assuming a one-parameter

scaling hypothesis, the average participation number scales
where the external brackets represent an average over eH P fok
: i ) . ar the transition poink=1 as
eigenstatefep,) with energy inside a small window arouid
(typically containing 200 state@sFigure 4 shows the main P(a,L)=LP2F[(a—1)L"],

®
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FIG. 5. Finite-size scaling analysis for the model with uniformly

distributed disorder(a) The participation number averaged over all ~ FIG. 6. Finite-size scaling analysis for the model with bimodal
states as a function of the decay exponerior several chain sizes. distributed disordeqrandom signs hopping amplitudesa) The

The inset shows the power-law size dependende aridd P, from participation number averaged over all states as a function of the
which we estimaté,=0.68(1) andv=2.347). (b) The collapse ~ decay exponent for several chain sizes. The transitioncat 1 is

of data from the critical region using the above estimated exposimilar to the one reported for the model with uniformly distributed
nents. The collapse of both branches supports the One_parame@ifsorder. In addition, the states become asymptotically delocalized
scaling hypothesis. asa—; (b) the collapse of data from the asymptotic region. The

collapse supports the scaling relation proposed in(BQg.

whereD, governs the power-law divergence of the averagesize®® The Anderson transition is sufficiently far from this
participation number a&r=1 and» governs the divergence point, in a region where the thermodynamic limit is well
of the relevant length scale as one approaches the transitiogefined, and the asymptotic scaling regime sets up for rela-
The correlation exponent can be measured by noticing thatvely small chain sizes.
dPaEdP/da|a:10<LD2+1/”. All data in the critical region belonging to distinct chain
In Fig. 5 we report our main results concerning the abovesizes were collapsed into a universal curve as shown in Fig.
finite-size scaling analysis for the model with uniformly dis- 5(b). The nice data collapse from both sides of the transition
tributed disorder. The average participation number presentrroborates the single-parameter scaling hypothesis. We
a single transition at=1 [see Fig. %a)], represented by the would like to stress that the presently reported value i
divergence of the slope at=1 with increasing system sizes. quite distinct from the one predicted for the PRBM model in
The inset shows the critical power-law size dependend® of the limit of large bandwidtf? and it is somewhat below the
and dP, from which we estimateD,=0.68(1) andv»  one reported for the 2D model with random on-site and ran-
=2.347). Notice that the data follow well-defined power dom power-law decaying hopping amplitud@sdowever, it
laws with negligible fluctuations and no evident correctionsis intriguingly close to the best estimated value for the
to scaling for the systems size considered. Small fluctuationdnderson transition in 2D with broken time-reversal
are a result of the large statistics obtained by computing theymmetry?
average participation number of all eigenstates. The absence For the model with bimodal off-diagonal disorder distri-
of strong corrections to scaling is a less expected featurdyution, a similar finite-size scaling behavior is obtained at
once it is usually needed to consider very large system size®e vicinity of =1 [see Fig. €3)] with the resulting expo-
to capture the long-range character of general systems withents being the sam@ithin our numerical accuragyas the
slowly decaying terms. The peculiar property of the presenabove reported ones. This result indicates that the scaling
model with random power-law decaying hopping amplitudesbehavior of the Anderson transition in this model is universal
is that the thermodynamic limit becomes ill defined only for with respect to the disorder distribution form. However, for
a<1/2, below which the bandwidth increases with systemthe bimodal disorder distribution, the states become asymp-
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totically delocalized asy—. This asymptotic delocaliza- ticipation number allowed us to estimate the power-law ex-
tion can also be represented in a universal scaling form agonent of its size dependence at criticalidy=0.68(1) as
depicted in Fig. @). The data collapse implies that in this well as the correlation length exponent2.347). These
regime exponents are the same for both uniform and random sign
disorder distributions. The energy eigenstates of the random
P(a,L)=Lg(a/InL), signs model become asymptotically delocalized &or
in such a way that the characteristic length scale exhibits aWith a logarithmic diverging characteristic length scale. The
asymptotic logarithmic divergence. reported correlation length exponent is very close to the best
estimated value for the Anderson transition in 2D with bro-
ken time-reversal symmetry, such as the quantum Hall pla-
teau transitiorf. The similarity between the 1D Anderson
We investigated in detail the nature of one-electronmodel with random long-range hopping amplitudes and theo-
eigenstates in the one-dimensional Anderson model withies for the quantum Hall critical point have already been
off-diagonal disorder and matrix elemerits; decaying as pointed out®! It would be of great value to have in future
1/li—j|*. The disorder was considered to follow either acontributions further arguments aiming to support the present
uniform or a bimodalrandom signsdistribution. Both mod-  evidence that the Anderson transition in the 1D models in-
els present features similar to the power-law random bangestigated here indeed has the same correlation length criti-
model introduced by Mirlinet al?*?! with all states being cal exponent of the quantum Hall plateau transition in 2D
localized fora>1 and delocalized for<<1. Following an  systems under a strong magnetic field.
exact diagonalization procedure, we computed the energy
spectrum and participation number to characterize the uni-
versal scaling properties in the vicinity of the delocalization
transition occurring atkke=1. The critical level-spacing dis- This work was partially supported by the Brazilian re-
tribution was computed and found to exhibit a linear behavsearch agencies CNRGonselho Nacional de Pesquisad
ior at small level spacing, crossing over to an asymptoti® APES (Coordengao de Aperfejpamento de Pessoal do
decay at large level spacing between the Poisson and Wigné&nsino Superigrand by the Alagoas State research agency
forms, well fitted by the random matrix theory prediction for FAPEAL (Funda@ de Amparo a Pesquisa do Estado de
an ensemble of real symmetric matrices with squared logaAdagios. J.C.C. acknowledges support from CNPq Project

V. CONCLUSION

ACKNOWLEDGMENTS

rithmic potentials'® A finite-size scaling analysis of the par-

No. 476376/2001-7.

