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Ground-state correlation energy for the homogeneous electron gas
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We have investigated the correlation energy for the homogeneous electron gas given by the transcorrelated
~TC! method. In the TC method, the energy is defined by an expectation value of an effective Hamiltonian
constructed by similarity transformation of the original Hamiltonian with respect to a Jastrow factor. In our
calculation, a two-body Jastrow factor, which is the simplest function representing the electronic correlation
effects, was adopted. Two parameters in the Jastrow factor are determined by the cusp conditions, which
restricts the short-range electronic interactions and the long-range asymptotic condition resulted from the
random-phase approximation. The energy is expressed within three-body integrals using the two-body Jastrow
factor and so it is easily applied to the homogeneous electron gas without Monte Carlo sampling. We found
that the TC method yields a fairly good estimate of the correlation energy, and so that of the total energy,
especially for near the region of metallic densities (2,r s,10) in spite of our simple formulation.
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I. INTRODUCTION

The study of the electron gas has long history initiated
Wigner.1 Since it is characterized only by a constant dens
in the case of unpolarized electron gas, a variety of meth
have been applied to the system in order to understand
damental properties of the electronic interactions. Hig
density limit of the electronic correlation energy was w
studied in 1950s to 1960s~Refs. 2–8! by means of the per
turbation theory. However, it is known that the analytic
formula derived by the perturbation theory is incapable
reproducing the correct correlation energy in the region
metallic densities (1.8,r s,6).8

An alternative approach is based on the variatio
method,9–18 in which the wave function is assumed to be
specific form such as the Jastrow-Slater-type wave funct
and then the trial function is optimized according to t
variational principle. The variational method has been co
bined with the modern computational developments, wh
enable us to carry out direct evaluations of the energy exp
tation values using the correlated wave functions. This
proach, called the variational Monte Carlo~VMC! method,
was pioneered by Ceperley17 for fermion systems. In his
work, both the polarized and unpolarized electron gases w
studied over the wide range of densities in detail. The m
sophisticated stochastic approach, so-called Green’s-func
Monte Carlo~GFMC! method, was also applied to the h
mogeneous electron gas in order to investigate its ph
diagram.19 The data have been interpolated with analyti
functions’ fitted parameters by Voskoet al.20 and Perdew and
Zunger.21 In the latest work, modifications for the function
form and its parameters have been proposed by Perdew
Wang.22 Since the Monte Carlo method requests a perio
boundary condition representing the infinite electron gas
0163-1829/2004/69~16!/165102~6!/$22.50 69 1651
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always contains uncertainty. Ortiz and Ballone have reca
lated the electron-gas correlation energy by the VMC~Ref.
18! and the GFMC~Ref. 23! method using a periodic cel
larger than those taken in the previous work by Ceper
et al.17,19 Recently, improvements over the trial wave fun
tion have been studied by Kwonet al.24 They adopted a
function that includes backflow and three-body correlatio
for the high-density region of the homogeneous thr
dimensional electron gas. The same trial wave function
also been applied to the low-density electron gas.25 The
Fermi hypernetted-chain~FHNC! method26,27 is also varia-
tional approach, where the Euler-Lagrange equation for
pair-correlation function constructed from the Jastrow-Sla
type wave function is approximately solved. The FHN
method reproduced the results given by the VM
calculation17 and then it is known as a reliable approach f
the electron gas.

Takada combined the perturbation theory with the var
tional method in order to make use of the advantages of b
the approaches, and proposed the effective-potential ex
sion ~EPX! method.28 It was found that the correlation ene
gies given by the EPX method are in very good agreem
with those obtained from the GFMC method.19

The coupled-cluster~CC! method, which is well known as
an accurate quantum chemical calculation, was also app
to calculate the electron-gas correlation energy and gave
similar results to the GFMC method.29,30

The transcorrelated~TC! method31–42 is another promis-
ing approach to deal with strongly correlated electronic s
tems. The basic idea of the TC method was given by B
and Handy,31–35 that is, the correlation effects are efficient
incorporated into the many-body Hamiltonian by means o
similarity transformation with respect to the Jastrow factor
trial function is optimized so as to satisfy the transform
©2004 The American Physical Society02-1
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eigenequation. Since the effective Hamiltonian, which
call TC Hamiltonian, already contains some electronic c
relation effects, a simple trial function such as a single Sla
determinant is enough to obtain accurate energy estima
The TC method has been successfully applied to atoms
molecules.33–41 The ground-state energy for the homog
neous electron was also calculated by Armour42 following
the original formalism of the TC method given by Boys a
Handy.31–34 In his work, it was shown that the TC metho
can reproduce the results given by Gaskell’s variational
proach for both the wave function and ground-state energ
the electron gas.

