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Finite-size scaling of power-law bond-disordered Anderson models
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We investigate numerically the nature of energy eigenstates in one-dimensional bond-disordered Anderson
models with hopping amplitudes decreasing asHi j }1/u i 2 j ua. The eigenstates become delocalized whenever
the hopping amplitudes decay slower than 1/r . By performing an exact diagonalization scheme on finite chains,
we compute the participation ratio of all energy eigenstates. Employing a finite-size scaling analysis, we report
on the relevant scaling exponents characterizing this delocalization transition as well as the level-spacing
distribution at the critical pointa51. The random hopping amplitudes are taken from both uniform and
random sign distributions. We show that these models display similar critical behavior in the vicinity ofa
51. However, the random sign model exhibits an asymptotic delocalization in the limit ofa→` and the
universal scaling behavior in this regime is also reported.
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I. INTRODUCTION

Disordered electronic systems can undergo an Ande
transition, as the strength of disorder increases, from a p
of extended to localized states.1 However, when only short-
range couplings are considered, scaling arguments supp
by numerical and analytical results restrict its occurrence
systems with spatial dimensionalityd.2.2 An exception is
the occurrence of extended states in two-dimensional mo
with broken time-reversal symmetry induced by a stro
magnetic field, an important realization being the Anders
critical point associated with the quantum Hall plate
transition.3 Another exception is the existence of a metal
phase in two-dimensional systems with preserved tim
reversal symmetry but with broken spin-rotation symme
due to the presence of a strong spin-orbit coupling.4 In one-
dimensional systems, all one-electron eigenstates remain
ponentially localized for any amount of disorder even w
broken time-reversal and spin-rotation symmetries. Local
tion induced by disorder is a feature shared by general ph
cal systems exhibiting collective excitations such
magnetic5–7 and vibrational8,9 modes.

Disorder can be introduced through a random distribut
of on-site potentials and/or off-diagonal hopping amplitud
Pure off-diagonal disorder is known to be less effective
induce localization than diagonal disorder. In two dime
sions, for example, the states are not exponentially localiz
Instead, they present power-law tails characteristic of crit
states.10–12 In d51, the states remain exponentially loca
ized, except the one at the band center which exhibit
stretched exponential envelope.13,14 One-dimensional sys
tems may support extended states when correlations ar
troduced in the disorder distribution. However, short-ran
correlations can stabilize extended states with no ba
scattering only at discrete resonance energies.15,16 On the
other hand, long-range correlations can delocalize a fi
fraction of the collective modes.17,18 In such a case, deloca
ization is also more effective in the presence of pure o
diagonal disorder which requires weaker correlations to s
port extended modes.19

Delocalization of collective models in low-dimension
0163-1829/2004/69~16!/165117~7!/$22.50 69 1651
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disordered systems can also be induced by the presenc
long-range couplings.20–23 Recently, Mirlinet al. introduced
the power-law random band matrix~PRBM! model20,21 de-
scribing one-dimensional electronic systems with rand
long-range hopping amplitudes with standard deviation
caying as 1/r a for sites at a distancer @b, where b is a
typical bandwidth. It was shown that ata51 this model
presents an Anderson-like transition with all states being
calized fora.1 and extended fora,1. The PRBM model
effectively describes some features of a series of phys
systems such as the quantum Fermi accelerator,25 two inter-
acting particles in a one-dimensional~1D! random potential26

and the Luttinger liquid at finite temperatures,27 among
others.20,21 Further, its simplicity allows for analytical and
extensive numerical studies of the universal scaling beha
at the vicinity of the Anderson transition. In particular at th
critical point a51, the inverse participation ratio distribu
tion, the wave-functions multifractal spectra, and the le
statistics have been investigated both analytically a
numerically.21,24 However, the scaling behavior governin
the approach to the critical point has not yet been clea
settled. In the limit of very large bandwidthb@1, a pertur-
bative approach associated with a renormalization gr
treatment has predicted that the characteristic length s
should diverge as lnj}(a21) as a approaches the critica
point from above.20 A numerical analysis for the case o
intermediate bandwidth provided some support to this p
diction but indicated that the one-parameter scaling hypo
esis may be violated with a distinct exponent governing
approach to the critical point from below.28 Within the same
spirit of the PRBM, a model for noninteracting electrons in
2D lattice with random on-site potentials and random pow
law decaying transfer terms was numerically investigated
exploring the finite-size scaling properties of the fluctuatio
in the mean level spacing.29 It was found that the one
electron eigenstates become extended for transfer terms
caying slower than 1/r 2. The correlation length exponen
governing this transition was estimated to ben52.60(15)
and the same on both sides of the transition. Finally, a mo
for noninteracting electrons in a 1D chain with nonrando
power-law decaying hopping terms and random on-site
©2004 The American Physical Society17-1
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tentials has been shown to support extended states at th
of the band.30,31

