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We have investigated the correlation energy for the homogeneous electron gas given by the transcorrelated
(TC) method. In the TC method, the energy is defined by an expectation value of an effective Hamiltonian
constructed by similarity transformation of the original Hamiltonian with respect to a Jastrow factor. In our
calculation, a two-body Jastrow factor, which is the simplest function representing the electronic correlation
effects, was adopted. Two parameters in the Jastrow factor are determined by the cusp conditions, which
restricts the short-range electronic interactions and the long-range asymptotic condition resulted from the
random-phase approximation. The energy is expressed within three-body integrals using the two-body Jastrow
factor and so it is easily applied to the homogeneous electron gas without Monte Carlo sampling. We found
that the TC method yields a fairly good estimate of the correlation energy, and so that of the total energy,
especially for near the region of metallic densities<((2<10) in spite of our simple formulation.
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[. INTRODUCTION always contains uncertainty. Ortiz and Ballone have recalcu-
lated the electron-gas correlation energy by the VKRef.

The study of the electron gas has long history initiated byl8) and the GFMC(Ref. 23 method using a periodic cell
Wigner! Since it is characterized only by a constant densitylarger than those taken in the previous work by Ceperley
in the case of unpolarized electron gas, a variety of methodst al1”'° Recently, improvements over the trial wave func-
have been applied to the system in order to understand furion have been studied by Kwoet al?* They adopted a
damental properties of the electronic interactions. High{function that includes backflow and three-body correlations
density limit of the electronic correlation energy was well for the high-density region of the homogeneous three-
studied in 1950s to 1960&KRefs. 2—8 by means of the per- dimensional electron gas. The same trial wave function has
turbation theory. However, it is known that the analyticalalso been applied to the low-density electron Gaghe
formula derived by the perturbation theory is incapable ofFermi hypernetted-chaitFHNC) method®? is also varia-
reproducing the correct correlation energy in the region otional approach, where the Euler-Lagrange equation for the
metallic densities (18r,<6).2 pair-correlation function constructed from the Jastrow-Slater-

An alternative approach is based on the variationatype wave function is approximately solved. The FHNC
method’ 2 in which the wave function is assumed to be amethod reproduced the results given by the VMC
specific form such as the Jastrow-Slater-type wave functionzalculatiort” and then it is known as a reliable approach for
and then the trial function is optimized according to thethe electron gas.
variational principle. The variational method has been com- Takada combined the perturbation theory with the varia-
bined with the modern computational developments, whichional method in order to make use of the advantages of both
enable us to carry out direct evaluations of the energy expethe approaches, and proposed the effective-potential expan-
tation values using the correlated wave functions. This apsion (EPX) method?® It was found that the correlation ener-
proach, called the variational Monte CaildMC) method, gies given by the EPX method are in very good agreement
was pioneered by Ceperf€yfor fermion systems. In his with those obtained from the GFMC methtt.
work, both the polarized and unpolarized electron gases were The coupled-clusteiCC) method, which is well known as
studied over the wide range of densities in detail. The moren accurate quantum chemical calculation, was also applied
sophisticated stochastic approach, so-called Green’s-functido calculate the electron-gas correlation energy and gave very
Monte Carlo(GFMC) method, was also applied to the ho- similar results to the GFMC methdd=°
mogeneous electron gas in order to investigate its phase The transcorrelatedTC) method'~#?is another promis-
diagram®® The data have been interpolated with analyticaling approach to deal with strongly correlated electronic sys-
functions’ fitted parameters by Vosled al?° and Perdew and tems. The basic idea of the TC method was given by Boys
Zunger! In the latest work, modifications for the functional and Handy*~**that is, the correlation effects are efficiently
form and its parameters have been proposed by Perdew aimttorporated into the many-body Hamiltonian by means of a
Wang?? Since the Monte Carlo method requests a periodicsimilarity transformation with respect to the Jastrow factor. A
boundary condition representing the infinite electron gas, itrial function is optimized so as to satisfy the transformed
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eigenequation. Since the effective Hamiltonian, which wefor &. Since Hqc is non-Hermitian operator, variational

call TC Hamiltonian, already contains some electronic Coryreatment of the total energy is not applicable. Hence, a vari-
relation effects, a simple trial function such as a single Slategce of the local energ, = H.cD/D is introduced by*:
determinant is enough to obtain accurate energy estimates.

