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Linear and nonlinear wave propagation in negative refraction metamaterials
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We discuss linear and nonlinear optical wave propagation in a left-handed medium~LHM ! or medium of
negative refraction~NRM!. We use the approach of characterizing the medium response totally by a general-

ized electric polarization@with a dielectric permittivity«̃(v,kW )] that can be decomposed into curl and noncurl
parts. The description has a one-to-one correspondence with the usual approach characterizing the LHM
response with a dielectric permittivity«,0 and a magnetic permeabilitym,0. The latter approach is less
physically transparent in the optical frequency region because the usual definition of magnetization loses its
physical meaning. Linear wave propagation in a LHM or NRM is characterized by negative refraction and
negative group velocity that could be clearly manifested by ultrashort pulse propagation in such a medium.
Nonlinear optical effects in a LHM can be predicted from the same calculations adopted for ordinary media
using our general approach.

DOI: 10.1103/PhysRevB.69.165112 PACS number~s!: 42.70.Nq, 42.79.Nv, 42.25.Bs, 41.20.Jb
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I. INTRODUCTION

Over 30 years ago, Veselago1 suggested that electromag
netic wave propagation in an isotropic medium with a ne
tive dielectric permittivity«(v),0 and negative magneti
permeabilitym(v),0 can exhibit very unusual propertie

Since in such media, the wave vectorkW , the electric fieldEW ,

and the magnetic fieldHW of a wave form a left-handed or
thogonal set, in contrast to the right-handed orthogonal se
an ordinary medium, they are sometimes labeled as
handed metamaterials~LHMs!, as opposite to the ordinar
right-handed media~RHM!. Among the many interesting
properties of wave propagation in such media are the app
ances of a Pointing vector in the direction opposite to

wave vectorkW ~or a negative group velocity! and a refracted
wave on the same side of the surface normal as the incom
wave at an RHM/LHM interface~negative refraction! @so
that the LHM is also called a negative refraction mediu
~NRM!#. The predictions of Veselago have aroused mu
theoretical interest and stimulated strong experimental eff
to create LHMs or NRM in recent years.2–12 Experimental
success has been demonstrated in the microwave region3,6,7

More recently, it has been proposed that photonic-gap m
rials can behave as effective NRM at optical frequenc
Analogous to Bloch electron waves in the band structure
crystal, optical waves in the periodic lattice of a photon
gap material can have a Bloch state with its wave vector
group velocity in opposite directions.8–12 Negative refraction
of light at an air/photonic-crystal interface has been dem
strated in numerical simulations.10–12

The main emphasis of studies on LHMs or NRM so
has been on linear optical effects. Here we consider non
ear optical processes in a LHM and show that they also
hibit unusual properties with respect to energy convers
and propagation. We shall limit our discussion to homo
neous NRM excluding photonic-gap materials; the latter
0163-1829/2004/69~16!/165112~7!/$22.50 69 1651
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more complex because of the presence of optical umkl
processes.

Before discussing nonlinear optical effects in NRM w
would like to note that there are usually two different a
proaches in dealing with wave propagation. One involves
set of fieldsEW , DW , BW , HW with DW 5«(v)EW and BW 5m(v)HW
for monochromatic waves. This approach is often used
discussion of wave propagation in LHMs or NRM, with th
emphasis on the assumption that the response is compl
characterized by«(v),0 and m(v),0. However, it is
known that while the approach is appropriate in the low f
quency region, it is less so in the optical frequency reg
becausem~v! loses its usual physical meaning13 and higher-
order multipoles may become important. A more general
proach is to use the set of fieldsEW , DW , BW with DW 5 «̃EW and
BW 5HW , satisfying the Maxwell equations

¹3EW 5
iv

c
BW , ¹3BW 52

iv

c
DW , ¹•DW 50, ¹•BW 50.

~1!

In this case, the linear optical response of the medium
completely characterized by the generalized dielectric c
stant«̃(v,kW ), and the refractive indexn ( «̃5n2) can always
be taken as positive. We note that in this approach, the v
torskW , E½W , andBW always form a right-handed set, irrespecti
of the medium being NRM or not.

