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Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot
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We perform quantum interference experiments on a single self-assembled semiconductor quantum dot. The
presence or absence of a single exciton in the dot provides a qubit that we control with femtosecond time
resolution. We combine a set of quantum operations to realize the single-qubit Deutsch-Jozsa algorithm. The
results show the feasibility of single-qubit quantum logic in a semiconductor quantum dot using ultrafast
optical control.
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Time-resolved optical spectroscopy in semiconductoito prepargencoding and read outdecoding the qubit in an
qguantum dots has recently progressed toward the full quarefficient way. In an experimental demonstration, we have not
tum control of excitons trapped inside a single HdtThese only to implement the algorithrtencoding and decoding op-
advances have stimulated proposals to use excitons in quag@tations, but we also have to build the Oracle. The specific
tum dots as quantum b?s for implementation of quantum structure of the Oracle, encoding and decoding, is not unique
computing. Very recently, the ability to operate a two-qubitand several versions can be found in the literafufe!>!
gate using exciton and biexciton states was demonstrated ine one we are using héreallows us to implement thél
single quantum ddt.These achievements represent a step=1 case with a single qubit. Figure 1 shows a quantum
toward an a||-optica| imp|ementation of quantum ComputingCirCUit depiction of the algorithm. This circuit uses the fol-
using excitonic qubits. The first algorithm that comes tolowing quantum transformations.
mind in order to check the feasibility of quantum computa- (1) A Hadamard transformation independently applied to
tion in this context is the Deutsch-Jozé@J) algorithm?  each qubitH®N=H® - - - ® H. A single qubit transformation
This algorithm is one of the simplest quantum algorithmsis represented by
that provides an exponential speed-up with respect to classi-

cal algorithms. As such, it has been extensively studied and 1 1 1
has been used in experimental demonstrations of simple H=—|1 _1|. (1)
quantum computation in a variety of systetfis'? In this V2

Rapid Communication we report the experimental realization
of the DJ algorithm for a single qubit using an optimized (2) A f-controlled gate, whose operation is defined as
version of the algorithn?®

The Deutsch problefinvolves global properties of bi- Uglx)=(—1)"|x). 2
nary functions on a subset of the natural numbers. Given a
natural numbeN, we can define a set callet with all the ~ The final step in the algorithm measures the expectation
natural numbers that can be represented Withits. A binary ~ value of the|0)(0| operator. This expectation value for a
function f:Xy—{0,1} is called balanced if it returns O for constant function will be equal to 1 while for a balanced
exactly half of the elements ofy and 1 for the other half. function it will be equal to 0. Whei=1 there are only four
Given a function that is either balanced or constant, thepossible functions;:{0,1;—1{0,1}:
Deutsch problem consists of finding out which type it is. A

general classical algorithm requires evaluating the function f1(x)=0, ()
on more than half of the elements, requiring at led$t2

+1 evaluations. This causes the classical run time to grow fo(x)=1, (4)
exponentially with the input size. The Deutsch-Jozsa algo-

rithm provides a way to solve the Deutsch problem on a fa3(X)=x, (5)

guantum computer using a quantum subroutine that evaluates
f. The problem and its solution provide an example of

Oracle-based quantum computatiéri® It is assumed that a " Ut " [€]
guantum subroutine or Oracle contains the information about
the unknown function. The algorithm gives a recipe on how FIG. 1. Optimized version of the Deutsch-Jozsa algorithm.
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and fu(x)=1-x. (6) [1>
. . 17>
Of these four,f; and f, are constant wr1|lef3 and f, are Laser 2
balanced. The explicit matrix forms of thé; operators are A AN
PL
1 0 10 0>
Un,=lo 1|71, U,==1o 1|=-1 (7 FIG. 2. Quantum level structure. The excitonic ground state and
first excited state are labeled’) and|1), respectively. The state
1 0 1 0 |0) corresponds to the absence of an exciton in the quantum dot.
Uf3: 0 —1|=0z and Uff—[o —1]:_‘72- scheme we used is depicted in Fig. 2. The absence of an