In this work, we numerically investigate the univers
scaling behavior of the one-dimensional Anderson mo
with power-law pure off-diagonal disorder. The hopping a
plitudes will be chosen from two distinct distribution
namely the uniform and the bimodal~random signs! ones.
Through direct diagonalization of the Anderson Hamiltoni
on finite chains, we compute the critical level-spacing sta
tics and the average participation number as a function of
power-law decay exponenta. Using standard finite-size
scaling analysis, the participation number data will be sho
to follow a universal scaling behavior in the vicinity ofa
51 with the same exponent on both sides of the criti
point, thus supporting the one-parameter scaling hypothe
Furthermore, the random sign model will be shown to e
hibit a second delocalization transition asa→`, whose scal-
ing behavior will also be reported.

II. THE POWER-LAW PURE OFF-DIAGONAL 1D
ANDERSON MODEL

We consider a single electron in a one-dimensional ch
with open boundaries, described by the Anderson Ham
tonian

H5(
iÞ j

N

t i j u i &^ j u, ~1!

where u i & represents the state with the electron localized
site i. In the present pure random bond Anderson model,
on-site potentialse i are site independent and in Eq.~1! were
taken to bee i50 without any loss of generality. Disorder
introduced by assuming the hopping amplitudest i j to be ran-
domly distributed. For uncorrelated and nearest-neighb
pure off-diagonal disorder all one-electron eigenstates
exponentially localized, except the state at the band ce
which has a stretched exponential envelope with the den
of states presenting a logarithmic singularity at the band c
ter. These features are due to the particle-hole symmetry
sented by bipartite lattices.32 Power-law decaying hopping
amplitudes, however, may stabilize truly extended states.
will, hereafter, consider

t i j 5Wi j /r i j
a , ~2!

wherer i j is the distance between the sitesi and j andWi j is
a random variable.

Recently, a particular case of the above Hamiltonian w
numerically investigated. The particle-hole symmetry w
preserved by just allowing hopping between sites separ
by an odd number of lattice constants.33 It was found that the
density of states singularity is gradually weakened by lo
range hopping and that the wave functions present pow
law decaying tails. Also a critical phase is anticipated fo
,a,2 with continuously varying wave-functions correl
tion exponents. The numerical results further suggest
emergence of an ordered phase fora,1.

Here, we allow for transfer terms between any pair
lattice sites and therefore the present model has a bro
16511
top

l
l

-

-
e

n

l
is.
-

in
l-

t
e

rs
re
er
ity
n-
re-

e

s
s
ed

-
r-

e

f
en

particle-hole symmetry. Two particular distributions ofWi j
will be used. The first one is the usual uniform distributio
with Wi j being chosen randomly in the interval@2W,
1W#. The second one is the bimodal~random signs! distri-
bution whereWi j 56W with the signs being chosen at ran
dom to give ^Wi j &50. As a function of the exponenta
characterizing the decay of the hopping amplitudes, b
models display a localization-delocalization transition ata
51. For off-diagonal terms decaying slower than 1/r i j , i.e.,
for a,1, all states become delocalized. In the limit ofa
→` one recovers the 1D Anderson model with just fir
neighbors random hopping amplitudes. For the case of
formly distributed couplings, the states remain localize
However, when randomness is introduced only in the si
of the transfer terms, the model with first-neighbors co
plings exhibits just extended Bloch-like eigenstates with
wave-function amplitudes exhibiting random signs. In th
case, localization can be induced only by the inclusion
next-neighbors couplings. Therefore, the random si
model with power-law decaying transfer terms shall pres
a second delocalization transition asa→`.

In the following sections, we are going to provide an e
tensive numerical study of the nature of the one-elect
eigenstates on these two models. The present hopping d
law is similar to the limit of very small bandwidths of th
PRBM model, a regime where the universal scaling behav
governing the approach to the critical point has not be
investigated yet. We would like to stress that the pres
model also differs from the PRBM model by the absence
diagonal disorder. Models with pure off-diagonal disord
are known to exhibit new features not present in models w
diagonal disorder such as a stretched exponential wave f
tion in the center of the band in 1D~Refs. 13 and 14! and
power-law scaling of the participation number in 2D.10–12

We will be particularly interested in employing a finite-siz
scaling analysis of the average participation number to
tain the universal critical exponents governing the Anders
transition at the vicinity ofa51 as well as the asymptoti
delocalization of the random signs model asa→`.