In this paper, we examine the electron gas limit of t
energy given by the TC method as a preliminary work for
solid-state calculation. We adopted a simple two-body
strow factor including two parameters. These parameters
determined by the two asymptotic conditions: the cusp c
ditions and the random-phase approximation, and so no
rametrization is required in our formalism. This is the ma
difference from the previous work of Armour where para
eters are optimized so as to satisfy the transform
eigenequation. We compare our correlation energy estim
for the homogeneous electron gas with those given by a
riety of modern methods introduced in this section. In S
II, we briefly address the theory of the TC method and sh
the formula for the electron-gas correlation energy. In S
III, we will show our numerical results of the correlatio
energy and total energy for the homogeneous electron ga
Sec. IV, we will give our conclusions.

II. THEORY

Since we have addressed the detailed theory of the
method in our previous paper,41 here we only show its im-
portant concepts. The Hartree atomic units (m5e25\51)
are used in this section. In the TC method, the eigenequa
for the many-body electronic system,

HC5EC, ~1!

is transformed into

HTCF5EF, ~2!

HTC5
1

F
HF. ~3!

C is the exact eigenfunction andF is the Jastrow factor
representing the correlation effects, which depends on
relative position and spin of electrons.F is defined by a
division of these two functions,F5C/F. Since the similar-
ity transformation does not change the eigenvalues, one
solve the transformed eigenequation~2! instead of the origi-
nal eigenequation~1! in order to obtain eigenenergiesE. Al-
thoughF is generally described by a linear combination
the Slater determinants, relatively smaller number of de
minants are enough to attain accurate energies becaus
TC HamiltonianHTC already contains some correlation e
fects originated from the Jastrow factor. In our calculation
normalized single Slater determinantD was simply adopted
16510
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for F. Since HTC is non-Hermitian operator, variationa
treatment of the total energy is not applicable. Hence, a v
ance of the local energyEL5HTCD/D is introduced by35,41

s25E uDu2uEL2Eu2d3Nx5E uHTCD2EDu2d3Nx. ~4!

Herex contains both of the space and spin coordinates (r,g)
andd3Nx denotes the 3N-dimensional integration whereN is
the number of electrons. The variances2 is minimized with
respect toD, F, andE for general systems so that Eq.~2! is
satisfied as much as possible within the trial functionD.41

We have simply adopted plane waves for the element
D representing the unpolarized and metallic region of
homogeneous electron gas. Hence the system is chara
ized by a constant densityn or the Wigner radius defined b
r s5(3/4pn)1/3. Moreover, F is determined by two
asymptotic conditions as we will show in the following di
cussions. Therefore,s2 should be minimized only with re-
spect toE:

]s2

]E
52E2E D* HTCDd3Nx2E DHTC* D* d3Nx50.

~5!

E is then written as

E5ReE D* HTCDd3Nx

5
1

2E D* ~HTC1H TC
† !Dd3Nx

5E D* HDd3Nx2(
i 51

N E D* U“ iF

F U2

Dd3Nx. ~6!

Here Re denotes the real part. This is the definition of
energy in the TC method. Equation~6! yields the exact
ground-state energy ifD is the eigenfunction ofHTC. In
general, sinceD is not the exact eigenfunction, Eq.~6! is an
approximation of the energy which is different from the e
pectation value of the original HamiltonianH with respect to
the same wave functionFD:

^FDuHuFD&

^FDuFD&
ÞE. ~7!

Therefore, the variational principle is not available to t
energy given by Eq.~6! and so it might be lower than th
exact ground-state energy. The second term of Eq.~6! is
considered to be the correlation energy in our formalism

We adopt the following standard function for a two-bod
Jastrow factor:

F5expS 2
1

2 (
i 51

N

(
j 51(Þ i )

N

us is j
~ ur i2r j u!D , ~8!

uss8~R!5
Ass8

R
~12e2R/Fss8!, ~9!
2-2
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wheres i denotes the spin of thei th electron,s i5s(g i). It
has been used in the Monte Carlo calculation for the elec
gas and solids.17,43,44The two parameters in Eq.~9! are de-
termined by the cusp conditions,

Ass8

2Fss8
2 5ass8 , ~10!

where a↑↑51/4 and a↑↓51/2, and the random-phase a
proximation~RPA!,44,45

A↑↑5A↑↓5
1

vp
5

1

A4pn
, ~11!

wherevp is the plasma frequency. Therefore,Ass8 andFss8
in Eq. ~9! are completely determined by Eqs.~10! and ~11!,
and so no variational parameter exists in our formulati
Now the correlation energy is explicitly written using th
second term of Eqs.~6! and ~8! as

Ec52(
i 51

N E D* U“ iF

F U2

Dd3Nx ~12!

