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Quantum lattice dynamical effects on single-particle excitations in one-dimensional Mott
and Peierls insulators
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As a generic model describing quasi-one-dimensional Mott and Peierls insulators, we investigate the
Holstein-Hubbard model for half-filled bands using numerical techniques. Combining Lanczos diagonalization
with Chebyshev moment expansion we calculate exactly the photoemission and inverse photoemission spectra,
and use these to establish the phase diagram of the model. While polaronic features emerge only at strong
electron-phonon couplings, pronounced phonon signatures, such as multiquanta band states, can be found in
the Mott insulating regime as well. In order to corroborate the Mott to Peierls transition scenario, we determine
the spin- and charge-excitation gaps by a finite-size scaling analysis based on density-matrix renormalization-
group calculations.
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The one-dimensional~1D! Holstein-Hubbard mode
~HHM! has been used extensively to describe for lo
dimensional materials, e.g., conjugated polymers, orga
charge transfer salts, or halogen-bridged transition m
complexes,1 and the associated metal-insulator2,3 and
insulator-insulator transitions.4–6 The HHM accounts for a
tight-binding electron band, intrasite Coulomb repulsion b
tween electrons of opposite spin, and a local coupling of
charge carriers to the phonon system:

H52t(
i ,s

~cis
† ci 11s1H.c.!1U(
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~bi
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Here,cis
† (cis) denote fermionic creation~annihilation! op-

erators of spin-s electrons (s5↑, ↓) on a 1D lattice withN
sites, nis5cis

† cis , and bi
† (bi) are the corresponding

bosonic operators for a dispersionsless optical phonon
frequencyv0.

The physics of the model~1! is governed by the compe
tition between electron itinerancy (}W54t) on the one
hand and electron-electron (}u5U/4t) and electron-phonon
(}l5«p/2t; «p is the polaron shift! interactions on the othe
hand, which both tend to immobilize the charge carriers.
least for the half-filled band case (( i ,snis5Nel5N), Mott
insulator~MI ! or Peierls insulator~PI! states are expected t
be favored over the metallic state at temperatureT50 ~see
Fig. 1!. The correlated MI shows pronounced spin-dens
wave ~SDW! fluctuations but has continuous symmetry.
therefore exhibits no long-range order in 1D. In contrast,
PI is characterized by dominant charge-density-wave~CDW!
correlations and true long-range order because a disc
symmetry is broken. While the gaps to both spin (Ds) and
charge (Dc) excitations are finite in the PI, the spin ga
vanishes in the 1D MI, which is related to spin charge se
ration. In a strict sense these results hold in the adiab
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limit ( v050) for ‘‘ U-only’’ ~Hubbard model! and ‘‘l-only’’
~Peierls model! parameters. At finite phonon frequency an
U50 ~Holstein model! a critical electron-phonon~EP! cou-
pling is required to set up the CDW phase characterized
alternating doubly occupied and empty sites.7 The concomi-
tant gap formation and metal-insulator transition have
cently been studied in the limit of infinite dimensions.8 De-
pending on the adiabaticity ratioa5v0 /t the PI represents a
traditional band insulator (a!1) or a bipolaronic insulator
(a@1, g25«p /v0@1).9 Although for the more genera
HHM the situation is much less clear, we expect that
features of the insulating phase will depend markedly on
ratio of Coulomb and EP interactionsu/l, allowing for
quantum phase transitions between insulating phases.
deed, based on recent numerical results for the stagg
spin- and charge-structure factors, it has been argued tha
HHM shows a crossover between Mott and Peierls insula

FIG. 1. Schematic phase diagram of the Holstein-Hubb
model at half filling.
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phases atu/l.1.10 More precisely, for finite periodic
chains, the MI-PI quantum phase transition could be ide
fied by a ground-state level crossing associated with
change in the parity eigenvalueP.4 Note that this scenario
differs from the ~weakly interacting! HHM with frozen
phonons,10 where there is strong evidence in favor of tw
quantum critical points, as in the ionic Hubbard model.11,12

The aim of this work is to establish the physical pictu
developed to date for the interplay of spin, charge, and lat
degrees of freedom in the 1D Holstein Hubbard model.
particular, we attempt to verify the proposed phase diag
by examining the single-particle excitations. For these p
poses we employ Lanczos exact diagonalization~ED!,13 ker-
nel polynomial,14 and density-matrix renormalization grou
~DMRG!15,16 methods to determine the~inverse! photoemis-
sion spectra as well as the spin- and charge-excitation g
These quasi-exact numerical techniques allow us to ob
reliable results for all interaction strengths with the full qua
tum dynamics of phonons taken into account. Exact dia
nalizations are seriously limited in achievable system si
N, but have the advantage that spectral quantities are e
accessible. Complementary, the DMRG algorithm yields s
cific eigenstates of large systems by implementing a ren
malization scheme and an optimal truncation of the Hilb
space. Thus it permits for a finite-size analysis of the grou
state energies in different particle and spin sectors, whic
required to determine the behavior of the various excitat
gaps in the thermodynamic limit.