III. DENSITY OF STATES AND CRITICAL LEVEL
STATISTICS

We used an exact diagonalization scheme to obtain
energy spectrum of finite chains with sizes ranging fromL
5200 up toL51600 sites. In order to average over distin
disorder configurations, data from several chains were joi
making up a total number of 323103 states for each chain
size and power-law exponenta for both uniform and random
sign distributions of hopping amplitudes. The bandwidth
verges with increasing system size fora<1/2,33 with a loga-
rithmic divergence ata51/2. Above this point, the thermo
dynamic limit is well defined.

In Fig. 1 we illustrate the main dependence of the dens
of states~DOS! on the power-law decay exponenta for the
case of a uniform hopping amplitude distribution. For lar
values ofa the DOS converges to the one expected for
1D Anderson model with nearest-neighbors off-diagonal d
order. It diverges at the band center where the eigenstate
7-2
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a stretched exponential envelope.14 Large fluctuations on the
DOS reflect the localized nature of the finite-energy eig
states. The band edges present exponential tails due to
random nature of the underlying Hamiltonian. The inclusi
of long-range hopping amplitudes at finite values ofa makes
the central singularity to disappear due to the lack
particle-hole symmetry. At the critical valuea51 there is no
sign of the original central peak. The smoothness of the D
at smaller values ofa is connected with the extended natu
of the energy eigenstates in this regime.

The DOS of the random signs model is depicted in Fig
Since the bimodal distribution has a larger variance,
bandwidth is larger in this case than in the model with
uniform distribution. In the regimea@1, it converges to the
density of states of the 1D tight-binding model with no d
order, displaying the characteristic parabolic shape with

FIG. 1. Density of states for the Anderson model with pow
law decaying random hopping amplitudes following a uniform d
tribution, as obtained from exact diagonalization of chains withL
51600. Typical values of the decay exponenta are represented
For large values ofa one recovers the DOS of the usual 1D Ande
son model with off-diagonal disorder. The smoothness ata,1 is a
signature of delocalization.

FIG. 2. Density of states for the Anderson model with pow
law decaying random hopping amplitudes with random signs
obtained from exact diagonalization of chains withL51600. Typi-
cal values of the decay exponenta are represented. For large valu
of a one recovers the DOS of the pure 1D tight-binding Ham
tonian. At smalla the DOS becomes similar to that obtained for t
model with uniformly distributed disorder.
16511
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vergences at the band edgesE/W562. Disorder becomes
effective in this model through the presence of long-ran
off-diagonal terms. The band-edge singularities beco
rounded-off and the localization of eigenstates introdu
fluctuations in the DOS. As this model also presents a de
calization transition ata51, fluctuations in the DOS be
come vanishingly small below this critical point.

The eigenstates at the delocalization transition poina
51 are critical for any of the above two models. This featu
makes them ideally suited for the analysis of the critic
level-spacing statistics. Localized states are distributed in
ergy following a Poisson lawP(s)5exp(2s), wheres is the
level spacing measured in units of the mean spacing. It
plays a standard deviationDs5A^s2&2^s&251. Delocal-
ized eigenfunctions repel each other and the level spacin
this phase obeys the Wigner surmise, which in the pres
case takes the formP(s)5(p/2)s exp@2(p/4)s2#,34 with a
smaller standard deviationDs50.522. At the Anderson tran
sition a new universal critical statistics intermediate betwe
Wigner and Poisson has been suggested as a consequen
the multifractality of critical wave functions.35–40 Previous
numerical results have shown that a reasonable overall fi
the form37

P~s!5Bsexp~2Asg! ~3!