1p.W. Anderson, Phys. Re®09 1492(1958.

18E M. Izrailev and A.A. Krokhin, Phys. Rev. Le®2, 4062(1999.

2E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ra-°F.A.B.F. de Moura and M.L. Lyra, Physica 266, 465 (1999.

makrishnan, Phys. Rev. Le#t2, 673(1979.

3B. Huckestein, Rev. Mod. Phy&7, 357 (1995.

4S. Hikami, A.l. Larkin, and Y. Nagaoka, Prog. Theor. Ph§8,
707 (1980.

STA.L. Ziman, Phys. Rev. Lett49, 337 (1982.

6S.N. Evangelou and D.E. Katsanos, Phys. Lett.184, 456
(1992.

"E.A.B.F. de Moura, M.D. Coutinho-Filho, E.P. Raposo, and M.L.
Lyra, Phys. Rev. B56, 014418(2002.

8p. Dean, Proc. Phys. Soc. Lond84, 727 (1964.

9P.K. Datta and K. Kundu, Phys. Rev. R, 6287(1995.

10A. Eilmes, R.A. Raner, and M. Schreiber, Eur. Phys. J.1829
(1998.

vz, Cerovski, Phys. Rev. B2, 12 775(2000.

12ghi-Jie Xiong and S.N. Evangelou, Phys. Rev.68 113107
(2002.

3L, Fleishman and D.C. Licciardello, J. Phys.10, L125 (1977).

14C.M. Soukoulis and E.N. Economou, Phys. Rev.2B 5698
(1982.

15D.H. Dunlap, H.L. Wu, and P.W. Phillips, Phys. Rev. L&, 88
(1990.

1635 N. Evangelou and A.Z. Wang, Phys. Rev4B 13 126(1993.

"FE AB.F. de Moura and M.L. Lyra, Phys. Rev. Le&l, 3735
(1998.

20A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, and T.H.
Seligman, Phys. Rev. B4, 3221(1996.

21A.D. Mirlin and F. Evers, Phys. Rev. B2, 7920(2000.

22R.P.A. Lima and M.L. Lyra, Physica 297, 157 (2001).

2R.P.A. Lima and M.L. Lyra, Physica 820, 398 (2003.

2R.P.A. Lima, M.L. Lyra, and J.C. Cressoni, Physic295 154
(2002).

253.V. Joseand R. Cordery, Phys. Rev. Lefi6, 290 (1986.

26|\, Ponomarev and P.G. Silvestrov, Phys. Rev.5B 3742
(1997).

21\E. Kravtsov and A.M. Tsvelik, Phys. Rev. &, 9888(2000).

2E. Cuevas, V. Gasparian, and M. OrtyrPhys. Rev. Lett87,
056601(2001).

2H. Potempa and L. Schweitzer, Phys. Rev6® 201105(2001).

303.C. Cressoni and M.L. Lyra, Physica2s6, 18 (1998.

3IA. Rodrguez, V.A. Malyshev, G. Sierra, M.A. MariDelgado, J.
Rodrguez-Laguna, and F. Donguez-Adame, Phys. Rev. Lett.
90, 027404(2003.

32M. Inui, S.A. Trugman, and E. Abrahams, Phys. Rev® 3190
(1994.

33C. Zhou and R.N. Bhatt, Phys. Rev.@8, 045101(2003.

34M.L. Mehta, Random MatriceAcademic Press, Boston, 1991

3SV.E. Kravtsov, I.V. Lerner, B.L. Altshuler, and A.G. Aronov, Phys.
Rev. Lett.72, 888(1994.

165117-6



FINITE-SIZE SCALING OF POWER-LAW BOND. . . PHYSICAL REVIEW B 69, 165117 (2004

36A.G. Aronov, V.E. Kravtsov, and I.V. Lerner, Phys. Rev. L&,  %°S.M. Nishigaki, Phys. Rev. B9, 2853(1999.

1174(1995. 41B.1. Shklovskii, B. Shapiro, B.R. Sears, P. Lambrianides, and
373.N. Evangelou and D.E. Katsanos, J. Stat. PB§s525(1996. H.B. Shore, Phys. Rev. B7, 11 487(1993.
38C.M. Canali, Phys. Rev. B3, 3713(1996. 42| Kh. Zharekeshev and B. Kramer, Jpn. J. Appl. Phys., P&,1
39VE. Kravtsov and K.A. Muttalib, Phys. Rev. Let¥9, 1913 4361(1995.

(1997. 43, Varga and D. Braun, Phys. Rev.@®, 11 859(2000.

165117-7



