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Combined effect of electron-electron interactions and spin-orbit scattering in metal nanoparticles

Denis A. Gorokhov and Piet W. Brouwer
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA

~Received 5 November 2003; published 15 April 2004!

The combined effect of electron-electron interactions and spin-orbit scattering in metal nanoparticles can be
studied by measuring splitting of electron levels in magnetic field (g factors! in tunneling spectroscopy
experiments. Using random matrix theory to describe the single-electron states in the metal particle, we find
that even a relatively small electron-electron interaction strength~ratio of exchange constantJ and mean level
spacingd.0.3) significantly increasesg-factor fluctuations for not-too-strong spin-orbit scattering rates~spin-
orbit time tso*1/d). In particular,g factors larger than 2 could be observed.~This is a manifestation of the
many-body correlation effects in nanoparticles!. While so far measurements only on noble metal~Cu, Ag, Au!
and Al samples have been done for which the effects of electron-electron interactions are negligible, we discuss
the possibility of observing interaction effects in nanoparticles made of other metals.

DOI: 10.1103/PhysRevB.69.155417 PACS number~s!: 73.22.2f, 72.25.Rb, 05.60.Gg, 73.23.Hk
n-
wo
re
s
te

it
g

-
d
ta
he

-
y.
le

rg

d

an
n
th

te
in
re

cto
u
re
in

m
in
ng

n is
der
n-
ut
t

lev-

l
il-
rief
in

an
teps

icle
on-
the

rs

-
s,

in
ea-

by
i-
rs

e
n-

ic
I. INTRODUCTION

While the study of the combined effect of electro
electron interactions and elastic impurity scattering in t
dimensions and near the metal-insulator transition in th
dimensions remains one of the most important problem
solid state physics, the description of electron-electron in
actions in disordered normal-metal nanoparticles~i.e., ‘‘zero
dimensions’’! has been found to be remarkably simple:1,2

At a fixed number of electrons and without spin-orb
scattering, the only relevant interaction term is a long-ran
exchange interaction3

H int52JS2, ~1!

that couples to the total spinS of the nanoparticle. The ex
change constantJ is closely related to one of the Fermi liqui
constants of the bulk metal, and is independent of the de
of the impurity configuration inside the nanoparticle. T
interaction Hamiltonian~1!, which is known as ‘‘universal
interaction Hamiltonian,’’ is the only form of the electron
electron interaction compatible with random matrix theor2

Random matrix theory provides a valid description of sing
electron states as long as the dimensionless conductanceg of
the nanoparticle, which is the ratio of the Thouless ene
ETh and the mean level spacingd, is large.4,5 Residual inter-
action terms not included in Eq.~1! are sample specific an
small in comparison to Eq.~1! by, at least, a factor 1/g.

In the presence of spin-orbit scattering, spin is also r
domized, giving rise to both sample-to-sample fluctuatio
of the electron-electron interaction and a suppression of
exchange interaction~1!. Since the spin-orbit scattering ra
gso5\/tso plays the role of a ‘‘Thouless energy’’ for the sp
degree of freedom, for strong spin-orbit scattering the
sidual exchange interaction becomes small by a fa
gso/d@1 in comparison to the interaction strength witho
spin-orbit scattering. However, the exchange interaction
mains the dominant contribution to the electron-electron
teraction as long asgso/d!g.

In this paper, we present a detailed analysis of the co
bined effect of spin-orbit scattering and electron-electron
teractions in the regime of moderate spin-orbit scatteri
0163-1829/2004/69~15!/155417~14!/$22.50 69 1554
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gso;d. In this parameter regime, the exchange interactio
not fully suppressed, while fluctuations are of the same or
as the average.6 This makes the regime of moderate spi
orbit scattering rates qualitatively different from that witho
spin-orbit scattering (gso50) and that of strong spin-orbi
scattering (gso/d@1.) The parameter regimegso;d is of
interest for recent experiments on metal nanoparticles,7–10 in
which the magnetic-field dependences of many-electron
els has been measured using tunneling spectroscopy.11 More-
over, an analysis of the regimegso/d;1 serves as a mode
study of the breakdown of the universal interaction Ham
tonian when the dimensionless conductance is small. A b
account of some of our findings was previously published
Ref. 12.

Experimentally, the spin structure of electronic states c
be measured through the magnetic-field dependence of s
in the current-voltage characteristic of a metal nanopart
coupled to source and drain electrodes via tunneling c
tacts. These steps occur if the applied voltage is equal to
difference of the energies of many-electron levelsuNe
11;k& and uNe ; l & which have Ne and Ne11 electrons,
respectively,13

eVkl5ENe11,k2ENe ,l . ~2!

The derivative]Vkl /]B of the voltage at which a step occu
to the magnetic fieldB is parametrized through a ‘‘g factor,’’

e
]Vkl

]B
56

1

2
gklmB , ~3!

wheremB5ueu\/2mc is the Bohr magneton. Without spin
orbit scattering, but with electron-electron interaction
many-electron states are characterized by their total spS
and by itsz component. Since tunneling spectroscopy m
sures transitions in which the electron number changes
one, the total spinS of the grain changes by 1/2 upon add
tion or removal of an electron. This ‘‘selection rule’’ rende
all observedg factors equal to 2, irrespective of the spinSk
and Sl of the two many-electron levels participating in th
transition. On the other hand, without interactions, the tu
neling spectroscopyg factors correspond to the magnet
©2004 The American Physical Society17-1
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DENIS A. GOROKHOV AND PIET W. BROUWER PHYSICAL REVIEW B69, 155417 ~2004!
moment of one single-electron level only, giving rise to
distribution of g factors in which all levels have, at mos
spin 1/2.14–16As was shown in Ref. 12, the combined effe
of spin-orbit scattering and electron-electron interactions
to simultaneously suppress the spin of the many-elec
states and lift the selection rules, causing a much wider
tribution of tunneling spectroscopyg factors than in the non
interacting case. In particular, there is a significant proba
ity to find g factors larger than 2 if spin-orbit scattering is n
too strong (gso/d&2). The occurrence ofg factors larger
than 2 is a unique signature of the interplay of electro
electron interactions and spin-orbit scattering.

What are the main differences betweeng-factor distribu-
tions with and without electron-electron interactions? In
der to answer that question, we note that the electr
electron interactions has two main effects in a nanoparti
to organize the many-electron states according to their t
spin S, i.e., to lift the degeneracy between states of differ
S but with the same orbital content, and tolower the energy
of a many electron state with spinS by the amountJS(S
11), increasing the abundance of high-S states among low-
energy excited states, see Fig. 1.~In fact, for J/d*0.3, there
is a significant probability that the ground state has a n
trivial spin S.1/2, see, e.g., Refs. 17,18.! It is because of the
combination of these two effects, together with the lifting
selection rules by spin-orbit scattering, that electron-elect
interactions enhance the width of theg-factor distribution so
significantly. Moreover, because the relative abundance
high-S states depends on the excitation energy, theg-factor
distribution will be different for transitions to an excited sta
than for transitions to the ground states. Again, this is diff
ent from the noninteracting case, whereg-factor distributions
for transitions to the ground state and to excited states
equal. A third difference between the cases with and with
interactions is that, as the selection rules are gradually

FIG. 1. Occupation of single-electron levels for the lowest-lyi
many-electron states with total spinS50 ~a! andS51 ~b!, and for
S51/2 ~c! andS53/2 ~d!. In the absence of exchange interaction
the states with spinS50 andS51/2 are the ground states for eve
and odd numbers of electrons, respectively. The exchange inte
tion compensates~part of! the kinetic-energy cost of the higher sp
states.
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ken down by spin-orbit scattering, different transitions m
have very different weights, in contrast to the noninteract
case, for which all transitions have weights within a factor
order unity from each other.~The ‘‘weight’’ of the transition
is the height of the corresponding step in the current-volt
characteristics.!