52
1

2 (
m51

N

(
n51

N E fm* ~x!fn* ~x8!u“us,s8~ ur2r8u!u2

3@fm~x!fn~x8!2fm~x8!fn~x!#dxdx8

2
1

2 (
m51

N

(
n51

N

(
h51

N E fm* ~x!fn* ~x8!fh* ~x9!

3“uss8~ ur2r8u!•“uss9~ ur2r9u!Rmnh~x,x8,x9!

3dxdx8dx9, ~13!

where

Rmnh~x,x8,x9!5U fm~x! fn~x! fh~x!

fm~x8! fn~x8! fh~x8!

fm~x9! fn~x9! fh~x9!
U . ~14!

Here, orthonormality conditions for the one-body wave fun
tions fm(x) are utilized. Therefore, the correlation energy
calculated within three-body integrals in general. In the c
of homogeneous electron gas with not so larger s, that is, if
we can reasonably assume thatfm(r) is a plane wave, Eq
~13! is reduced into the following simple form:

Ec@n#5Ec
(2)@n#1Ec

(3)@n#, ~15!

Ec
(2)@n#5Vn«c

(2)~n!,

«c
(2)~n!52pnE

0

`

@u↑↑8 ~R!21u↑↓8 ~R!2#R2dR

19pnE
0

`

%~kFR!2u↑↑8 ~R!2R2dR, ~16!
16510
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Ec
(3)@n#5Vn«c

(3)~n!

«c
(3)~n!5

kF
2

p2 S 1

2E0

`E
0

`

@u↑↑8 ~R!u↑↑8 ~R8!1u↑↓8 ~R!u↑↓8 ~R8!#

3@B1~x1 ,x2!2kF
2a2B2~x1 ,x2!#dRdR8

23E
0

`E
0

`

u↑↑8 ~R!u↑↑8 ~R8!%~kFR!%~kFR8!

3@B3~x1 ,x2!2kF
2a2B4~x1 ,x2!#dRdR8D , ~17!

where Ec
(2)@n# and Ec

(3)@n# are the contributions from the
two-body and three-body terms in Eq.~13!, respectively.
uss8
8 (R) is the derivative ofuss8(R) with respect toR:

uss8
8 ~R!52

Ass8

R2
1Ass8S 1

R2
1

1

Fss8R
D e2R/Fss8,

~18!

and the functions in Eqs.~16! and ~17! are defined as fol-
lows:

%~x!52
cosx

x2
1

sinx

x3
, ~19!

B1~x1 ,x2!5E
x1

x2
%~x!2x3dx5@b1~x!#x1

x2,

b1~x!5
cos 2x

4x2
2

112x2Ci~2x!

4x2
1

ln x

2
1

sin 2x

2x
,

Ci~x!52E
x

`cosy

y
dy, ~20!

B2~x1 ,x2!5E
x1

x2
%~x!2xdx5@b2~x!#x1

x2,

b2~x!52
112x2

8x4
1

cos 2x

8x4
1

sin 2x

4x3
, ~21!

B3~x1 ,x2!5E
x1

x2
%~x!x3dx5@b3~x!#x1

x2,

b3~x!52x sinx22 cosx, ~22!

B4~x1 ,x2!5E
x1

x2
%~x!xdx5@b4~x!#x1

x2,

b4~x!52
sinx

x
. ~23!
2-3



o-
ou
re

th

le
n

r

r

e
nt

er-
s
t

ese
and
.
la-

for

the
-
It

tion
-

th

or
l-

n

-

the

rre-
l-

f

NAOTO UMEZAWA AND SHINJI TSUNEYUKI PHYSICAL REVIEW B 69, 165102 ~2004!
HereV is the volume of the system andkF is the Fermi wave
number obtained by

kF5~3p2n!1/3, ~24!

anda2, x1, andx2 are defined by

a25R21R82, ~25!

x15kF~R1R8!, ~26!

x25kFuR2R8u. ~27!