The only difference between wave propagation
bulk NRM and in ordinary media is the appearance o
negative group velocity in the former. As we shall s
later, the negative group velocity is not limited to magne
media with a negative magnetic permeability, but cou
exist in any dielectric media with a sufficiently strong an
proper spatial dispersion. Thus the second approach
certainly more general and less confusing; in particu
it is better suited for description of nonlinear optical effec
in NRM.
©2004 The American Physical Society12-1



on

or

i

e
a

ca

e

y
e

o
ak
-

o
s

be

-

e

i-
re

pa
cu
t

o
bic

-
n

we

le

in
ical
le

at

the
opic
-
-

e

ve.
n,
ould
he
m-
r in

AGRANOVICH, SHEN, BAUGHMAN, AND ZAKHIDOV PHYSICAL REVIEW B 69, 165112 ~2004!
We show in Sec. II that there is a one-to-one corresp
dence between theE, D, H, B approach and theE, D, B
approach. While the negative group velocity in LHM
NRM appears because«,0 andm,0 in the former, it ap-
pears because«̃ has a special and strong spatial dispersion
the latter. We then use theE, D, B approach to describe
negative refraction at a RHM/LHM interface in Sec. III. Th
E, D, B approach is commonly used to formulate nonline
optics in ordinary media. With this approach, the results
be easily converted to describe nonlinear optical effects
NRM. We discuss as examples, in Secs. IV and V, resp
tively, second harmonic generation~SHG! and stimulated
Raman scattering in NRM. Finally, in Sec. VI, we briefl
consider ultrashort pulse propagation in linear and nonlin
LHMs ~or NRM!.

II. LINEAR WAVE PROPAGATION IN A MEDIUM WITH A
GENERALIZED RESPONSE COEFFICIENT

We present here theE, D, B approach generally used t
describe optical wave propagation in a medium and m
connection to theE, D, H, B approach often used to de
scribe wave propagation in NRM.

A. Dielectric tensor as the response coefficient

As pointed out by Landau and Lifshits,13 the magnetiza-
tion MW loses its usual physical meaning as magnetic m
ments per unit volume towards optical frequencies, and
does the magnetic permeabilitym~v!. It is then more appro-
priate to use theEW , DW , BW approach withm~v! set to be 1. In
this case, the linear response of a medium is fully descri
by the constitutive equation

DW 5 «̃~v,kW !EW ~2!

for a monochromatic wave, with«̃ being a generalized di
electric tensor that depends on bothv andkW .

To make connection with theE, D, B, H approach, we
notice that in terms of multipole expansion, the displacem
vectorDW takes the form14

]

]t
DW 5

]

]t
EW 14pF ]

]t
PW 1c¹3MW 2

]

]t
¹"QJ1¯G , ~3!

wherePW , MW , andQJ denote electric-dipole polarization, d
pole magnetization, and electric quadrupole polarization,
spectively. One can rewrite Eq.~3! in the form

]

]t
DW 5

]

]t
EW 14pF ]

]t
PW eff1c¹3MW effG , ~4!

with PW eff5PW2¹"QJ1¯ being a polar vector, andMW eff5MW

2¹"QJM1¯ an axial vector. Here, we have purposely se
rated the field-induced response in the medium into a
part and a noncurl part, each comprising all the associa
multipoles. We note thatMW eff is not necessarily related t
only magnetization. For example, in an isotropic or cu
gyrotropic medium, we haveDW 5«(v)EW 1 ig(v)¹3EW
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1¯ , whereig(v)¹3EW denotes the induced gyrotropic re
sponse. In dividingDW into curl and noncurl parts, we ca
include ig(v)¹3EW in MW eff with 4pMW eff51/c ig (]/]t) EW
1¯ . For a linear response to monochromatic waves,
can then also introduce two response functions,«Jeff(v,kW) and
mJ eff(v,kW), defined by

4pPW eff5@ «Jeff~v,kW !21#EW ,

4pMW eff5@12mJ eff
21~v,kW !#BW . ~5!

This allows us to make connections to theE, D, H, B ap-
proach. If only the dipole terms are retained in the multipo
expansion, we would have«eff5«(v) and meff5m(v). With
the help of

¹3EW 52
1

c

]

]t
BW ,

we find, for a wave specified byv, andkW ,

«̃~v,kW !EW 5«Jeff~v,kW !EW 2
c2

v2 kW 3$@12mJ eff
21~v,kW !#~kW3EW !%.

~6!