In principle, one should consider contributions to theg
factor from the orbital magnetic moments of the energy le
els and from the spin magnetic moment.15 In this work, we
consider the spin contribution to theg factor only and ne-
glect the orbital contribution. For the spin-orbit scatteri
ratesgso/d;1 we consider here, this is justified if the ele
tron motion in the metal grain is diffusive with mean fre
path l much smaller than grain sizeL.15,16

We wish to point out that in the present paper nanop
ticles of sufficiently large size and irregular shape are inv
tigated: it is in that case only that the dimensionless cond
tance is large enough to justify the use of random ma
theory. For very small nanoparticles or for nanoparticles w
an integrable shape random matrix theory is not applica
in such particles shell effects may be important. Recent
merical calculations based on a tight-binding model for no
interacting electrons in an almost hemispherical Au nanop
ticle with ;150 atoms have shown that even the small
deviations from an integrable shape result ing factor statis-
tics well described by random matrix theory.19 The inclusion
of the exchange interaction in the present work does
change the applicability of random matrix theory for su
nanoparticles.

The outline of this paper is as follows. In Sec. II w
present the theoretical formalism. Since we only consi
spin-orbit scattering ratesgso/d!g, random-matrix theory
can be used to describe the single-electron states. In Se
we discuss the results of numerical simulations for
g-factor distribution for transitions from theNe-electron
ground state to the (Ne11)-electron ground state and (Ne
11)-electron excited states, whereNe is taken even. The
restriction to transitions starting from theNe-electron ground
state is appropriate if the metal nanoparticle relaxes to
Ne-electron ground state between tunneling events. In S
IV we discuss the consequences of our findings for vari
metals: our results depend on the ratioJ/d, which strongly
depends on the metal under consideration. We conclud
Sec. V. Finally, in the Appendix, we report an analytical c
culation of theg-factor distribution for weak spin-orbit scat
tering, gso/d!1, again paying special attention to diffe
ences between transitions involving ground states only
transitions to or from an excited state.

II. THEORETICAL DESCRIPTION

A. Effective Hamiltonian

Random matrix theory can be used to describe the sin
electron wave functions and energy levels of a metal gra
For a metal grain with spin-orbit scattering, the appropri
random matrix ensemble interpolates between the Gaus
orthogonal ensemble~GOE! and the Gaussian symplectic e
semble~GSE! of random matrix theory,

,

c-
7-2
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COMBINED EFFECT OF ELECTRON-ELECTRON . . . PHYSICAL REVIEW B69, 155417 ~2004!
H0~l!5HGOE1Hso~l!. ~4!

Writing the spin degrees of freedom explicitly, one has

HGOE5S^ 12 , ~5!

Hso~l!5
il

2AN
(
j 51

3

Aj ^ s j , ~6!

where12 is the 232 unit matrix in spin space,s j is the Pauli
matrix (j 51,2,3), S is an N3N real symmetric matrices
and Aj is a real antisymmetric matrix (j 51,2,3). The ele-
ments of the matricesS, A1 , A2, and A3 are drawn from
independent Gaussian distributions with zero mean and
equal variances for the off-diagonal elements. The diago
elements ofS have double variance, whereas the diago
elements ofA1 , A2, andA3 are zero because of the antisym
metry constraint. In random matrix theory, the limitN→` is
taken at the end of the calculation. The random matrix
scription is valid as long as energy differences of the ene
levels and wave functions of interest are small compare
the Thouless energyETh .4,5 For a disordered metal grain o
size L, mean free pathl, and Fermi velocityvF , ETh
;vFl /L2.

The parameterl in Eq. ~4! determines the strength of th
spin-orbit scattering, l25pgso/d5p/tsod, where tso
51/gso is the spin-orbit time andd is the mean spacing
between~spin-degenerate! eigenvalues ofHGOE, see Refs.
14–16. The casel50 corresponds to the absence of sp
orbit scattering, while the limitl→` describes the situation
when spin-rotation symmetry is completely broken. The f
tor 1/AN in front of Hso ensures that the relation betweenl
and the physical parameterstso and d does not involve the
matrix sizeN.

Each eigenvalue«m of the Hamiltonian~4! is doubly de-
generate~Kramers degeneracy!. After diagonalization, the
HamiltonianH0 can be written as

H05(
m

«m~ĉm1
† ĉm11ĉm2

† ĉm2!, ~7!

whereĉma
† and ĉma are creation and annihilation operato

for an electron in the stateuma&, wherea51,2 labels the
two time-reversed states in the Kramers doublet.

Combining the single-electron Hamiltonian~7! and the
interaction Hamiltonian~1!, one finds the total Hamiltonian

Ĥ5(
m

«m~ĉm1
† ĉm11ĉm2

† ĉm2!2JŜ2. ~8!

Equation~8! is valid up to a charging energy that depends
the electron numberNe only; the charging energy plays n
role in the problem we consider.

In the absence of spin-orbit interaction, the exchange
teraction@second term in Eq.~8!# commutes with the nonin
teracting HamiltonianH0 @first term in Eq.~8!#. The many-
electron eigenstates are found by diagonalizingH0 at a fixed
value of the total spinS and itsz componentSz . With spin-
orbit interaction, however, the interaction does not comm
with H0. This has important consequences for the grou
15541
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state and for the excitation spectrum of a metal grain. Ty
cally, for most normal-metal grains and for quantum dotsJ
is estimated to be in the range 0&J/d&1, see Sec. IV. While
this implies that the effect of the exchange interaction can
be treated in first-order perturbation theory, interaction
fects only cause correlations in a small window around
Fermi energy which is, in principle, available to direct n
merical diagonalization. Hereto, we write the operatorS for
the total electron spin in terms of the creation and annih
tion operatorsĉma

† and ĉma of the single-electron Hamil-
tonianH0,

Ŝ5(
m,n

(
a,b51,2

ĉma
† sma,nbĉnb , ~9!

where

~si !ma,nb5 1
2 ^nbus i uma&, i 51,2,3. ~10!

The quantity of interest in our calculation is the magnet
field dependence of the many-electron energy levels
small magnetic fields and an odd number of electrons, wh
is described through theg factors, see Eqs.~2! and~3! above.
The magnetic-field dependence arises both through the
man coupling to the electron spin and through the orb
coupling to the angular momentum.15,16 For large diffusive
metal grains and for not-too-large spin-orbit scatteri
strengthstsod*1, the Zeeman coupling dominates.15,16,19

Since the interaction effects studied here are most impor
for tsod;1 ~see below!, we neglect the orbital contribution
to theg factors in the discussion below. For a magnetic fie
H along thez axis, the Zeeman coupling to the magne
field is described by the Hamiltonian

HZ522mBHS3 , ~11!

where thez component of the total spinS3 is given by Eq.
~9! above.