could be found at the vicinity of the Anderson transition
cubic lattices when time-reversal and spin-rotation symm
tries are preserved. The constantsA andB are chosen to keep
P(s) normalized and̂ s&51. The above form interpolate
between a linear distribution at small level spacings an
stretched exponential distribution at larges. The linear start
of the critical level-spacing distribution is generally a
cepted. However, the larges stretched exponential tail is no
generally accepted and some works have even suggested
be indeed Poissonian but with an exponential coeffici
above unity.40–42 In particular, analytical expressions for th
level-spacing distribution were derived from an ensemble
random matrices with (1/a)(ln x)2 potentials, which repro-
duce accurately numerical data for the level-spacing dis
bution at the Anderson transition in three-dimension
lattices,40 with a52.95 for an ensemble of real symmetr
matrices. The random matrix theory predicts a linear beh
ior at smalls and an exponential decay fors@1/a. In Fig. 3
we show the critical level-spacing distribution as obtain
from the present model with uniformly distributed hoppin
amplitudes. Short- and long-dashed lines correspond to
Poisson and Wigner distributions, respectively. Within o
numerical accuracy, the critical distributions of the unifor
and random signs models coincide. To obtain the lev
spacing distribution, we used an energy window near
band center corresponding to a fraction of 40% of all eig
states. A spectral unfolding procedure was employed to k
the average level spacing equal to unity in each segmen
the energy window.37 At short level distances, the distribu
tion depicts a linear behavior. In the inset, the asympto
behavior at large level distances is displayed. It is interm
diate between the standard exponential with unitary coe
cient and Gaussian decays. The present data do not
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enough accuracy to decide between a fast Poissonian a
stretched exponential decay by just analyzing its asympt
decay. Both laws provide reasonable fits of the distribut
tail. However, the simple form of Eq.~3! does not provide a
good overall fit. On the other hand, the analytic express
provided by the random matrix theory40 gives an excellent fit
of the entire curve, with the single fitting parametera
52.2. This result brings further numerical support in fav
of the random matrix prediction for the actual form of th
critical level spacing. The critical level-spacing distributio
has a standard deviationDs50.595 which is very close to
the value reported for the PRBM model with both diagon
and off-diagonal disorder in the regime of intermedia
bandwidth.43

IV. SCALING ANALYSIS OF THE PARTICIPATION
NUMBER

All energy eigenfunctionsufk& were also computed dur
ing the diagonalization procedure. In order to investigate
universal scaling behavior governing the delocalization tr
sition, we evaluated the average participation number
fined as

P~E!5K 1

(
n51

N

u^nufk&u4L , ~4!

where the external brackets represent an average ove
eigenstatesufk& with energy inside a small window aroundE
~typically containing 200 states!. Figure 4 shows the main

FIG. 3. The critical level-spacing distribution function for th
model with uniformly distributed disorder as obtained from dire
diagonalization of chains withL51600 sites after unfolding the
energy spectrum. The short- and long-dashed lines correspon
the Poisson and Wigner distributions, respectively. The solid lin
the best fit to the analytic expression based on the random m
theory with a52.2 ~see main text!. The inset shows that the
asymptotic behavior of the critical distribution is intermediate b
tween Poisson and Wigner forms.
16511
d a
ic
n

n

r

l

e
-

e-

all

features related toP(E) for the two disorder distributions
studied. Fora.1 all states are exponentially localized an
the participation number is size independent within the en
energy band. In Fig. 4~a!, we represent the results fora
52. As uniformly distributed disorder promotes a more e
fective localization, the participation ratio is substantia
smaller in this case as compared with the bimodal distri
tion. Fora,1 the states become delocalized and the part
pation number scales linearly with the chain size. In t
regime, represented in Fig. 4~b! for a50.5, the participation
ratio P(E)/L stays around 1/4 irrespective to the disord
distribution, except near the band edges where the en
eigenstates still remain localized due to finite-size effe
which are more pronounced for this limiting case.

The universal behavior at the vicinity of the delocalizati
transition can be obtained using finite-size scaling ar
ments. Exploiting the fact that almost all states within t
energy band have the same nature, we computed the ave
value P(a,L)5^P(E,a,L)&E . Assuming a one-paramete
scaling hypothesis, the average participation number sc
near the transition pointa51 as

P~a,L !5LD2F @~a21!L1/n#, ~5!

t

to
is
rix

-

FIG. 4. ~a! The average participation ratio as a function of e
ergy for a52. Results for both uniform and bimodal distribution
are represented. The superposed lines correspond to the results
chains withL5800 ~dashed! and L51600 ~solid! sites. States are
substantially more localized in the model with uniformly distribut
disorder;~b! the normalized average participation ratio vs ener
for a50.5 andL51600. For both disorder distributionsP/L is of
the order of 1/4 except near the band edges where a few states
remain localized due to finite-size effects.
7-4
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FINITE-SIZE SCALING OF POWER-LAW BOND- . . . PHYSICAL REVIEW B 69, 165117 ~2004!
whereD2 governs the power-law divergence of the avera
participation number ata51 andn governs the divergenc
of the relevant length scale as one approaches the trans
The correlation exponent can be measured by noticing
dPa[dP/daua51}LD211/n.