It is understood from Eqs.~16! and~17! that the electron-gas
correlation energy is easily evaluated within tw
dimensional integrals. This is the great advantage of
method. We will show the results for the electron-gas cor
lation energy given by the formulas Eqs.~15!–~17! in com-
parison with those given by a variety of other methods in
following section.

III. RESULTS

In Figs. 1 and 2, the correlation energy estimates per e
tron given by the present work based on the TC are show
a function of the Wigner radiusr s. A variety of correlation
energy estimates given by the Green’s-function Monte Ca

FIG. 1. The correlation energy estimates per electron for
unpolarized electron gas as a function of the Wigner radiusr s given
by a variety of methods: the present work based on the transc
lated method~TC!, the Green’s-function Monte Carlo method ca
culated by Ceperley and Alder19 and its interpolations20

@GFMC~CA!#, the random-phase approximation~RPA!, the Wign-
er’s interpolation~Wigner!,1,2 and the effective-potential expansio
method28 containing the second~EPX:2! and the fourth~EPX:4!
power of the expansion. GFMC~CA! and EPX:4 are almost identi
cal. Our results~TC! and the exact values given by GFMC~CA! are
in good agreement at intermediate densities (2,r s,10).
16510
r
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method calculated by Ceperley and Alder19 and its
interpolations20 @GFMC~CA!#, RPA, the Wigner’s interpola-
tion ~Wigner!,1,2 the effective-potential expansion method28

containing the second~EPX:2! and the fourth~EPX:4! power
of the expansion, the FHNC method given by Zabolitzky26

@FHNC~Z!# and Lantto@FHNC~L!#,27 and the coupled cluste
method given by Bishop and Lu¨hrmann29 @CC~BL!# and Em-
rich and Zabolitzky30 @CC~EZ!# are also shown. Here th
values of GFMC~CA! are considered to be exact. The prese
results~TC! become very close to the exact values at int
mediate densities (2,r s,10). Furthermore, the result
given by TC and FHNC~L! are almost identical despite tha
our approach is much simpler than the FHNC method.

In Table I, the correlation energy estimates given by th
methods are listed. The discrepancy between TC
GFMC~CA! becomes larger again asr s increases over 10
However, it is remarkable that we were able to obtain re
tively accurate values in the region (2,r s,10) within our
simple formulation as we explained in Sec. II. The reason
the disagreement in the larger s limit is that the RPA itself
becomes an inadequate approximation. Moreover, since
Jastrow factor~8! contains only the two-body terms, three
body or four-body terms might improve the discrepancy.
should be mentioned that the differences in the correla
energies between GFMC~CA! and the recent GFMC calcu
lations given by Ortizet al.,23 Kwon et al.,24 and Zong

e

re-

FIG. 2. The correlation energy estimates per electron for
unpolarized electron gas as a function of the Wigner radiusr s given
by a variety of methods: the present work based on the transco
lated method~TC!, the Green’s-function Monte Carlo method ca
culated by Ceperley and Alder19 and its interpolations20

@GFMC~CA!#, the Fermi hypernetted-chain~FHNC! method given
by Zabolitzky26 @FHNC~Z!# and Lantto @FHNC~L!#,27 and the
coupled cluster method given by Bishop and Lu¨hrmann29 @CC~BL!#
and Emrich and Zabolitzky@CC~EZ!#.30 GFMC~CA! and CC~EZ!
are almost identical. Our results~TC! are very close to those o
FHNC~L!.
2-4
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TABLE I. Correlation energy estimates per electron for the unpolarized electron gas as a function of the Wigner radiusr s given by the
present work based on the transcorrelated method~TC!, the random-phase approximation~RPA!, the effective-potential expansion method28

containing the second~EPX:2! and the fourth~EPX:4! power of the expansion, the coupled cluster method given by Bishop and Lu¨hrmann29

@CC~BL!# and Emrich and Zabolitzky@CC~EZ!#,30 the Fermi hypernetted-chain~FHNC! method given by Zabolitzky26 @FHNC~Z!# and
Lantto @FHNC~L!#,27 and the Green’s-function Monte Carlo method calculated by Ceperley and Alder19 and its interpolations20

@GFMC~CA!#. All energies are in Rydberg (m5
1
2 , e252, \51).

r s RPA EPX:2 EPX:4 CC~BL! CC~EZ! FHNC~L! FHNC~Z! TC GFMC~CA!