B. Tunneling spectroscopy

Following Ref. 13, we assume that the conductance of
tunneling contact connecting the nanoparticle to the sou
reservoirs is much smaller than the conductance of the c
tacts connecting the particle to the drain reservoir, so that
currentI through the grain is limited by the processes whe
an electron tunnelsonto the particle. In this case, one ca
assume that relaxation is sufficiently fast that the nanop
ticle is in the Ne-particle ground stateuNE,0& before each
tunneling event. It follows that current steps occur in t
current-voltage characteristic or, equivalently, a peak in
grain’s differential conductance]I /]V, when the source-
drain voltageeV5eVk05ENe11,k2ENe,0 , see Eq.~2!. For a
point contact that injects electrons into the grain at posit
r , the size of the current step is proportional to the mat
element

wk5u^Ne11,kuĉ↑
†~r !uNe ,0&u21u^Ne11,kuĉ↓

†~r !uNe ,0&u2,

~12!
7-3
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DENIS A. GOROKHOV AND PIET W. BROUWER PHYSICAL REVIEW B69, 155417 ~2004!
where the creation operatorĉs
†(r ) creates an electron with

spin s in the grain at positionr . In terms of the basis o
single-electron states, one has

ĉs
†~r !5(

m
~ĉm1

† ^rsum1&1ĉm2
† ^rsum2&!. ~13!

In random matrix theory, the matrix element^rsuma&, s
561, is replaced by an~arbitrary! spinor in the
2N-component vector representing the statema, a51,2.

In the presence of both spin-orbit scattering and electr
electron interactions, theNe-electron statesuNe ,l & are non-
degenerate for zero magnetic field ifNe is even. In that case
]El /]H50 at H50. On the other hand, (Ne11)-electron
states are doubly degenerate ifNe is even. These states sp
in a magnetic field. For small magnetic fields the splitting
linear. Hence, ifNe is even, theg factor gkl associated with
voltageVkl at which a current steps occurs is directly relat
to the magnetic-field derivative of the (Ne11)-electron level
uNe11,l &,

]ENe11,k

]B
56

1

2
gk0mB , Ne even. ~14!

In the remainder of this paper we continue to refer to
even-electron ground state as the ‘‘Ne-electron ground state’
and to the odd-electron states as the ‘‘(Ne11)-electron
states.’’

An example showing how the various degeneracies
lifted by the exchange interaction and by a magnetic field
shown in Fig. 2. The top panel of the figure shows the fo
lowest many-electron states for an odd number of electro
for the specific case that the ground state has spinS51/2 and
the lowest excited state hasS53/2 in the absence of spin
orbit scattering. Without spin-orbit scattering, theS53/2
state is fourfold degenerate. Spin-orbit scattering lifts
fourfold degeneracy of theS53/2 quadruplet, separating
into two doublets with ill-defined spin~lower panel of Fig. 2,
center!. Finally, an applied magnetic field lifts the dege
eracy of all doublets. For an even-electron number, spin-o
scattering lifts all possible degeneracies; to first order in
field, the applied magnetic field has no effect.

The definition thatg factors are derivatives of energy lev
els to the magnetic field implies that the Zeeman ene
scale is the smallest nonzero energy scale in the problem
particular, it is smaller than the spin-orbit induced splittin
of high-spin states~see Fig. 2!, these splittings being propor
tional to the spin-orbit scattering ratel2}1/tso. However,
when g factors are calculated without spin-orbit scatterin
the Zeeman energy is~by definition! larger than the spin-
orbit rate. We’ll find below that the two limits do not com
mute in the presence of electron-electron interactions,
that g-factor distributions calculated in the limitl→01 are
different from theg factors atl50. ~Without spin-orbit scat-
tering all peaks in the differential conductance split withg
factor g52.! It should be pointed out that experiment i
volves finite magnetic fields, for which the Zeeman ene
15541
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can be larger than the spin-orbit rate. For such magnetic-fi
dependences of the levels, a different slope at zero field
easily go unnoticed.

Althoughg factors contain information on thepositionsof
peaks in the tunneling spectrum of the grain, knowledge
the sizesof the peaks in the differential conductance is im
portant for a correct interpretation of the results. Peak heig
contain information that would be formulated in terms
selection rules in the absence of spin-orbit scattering. Inde
without spin-orbit scattering, the total spinS and itsz com-

FIG. 2. Top panel: Schematic representation of four low
many-electron levels for a grain with an odd number of partic
without spin-orbit scattering. The spacings between the sin
electron levels are as indicated in the figure. The figure repres
the case 0,D01D123J,D0 ,D1. Note that the first excited stat
has spinS53/2 and is fourfold degenerate. Bottom panel: Evo
tion of energy levels of the grain for small spin-orbit scattering ra
l and magnetic fieldsH. Spin-orbit scattering separates the quad
plet ~b! into two doublets with ill-defined spin. The magnetic fie
lifts the degeneracy of all remaining doublets.

FIG. 3. Left: Schematic representation of ground states for
even number of electrons without spin-orbit scattering. Depend
on the strength of the exchange interaction, theNe-electron ground
state may have spinS50 ~a! or S51 ~b!. Right: three excited
(Ne11)-electron states.
7-4
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COMBINED EFFECT OF ELECTRON-ELECTRON . . . PHYSICAL REVIEW B69, 155417 ~2004!
ponentS3 can change by 1/2 at most in a tunneling proce
which limits the possible transitions betweenNe andNe11
electron states, and, hence, the possible locations of pea
the differential conductance. It is because of the selec
rules that one does not observeg factors larger than 2, de
spite the fact that there exist high-spin many-electron sta
Similarly, without interactions, the occupation of singl
electron levels cannot change by more than one elect
which also limits the number of allowed transitions in tu
neling spectroscopy. With spin-orbit scattering and inter
tions, peaks that were previously ‘‘forbidden’’ are present,
principle, although their height may be small. We return
this issue in more detail in Sec. III.

The example in Fig. 3 may further clarify the role o
selection rules. The figure shows two possibleNe-electron
ground states~left! and three (Ne11)-particle excited state
~right!. Without spin-orbit scattering or without exchange i
teractions, the states~c! and ~d! can be accessed from th
Ne-particle ground state~a!, but not state~e!. Similarly, state
~e! can be accessed from ground state~b!, but not~c! and~d!.
te

a

f
to
rg

15541
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When spin-orbit scattering and exchange interactions
both present, theNe-electron ground state is a superpositi
of the states~a! and ~b! and all possible transitions have
finite matrix element. Note that, since the energy differen
between states~a! and ~b! is typically small—on average
equal to d22J, mixing of these two states is strong fo
spin-orbit scattering ratesl;1.

C. Matrix elements of interaction Hamiltonian

For the construction of the interaction Hamiltonian in t
basis of many-electron eigenstates of the HamiltonianH0,
one needs explicit equations for the matrix elements of
exchange interaction in that basis. Since the exchange in
action changes the single-electron states of at most two e
trons, the only nonzero matrix elements of the exchange
teraction occur between states that can be written in the f
ĉma

† ĉnb
† uF& andĉm8a8

† ĉn8b8
† uF&, whereuF& represents a cer

tain reference noninteracting state. After some algebra
then finds
^Fuĉn8b8ĉm8a8S
2ĉma

† ĉnb
† uF&5~dma,m8a8dnb,n8b82dnb,m8a8dma,n8b8!^FuS2uF&22@sn8b8ma•sm8a,nb2sm8a8,ma•sn8b8,nb#

22dnb,n8b8 (
f,gPF

@sm8a8,fg•sfg,ma2sm8a8,ma•sfg,fg#22dma,n8b8 (
f,gPF

@sm8a8,nb•sfg,fg2sfg,nb•sm8a8,fg#

22dnb,m8a8 (
f,gPF

@sn8b8,ma•sfg,fg2sfg,ma•sn8b8,fg#22dma,m8a8 (
f,gPF

@sfg,nb•sn8b8,fg2sn8b8,nb•sfg,fg#, ~15!
m
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^FuS2uF&5
3

4
~Ne22!22 (

f,gPF
(

f8,g8PF
@sfg,f8g8•sf8g8,fg

2sfg,fg•sf8g8,f8g8#. ~16!