The TC method has been successfully applied to atoms and
molecules®~*! The ground-state energy for the homoge- 02=J |D|2|EL_E|2d3NX:J |HrcD —ED[?d*x. (4)
neous electron was also calculated by Arnfédollowing
the original formalism of the TC method given by Boys and Herex contains both of the space and spin coordinateg)(
Handy>~34In his work, it was shown that the TC method andd*"x denotes the B-dimensional integration wheie is
can reproduce the results given by Gaskell’'s variational apthe number of electrons. The variang@ is minimized with
proach for both the wave function and ground-state energy afespect tdD, F, andE for general systems so that E®) is
the electron gas. satisfied as much as possible within the trial functinft

In this paper, we examine the electron gas limit of the We have simply adopted plane waves for the elements of
energy given by the TC method as a preliminary work for theD representing the unpolarized and metallic region of the
solid-state calculation. We adopted a simple two-body Jahomogeneous electron gas. Hence the system is character-
strow factor including two parameters. These parameters aieed by a constant densityor the Wigner radius defined by
determined by the two asymptotic conditions: the cusp conts=(3/47n)®. Moreover, F is determined by two
ditions and the random-phase approximation, and so no pasymptotic conditions as we will show in the following dis-
rametrization is required in our formalism. This is the maincussions. Thereforar? should be minimized only with re-
difference from the previous work of Armour where param-spect toE:
eters are optimized so as to satisfy the transformed )
eigenequation. We compare our correlation energy estimates Jdo
fogr:J theqhomogeneous elrt)ectron gas with those gi\?gn by a va- EZZE_J D*HTchmX_J DHicD*d*x=0.
riety of modern methods introduced in this section. In Sec. (5)
II, we briefly address the theory of the TC method and show_ )
the formula for the electron-gas correlation energy. In SecE iS then written as
[ll, we will show our numerical results of the correlation
energy and total energy for the homogeneous electron gas. In E— Rej D* H;Dd3Nx
Sec. IV, we will give our conclusions.

1 * T 3N
Il. THEORY :E D (HTC+HTC)Dd X

Since we have addressed the detailed theory of the TC

N 2
method in our previous pap&rhere we only show its im- :J X Ny J < ViFT e
portant concepts. The Hartree atomic units<{e?=#=1) D¥HDA™x 2:1 ° F Da™x. (®
are used in this section. In the TC method, the eigenequation o o
for the many-body electronic system, Here Re denotes the real part. This is the definition of the
energy in the TC method. Equatioi®) yields the exact
HY=EWV, (1) ground-state energy D is the eigenfunction ofH1c. In
. ) general, sincd® is not the exact eigenfunction, E(®) is an
is transformed into approximation of the energy which is different from the ex-
pectation value of the original Hamiltoni&i with respect to
HrcP=E®, (2) the same wave functioRD:
1
(FD|FD)

W is the exact eigenfunction anll is the Jastrow factor Therefore, the variational principle is not available to the
representing the correlation effects, which depends on thgnergy given by Eq(6) and so it might be lower than the
division of these two functionsp=W/F. Since the similar-  considered to be the correlation energy in our formalism.
ity transformation does not change the eigenvalues, one can \we adopt the following standard function for a two-body
solve the transformed eigenequati@ instead of the origi-  jastrow factor:

nal eigenequatiofl) in order to obtain eigenenergi&s Al-

though® is generally described by a linear combination of 1 N N

the Slater determinants, relatively smaller number of deter- F=exp( -5 2 > Uy (Iri—rD ], €]
minants are enough to attain accurate energies because the 213110 Y