0.01 20.2864 ••• ••• ••• ••• ••• ••• 21.7748 20.3807
0.1 20.2876 ••• ••• ••• 20.251 ••• ••• 20.502 20.243
1.0 20.1576 20.111 20.119 20.123 20.122 20.140 20.1141 20.143 20.120
2.0 20.1236 20.0821 20.0891 20.0917 20.0904 20.098 20.0859 20.0971 20.0896
3.0 20.1055 20.0671 20.0737 20.0751 20.0738 20.079 20.0710 20.0769 20.0738
4.0 20.0936 20.0575 20.0636 20.0644 20.0634 20.067 20.0612 20.0653 20.0636
5.0 20.0849 20.0506 20.0563 20.0568 20.056 20.058 20.0541 20.0572 20.0563
6.0 20.0782 20.0455 20.0507 ••• 20.0505 20.052 ••• 20.0514 20.0507
8.0 20.0684 20.0380 20.0427 ••• 20.0425 ••• 20.0409 20.0433 20.0427
10.0 20.0613 20.0329 20.0370 ••• 20.037 20.037 20.0355 20.0378 20.0371
20.0 20.04276 ••• ••• ••• 20.0236 20.023 20.0218 20.0246 20.0231
50.0 20.02536 ••• ••• ••• ••• 20.011 ••• 20.0137 20.0114
100.0 20.01660 ••• ••• ••• ••• 20.0062 ••• 20.0087 20.0064
T

e
T

ep-

ni-
otal

rgy
pa-
two
m-

en-
od

ially

la
sc
l-

rg

g
ated
ed
et al.25 are much smaller than the discrepancy between
and GFMC~CA!.

In Fig. 3, we show the total energies for the unpolariz
electron gas estimated by the present work based on the

FIG. 3. The total energy estimates per electron for the unpo
ized electron gas given by the present work based on the tran
related method~TC!, the Green’s-function Monte Carlo method ca
culated by Ceperley and Alder19 and its interpolations20

@GFMC~CA!#, the Hartree-Fock method~HF!, and the Wigner’s
interpolation~Wigner!,1,2 as a function of the Wigner radiusr s. The
arrow indicates the minimum point of each energy. The total ene
given by the present work~TC! and its minimum point are very
close to those of GFMC~CA!.
16510
C

d
C,

the Green’s-function Monte Carlo method calculated by C
erley and Alder19 and its interpolations20 @GFMC~CA!#, the
Hartree-Fock method~HF!, and the Wigner’s interpolation
~Wigner!.1,2 The difference between GFMC~CA! and HF is
the total correlation energy. The arrow indicates the mi
mum point of each energy. As we can see easily, the t
energy obtained by the present work~TC! and its minimum
point are very close to those given by GFMC~CA!. In Table
II, the minimum of each energy and the correspondingr s
value are listed.

IV. CONCLUSIONS

We have investigated the electron-gas limit of the ene
given by the transcorrelated method. In our method, two
rameters in the Jastrow factor are determined by the
asymptotic conditions: the cusp conditions and the rando
phase approximation. It was found that the correlation
ergy for the unpolarized electron gas given by our meth
shows fairly good agreement with the exact results espec

r-
or-

y

TABLE II. The minimum values of the total energyEmin per
electron for the unpolarized electron gas and the correspondinr s

values given by the present work based on the transcorrel
method~TC!, the Green’s-function Monte Carlo method calculat
by Ceperley and Alder19 and its interpolations20 @GFMC~CA!#, the
Hartree-Fock method~HF!, and the Wigner’s interpolation1,2

~Wigner! are listed. All energies are in Rydberg (m5
1
2 , e252, \

51).

HF Wigner TC GFMC~CA!

r s 4.82 4.30 4.10 4.18
Emin 20.0950 20.1663 20.1563 20.1548
2-5
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for the region of metallic densities 2,r s,10, and its total
energy is almost identical with the exact result in 1,r s
,10. It is remarkable that we could achieve these succes
results within our simple formulation, which is computatio
ally less demanding than conventional methods. These
sults indicate that the transcorrelated approach is very pr
ising not only for finite systems but also for bulk system. W
,

16510
ful

e-
-

will further study these issues in order to carry out practi
transcorrelated calculation for solids.
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