The summations overf and g extend over all single-
electron statesuf,g&, g51,2, that are occupied in the sta
uF&.

Similarly, matrix elements of the Zeeman energyHZ are
nonzero only if many-electron states differ by not more th
one electron, i.e., between states of the formĉma

† uF& and

ĉnb
† uF&. For those states, one needs the matrix elements

^FuĉnbSĉma
† uF&5snb,ma1dnb,ma (

f,gPF
sfg,fg . ~17!

At this point, it is important to verify the applicability o
the random matrix theory. In order for random matrix
apply, summations over the Fermi sea should conve
within a Thouless energy from the Fermi level. In Eqs.~15!,
~16!, and ~17!, the sums of the form(f,gPFsfg,fg clearly
satisfy this condition, by virtue of the equality

sf1,f11sf2,f250, ~18!
n

e

which follows from the observation that the statesuf,1& and
uf,2& are time reversed. The sums of the for
(f,gPFsma,fg•sfg,nb also meet this condition, since th
summand decreases}1/(«F2«f)2 for f well below the
Fermi level andm and n close to the Fermi level.16 In the
diagonal matrix element~16! the sum over (f,g) and
(f8,g8) is logarithmically divergent as a function of th
Fermi energy. This, however, has no consequences for
magnetic-field dependence of the many-electron states
the peak heights, since the divergence is for all matrix e
ments and simply corresponds to the overall shift of
ground-state energy. We conclude that random matrix the
can be used to access the many-electron ground state an
low-lying excited states.

III. RESULTS AND DISCUSSION

In order to calculateg factors and peak heights, we hav
diagonalized the Hamiltonian~8! numerically.

Our numerical procedure is as follows: We first diagon
ized the noninteracting HamiltonianH0. The interaction is
considered in a truncated basis of the many-electron sta
taking the 92 lowest-lying many-electron eigenstates ofH0
for a Ne11 electrons (Ne even!, and the 76 lowest-lying
states forNe electrons. Finally, we diagonalized the truncat
7-5
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DENIS A. GOROKHOV AND PIET W. BROUWER PHYSICAL REVIEW B69, 155417 ~2004!
interaction and found theg factors of theM58 lowest-lying
(Ne11)-electron states, and the peak heights that follow
transitions from theNe-electron ground state. For the calc
lation of theg factors we introduce a small magnetic fie
and calculate the magnetic-field derivative numerically.
verified that truncating the interaction Hamiltonian at t
lowest lying 92 and 76 many-electron states has no effec
the final results by comparing our results to those that w
obtained using a smaller basis set.

We have investigated exchange-interaction strength ra
ing from J50 to J50.6d which is valid for most metals, se
Sec. IV. The same parameter range should apply to quan
dots. Analysis of the Coulomb blockade peak spac
distribution20 suggests thatJ/d is between 0.3 and 0.4 in
large quantum dots in a GaAs/GaAlAs heterostructu
whereas recent density-functional studies of ground-s
spin distributions in ballistic quantum dots are compati
with the Hamiltonian~8! only if J'0.6d, see Ref. 21.

Important changes occur within the range of exchan
interactions we address here. Since the metal grain is
sumed to relax to theNe-particle ground state between tu
neling events, the~statistical! properties of theNe-particle
ground state play a key role in determining theg-factor dis-
tribution. Without spin-orbit scattering forJ&0.3d, there is
only a small probability that theNe-particle ground state ha
spin one, and a vanishing probability that theNe11-particle
ground state has spin 3/2 (Ne is assumed even!.17,22 The
probability to find anNe-particle ground state withS51
becomes appreciable forJ*0.3, whereas the probability t
find an (Ne11)-particle ground with spin 3/2 becomes si
nificant for J*0.5d only. For the values ofJ we consider,
states with spin>5/2 do not play a role; they have bee
excluded from the truncated many-electron basis.

The strength of spin-orbit scattering strengthl is taken
from 0 to 2.8. Although larger spin-orbit scattering streng
do occur in metal grains,9,10 interaction effects are small a
those values ofl and the noninteracting theory of Ref
14–16 works well.

The random matrices in our simulation are taken of s
2N5400. This ensures that the conditionl2!N necessary
for the applicability of the random matrix~4! is satisfied for
all values ofl. For l,2 we have taken 2N5200 in the
simulations.

A. Average g factors

We have calculated ensemble averages of theg factors
^gk&, k50,1, . . . ,M21 of the M lowest (Ne11)-electron
states. Heregk is theg factor corresponding to thekth (Ne
11)-electron system,k50,1, . . . ,M21. The ensemble av
erage is taken over 300 realizations. In Fig. 4 we show
ensemble-averagedg factors for the ground state and the fir
excited state,̂g0& and ^g1&, as well as the average over a
calculatedg factors^ḡ&

ḡ5M 21 (
k50

M21

gk . ~19!
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The first observation to be made from Fig. 4 is that f
J*0.4d andl&2 interactions lead to a significant increa
in the averageg factor. In fact, there is a significant param

eter range for whicĥḡ&.2. The origin of the largeg factors
is that exchange interactions lift the degeneracy with resp
to the total spinS. Hence, with exchange interactions, man
electron states with a finite spin are energetically separa
from states with spin 0 or 1/2. For the parameter range c
sidered here, the relevant nontrivial spin states haveS53/2
for an odd number of electrons. The role of spin-orbit sc
tering is to lift the fourfold degeneracy of theS53/2 states
and, for larger spin-orbit strengths, to suppress the spin c
tent of the single-electron states that build the many-elec
state. Let us first discuss the effect of lifting the degener
of the S53/2 state by spin-orbit scattering.

In general, spin-orbit scattering splits the fourfold dege
erateS53/2 state into two doublets. Neglecting contrib
tions from other many-electron states, each doublet con
of two states that can be written in the form

FIG. 4. Ensemble-averagedg factors. Top: Averageg factor
^g0& of (Ne11)-particle ground state forJ50 ~the lowest solid
curve!, J50.3d, J50.4d, J50.5d, andJ50.6d. Middle: average
g factor ^g1& of first excited (Ne11)-particle state forJ/d
50.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Bottom: ensemble-averageg
factor averaged over the firstM58 (Ne11)-electron states for
J/d50.1, 0.2, 0.3, 0.4, 0.5, and 0.6.
7-6



-

o
th

it
er

d
at
it
b
d

ee

n

e
an
sp
b
do

e

an
el
e

es
-

a

in

av
ny
-

lity

,
o
n

le

al

t-

take
into

k in

eak

ac-
en-

ith
re

nds

all
nce,
le
are
b-
the
the

cat-
ge

ted

the
nd
r

he
ak
r
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ustate&5 (
n523/2

3/2

anu3/2,n&, ~20!

and the time-reversed of Eq.~20!, which is obtained by send
ing an→sign(n)a2n* . Here uS,S3& is the (Ne11)-electron
state with total spinS andz component of the spin equal t
S3. Because the spin-orbit matrix elements are random,
amplitudesan are essentially random as well.~This state-
ment is verified in the Appendix.! The g factor of the state
~20! is

g25S (
n523/2

3/2

4nuanu2D 2

1U (
n523/2

3/2

4unuana2nU2

. ~21!