TC HamiltonianH¢¢ already contains some correlation ef-

fects originated from the Jastrow factor. In our calculation, a U, (R)= ao’ (1—e RFort) 9)
normalized single Slater determinabtwas simply adopted 77 R '
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where g; denotes the spin of thigh electron,o;= o (v;). |

has been used in the Monte Carlo calculation for the electron
gas and solid$”***4The two parameters in E¢9) are de-
termined by the cusp conditions,

A

oo’

(10

oo’

where a;;=1/4 anda; =1/2, and the random-phase ap-
proximation (RPA),*44°

1 1
ATT:ATl:w_p:—’

4n Y

wherew,, is the plasma frequency. Therefore,,. andF
in Eq. (9) are completely determined by Eq4.0) and (11),
and so no variational parameter exists in our formulation.
Now the correlation energy is explicitly written using the
second term of Eqg6) and(8) as

N =2
_2 f D* o Dd3Nx (12)
i=1
1 N N
:_E Z Z f d) (X )|Vu0'(r’(|r_r |)|2
X[ b, (X),(X) = h(x") ,(x)]dxdX
1 N N N
o2 22 f SLOBL(X) B (X")
Xvuo'(r’(lr_r,D'Vuo’a’”(lr_r”|)Rp.V7](X7X,1X”)
xXdxdx dx”, (13
where
Du(X)  P(X)  P(X)
R (XX X")= |, (X")  &,(X") ¢,(X)|. (14
Du(X") (X)) P (X")

Here, orthonormality conditions for the one-body wave func-
tions ¢ ,(x) are utilized. Therefore, the correlation energy is
calculated within three-body integrals in general. In the case
of homogeneous electron gas with not so largethat is, if

we can reasonably assume tl@gf(r) is a plane wave, Eq.
(13) is reduced into the following simple form:

ELn]=EP[n]+EX[n], (15
EP[n]=0neP(n),
eP(n)=—mn f:[uh(R)an uf,(R)?JR%dR
+9wnfxg(kFR)2u;T(R)2R2dR, (16)
0
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E®n]=Qne®(n)

KE (1 (==
SES)(n):w_Z(ifo fo [uiy(Ryup (R +up (Ryu (R)]

X[By(Xq,X2) —kga’B,(X; ,X2) JARAR

BL fo ui (RUj (R e(keR) o (keR")

><[Bs<x1,x2>—k%a284<x1,x2>]deR), 17)

where E®?[n] and E®[n] are the contributions from the
two-body and three-body terms in E¢L3), respectively.
u’o,(R) is the derivative olu,, (R) with respect toR:

, 1
o 4 RIF

R? F,. R

e

oo’
b

(18

and the functions in Eq916) and (17) are defined as fol-
lows:

COSX Sinx

X)= — — + —, 19
o(x) 2 N (19
X2 2,3 X2
8,003~ | 007 ax=[b,(0 1%,
X1
b _cosx  1+2x°Ci(2x) Inx  sin2x
= T e T2 T
cosy
Ci(x)=— f —dy, (20
X2 2 X2
8,005 = [ 000X, 2%
X1
b, 1+2x2+c052< sin 2x 1)
X)=— ,
2 8x* 8x4 4x3
X2 3 )(2
B3(X11X2):J e (x)x"dx=[bs(x) ],
X1
b3(x)=—xsinx—2 cosx, (22
XZ X2
Ba(X1,X2) = ) e (x)xdx=[b4(x) ],
1
sinx
b4(X) =— T (23)
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FIG. 1. The correlation energy estimates per electron for the FIG- 2. The correlation energy estimates per electron for the
unpolarized electron gas as a function of the Wigner radjgiven ~ UnPolarized electron gas as a function of the Wigner radjgsven
by a variety of methods: the present work based on the transcorrd @ variety of methods: the present work based on the transcorre-

lated method TC), the Green's-function Monte Carlo method cal- ateéd methodTC), the Green's-function Monte Carlo method cal-
culated by Ceperley and AldSr and its interpolatiod®  culated by Ceperley and Aldér and its interpolatiorfd

