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Quantum lattice dynamical effects on single-particle excitations in one-dimensional Mott
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As a generic model describing quasi-one-dimensional Mott and Peierls insulators, we investigate the
Holstein-Hubbard model for half-filled bands using numerical techniques. Combining Lanczos diagonalization
with Chebyshev moment expansion we calculate exactly the photoemission and inverse photoemission spectra,
and use these to establish the phase diagram of the model. While polaronic features emerge only at strong
electron-phonon couplings, pronounced phonon signatures, such as multiquanta band states, can be found in
the Mott insulating regime as well. In order to corroborate the Mott to Peierls transition scenario, we determine
the spin- and charge-excitation gaps by a finite-size scaling analysis based on density-matrix renormalization-
group calculations.
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The one-dimensional(1D) Holstein-Hubbard model limit (wy=0) for “U-only” (Hubbard modgland “\-only”
(HHM) has been used extensively to describe for low-(Peierls model parameters. At finite phonon frequency and
dimensional materials, e.g., conjugated polymers, organit)=0 (Holstein model a critical electron-phonofEP) cou-
charge transfer salts, or halogen-bridged transition metgiling is required to set up the CDW phase characterized by
complexes, and the associated metal-insuldtorand alternating doubly occupied and empty siféEhe concomi-
insulator-insulator transitiorfs.® The HHM accounts for a tant gap formation and metal-insulator transition have re-
tight-binding electron band, intrasite Coulomb repulsion be<ently been studied in the limit of infinite dimensichBe-
tween electrons of opposite spin, and a local coupling of thgpending on the adiabaticity ratie= wq/t the Pl represents a

charge carriers to the phonon system: traditional band insulator{<1) or a bipolaronic insulator
(e>1,g°=¢,/we>1).° Although for the more general
_ HHM the situation is much less clear, we expect that the
H=—t>, (¢| ¢ 1,7 H.C)+UD, nin, : . e
;r (CioCi10 ) Z Tl features of the insulating phase will depend markedly on the

ratio of Coulomb and EP interactions/\, allowing for
N Fu bf+bn. + bib 1 quantum phase transitions be_tween insulating phases. In-
8pwoi§,; (b +binie wO}i: H @ deed, based on recent numerical results for the staggered
spin- and charge-structure factors, it has been argued that the

'1‘ . . . oy . .
Here, cj, (ci,) denote fermionic creatiotannihilation op- M shows a crossover between Mott and Peierls insulating

erators of spins electrons ¢=1, |) on a 1D lattice withN
sites, n;,=c/ c;,, and b/ (b)) are the corresponding

bosonic operators for a dispersionsless optical phonon witt Mott Insulator

frequencyw,. 8> A =0;P=-1
The physics of the modé€ll) is governed by the compe- oW f—f—f————

tition between electron itinerancy«<{=4t) on the one

hand and electron-electrorm (1= U/4t) and electron-phonon

(A =¢gp/2t; g, is the polaron shijtinteractions on the other ﬁ

hand, which both tend to immobilize the charge carriers. At '

least for the half-filled band case&{,n;,=Ng=N), Mott

insulator(MI) or Peierls insulato(Pl) states are expected to
be favored over the metallic state at temperaflire0 (see / \

Fig. 1). The correlated MI shows pronounced spin-density-

wave (SDW) fluctuations but has continuous symmetry. It

therefore exhibits no long-range order in 1D. In contrast, the / \
Pl is characterized by dominant charge-density-w&@/@W) Peierls Insulator - -
correlations and true long-range order because a discre4 A=ASOP=4 [
symmetry is broken. While the gaps to both spikX and Insulator oo H——th——fj—— Insulator
charge Q.) excitations are finite in the PI, the spin gap

vanishes in the 1D MI, which is related to spin charge sepa- FIG. 1. Schematic phase diagram of the Holstein-Hubbard
ration. In a strict sense these results hold in the adiabatimodel at half filling.

0163-1829/2004/696)/16511%5)/$22.50 69 165115-1 ©2004 The American Physical Society



FEHSKE, WELLEIN, HAGER, WEISSE, AND BISHOP PHYSICAL REVIEW B9, 165115 (2004

phases atu/A=1.1° More precisely, for finite periodic 2

chains, the MI-PI quantum phase transition could be identi-

fied by a ground-state level crossing associated with a

change in the parity eigenvalie* Note that this scenario 0

differs from the (weakly interactingg HHM with frozen Az mk
0 | L |

|

phonons'® where there is strong evidence in favor of two <, 1

quantum critical points, as in the ionic Hubbard motiéf
The aim of this work is to establish the physical picture
developed to date for the interplay of spin, charge, and Iattice‘ﬁ‘
degrees of freedom in the 1D Holstein Hubbard model. In =
particular, we attempt to verify the proposed phase diagram.~ot—
by examining the single-particle excitations. For these pur-3 2
poses we employ Lanczos exact diagonalizat®n),' ker- &
nel polynomial** and density-matrix renormalization group
(DMRG)*®*® methods to determine tHéverse photoemis- ’
sion spectra as well as the spin- and charge-excitation gap:
These quasi-exact numerical techniques allow us to obtair '
reliable results for all interaction strengths with the full quan- o
tum dynamics of phonons taken into account. Exact diago-
nalizations are seriously limited in achievable system sizes