One easily verifies that this can be larger than two. W
exchange interaction but without spin-orbit scattering, th
is a finite probability that theNe-particle ground state (Ne
even! has spinS51. In that case, it has two singly occupie
orbitals and, hence, in principle, a finite overlap with a st
of the form~20! after addition of an electron. With spin-orb
scattering, theNe-electron ground state is guaranteed to
nondegenerate, so that its derivative to the magnetic fiel
zero. We conclude that, theg factor of the state~20! can be
larger than 2, that it can correspond to a transition betw
the Ne-electron ground state and an (Ne11)-electron state,
and that the corresponding conductance peak has a fi
height.

A finite amount of spin-orbit scattering stabilizes th
above arguments by increasing the splittings between m
electron states that are degenerate in the absence of
orbit coupling. On the other hand, with moderate spin-or
scattering, more many-electron states are added in the
blet ~20!. This has two consequences:~1! the spin content of
each of the underlying single-electron states is reduc
which, eventually, leads to a suppression ofg factors, and~2!
when more many-electron states are admixed, overlaps
hence, peak heights are increased, so that the role of s
tion rules is further diminished. In order to illustrate th
value of l needed to admix different many-electron stat
we note that for theNe-particle ground state without spin
orbit interaction, the energy separation between theS51 and
S50 ground states is 2J2d on average. Hence, even for
relatively small spin-orbit scattering ratel;0.5 the ground
state with spin-orbit scattering will have significant weight
both of these states.

Also note that, unlike in the noninteracting case, the
erageg factor depends on the excitation energy of the ma
electron state forl&2, see Fig. 4. The origin of this depen
dence is that, without spin-orbit scattering, the probabi
that an (Ne11)-particle state has nontrivial spin (S>3/2)
increases with the excitation energy. As discussed above
though spin-orbit scattering lifts the fourfold degeneracy
these states and suppresses the spin, it is the underlying
trivial spin character persisting to finitel that gives rise to
the increasedg factors.

A remarkable feature of Fig. 4 is that the ensemb
averagedg factor ^ḡ& does not approach 2 in the limitl
→0. On the other hand, without spin-orbit scattering,
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observedg factors should equalg52. In Sec. II we dis-
cussed why there can be a difference betweeng factors in the
limit l→0 andg factors calculated without spin-orbit sca
tering, i.e., atl50. In fact, in Fig. 4,^ḡ& is overestimated
for l→0, because the plain ensemble average does not
tunneling spectroscopy peak heights or selection rules
account: The average is taken over all (Ne11)-particle
states irrespective of the height of the corresponding pea
the differential conductance. In particular for smallJ, one
expects that (Ne11)-electron states withg factors larger
than 2 are likely to have small tunneling spectroscopy p
heights.

We have taken two different approaches in order to
count for selection rules. First, we have replaced the
semble average by a ‘‘weighed’’ average, in which everyg
factor is weighed by the normalized peak height

^ḡ&w5K (
k50

M21

w̃kgkL , w̃k5
Mwk

(
k50

M21

wk

. ~22!

In the second approach, we have removed all peaks w
normalized weightw̃k below a certain threshold value, whe
we arbitrarily set the threshold tow̃t50.13maxk51

M wk ,

w̃k→w̃k,t5H 1 if wk>wt

0 if wk,wt .
~23!

In this method, the number of levels per realization depe
on the realization,

M t5(
k

w̃k,t , ~24!

and the averageg factor is determined through

^ḡ&5K 1

M t
(
k50

M21

w̃k,tgkL . ~25!

The threshold mimics the experimental reality that sm
peaks cannot be distinguished from the noise, and, he
have theirg factors left out in the statistical analysis. Whi
the second method is closer to the way experiments
analyzed—allg factors of conductance peaks that are o
served are taken equally into account in the average—
first method has the advantage that it does not contain
somewhat arbitrary threshold atw̃k5w̃t50.1. Both methods
enforce the selection rules in the absence of spin-orbit s
tering. They also give almost identical results for the avera
g factor, as is seen from Fig. 5 where we show the weigh
ensemble average of theg factors of all levels considered

^ḡ&, as well as the ensemble average calculated using
‘‘threshold’’ method. As shown by comparison of Figs. 5 a
4, in the limit l→0, the averageg factors are close to 2 fo
small J, whereas^ḡ& is significantly higher than 2 forJ
*0.3. In the inset of the lower panel of Figs. 5 we show t
probability of the level to be visible, i.e., to have a pe
height above the threshold. Remarkably, the curves foJ
7-7
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DENIS A. GOROKHOV AND PIET W. BROUWER PHYSICAL REVIEW B69, 155417 ~2004!
*0.3d have a maximum for moderate values of spin-or
scatteringl.1. This has a direct physical interpretatio
both for small and largel, approximate selection rules are
place. For smalll these selection rules represent the cons
vation of spin atl50, whereas for largel they follow from
the suppression of the~exchange! interaction, which cause
the remaining physics to be single-particle like.

B. fluctuations of g factors

Cumulative probability distributions ofg factors are
shown in Fig. 6 forJ50, l50.7, for J50.3d, l50.7, and
for J50.3d, l50.9 @we have taken into account only pea
whose weights are nonzero according to the criterion~23!#.
Comparing the two distributions atl50.7, one notes that th
exchange interaction has little effect on the tail of t
g-factor distribution for very smallg factors. However, for
largerg factors, the weight of the probability distribution
shifted towards largerg factors, including a long tail in the
regiong.2. Figure 6 confirms the previous observation th
the effect of exchange interactions is to increase the ave
g factors. The spin-orbit scattering rate for the third probab
ity distribution shown in Fig. 6,l50.9, has been chose
such that the averageg factor ^ḡ& t'1.58 coincides with that
of the caseJ50, l50.7. Comparing the two probability
distributions, we conclude that the interactions still lead t
significant increase of theg-factor fluctuations, including a
large probability to findg factors larger than 2, even if th
average is well below 2.

FIG. 5. Top: Average of all calculatedg factors, where eachg
factor is weighed by its normalized peak height~22!. Bottom: av-
erage of all calculatedg factors for which the normalized pea
height is larger than 0.1. In both panels, results are shown forJ/d
50, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. ForJ50 there is no difference
with Fig. 4. Inset of lower panel: the probability for a level to b
visible in the experiment, i.e., to have a weight larger than
threshold one, see Eq.~23!.
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In Fig. 7 we show the probability for a level to have ag
factor larger than 2. In an experiment, typicallyg factors of
5–10 consecutive levels can be measured.9,10 From Fig. 7 we
then conclude that there is a significant probability that o
of theseg factors is larger than 2 ifJ*0.2d. The bottom
panel shows the probability that a leveluk& has ag factor

larger than 2anda weightw̄k.w̄t . As a result of the break-
down of selection rules, this probabilityincreaseswith in-
creasing spin-orbit scattering in the regionl&0.5: States
which have largeg factors but small weights for smalll
become visible for larger values ofl. The ratio of the prob-
ability shown in the bottom plot of Fig. 7 and that in the to
plot of Fig. 7 is the probability that a random level can
resolved in the experiment, see Fig. 5.

e

FIG. 6. Cumulative probability distributions function forg fac-
tors for the casesl50.7, J50 ~dashed curve! l50.7, J50.3
~solid!, and l50.9, J50.3 ~dotted!. Even a relatively small
strength of the exchange interaction is enough in order to broa
the distribution function significantly.