While the approach of usingDW , PW eff , andMW eff is more gen-
eral, description in terms of multipoles may be useful
some cases, for example, in dealing with magneto-opt
effects in magnetic crystals. The higher-order multipo
terms, proportional to higher orders ofk, are expected to be
progressively much smaller than the lower-order terms
optical frequencies or lower.

To complete our discussion on the connection between
two approaches, we consider the special case of an isotr
medium with«eff5« andmeff5m. Because of the spatial dis
persion~the dependence onkW ) inherent in the magnetic di
pole response, the generalized dielectric tensor«̃ is aniso-
tropic even though both« and m are constant scalars. W
find13,15 from Eq. ~6! that the longitudinal component of«̃
and the transverse component of«̃ are

«̃ l5«, «̃ tr5«~v!1
k2c2

v2 F12
1

m~v!G . ~7!

For an electromagnetic wave withv and kW related byk
5 (v/c) n and, we obtain the known relation13

n25 «̃ tr5«~v!m~v!, ~8a!

or more generally, one can show that

«̃ tr5«effmeff , ~8b!

where«eff andmeff refer to responses to the transverse wa
It is known that in general, in the optical frequency regio
magnetic-dipole and electric-quadrupole responses sh
play equally important roles. This picture is not clear in t
E, D, H, B approach for LHM presumably because the e
phasis is on waves in the microwave region, but it is clea
the E, D, B approach with the generalized«̃. Since the
2-2
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dependence of«̃(v,kW ) on kW is often weak away from reso
nance even in the optical frequency region, we can exp
«̃(v,kW ) into a power series,

«̃ i j ~v,kW !5« i j ~v!1a i j lm~v!kikj1¯ , ~9!

assuming a medium with inversion symmetry. The term q
dratic in k describes both the electric-quadrupole and
magnetic-dipole responses in the medium@although they
have different symmetries in«̃ i j (v,kW )], and therefore has the
two explicitly placed on equal footing. If we limit the expan
sion of Eq. ~9! to terms quadratic ink, then accordingly,
«Jeff(v,kW) should be expanded to terms quadratic ink, but
mJ eff(v,kW) is independent ofk. In the following discussion, we
shall limit ourselves to optical cases where terms quadrati
k in Eq. ~9! are indeed negligible. We shall not consid
cases with frequencies near strong exciton resonance
yields a complex dispersion of«̃ i j (v,kW ).

B. Poynting vector, energy density, and group velocity

In the EW , DW , BW approach, the time-averaged electroma
netic energy density and Poynting vector in a medium~as-
suming isotropic for simplicity! are given by13,16

U5
1

16p F]~v«̃!

]v
EW * EW 1BW * BW G , ~10!

SW 5
c

8p
Re~EW * 3BW !2

v

16p
¹kW «̃~v,kW !EW * EW , ~11!

which satisfy the energy conservation relation¹•SW
1 (]U/]t) 50. Substitution of Eq.~7! into Eq. ~11! leads to
the same expression for the Poynting vector in
E, D, H, B approach withBW 5mHW ,

SW 5
c

8pm
Re~EW * 3BW !. ~12!

Knowing that, in the latter case,

¹•SW 1
1

16p

]

]t F]~v«!

]v
EW * EW 1

]~vm!

]v
HW * HW G50,

we find

U5
1

16p F]~v«!

]v
EW * EW 1

]~vm!

]v
HW * HW G , ~13!

as expected. More generally we can have« replaced by«eff
andm by meff . Therefore, the two approaches are fully co
sistent in their descriptions of energy relations. This is true
general, irrespective of the LHM or RHM.

However, Eqs.~10! and ~11! are more general. In theE,
D, H, B approach, the conditions forSW to be opposite tokW
~or negative group velocity! in an LHM are «,0 and m
,0. In theE, D, B approach with the first term in Eq.~11!

directed alongkW , the negative group velocity requires dom
nation of the second term on the right-hand side of Eq.~11!
16511
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over the first term. This means that¹kW «̃(v,kW ) must be suffi-
ciently large and positive, or withuA«̃Eu5uBu one must have
(v/cA«̃) @]«̃(v,kW )/]k#.1. @As a check, one can show tha
the inequality holds as expected whenm,0 in Eq. ~7! and
also«,0 sincen is real.# In addition, with«̃5 «̃81 i «̃9, we
must have«̃9 negative for a lossy medium and positive for
gain medium. This is seen from the wave expressionEW