We begin by studying the spectral density of sing
particle excitations associated with the injection of a spins
electron with wave numberK, AKs

1 (v) @inverse photoemis-
sion ~IPE!#, and the corresponding quantity for the emissi
of an electron,AKs

2 (v) @photoemission~PE!#, where

AKs
6 ~v!5(

m
u^cm

(Nel61)ucKs
6 uc0

(Nel)&u2

3d@v7~Em
(Nel61)

2E0
(Nel)!# ~2!

with cKs
1 5cKs

† andcKs
2 5cKs . uc0

(Nel)& is the ground state o

the system withNel electrons anducm
(Nel61)

& are eigenstates

of the (Nel61)-particle system.E0
(Nel) and Em

(Nel61) are the
corresponding energies. Adding the spectral densities
~photo! emission and absorption we obtain the spectral fu
tion AKs(v)5AKs

1 (v)1AKs
2 (v), which obeys various sum

rules and allows for a connection to angle-resolved pho
emission spectroscopy~ARPES!. The simplest sum rule
*2`

` AKs(v)dv51, reflects the normalization ofAKs(v)
but is not useful for ARPES since it involves both occupi
and unoccupied states.(s*2`

` nF(v)AKs(v)dv5n(K)
@wherenF(v) is the Fermi function# is more important, since
it relates the ARPES intensity to the number of electrons
momentum stateK: n(K)5(s^cKs

† cKs&. The ED results
presented forAKs

6 (v) in the following were obtained for an
eight-site system with periodic boundary conditions.17

Let us first consider the MI regime. Figure 2 displays t
IPE and PE spectra for the HHM at the allowed wave nu
bers of our finite system:K50,6p/4,6p/2,63p/4, andp.
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To reliably monitor a possible band splitting induced by t
Hubbard and EP couplings at half filling it is necessary
guarantee that the Fermi momentaKF56p/2 are occupied,
which is the case forN54l ( l integer, periodic boundary
conditions!. The most prominent feature we observe in t
MI regime is the opening of a gap atK56p/2, indicating
massive charge excitations. A comparison with the res
obtained for the pure Hubbard model classifies this gap
the Mott-Hubbard correlation gap. Its valueD/t.3.25 al-
most coincides with the optical gapDopt we determined by
evaluating the regular part of the optical conductivity for t
same parameters. The dispersion of the lower~upper! Hub-
bard band can be derived tracing the uppermost~lowest! ex-
citations in eachK sector. Due to the finiteness of our syste
and the rather moderate valueu51.5, PE~IPE! excitations
with K563p/4 andp (K56p/4 and 0) have still finite
spectral weight. This can be seen from the integrated spe
densitiesSKs

6 (v)5*7`
v dv8AKs

6 (v8), which, in addition to
the sum ruleSKs

2 (2`)1SKs
1 (`)51, satisfy the relations

SKs
6 (6`)1Sp2Ks

6 (6`)51 (K>0). Since the spectra
weight of the PE excitations withK.p/2 is expected to
vanish asN goes to infinity foru@1, the lower Hubbard
band will be completely filled@( uKu<KF ,s*`

2`dvAKs
2 (v)

.Nel#, and consequently the system behaves as an insu
at T50.20 As a result of the coupling to the phonon syste
the electronic levels in eachK sector split, creating phonon
side bands. The distinct peaks are separated by multiple
the bare phonon frequency and can be assigned to relax
processes of theQ50 phonon modes.21 The number of
phonons involved is controlled byg2. SKs

6 (v) shows clearly
that the total spectral weight of the resulting excitation ban
equals the weight of the respective electronic excitations

FIG. 2. ~Color online! Wave-number-resolved spectral densiti
for photoemission@AKs

2 (v); red lines ~left!# and inverse photo-
emission@AKs

1 (v); black lines~right!# in the Mott insulating state
(u/l@1). The corresponding integrated densitiesSKs

6 (v) are given
by dashed lines. Data for the pure Hubbard model~blue and green
lines! were shifted by2(«pNel

2 /N) and included for comparison.
5-2
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the pure Hubbard model. Interestingly, mediated byQÞ0
phonons, there appear ‘‘shadows’’ of the band belonging
dominant electronic excitation in a certainK sector in other
K sectors, giving rise to a weak ‘‘breather-like’’ excitation,22

which is almost dispersionsless in the Brillouin zone.
If we decrease the Hubbard interaction at fixed EP c

pling strength the Mott-Hubbard gap weakens and fina
closes at about (u/l)c.1, which marks the MI-PI crossove
This is the situation shown in Fig. 3. Approaching the critic
point from above and below, the ground state and the fi
excited state become degenerate. These states have dif
eigenvalues P of the site-inversion operatorPcis