[GFMC(CA)], the random-phase approximatiéRPA), the Wign-  LGFMC(CA)], t?e Fermi hypernetted-chalirHNC) mgghod given
er’s interpolation(\Wignen, 12 and the effective-potential expansion °Y Zabolitzky? [FHNC(2)] and Lantto [FI_—_|NC(L)],9 and the
method® containing the secon@EPX:2 and the fourthEPX:4  coupled cluster method given by B'SQ)OF’ anichtmanrt® [CC(BL)]
power of the expansion. GFMCA) and EPX:4 are almost identi- and Emrich and ZabolitzkyCC(EZ)]-*" GFMC(CA) and CQEZ)
cal. Our result§TC) and the exact values given by GFMIA) are are almost identical. Our result§C) are very close to those of
in good agreement at intermediate densities:(2<10). FHNC(L).

Here() is the volume of the system atd is the Fermi wave
number obtained by

method calculated by Ceperley and Altferand its
interpolation&’ [GFMC(CA)], RPA, the Wigner’s interpola-
tion (Wignen,>? the effective-potential expansion metibdd

ke=(3m%n)3, (24 containing the secondEPX:2) and the fourtiEPX:4) powl?efr
2 : of the expansion, the FHNC method given by Zabolitzky
anda’, xy, andx, are defined by [FHNC(Z)] and Lanttd FHNC(L)],>” and the coupled cluster
2=R2+R’2 (25)  method given by Bishop and bumanif® [CC(BL)] and Em-
' rich and Zabolitzky® [CC(EZ)] are also shown. Here the
x;=K(R+R) 26) values of GFMQCA) are considered to be exact. The present
17°F ’ results(TC) become very close to the exact values at inter-
mediate densities (2r¢<10). Furthermore, the results
X =keR—R'[. (27) given by TC and FHNQ.) are almost identical despite that

It is understood from Eqg16) and(17) that the electron-gas ©Our approach is much simpler than the FHNC method.
correlation energy is easily evaluated within two- InTable |, the correlation energy estimates given by these
dimensional integrals. This is the great advantage of oufethods are listed. The discrepancy between TC and
method. We will show the results for the electron-gas correGFMC(CA) becomes larger again ag increases over 10.
lation energy given by the formulas Eq45)—(17) in com-  However, it is remarkable that we were able to obtain rela-

parison with those given by a variety of other methods in theively accurate values in the region €2 <10) within our
following section. simple formulation as we explained in Sec. Il. The reason for

the disagreement in the large limit is that the RPA itself
becomes an inadequate approximation. Moreover, since the
Jastrow factor(8) contains only the two-body terms, three-
In Figs. 1 and 2, the correlation energy estimates per eledody or four-body terms might improve the discrepancy. It
tron given by the present work based on the TC are shown ashould be mentioned that the differences in the correlation
a function of the Wigner radiuss. A variety of correlation energies between GFMCA) and the recent GFMC calcu-
energy estimates given by the Green’s-function Monte Carldations given by Ortizet al,?®> Kwon et al,?* and Zong

Ill. RESULTS
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TABLE I. Correlation energy estimates per electron for the unpolarized electron gas as a function of the Wigner; gidars by the
present work based on the transcorrelated metfi@), the random-phase approximatitRPA), the effective-potential expansion metRdd
containing the secon@EPX:2) and the fourtfEPX:4) power of the expansion, the coupled cluster method given by Bishop amhiam®
[CC(BL)] and Emrich and Zabolitzk§CC(EZ)],%° the Fermi hypernetted-chaiffHNC) method given by Zabolitzid [FHNC(Z)] and
Lantto [FHNC(L)],?” and the Green's-function Monte Carlo method calculated by Ceperley and'Alded its interpolatiorfd
[GFMC(CA)]. All energies are in Rydbergi{= 3, e?=2, A=1).

rs RPA EPX:2 EPX:4 C@BL) CC(E2) FHNC(L) FHNC(Z) TC GFMCQ(CA)
0.01 —0.2864 e e ce ce e —1.7748 —0.3807
0.1 —0.2876 e e e —0.251 e e —0.502 —0.243