5AW eikW•rW2 ivt. For energy propagation in the direction opp
site tokW , the imaginary part ofk5(v/c)A«̃, and hence«̃9,
must be negative for a wave attenuating along2kW , and posi-
tive for a wave growing along2kW . We can also see this
explicitly from Eq. ~8! in terms of«eff andmeff . For a lossy
LHM medium, we have«eff5«eff8 1i«eff9 and meff5meff8 1imeff9

with «eff8 ,0, «eff9 .0, meff8 ,0, andmeff9 .0. Knowing «̃(v,kW )
5 «̃81 i «̃95«effmeff , we find «̃85«eff8 meff8 2«eff9 meff9 .0 for
«eff9 ,u«eff8 u andmeff9 ,umeff8 u and «̃95«eff9 meff8 1«eff8 meff9 ,0.

To establish further connection between the two a
proaches, we notice that from Eq.~10!, since the energy
density must be positive, we must have

]@v«̃~v,kW !#

]v
.0

for given kW . Using Eq.~7!, we find

]~v«!

]v
2

k2c2

v2 S 12
1

m D1
k2c2

vm2

]~vm!

]v
.0, ~14!

which reduces, with the help of (k2c2/v2) 5n25«m, to

]~v«!

]v
1

«

m

]~vm!

]v
.«m. ~15!

It is seen that even if«,0 and m,0 as in a LHM, the
quantity on the left hand side of Eq.~15! must still be posi-
tive. The above relation leads to a negative group veloc
for wave propagation in a LHM: the group velocity is give
by vW g5(]v/]k) (kW /k), with

]k

]v
5

1

2kc2

]~v2«̃ !

]v
5

vm

2kc2 F]~v«!

]v
1

«

m

]~vm!

]v G
which is negative since the quantity in the brackets is po
tive for «,0 andm,0, the group velocityvW g is negative
with respect tokW . So, here again, the two approaches a
consistent.

C. Transmission and reflection at a RHMÕLHM interface

While separation of optical response of a medium into«
and m, and more generally,«eff and meff ~from the noncurl
part and the curl part of the response, respectively!, may not
be essential for wave propagation in the bulk, it is importa
for transmission and reflection of waves at an interface
cause of the boundary conditions on the fields. We cons
here transmission and reflection of a wave with frequencv
at an air/LHM interface.
2-3
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The incoming wave is from the RHM side (z,0) with an
incidence angleu I , and the reflected and refracted wav
have angles of reflection and refractionuR and uT , respec-
tively ~Fig. 1; see also p. 252 of Ref. 16!. We assume, for
simplicity, that the media are isotropic, all waves ares po-
larized alongy, and the longitudinal component of the wav
can be neglected.

The E field of the wave takes the form

EW 5 ŷ@EIe
ikW I•rW1EReikWR•rW#e2 ivt, z,0

5 ŷETeikW2•rWe2 ivt, z.0, ~16!

with kW I5(vn1 /c)@ x̂ sinuI1 ẑ cosuI# and kWR5(vn1 /
c)@ x̂ sinuI2 ẑ cosuI# in the RHM and kWT5(vn1 /
c)@2 x̂ sinuT2 ẑ cosuT# in the LHM. Both n1 and n2 are
taken as positive. The boundary conditionkIx5kTx leads to
the Snell’s law for refraction,

n1 sinu I52n2 sinuT, ~17!

where the negative sign yieldsuT,0. This means that the
refracted wave appears on the same side of the surface
mal as the incoming wave~i.e., negative refraction!, as
shown in Fig. 1. We have retained in Eq.~16! only the term
that describes backward wave propagation in the LHM
NRM because, as we mentioned earlier, the wave must d
away asz→` in the semi-infinite NRM medium. Given th
E field in Eq.~16!, the correspondingB field of the wave is
obtained fromBW 5( ic/v)¹3EW .

The boundary conditions forEW and BW are deduced from
the Maxwell equations

¹3EW 5
1

c

]BW

]t

FIG. 1. Geometry describing transmission and refraction of
incident wave at a RHM/LHM interface. Note that the Poynti

vectorSW is in the opposite direction fromkW for the wave propagat-
ing in the LHM. The angleuT is defined as negative if the trans

mitted SW v,k appears on the2x side in the LHM.
16511
or-

r
ay

and

¹3~BW 24pMW eff!5
1

c

]~EW 14pPW eff!