† P†

5cN2 i s
† ( i 50, . . . ,N21) and we have verified that th

ground-state site parity isP511 in the MI andP521 in
the PI. Obviously the critical point is characterized by ga
less charge excitations at the Fermi momenta but should
be considered as metallic because the Drude weight i
defined.11,23

If the Hubbard interaction is further reduced, i.e., the
coupling overcomes the on-site Coulomb repulsion, a CD
accompanied by a dimerization of the lattice develops. A
result the electronic band structure becomes gapped a
@see Fig. 4~upper panel!#. The form of the spectra, howeve
is quite different from MI case. While in the MI regime th
lowest peak in eachK sector is clearly the dominant one,
the BI phase rather broad~I!PE signatures appear. Withi
these excitation bands the spectral weight is almost
formly distributed, which is a clear signature of multiphon
absorption and emission processes that accompany e
single-particle excitations in the PI. The line shape then
flects the~Poisson-like! distribution of the phonons in the
ground state. Again low-intensity ‘‘shadow bands’’ becom
visible. Remarkably, now the cumulative spectral weig
( uKu<p/2SKs

2 (2`) gives nearly the total numberNel of elec-

FIG. 3. ~Color online! PE @red lines~left!# and IPE@black lines
~right!# spectra near the Mott insulator Peierls insulator transit
point (u.l).
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trons, i.e., the finite-size effects mentioned above for the
are much less pronounced in the BI state. The situa
changes radically if the insulating behavior is associated w
localized bipolarons forming a CDW state~see Fig. 4, lower
panel!. Due to strong polaronic effects an almost flat ba
dispersion results with exponentially small~electronic!
quasiparticle weight. Now the dominant peaks in the inc
herent part of the~I!PE spectra are related to multiples of th
~large! bare phonon frequency broadened by electronic e
tations.

Since many-body gaps to excited states form the basis
making contact with experimentally measurable excitat
gaps and can also be used to characterize different phas
the HHM, we finally determine the charge and spin gaps

n

FIG. 4. ~Color online! PE and IPE spectra in the Peierls pha
(u!l). The upper~lower! panels show typical results obtained fo
the case of a band insulator~BI! at a!1 and bipolaronic insulator
~BPI! at a@1, respectively.
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Dc5E0
(N11)~ 1

2 !1E0
(N21)~2 1

2 !22E0
(N)~0!, ~3!

Ds5E0
(N)~1!2E0

(N)~0!, ~4!

using DMRG.18 HereE0
(M )(Sz) is the ground-state energy o

the HHM with M particles in the sector with total spin-z
componentSz.

FIG. 5. ~Color online! DMRG finite-size scaling of spin- and
charge-excitation gaps in the HHM with dynamical phononsl
50.35,a50.1). Note the different scale ofDc in the MI phase.
Open and filled symbols denote DMRG results for periodic~PBC!
and open~OBC! boundary conditions, respectively. The accessi
system sizes are smaller at largerl/u, where an increasing numbe
of ~phononic! pseudosites is required to reach convergence w
respect to the phonons. Stars represent the ED results for the e
site system. The arrow marks the value of the optical gapDopt for
the Bethe-ansatz solvable 1D Hubbard model, which is given
Dopt /4t5u211 ln(2)/2u in the limit of largeu.1 ~Ref. 24!.
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Obviously the finite-size scaling presented in Fig. 5 f
Dc/s substantiates our introductory discussion of the ph
diagram~cf. Fig. 1!. Dc andDs are finite in the PI and will
converge further asN→`. Both gaps seem to vanish at th
quantum phase transition point of the HHM with finite
frequency phonons, but in the critical region the finite-s
scaling is extremely delicate. In the MI we found a fini
charge excitation gap, which in the limitu/l@1 scales to the
optical gap of the Hubbard model, whereas the extrapola
spin gap remains zero.19

In summary, we have presented a comprehensive pic
of the physical properties of the 1D half-filled finite-phono
frequency Holstein-Hubbard model. With respect to t
metal the electron-electron coupling favors the Mott insul
ing state whereas the electron-phonon interaction is resp
sible for the Peierls insulator to occur. The PI typifies a ba
insulator in the adiabatic weak-to-intermediate coupli
range or a bipolaronic insulator for non-to-antiadiaba
strong coupling. Our results for the single-particle spec
and spin/charge excitation gaps give clear indication o
Mott- to Peierls-insulator quantum phase transition atu/l
.1. Quantum phonon dynamics yields pronounced effe
in the ~I!PE spectra, which might be of great importance
interpreting photoemission experiments of low-dimensio
strongly correlated electron-phonon systems such as M
chain compounds.1
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