FIG. 7. Top: Probability for theg factor of a level to be larger
than 2.0 for the values of the exchange constantJ50.140.6d as a
function of the spin-orbit scattering strengthl for a random visible
~i.e., satisfying the threshold criterion, see Sec. III A! level. Bot-
tom: Probability for a random level to be visible and, at the sa
time, haveg.2. for the values of the exchange constantJ50.1
40.6d as a function of the spin-orbit scattering strengthl.
7-8
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COMBINED EFFECT OF ELECTRON-ELECTRON . . . PHYSICAL REVIEW B69, 155417 ~2004!
In addition to addressing the full probability distributio
of g factors, we should consider the possibility of corre
tions betweeng factors within one realization. In principle
such correlations can exist, because, within one realizat
all g factors correspond to transitions from the sa
Ne-electron ground state (Ne even!. Although the
Ne-electron ground state does not affect the values of
possibleg factors for the (Ne11)-particle levels, it does
affect the peak heights, and hence determines whichg factors
possibly ‘‘drown’’ in the noise.

In order to quantifyg-factor correlations, we have looke
at the correlation function

C~J,l!5K (
kÞ l

1

M t
2 ~gk2^ḡ&!~gl2^ḡ&!L . ~26!

For the calculation of the correlation functionC(J,l) we
removed allg factors with normalized weightw̃k below the
threshold valuew̃t50.1 from the average, which means th
the number levelsM t considered in the summation becom
dependent on the actual realization. For the range of
change interactionsJ and spin-orbit scattering ratesl we
considered, the correlation functionC(J,l) was nonzero, but
always smaller than 0.1. The maximum valueC(J,l);0.1
was obtained forl;0.5. Comparing the above differenc
with the typical variance ofg factors, see Fig. 6, we conclud
that correlations between different levels within the sa
grain are not important if the number ofg factors measured
in a single metal nanoparticle does not exceed 10.

C. Probability of nontrivial ground state

In Fig. 8 we show the probability that the metal grain
found in the noninteracting ground state~Fermi sea!, as a
function ofl andJ. ForNe-electron states, the probability t
find the grain in the noninteracting ground state devia
quite significantly from 1 ifJ*0.4 andl50.17,18 Upon in-
creasingl, the probability to be in the noninteracting groun
state increases and approaches unity when the spin-
scattering rate exceeds the exchange interaction.

FIG. 8. Probability to be in the noninteracting ground state
J50.320.6d. The horizontal lineP51 corresponds to the caseJ
50.
15541
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IV. MATERIAL DEPENDENCE

Petta and Ralph have measured the probability distri
tion of g factors of Cu, Au, and Ag nanoparticles.9,10 Theo-
retical estimates and experimental investigations of the
change interaction in the noble metals show thatJ/d,0.1 for
Cu, Au, and Ag.23,24 Hence, the interaction effects in th
above materials are very small and it is natural that the
isting experiments can be explained quantitatively us
theory for the noninteracting (J50) case. Indeed, both th
average and the width of theg-factor probability distribution
measured in Refs. 9,10 were found to be in good agreem
with the noninteracting theory of Refs. 14,15 using a sin
fit parameter, the dimensionless spin-orbit scattering ratel.
The spin-orbit scattering time used in the fits was in ord
of-magnitude agreement with previous measurements u
weak localization.25 The observation that the width of th
distribution agreed well with theory afterl has been chosen
to fit the average was considered a success for random m
theory.26

Significant deviations from the noninteracting theory c
be expected forJ/d*0.2 only. Although this condition is no
satisfied for the noble metals, the exchange interaction
strong enough to significantly affect theg-factor distribution
in most other metals, see Fig. 9, where a list of values ofJ/d
reported in the experimental and theoretical literature
given. The exchange interaction is particularly strong in
V, Y, Nb, Rh, and, especially, in Pd~Pd is very close to the
Stoner instabilityJ/d51).

For the collection of the data shown in Fig. 9, we used
fact that the ratioJ/d is related to the Fermi-liquid paramete
F0

a

J/d52F0
a , ~27!

see Ref. 22. The Fermi-liquid parameterF0
a appears in the

expression for the paramagnetic susceptibility

x5x0

m* /m

11F0
a

, ~28!

where m* is the effective electron mass, including ban
structure effects and interaction effects,m is the free-electron
mass, andx0 is the Pauli susceptibility for free electrons,41

x05
mB

2mpF

p2\3
. ~29!

The parameter 1/(11F0
a) is also known as the Stoner en

hancement parameter.
The dimensionless spin-orbit scattering parameterl in-

creases with element’s nucleus chargeZ. In experiments of
Petta and Ralph9 strong spin-orbit scattering was found fo
Au nanoparticles of a few nanometer in diameter (l.10),
whereas moderate spin-orbit scattering strengths (l.1)
were found in Cu and Ag nanoparticles of roughly equal si
From this, we conclude that moderate spin-orbit scatter
strengths can be expected for nanoparticles with a valueZ

r
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FIG. 9. RatioJ/d of the exchange-interaction constant and the mean level spacing. No value is listed for metals fromZ524 to 28 as they
are magnetically ordered as well as all lanthanides (Z558, . . .,71) except for Pm (Z561) for which no value was found in the literature
Also, for Z.87 no data was found in the literature. For metals in the right-hand side of the periodic table~12th column and further! only
data on their Pauli susceptibility in the liquid form are available, see Ref. 27. For other metals, the data are taken from the follow
experiment~Ref. 24!: Be, calculation of electronic structure~Refs. 28,29!; Al, experiment~Ref. 30! ~note the negative value of the exchan
constant!; K, experiments~Refs. 31,32!; Ca, Y, Tc, Ba, La, Ta, W, Re, Os, Ir, calculation of electronic structure~Ref. 33!; Sc, calculation of
electronic structure~Refs. 33,34!; Ti, Zr, Hf, calculation of electronic structure~Refs. 33,35!; V, fit of theory ~Ref. 36! and experiment~Ref.
37!, and calculation of electronic structure~Refs. 29,33!; Cu, Ag, experiment~Ref. 24! and calculation of electronic structure~Ref. 23! ~note
the negative exchange constant in the experiment for Cu!; Rb, Cs, experiment~Ref. 31!; Sr, Nb, Mo, Rh, calculation of electronic structur
~Refs. 29,33!; Pd, fit of theory~Ref. 36! and experiment~Ref. 38!; Pt, fit of theory~Ref. 39! and experiment~Ref. 40!, and calculation of
electronic structure~Ref. 33!; Au, calculation of electronic structure~Ref. 23!.
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around those for Cu or Ag. From Fig. 9 it can be seen t
there are quite a few materials for which this is true and
criterion J/d.0.2 is satisfied.