]t
.

The first equation dictates that is thatEy must be continuous
across the boundary. The second equation yieldsBx

2 4pMeff,x)01 2 (Bx24pMeff,x)02 5 (4p/c) *02
01 (]/]t) Peff,ydz.

We can write, in general,Peff,i5xijEj1aijkl (]
2/]xj]xk) El

1¯ , where the odd derivatives in the expansion vanish
cause of our assumption of nongyrotropic media. For s
plicity, we limit the discussion here to cases of weak disp
sion such that terms beyond the second derivative inPeff,i
can be neglected, i.e., neglect of multipole contributions
yond the second term inPeff,i . ~We ignore cases of stron
dispersion near strong exciton resonance.! We then have the
following symmetry argument:

~Bx24pMeff,x!012~Bx24pMeff,x!02

5
4p

c
ayzzyF S ]

]z
EyD

01

2 S ]

]z
EyD

02
G .

With (]Ey /]z) 52 i (v/c) Bx , we obtain the boundary con
dition that @11 i (4pv/c2) axzzx#Bx24pMeff,x is continu-
ous. Following Eq.~5!, we can define

S 11 i
4pv2

c2 ayzzyDBx24pMeff,x5Bx /meff
a ~v!

with

meff
a 5

meff~v!

11 i ~4pv2ayzyz/c
2!meff~v!

,

where, in accordance with the approximation used onPeff,i ,
the dependence ofmeff(v) on kW can be neglected. Thus w
have the boundary condition thatBx /meff

a is continuous
across the boundary.

From Eq.~16! we then find the relations

EI1ER5ET ,

n1~EI2ER!cosu I52
n2

meff
a ET cosuT , ~18!

from which we obtain

ER5
n1 cosu I1~n2 /meff

a !cosuT

n1 cosu I2~n2 /meff
a !cosuT

EI ,

ET5
2n1 cosu I

n1 cosu I1~n2 /meff
a !cosuT

EI . ~19!

Accordingly, the reflection and transmission coefficients
given by

R5
uERu2

uEI u2 5Un1 cosu I1~n2 /meff
a !cosuT

n1 cosu I2~n2 /meff
a !cosuT

U2

,

n

2-4
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T52
uETu2~n2 /meff

a !cosuT

uEI u2 cosu I

5
24n1n2 /meff

a cosu I cosuT

un1 cosu I2~n2 /meff
a !cosuTu2

. ~20!

As expected, we haveT1R51.

III. SECOND HARMONIC GENERATION FROM A LHM

We now consider a simple nonlinear optical effect: SH
from a semi-infinite LHM medium with a nonvanishin
nonlinear susceptibilityxJ (2). We anticipate that the medium
could be a LHM at v or 2v, but not at
both v and 2v, and here consider a LHM atv only.
The incoming fundamental wave atv then has the sam
geometry as that depicted in Fig. 1 with the air/mediu
boundary surface set atz50. It refracts negatively~as de-
fined earlier! into the nonlinear medium and induces in t
medium (z.0) a nonlinear polarization PW (2)(2v)
5xJ (2):EW (v)EW (v), which is the source for SHG. For sim
plicity, we assume that the medium is isotropic andPW (2)(2v)
is parallel to the boundary surface alongy such that only the
s-polarized field is generated at 2v. We also assume tha
there is no input at 2v and that the depletion of the pum
field at v is negligible.

Following the usual derivation of SHG using theE, D, B

approach, we solve the wave equation forEW (2v) with
PW (2)(2v) as the source term and immediately find the f
lowing results.14 Let the pump field in the LHM be describe

by EW (v)5AW 1eikW1•rW2 ivt, with k1z,0 andkW1 making an angle
u1T @as determined by the Snell’s law of Eq.~17!# with the
surface normal. The induced nonlinear polarization takes

form PW (2)(2v)5 ŷP(2)eikWS•rW2 i2vt with ŷP(2)5xJ (2):AW 1AW 1

andkWS52kW1 . The transmitted SH wave (z.0) is then given
by

EW T~2v!5 ŷ@A2TeikWT•rW1FeikWS•rW#e2 i2vt,

A2T5
kR cosqR1kS cosqS

kT cosqT1kR cosqR
F,

F5
4p~2v!2P(2)

c2~kS
22kT

2!
, ~21!