®) exciton is taken as thg) state of the qubit, while the first
excited excitonic state is taken Hy. The|1) state popula-
We can see that the balanced functions share the santien is monitored via a nonradiative transition to the exciton
f-controlled operator except for a global phase. This is alsground statélabeled agl’)) whose radiative recombination
true for the constant functions. If the qubit is initially in the is recorded using a micro-photoluminescence sétp?
state|0), the encoding transformation consists in one Had- We will use two different unitary transformations to real-

amard operation that transforms the qubit to ize the Deutsch-Jozsa algorithmz@2 single qubit rotation
and a phase shift. The corresponding explicit matrix forms
—(0)+]1)) @
N .
A 1|1 -1
By applyingUfj to the state in Eq(9) we obtain Uv/ZZﬁ 1 10’ (15
.1 1 and
Uy —=([0)+]1))=—=[(- 1)i@[0) + (- 1)"iD|1)].
2 V2 T
1 " _
(10 Od)=| " 5 gl (16)

For a constant function this gives

e single qubit rotation is realized bym?2 pulse resonant
The singl bi ion i lized bym?2 pul
(_1)fj(0)i(|0>+|1>) (11) with the |0) to |1) transition. We use the rotating-wave ap-
2 ' proximation and the qubit is defined in the rotating frame.
The phase gatél(¢) is realized by controlling the phase of
the optical pulses with respect to the first pulse which is use
h ical pul ith he fi I hich i d
1 as a reference. This is achieved experimentally by a piezo-
(—1)fiO—(]0)—|1)). (12)  electric translation stage that controls the phase locking be-
V2 tween the pulses. By choosing specific valuesd:orU(¢)

As a decoding procedure, we apply again the Hadamar@€comes equivalent to tiecontrolled operators, as shown in

while for a balanced function we get

transformation. We obtain Table 1. In this version of the algorithm, the Oracle distin-
guishes the operations within the same class only by a global
(—1)fi©)0) (13)  phase in the single qubit space. We can always think about

an additional reference qubit in the Oracle to make this phase

physically measurable. However, this reference qubit will
(—1)1i)1) (14) never come into play in the real algorithm since it is part of

the internal structure of the Oracle.

for a balanced function. Therefore, by measuring one of the Notice that althougﬂfJ o andH behave in a similar way,

two states, one can decide in a deterministic way to whichhey are not the same operator. It is easy to show that the

classf belongs. We remark that if we were to obtain an

answer using only classical operations, we would need to TABLE I. Experimental phase shift and their implemented op-

evaluate the unknowhfunction twice, obtaining botti(0) erations.

and f(1) and comparing them. Conversely, the described

guantum procedure only requires one call of the quantunExperimental phase shift Operation

subroutineU;. Therefore theN=1 case of the DJ already

for a constant function, and

shows that the quantum algorithm outperforms its classica?nw U[l
counterpart by a factor of 2 in the number of evaluations. m+anm —iUy,
We have been able to implement the single qubit Deutsch27+4nm Uy,
Jozsa algorithm discussed above using the excitonic states 8f+4nr —i0f4