V. CONCLUSION

In this work we investigated the combined influence
electron-electron interactions and spin-orbit scattering on
g factors of metal nanoparticles. In the presence of electr
electron interactions,g factors must be attributed to~transi-
tions between! many-electron states, instead of sing
electron states. Many-electron states can haveg factors
larger than 2, although these cannot be observed by tunne
spectroscopy because of selection rules as long as s
rotation symmetry is present. Spin-orbit scattering bre
spin-rotation symmetry and thus removes the selection ru
While this leads to a suppression of theg factors for large
spin-orbit scattering rates, we find thatg factors larger than 2
occur with significant probability if the spin-orbit scatterin
rate 1/tso is moderate,tsod&1, whered is the mean spacing
between single-electron energy levels in the grain. We h
studied theg factor distribution quantitatively using random
matrix theory and the universal interaction Hamiltonian.1,2 In
addition to a confirmation of the scenario outlined above
occurrence ofg factors larger than 2—we found that intera
tions increase the width of theg-factor distribution fortsod
&1 and that theg-factors probability distribution function is
different for transitions to the odd-electron ground state a
odd-electron excited states. The enhanced fluctuations oc
ring for moderate spin-orbit scattering strengths~spin-orbit
scattering rategso comparable to single-electron level spa
15541
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ing d) may be typical of enhanced fluctuations of interacti
matrix elements that are expected to occur at the breakd
of random matrix theory~dimensionless conductance;1).

There are;20 metallic elements in the periodic table fo
which the electron-electron interactions are sufficien
strong that the phenomena described here can be meas
Existing measurements ofg factors in nanoparticles hav
been made for Al and the noble metals only; in these met
interaction effects are weak. We hope that our findings stim
late experiments on other metals.

In our calculations we have omitted the orbital contrib
tion to theg factors. The orbital contribution arises from th
fact that single-electron wave functions are complex if sp
orbit scattering is present, instead of real, so that they car
finite current density. For the parameter regime we cons
here,tsod*1, the single-electron wave functions are mos
real, and we expect the orbital contribution to theg factor to
be smaller than the spin contribution.15,16,19We expect that
taking into account a~small! orbital contribution causes a
slight increase of the averageg factor and a further broaden
ing of the distribution.
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APPENDIX: g FACTORS IN THE WEAK SPIN-ORBIT
SCATTERING LIMIT

In this appendix, we calculateg factors to lowest order in
the dimensionless spin-orbit scattering ratel. For a state that
7-10
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is twofold degenerate in the absence of spin-orbit scatter
spin-orbit scattering does not affect the spin contribution tg
factors up to linear order inl.42 Our calculation addresse
the case of a fourfold degenerate level, and shows thatg
factor is affected to zeroth order inl. This calculation shows
explicitly that the limitl→0 is singular.

Let us start by writing the spin-orbit Hamiltonian in term
of the basis of single-electron eigenstates of the Hamilton
HGOE without spin-orbit scattering, see Eq.~4! above,

Hso5
il

2AN
(
m

@~A3!mn~ ĉm↑
† ĉn↑2ĉm↓

† ĉn↓!

1~A11 iA2!mnĉm↑
† ĉn↓1~A12 iA2!mnĉm↓

† ĉn↑#.

~A1!

Here the Greek indicesm andn refer to the eigenvalues o
HGOE, and not to the eigenvalues of the total single-elect
HamiltonianHGOE1Hso as in Sec. II.

In order to study the effect of spin-orbit scattering on t
g factor of a many-electron eigenstate ofHGOE with spin S
53/2, one needs to calculate matrix elements between
four members of the quadruplet. Labeling the four memb
of the quadruplet by thez component of the spin,Sz5p
25/2, p51,2,3,4, these matrix elements can be arrange
a 434 matrix V of the form

V5S 2a2d b c 0

b* 2a1d 0 c

c* 0 2a1d 2b

0 c* 2b* 2a2d

D , ~A2!

with a andd are real numbers andb andc represents com
plex numbers. The specific form of~A2! follows from time-
reversal symmetry and guarantees that the eigenvaluesV
are double degenerate, in accordance with Kramers’ theo

One quickly verifies that all matrix elements ofV are zero
to first order inHso. This is the consequence of the fact th
the matricesAj , j 51,2,3, in Eq.~A1! are antisymmetric, so
that the spin-orbit interaction does not mix the states w
opposite spin belonging to the same energy level. In
situation one has to calculate elements ofV to second order
in Hso.43 Denoting the many-electron states with roman
dices, the matrix elements between the many-electron s
n andn8 ~both taken from the same quadruplet! are given by

Vnn85(
m

~Hso!nm~Hso!mn8

En
(0)2Em

(0)
, ~A3!

with m is summed over all many-electron states withEm

ÞEn andEn
(0) andEm

(0) the corresponding many-electron e
ergies.

The quadruplet state is represented schematically in
10~a!. For the calculation of the splitting of a quadruplet, it
enough to consider statesm of the form indicated in Figs.
10~b!, 10~c!, and 10~d!. These are: a twofold degenerateS
51/2 state@Fig. 10~b!#, a fourfold degenerateS53/2 state
@Fig. 10~c!#, and a fourfold degenerateS51/2 state@Fig.
15541
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10~d!#. There exist two variants of the states shown in F
10~c! and 10~d!, depending on whether an empty singl
electron level is filled above the Fermi level or a hole
created below the Fermi level. The former case is shown
the figure. Since the spin-orbit interaction is a one-parti
operator, only the states of the form shown in Fig. 10 wh
differ by not more than one electron-hole excitation are i
portant.

Virtual excitations to twofold degenerate S51/2 state.In
this case, the transition from the staten to m involves
a transition of an electron from the singly occupied lev
m to the already~singly! occupied leveln, see Figs. 10~a!
and 10~b!. Representing the members of the spinS53/2 qua-
druplet as u3/2,Sz& with Sz523/2,21/2,1/2,3/2, and the
members of the spinS51/2 doublet asu1/2,Sz& with Sz
51/2,21/2, we find the following matrix elements of th
spin-orbit HamiltonianHso,

^3/2,13/2uHsou1/2,11/2&5
il

A4N
~A12 iA2!mn ,

^3/2,13/2uHsou1/2,21/2&50,

^3/2,11/2uHsou1/2,11/2&52
il

A3N
~A3!mn ,

^3/2,11/2uHsou1/2,21/2&5
i

A12N
~A12 iA2!mn ,

^3/2,21/2uHsou1/2,11/2&52
i

A12N
~A11 iA2!mn ,

^3/2,21/2uHsou1/2,21/2&52
il

A3N
~A3!mn ,

FIG. 10. AnS53/2 state and the three relevant types of exci
states;~a! the fourfold degenerateS53/2 ground state;~b! twofold
degenerateS51/2 excited state;~c! fourfold degenerateS53/2 ex-
cited state;~d! fourfold degenerateS51/2 excited state, note tha
this state is entangled, see Eq.~A6!.
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^3/2,23/2uHsou1/2,11/2&50,

^3/2,23/2uHsou1/2,21/2&52
il

A4N
~A11 iA2!mn . ~A4!

Further, in this case the energy difference

Em
(0)2En

(0)5«n2«m13J. ~A5!

Substituting these matrix elements and the energy differe
into Eq. ~A3! we find the following contributions to the ele
ments of the matrixV of Eq. ~A2!:

b1,mn5
l2~A12 iA2!mn~A3!mn

4N~«n2«m13J!A3
,

c1,mn5
l2~A12 iA2!mn

2

4N~«n2«m13J!A3
,

d1,mn5
l2~A1!mn

2 1l2~A2!mn
2 22l2~A3!mn

2

12N~«n2«m13J!
.

~We have not listed the value ofa in the matrixV of Eq. ~A2!
since this coefficient does not contribute to theg factor and
splitting of theS53/2 quadruplet.!