wherekWT andkWR are the wave vectors at 2v of the transmit-
ted homogeneous wave in the LHM and the reflected w
into the air side, respectively, withkT52vn2v /c and kR

52v/c. The anglesqT andqR made bykWT andkWR with the
surface normal@Fig. 2~b!# are obtained by matching of th
wave vector components along the surface:

kR sinqR5kT sinqT5kS sinqS52k1 sinu1T ~22!

remembering thatk1Z,0 andkSZ,0. The reflected SH wave
is given by
16511
-

e

e

EW R~2v!5 ŷA2ReikWR•rW2 ivt,

A2R5
kTZ2kSZ

kTZ1kRZ
F. ~23!

The results given by Eqs.~21!–~23! are the same as thos
for SHG in RHM,14 except that instead ofk1Z.0 andkSZ
.0, we now havek1Z,0 andkSZ,0. The physical conse
quence is that withkWT andkWS52kW1 nearly in opposite direc-
tions, the SHG process in the LHM is badly phase m
matched and the SHG in transmission varies rapidly withz.
It is then the SHG in reflection that is more interesting.
seen from Eqs.~21! and ~23!, if 2kSZ approacheskTZ , the
reflected SH output in a LHM can be much stronger than t
from a RHM medium. The ratio of the Pointing vectors
reflected and transmitted SHG is

SR,2v

ST,2v
5

1

n2v
S A2R

A2T
D 2

5
1

n2v
S kTZ2kSZ

kRZ1kSZ
D 2

,

5
1

n2v
S n2v cosuT1nv cosuS

cosuR2nv cosuS
D 2

, ~24!

which can be very large if cosqR;nv cosqS.
If the medium is a RHM atv and a LHM at 2v, the same

results described in Eqs.~21!–~23! are still valid except that
now kSZ.0 and kTZ,0, and kT should be replaced by
kT /meff . The reflected SH wave in the air appears on
same side of the surface normal askWT ~negative refraction!,
as dictated by the Snell’s law of Eq.~17!. Here again, the
SHG in transmission is badly phase mismatched, but for
reflected direction~relatively to the incident input fundamen
tal wave propagation!, SHG shows strong enhancement
kRZ approaches2kTZ . The above discussion can be eas
generalized to other wave mixing processes and the res

FIG. 2. Second harmonic generation at an air/LHM interfa
The wave vectors of the second harmonic waves are denote

kWS , kWT , andkWR , and the wave vector of the fundamental wave

LHM is kW15kWS/2.
2-5
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are the same ifPW (2)(2v) is replaced byPW NLS(vS) as the
induced nonlinear polarization atvS and the other quantitie
are changed accordingly.

IV. STIMULATED RAMAN SCATTERING

Stimulated Raman scattering in a LHM can also be ea
described using theE, D, B approach. We consider the ca
where only the Stokes wave at frequencyvS sees the LHM.
The stimulated Raman process pumped byEW (vp) in the
semi-infinite medium coveringz>0 is described by a third
order nonlinear susceptibilityxR(vS)5xR82 ixR9 with xR9
.0, which appears as a pump-intensity dependent term
«eff with «eff5«eff8 1i«eff9 14p(xR82ixR9)uE(vp)u2. Following Eq.
~8!, we have «̃5 «̃81 i «̃9 with «̃85«eff8 meff8 2«eff9 meff9
14p(xR8meff8 1xR9meff9 )uE(v)u2 and «̃95(«eff8 14pxR8uE(v)u2)meff9
1(«eff9 24pxR9uE(v)u2)meff8 . In a LHM, «eff8 ,0, «eff9 .0, meff8
,0, andmeff9 .0.

The Stokes wave propagating alongz in the LHM is
given by

EW ~vS ,z!5AW e2 ikSz2 ivSt for z.0

with kS5kS81 ikS5(v/c)A«̃. Assuming the imaginary
part of all complex quantities small compared to the r
part in magnitude, we havekS85(vS /c)A«̃8 and
kS5(vS/2c) «̃9/A«̃8. If the xR9 term dominates in«̃9, then
kS.0 because«̃8.0 and «̃9.0, and the Stokes wav
should experience an exponential gain in the1z direction
although the Stokes wave vector is in the opposite direct
This is what one would expect physically. In a ga
medium, the wave must grow in the direction of ener
flow.