a self-assembled InGaAs quantum dot as a qubit. The level
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only effect of this change is that the interpretation of the finalof picosecond€~2*while those for carefully chosen excited
result has to exchange balanced with constant functions. Wetated(i.e., no further than approximately 20 meV apart from
can think about the quantum evolution of the qubit duringthe corresponding ground stateange in the tens of
the algorithm using the picture of a pseudospin in the Bloctpicosecond$®
sphere. The first pulse corresponds to an effective magnetic The actual implementation of the algorithm was similar to
field in the +y direction that brings the pseudospin from that of standard wave-packet interferometry measure-
—z to the —x direction. The phase shift corresponds to aments!?° but in the nonlinear excitation reginidn order to
rotation of the pseudospin around thexis of multiples of  establish the appropriate excitation intensity fo#/2 pulse,
. The second pulse will bring the pseudospin backtin  we first recorded Rabi oscillations of the excited sf#t&We
the case of a balanced functi@oy destructive interferenge  also performed a low intensity wave-packet interferometry
and to+z in the case of a constant function. In this picture measurement to estimate the dephasing time of the quantum
theN=1 Deutsch algorithm shows clearly its equivalence todot!?® In that experiment, the photoluminescence signal is
a Mach-Zehnder interferometer experiméht. proportional to the wave-function autocorrelation. By fitting
The sample consisted of Jg&Ga, sAs molecular-beam ep- the decay of the autocorrelation signal with an exponential
itaxy grown self-assembled quantum dots, kept at a temperdunction we were able to measure the dephasing time of the
ture d 5 K inside a continuous flow liquid-helium cryostat. exciton in the dot, obtaining 40 ps as a result.
The quantum dots were resonantly excited with pulses from In the main experiment, the time delay between two iden-
a mode-locked Ti:sapphire laser. The pulses were linearlyical resonantr/2 laser pulsegsapproximately 5 ps longvas
polarized in a way to make sure only one state out of arscanned while simultaneously recording the photolumines-
anisotropy induced doublet was excifédBy using a spec- cence. A mechanical translation stage controlled the coarse
trometer combined with a two-dimensional liquid-nitrogen-delay between the two pulses while a piezoelectric stage
cooled charge-coupled device array detector, we were able whanged the fine delay. The fine delay is used to control the
detect the integrated photoluminescence signals of manghase shift of the second pulse with respect to the first one. It
quantum dots at the same tirfeThis enabled us to search can be mapped to the relative phase by the relatfon
for a quantum dot with a large enough dipole mom@md = w7y, Wherefw, is the laser energy, and has been cali-
thus a good signal-to-noise ratiand a dephasing time larger brated by performing wave-packet interferometry at low in-
than 20 ps for the excited state, which is the case for abouensity on the quantum dot, keeping the mechanical stage at
1% of the dots. We did not select any specific polarization aa fixed position.
the detection. The encoding and decoding consist of the preparation of
The use of the excitonic ground-state photoluminescencthe two pulses with the same phase. We can imagine that the
as the means of detection prevented us from being able tOracle controls the fine delay knob, and, by changing the
use this state as thd) state of our qubit. This entailed a relative phase, determines which one of the four functions is
severe decrease in the dephasing time of the qubit, as thming implemented. Figure(8 shows the intensity of the
nonradiative decay from the excited state to the excitordetected photoluminescence as a function of the coarse delay
ground statenecessary for our detection scheme to work between the two pulses. The lower and upper signals corre-
puts an upper bound in the coherence time of the exéfton. spond to constructive and destructive interference depending
This upper bound is significant, since measured dephasingn the relative phase of the two pulses. The contrast between
times for excitonic ground states are in the order of hundredthe maxima and minima of the signal decreases as the delay
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between the pulses approaches the dephasing time of the dbe pulses as short as possible gives the best fideli&ycan

(40 p9, leading to lower fidelities. Figures(l3-e describe

be seen in Fig. B but this delay must be no shorter than

the detailed behavior of the signal for various values of thewice the excitation pulse width, so that any optical interfer-

phase difference between the two pulses.

ence arising out of the overlap of the two pulses is negli-

We can now interpret this result in terms of the DJ quan-gible. Also, a detection scheme able to resonantly excite and

tum algorithm. As expected, the maximum populationlat
(that is maximum photoluminescenagccurs for even num-
bers of 7 in the relative phase between the two pulses, cor

responding to the constant quantum subroutﬁa\elsé. On the
other hand, minima occur for odd numbersmin the phase

then measure the exciton ground state would allow for much
larger fidelities, due to the increased coherence times.

By using an interferometric setup on an excitonic qubit

system, we have been able to implement the single-qubit
Deutsch-Jozsa algorithm. Although the one-qubit version of

shift between the two pulses, corresponding to the balanceiff® algorithm does not show all the features of quantum

guantum subroutineélf34. The probability of successfully
solving the problem is related to the contrast of the maxim

computing(in particular entanglementit is an experimental
demonstration of simple quantum computation, including su-

%erpositions and interference, in a solid state system.

and minima in the interference process. We remark that the

first three insets in Fig. @ll with a delay between the pulses
between 10 and 20 psave a contrast of the order of 75%.
This implies a fidelity for the quantum operations compa-
rable to other similar implementatiosThe fidelity is
mainly limited by the dephasing time of the excited excitonic
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