Virtual excitations to fourfold degenerate S53/2 state.
These excitations involve a transition of an electron from
singly occupied levelm to an unoccupied leveln, see Fig.
10, or the transition of an electron from a doubly occup
level m to a singly occupied leveln. Calculating the various
matrix elements as before, we find after somewhat cum
some algebra

b2,mn52
l2~A12 iA2!mn~A3!mn

6N~«n2«m!A3
,

c2,mn52
l2~A12 iA2!mn

2

6N~«n2«m!A3
,

d2,mn52
l2~A1!mn

2 1l2~A2!mn
2 22l2~A3!mn

2

18N~«n2«m!
.

Virtual excitations to fourfold degenerate S51/2 state.As
in the previous case, these excitations involve a transitio
an electron from a singly occupied levelm to an unoccupied
level n, see Fig. 10, or the transition of an electron from
doubly occupied levelm to a singly occupied leveln. The
four S51/2 are labeled bySz561/2 and by an additiona
degeneracy parameterq561,

u1/2,11/2,q&5
1

A3
~ u↑↑↓&1u↑↓↑&ei (2pq/3)

1u↓↑↑&e2 i (2pq/3)),

u1/2,21/2,q&5
1

A3
~ u↓↓↑&1u↓↑↓&ei (2pq/3)

1u↑↓↓&e2 i (2pq/3)). ~A6!
15541
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Performing the calculations as before, we find

b3,mn5
l2~A12 iA2!mn~A3!mn

6N~«n2«m13J!A3
,

c3,mn5
l2~A12 iA2!mn

2

6N~«n2«m13J!A3
,

d3,mn5
l2~A1!mn

2 1l2~A2!mn
2 22l2~A3!mn

2

18N~«n2«m13J!
.

Denoting the set of doubly occupied single-electron lev
by ‘‘0,’’ the set of singly occupied single-electron levels b
‘‘1’’ and the set of unoccupied single-electron levels by ‘‘2
we then sum over all virtual excitations and find

b5 (
mÞnP1

b1,mn1 (
mP1

(
nP2

~b2,mn1b3,mn!

1 (
mP0

(
nP1

~b2,mn1b3,mn!, ~A7!

and similar expressions for the coefficientsc and d in Eq.
~A2!.

The matrix~A2! can be diagonalized for all values of th
parametersa, b, c, andd, and the correspondingg factors can
be found exactly. After diagonalization we find that the qu
druplet is split into two doublets with energy separation

~DE!254d214ubu214ucu2. ~A8!

In the 434 matrix notation of Eq.~A2!, the Zeeman Hamil-
tonian reads

HZ5S 23mBH

2mBH

mBH

3mBH

D . ~A9!

Lifting the degeneracy of the two doublets by the Zeem
energy, we findg factors

g52A3ubu21~2d6DE!2

d21ubu21ucu2
, ~A10!

where the6 sign refers to the two doublets. This resu
confirms the assertion made earlier, that spin-orbit scatte
affects theg factors of theS53/2 states to zeroth order in th
spin-orbit scattering ratel. Of course, for smalll the energy
splitting DE is small as well, and theg factor of Eq.~A10!
can be observed for magnetic fields such thatmBH!DE
only, which limits the practical observability of theg factor
~A10! for very small spin-orbit scattering ratesl!1.

In the remainder of this appendix we investigate E
~A10! for the special case that one state is very close to
S53/2 state of interest and virtual excitations to that st
dominate the spin-orbit matrixV in Eq. ~A2!. One important
example is the case when the ground state has spinS53/2,
which is expected with small probability forJ/d*0.3, see
Fig. 11. Indeed, the energy difference between theS53/2
7-12
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state and the lowest-lyingS51/2 state is«l122«l23J, l
being the index of the lowest singly occupied level in theS
53/2 state. Typically, this energy difference is small, giv
the small likelihood of it being positive.

Substituting the general expressions for the coefficientb,
c, andd into Eq. ~A10! and noting that one energy denom
nator is much smaller than all others, we find that anS
53/2 quadruplet splits into two doublets withg factors

g52A11
3~A1

21A2
2!

A1
21A2

21A3
2
,

g85A4823g256A A3
2

A1
21A2

21A3
2
, ~A11!

where we have omitted the indices referring to the levelsm
andn involved as we deal with one excited state only. If t
quadruplet state is the ground state,g corresponds to the
lower-lying doublet.

In the special case of anS53/2 ground state, Eq.~A11!
shows that theg factor takes values in the interval@2,4# only.
One hasg52 only if A15A250. The corresponding eigen
states areu3/2,61/2&. In the opposite caseA350, one has
g54 in the ground state and the corresponding eigenst
are (A3/2)u3/2,63/2&2(e2if/2)u3/2,71/2&, where e2 if

5(A21 iA1)/uA21 iA1u. In fact, one can find the entire prob
ability distribution ofg in this case, using the fact thatA1 ,
A2, andA3 are taken from identical and independent Gau
ian distributions,

FIG. 11. Two different possibilities:~a! S53/2 state is the
ground state with the probabilityP3/2; ~b! S51/2 state is the ground
state with the probability 12P3/2. Note that due to the sign chang
in the energy denominator, see Eq.~A3! the averageg factors^g&
and ^g8& are inverted.
on
,

15541
es

-

P~g!5
1

2A3

g

A162g2
. ~A12!

The averageg factor for an S53/2 ground state with a
nearbyS51/2 state is then

^g&5
4

A3
S p

2
2arcsin

1

2
1

A3

4 D'3.418. ~A13!

For J50.6d, the probability to find a ground state withS
53/2 is P3/2'0.38~see Ref. 22 or Fig. 8!. Since theg factor
is unaffected to first order inl if the ground state has spi
1/2, we expect the true average ground stateg factor to be
approximately equal to

^g0&'3.418P3/212~12P3/2!'2.54. ~A14!

This value is very close to that found in the numerical sim
lations of the ground stateg factor '2.5, see Fig. 4.

The distribution ofg8 can be found from Eqs.~A11! and
~A12!. One finds the particularly simple result

P~g8!5 1
6 , 0,g8,6. ~A15!

The averagê g8&53. In the limiting casesg856 and g8
50 the doubly degenerate eigenstates have the formu3/2,
63/2& and (1/2)u3/2,63/2&2(A3/2)e2ifu3/2,71/2&, respec-
tively. We can use these results to calculate the averagg
factors of the lowest excited states. For the first excited s

^g1&5^g8&P3/21^g8&~12P3/2!5^g8&53, ~A16!

where we assumed that without spin-orbit scattering
ground state has spinS53/2 or the first excited state has sp
S53/2 and is slightly below anS51/2 doublet, see Fig. 11
~Hence, we neglect the possibilities that the first excited s
has spinS51/2 or that the first excited state has spinS
53/2 and is far away from the nextS51/2 state. Our ap-
proximation should slightly overestimate^g1&.! The simula-
tions give^g1&'3.00, see Fig. 4. With the same approxim
tions, we find that the averageg factor of the second excited
many-electron state is

^g2&52P3/21^g&~12P3/2!'2.87. ~A17!

The result of the simulation is 2.78, in good agreement w
the estimate~A17!. Note that the above nontrivial distribu
tions of g factors can be observed in a small magnetic fi
only (mBH!l2d). For larger fields theg factors are the
same as in the absence of spin-orbit coupling.
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