1.0 —0.1576 —0.111 —0.119 —0.123 —0.122 —0.140 —0.1141 —0.143 —0.120

2.0 —0.1236 —0.0821 —0.0891 —0.0917 —0.0904 —0.098 —0.0859 —0.0971 —0.0896
3.0 —0.1055 -0.0671 —0.0737 —0.0751 —0.0738 —0.079 —0.0710 —0.0769 —0.0738
4.0 —0.0936 —0.0575 —0.0636 —0.0644 —0.0634 —0.067 —0.0612 —0.0653 —0.0636
5.0 —0.0849 —-0.0506 —0.0563 —0.0568 —0.056 —0.058 —0.0541 —-0.0572 —0.0563
6.0 —0.0782 —0.0455 —0.0507 e —0.0505 —0.052 —0.0514 —0.0507
8.0 —0.0684 —0.0380 —0.0427 e —0.0425 e —0.0409 —0.0433 —0.0427
10.0 —0.0613 —0.0329 —0.0370 ce —0.037 —0.037 —0.0355 —0.0378 —0.0371
20.0 —0.04276 ce —0.0236 —0.023 —0.0218 —0.0246 —0.0231
50.0 —0.02536 e e ce e —0.011 e —0.0137 —0.0114
100.0 —0.01660 e ce e e —0.0062 e —0.0087 —0.0064

et al® are much smaller than the discrepancy between TGhe Green’s-function Monte Carlo method calculated by Cep-
and GFMGCCA). erley and Aldet® and its interpolatiorfd [GFMC(CA)], the

In Fig. 3, we show the total energies for the unpolarizedHartree-Fock methodHF), and the Wigner’s interpolation
electron gas estimated by the present work based on the T@uignen.!? The difference between GFMCA) and HF is
the total correlation energy. The arrow indicates the mini-
mum point of each energy. As we can see easily, the total
energy obtained by the present wdikC) and its minimum
point are very close to those given by GFKIA). In Table
—— GFMC(CA) II, the minimum of each energy and the correspondigg
______ value are listed.

0.2

IV. CONCLUSIONS

We have investigated the electron-gas limit of the energy
given by the transcorrelated method. In our method, two pa-
rameters in the Jastrow factor are determined by the two
asymptotic conditions: the cusp conditions and the random-
phase approximation. It was found that the correlation en-
ergy for the unpolarized electron gas given by our method
shows fairly good agreement with the exact results especially

-0.05

Total Energy (Ry)

0.1

-0.154 ]

] TABLE Il. The minimum values of the total enerdy,,, per
-0.2 T T T T T T T T T electron for the unpolarized electron gas and the corresponding
values given by the present work based on the transcorrelated
I method(TC), the Green’s-function Monte Carlo method calculated
by Ceperley and Aldé? and its interpolatior® [GFMC(CA)], the
FIG. 3. The total energy estimates per electron for the unpolarysrtree-Fock method(HF), and the Wigner's interpolatidrf

ized electron gas given by the present work based on the transco(rWigner) are listed. All energies are in Rydbergn(:% =2 1
related methodTC), the Green’s-function Monte Carlo method cal- _ 1).

culated by Ceperley and Aldér and its interpolatiortd

[GFMC(CA)], the Hartree-Fock metho¢HF), and the Wigner's HE Wigner TC GFMGCA)
interpolation(Wignen,>? as a function of the Wigner radiug. The
arrow indicates the minimum point of each energy. The total energy ¢ 4.82 4.30 4.10 4.18

given by the present workTC) and its minimum point are very E_.. —0.0950 —0.1663 —0.1563 —0.1548
close to those of GFM(CA).
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for the region of metallic densities<2r <10, and its total Wil further study these issues in order to carry out practical
energy is almost identical with the exact result ircd,  transcorrelated calculation for solids.

<10. Itis remarkable that we could achieve these successful

results within our simple formulation, which is computation- ACKNOWLEDGMENTS
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