N, but have the advantage that spectral quantities are easily FIG. 2. (Color online Wave-number-resolved spectral densities

accessible. Complementary, the DMRG algorithm yields spef©r Photoemissionl A, (w); red lines(left)] and inverse photo-
ssion[Ag,(w); black lines(right)] in the Mott insulating state

cific eigenstates of large systems by implementing a renofg™ N e _
u/A>1). The corresponding integrated densitgs(w) are given

malization scheme and an optimal truncation of the HiIbertf) .
space. Thus it permits for a finite-size analysis of the ground-y dashed lines. Data for the pure Hubbard mdéle and green

. ) 2 ) -
state energies in different particle and spin sectors, which ils'nes) were shifted by (epN¢//N) and included for comparison.
required to determine the behavior of the various excitatio
gaps in the thermodynamic limit.

We begin by studying the spectral density of single-
particle excitations associated with the injection of a spin-
electron with wave numbek, A; (o) [inverse photoemis-
sion (IPE)], and the corresponding quantity for the emission
of an electronA,(w) [photoemission(PE)], where

r
Li;‘ P
N
el

=
il
H
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EN
N
o
©
-
o

en-

"o reliably monitor a possible band splitting induced by the
Hubbard and EP couplings at half filling it is necessary to
guarantee that the Fermi momeita= = 7/2 are occupied,
which is the case foN=4l (I integer, periodic boundary
conditions. The most prominent feature we observe in the
MI regime is the opening of a gap &t= = /2, indicating
massive charge excitations. A comparison with the results
obtained for the pure Hubbard model classifies this gap as
Ao(®)=2 |<¢§nNe'i1)|C§U| ¢8Ne')>|2 the Mott-Hubbard correlation gap. Its valug't=3.25 al-

m most coincides with the optical gap,,; we determined by
evaluating the regular part of the optical conductivity for the
same parameters. The dispersion of the lowgpe) Hub-

, _ N, bard band can be derived tracing the uppernilostes) ex-
with ¢, = ci,, andey,= - |4 *) Is the ground state of  cjtations in eactK sector. Due to the finiteness of our system
the system withN,, electrons andil,/;g\'e'*l)> are eigenstates and the rather moderate value=1.5, PE(IPE) excitations
of the (N, =+ 1)-particle systemEéNe') and EET’:'e'tl) are the Wwith K==*=3#/4 and# (K= =*7/4 and 0) have still finite
corresponding energies. Adding the spectral densities cfPectral weight. This can be seen from the integrated spectral
(photo emission and absorption we obtain the spectral funcdensitiesS,,(w) =2 .dw'Ai,(»"), which, in addition to
tion Ay, (w)=A;,(w)+Ag,(w), which obeys various sum the sum ruleS.,(—=)+Sc,(*)=1, satisfy the relations
rules and allows for a connection to angle-resolved photoSk,(*®)+S; k,(x*)=1 (K=0). Since the spectral
emission spectroscopfARPES. The simplest sum rule, weight of the PE excitations witiK> /2 is expected to
7 Ak (w)dw=1, reflects the normalization ofy,(w) vanish asN goes to infinity foru>1, the lower Hubbard
but is not useful for ARPES since it involves both occupiedband will be completely filled = k<, o/~ dwAy (o)
and unoccupied statesZ 7 .Ng(w)Ak,(w)do=n(K) =N], and consequently the system behaves as an insulator
[whereng(w) is the Fermi functiohis more important, since at T=0.2° As a result of the coupling to the phonon system
it relates the ARPES intensity to the number of electrons in ahe electronic levels in eadk sector split, creating phonon
momentum stateK: n(K):Ea(cL,ch). The ED results side bands. The distinct peaks are separated by multiples of
presented foA, () in the following were obtained for an the bare phonon frequency and can be assigned to relaxation
eight-site system with periodic boundary conditidfs. processes of th@=0 phonon mode$: The number of

Let us first consider the MI regime. Figure 2 displays thephonons involved is controlled y?. Sy, () shows clearly

IPE and PE spectra for the HHM at the allowed wave num+hat the total spectral weight of the resulting excitation bands
bers of our finite systenK=0,* 7/4,+ 7/2,+ 37/4, andw. equals the weight of the respective electronic excitations in

X 8l wF (ENer D — g{led) ] 2
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FIG. 3. (Color online PE[red lines(left)] and IPE[black lines
(right)] spectra near the Mott insulator Peierls insulator transition
point (u=N\).