In Fig. 5 we report our main results concerning the abo
finite-size scaling analysis for the model with uniformly di
tributed disorder. The average participation number pres
a single transition ata51 @see Fig. 5~a!#, represented by the
divergence of the slope ata51 with increasing system sizes
The inset shows the critical power-law size dependenceP
and dPa from which we estimateD250.68(1) and n
52.34(7). Notice that the data follow well-defined powe
laws with negligible fluctuations and no evident correctio
to scaling for the systems size considered. Small fluctuat
are a result of the large statistics obtained by computing
average participation number of all eigenstates. The abs
of strong corrections to scaling is a less expected feat
once it is usually needed to consider very large system s
to capture the long-range character of general systems
slowly decaying terms. The peculiar property of the pres
model with random power-law decaying hopping amplitud
is that the thermodynamic limit becomes ill defined only f
a,1/2, below which the bandwidth increases with syst

FIG. 5. Finite-size scaling analysis for the model with uniform
distributed disorder.~a! The participation number averaged over
states as a function of the decay exponenta for several chain sizes
The inset shows the power-law size dependence ofP anddPa from
which we estimateD250.68(1) andn52.34(7). ~b! The collapse
of data from the critical region using the above estimated ex
nents. The collapse of both branches supports the one-param
scaling hypothesis.
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size.33 The Anderson transition is sufficiently far from th
point, in a region where the thermodynamic limit is we
defined, and the asymptotic scaling regime sets up for r
tively small chain sizes.

All data in the critical region belonging to distinct cha
sizes were collapsed into a universal curve as shown in
5~b!. The nice data collapse from both sides of the transit
corroborates the single-parameter scaling hypothesis.
would like to stress that the presently reported value ofn is
quite distinct from the one predicted for the PRBM model
the limit of large bandwidth20 and it is somewhat below the
one reported for the 2D model with random on-site and r
dom power-law decaying hopping amplitudes.29 However, it
is intriguingly close to the best estimated value for t
Anderson transition in 2D with broken time-revers
symmetry.3

For the model with bimodal off-diagonal disorder distr
bution, a similar finite-size scaling behavior is obtained
the vicinity of a51 @see Fig. 6~a!# with the resulting expo-
nents being the same~within our numerical accuracy! as the
above reported ones. This result indicates that the sca
behavior of the Anderson transition in this model is univer
with respect to the disorder distribution form. However, f
the bimodal disorder distribution, the states become asy

-
ter

FIG. 6. Finite-size scaling analysis for the model with bimod
distributed disorder~random signs hopping amplitudes!. ~a! The
participation number averaged over all states as a function of
decay exponenta for several chain sizes. The transition ata51 is
similar to the one reported for the model with uniformly distribut
disorder. In addition, the states become asymptotically delocal
asa→`; ~b! the collapse of data from the asymptotic region. T
collapse supports the scaling relation proposed in Eq.~6!.
7-5
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totically delocalized asa→`. This asymptotic delocaliza
tion can also be represented in a universal scaling form
depicted in Fig. 6~b!. The data collapse implies that in th
regime

P~a,L !5LG~a/ ln L !, ~6!

in such a way that the characteristic length scale exhibits
asymptotic logarithmic divergence.

V. CONCLUSION

We investigated in detail the nature of one-electr
eigenstates in the one-dimensional Anderson model w
off-diagonal disorder and matrix elementsHi j decaying as
1/u i 2 j ua. The disorder was considered to follow either
uniform or a bimodal~random signs! distribution. Both mod-
els present features similar to the power-law random b
model introduced by Mirlinet al.20,21 with all states being
localized fora.1 and delocalized fora,1. Following an
exact diagonalization procedure, we computed the ene
spectrum and participation number to characterize the
versal scaling properties in the vicinity of the delocalizati
transition occurring ata51. The critical level-spacing dis
tribution was computed and found to exhibit a linear beh
ior at small level spacing, crossing over to an asympto
decay at large level spacing between the Poisson and Wi
forms, well fitted by the random matrix theory prediction f
an ensemble of real symmetric matrices with squared lo
rithmic potentials.40 A finite-size scaling analysis of the pa
a

.L
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ticipation number allowed us to estimate the power-law
ponent of its size dependence at criticalityD250.68(1) as
well as the correlation length exponentn52.34(7). These
exponents are the same for both uniform and random s
disorder distributions. The energy eigenstates of the rand
signs model become asymptotically delocalized fora→`
with a logarithmic diverging characteristic length scale. T
reported correlation length exponent is very close to the b
estimated value for the Anderson transition in 2D with br
ken time-reversal symmetry, such as the quantum Hall p
teau transition.3 The similarity between the 1D Anderso
model with random long-range hopping amplitudes and th
ries for the quantum Hall critical point have already be
pointed out.3,21 It would be of great value to have in futur
contributions further arguments aiming to support the pres
evidence that the Anderson transition in the 1D models
vestigated here indeed has the same correlation length
cal exponent of the quantum Hall plateau transition in
systems under a strong magnetic field.
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