The same treatment described above should ap
to other stimulated light scattering processes in a nonlin
LHM.

V. ULTRASHORT PULSE PROPAGATION IN A LHM

Ultrashort pulses are currently available in a wide ran
of frequencies from THz to the far ultraviolet. They can pr
vide a clear manifestation of the characteristic linear wa
propagation effects in LHM: negative group velocity a
negative refraction. We discuss these effects qualitatively
the formal description, we can decompose the ultrash
pulse into Fourier components, follow the propagation
each component, and then sum over the components afte
propagation. If the entire spectral bandwidth of the pu
sees the medium as a LHM, then the pulse will physica
move in a direction opposite to the wave propagation, clea
demonstrating the negative group velocity phenomenon
the spectral width of the pulse is broader than the bandw
in which the LHM character of the medium prevails, th
pulse is likely to split into three parts when incident into t
LHM through an RHM/LHM interface. The central part o
the pulse spectrum seeing the LHM will experience nega
refraction at the interface, but the frequency component
the two sides of the pulse spectrum seeing no LHM w
experience a positive refraction. The spectroscopic stud
16511
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‘‘negatively’’ refracted part of pulse can be used for determ
nation of the frequency interval within which the medium
a NRM. Interesting effects can also be expected for harm
ics generation and wave mixing by ultra-short pulses:
harmonics also will propagate in an unusual way. As par
the spectra components of input or output experiences
LHM, the output pulses in transmission or reflection can
drastically different, in terms of energy, pulse shape, spec
composition, and direction, from those expected from an
dinary nonlinear medium. The details are complicated,
pending on the spectral contents of the ultrashort pulse
the LHM.

VI. CONCLUSIONS

We have proposed to use theE, D, B approach to de-
scribe linear and nonlinear wave propagation in media. O
emphasis is on NRM~or LHM!. This approach avoids the
usual expansion of medium response into multipoles
though it can be separated into curl and noncurl parts
convenience in dealing with boundary conditions. Compa
to the usualE, D, H, B approach in which the medium
response is characterized by dipole polarization and mag
tization with response coefficients« andm, theE, D, B ap-
proach is more general since, in the optical frequency reg
magnetic dipoles as usually defined no longer have th
usual physical meaning and electric-quadrupole and hig
order multipole contributions may not be negligible. There
a one-to-one correspondence in the description of the res
using the two approaches. Specifically, we note that w
either approach, linear wave propagation in NRM is char
terized by negative group velocity and negative refracti
They can be illustrated by ultrashort pulse propagation
NRM.

Using theE, D, B approach, we can calculate the simp
nonlinear optical effects such as wave mixing and stimula
light scattering in NRM following the same derivations
for regular media. However, the results are qualitatively d
ferent. For example, in harmonic generation, because of
proved phase mismatch, harmonic output in reflection can
stronger than in transmission in NRM, contrary to the situ
tion in ordinary media. With either the fundamental input
the harmonic output experiencing negative refraction,
transmitted harmonic output beam will appear on the sa
side of the surface normal as the fundamental input beam
dictated by the negative Snell’s law. This creates a Vesela
type lens that allows SH imaging of a point source emitti
at frequencyv to its mirror point appearing at frequency 2v
through a nonlinear LHM plate. Stimulated light scattering
a LHM appears more like what one would expect: T
growth of the stimulated radiation is always in the directi
of the group velocity of the wave.

Construction of a homogeneous LHM is still a challeng
Negative refraction has been found experimentally only
artificial metamaterials composed of split ring resonator
rays in the microwave region. Photonic band-gap mater
may be suitable for the observation of negative refract
and negative group velocity in the optical region, but has
to be demonstrated experimentally. In both cases, nonlin
2-6
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wave mixing is probably observable if component materi
of high nonlinearity are used since the effective thickness
the medium required is small. Third harmonic generation
been observed in one-dimensional photonic gap materia
the direction opposite to the input pump wave, but it was
results of an optical umklapp process.17

After our paper was submitted, we were informed ab
Ref. 18. However, we note that this paper deals with non
ear optical properties of LHMs, but not nonlinear wa
propagation in LHMs.
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