the pure Hubbard model. Interestingly, mediated @y 0 =
phonons, there appear “shadows” of the band belonging to a% 9
dominant electronic excitation in a certaihsector in other <"
K sectors, giving rise to a weak “breather-like” excitatith, 2
which is almost dispersionsless in the Brillouin zone. e
If we decrease the Hubbard interaction at fixed EP cou- <
pling strength the Mott-Hubbard gap weakens and finally
closes at about/\) =1, which marks the MI-PI crossover.
This is the situation shown in Fig. 3. Approaching the critical
point from above and below, the ground state and the first-
excited state become degenerate. These states have differe
eigenvalues P of the site-inversion operatorPc/ PT
=cl_i, (i=0,...N—1) and we have verified that the
ground-state site parity iB=+1 in the Ml andP=-1 in . . .
the PI. Obviously the critical point is characterized by gap- FIG. 4. (Color onling PE and IPE spectra in the Peierls phase

g . <N\). i i
less charge excitations at the Fermi momenta but should n(af \). The uppeillowen panels show typical results obtained for

. . . . .The case of a band insulat@l) at «<<1 and bipolaronic insulator
be considered as metallic because the Drude weight is i @) ate P

defined!?3
If the Hubbard interaction is further reduced, i.e., the EP
coupling overcomes the on-site Coulomb repulsion, a CDW
accompanied by a dimerization of the lattice develops. As arons, i.e., the finite-size effects mentioned above for the MI
result the electronic band structure becomes gapped agaime much less pronounced in the Bl state. The situation
[see Fig. 4upper pangl. The form of the spectra, however, changes radically if the insulating behavior is associated with
is quite different from MI case. While in the Ml regime the localized bipolarons forming a CDW stafsee Fig. 4, lower
lowest peak in eacK sector is clearly the dominant one, in pane). Due to strong polaronic effects an almost flat band
the Bl phase rather broad)PE signatures appear. Within dispersion results with exponentially smafklectronig
these excitation bands the spectral weight is almost uniguasiparticle weight. Now the dominant peaks in the inco-
formly distributed, which is a clear signature of multiphonon herent part of thél)PE spectra are related to multiples of the
absorption and emission processes that accompany evefiarge bare phonon frequency broadened by electronic exci-
single-particle excitations in the PIl. The line shape then retations.
flects the(Poisson-likg distribution of the phonons in the Since many-body gaps to excited states form the basis for
ground state. Again low-intensity “shadow bands” becomemaking contact with experimentally measurable excitation
visible. Remarkably, now the cumulative spectral weightgaps and can also be used to characterize different phases of
2k |=m2Sk (=) gives nearly the total numbéé of elec-  the HHM, we finally determine the charge and spin gaps,

BPI) at «>1, respectively.
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M ~QC'P RN 1= Obviously the finite-size scaling presented in Fig. 5 for
I T T o A s substantiates our introductory discussion of the phase
’ cls
08 Huh=4.29) T{wA=0.93) "o R diagram(cf. Fig. 1). A, and A are finite in the Pl and will
GO AMOPBC) T o oa POy /2 P 1 converge further abl— . Both gaps seem to vanish at the
05| =4 4 Teaa v T 5 ,/" guantum phase transition point of the HHM with finite-
o 4/10(0BC) 1, , A (0BC) T ,('/;ﬁ**' frequency phonons, but in the critical region the finite-size
oo i it T 99" 4| scaling is extremely delicate. In the MI we found a finite
<1“o i _o#| ’,/’/ T ,::/' S charge excitation gap, which in the limitA>1 scales to the
PReee®="" ¥ 4 TY &g 71  optical gap of the Hubbard model, whereas the extrapolated
r AT b T 1 spin gap remains zers.
021 ST *'/ T 7 In summary, we have presented a comprehensive picture
i ,E/ T TES i° {PEQ) of the physical properties of the 1D half-filled finite-phonon
0.1f ;P’ - _‘*“ Ef A (OBC) | frequency Holstein-Hubbard model. With respect to the
./ e Ggf@::’l' - A: g .- metal the electron-electron coupling favors the Mott insulat-
00 G0 01 "0 005 01 0 o005 01 ing state whereas the electron-phonon interaction is respon-
1/N 1/N 1N sible for the Peierls insulator to occur. The Pl typifies a band

FIG. 5. (Color onling DMRG finite-size scaling of spin- and insulator in the adlapatl.c Weak_to_mtermedlate. Cqupllng
charge-excitation gaps in the HHM with dynamical phonons ( @Nge or a _blpolaronlc insulator for.non—to—aptlad|abat|c
=0.35,4=0.1). Note the different scale af, in the MI phase. Strong coupling. Our results for the single-particle spectra
Open and filled symbols denote DMRG results for perig@BC) ~ and spin/charge excitation gaps give clear indication of a
and open(OBC) boundary conditions, respectively. The accessibleMott- to Peierls-insulator quantum phase transitioruat
system sizes are smaller at largéu, where an increasing number =1. Quantum phonon dynamics yields pronounced effects
of (phononig pseudosites is required to reach convergence withn the (1)PE spectra, which might be of great importance for
respect to the phonons. Stars represent the ED results for the Eighﬁ’[erpreting photoemission experiments of low-dimensional

site system. The arrow marks the value of the optical §gp for  strongly correlated electron-phonon systems such as MX-
the Bethe-ansatz solvable 1D Hubbard model, which is given b%:hain compound%

Agpt/4t=u—1+In(2)/2u in the limit of largeu>1 (Ref. 24.
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