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Combined effect of electron-electron interactions and spin-orbit scattering in metal nanoparticles
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The combined effect of electron-electron interactions and spin-orbit scattering in metal nanoparticles can be
studied by measuring splitting of electron levels in magnetic figldfdctorg in tunneling spectroscopy
experiments. Using random matrix theory to describe the single-electron states in the metal particle, we find
that even a relatively small electron-electron interaction stre(rgtio of exchange constadtand mean level
spacingé=0.3) significantly increasegfactor fluctuations for not-too-strong spin-orbit scattering résgm-
orbit time 74;=1/5). In particular,g factors larger than 2 could be observ€@his is a manifestation of the
many-body correlation effects in nanopartiglé&’hile so far measurements only on noble mé@ai, Ag, Au)
and Al samples have been done for which the effects of electron-electron interactions are negligible, we discuss
the possibility of observing interaction effects in nanoparticles made of other metals.
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. INTRODUCTION Yo~ 6. In this parameter regime, the exchange interaction is
not fully suppressed, while fluctuations are of the same order

While the study of the combined effect of electron- as the averag®This makes the regime of moderate spin-
electron interactions and elastic impurity scattering in twoorbit scattering rates qualitatively different from that without
dimensions and near the metal-insulator transition in thregpin-orbit scattering ¢,,=0) and that of strong spin-orbit
dimensions remains one of the most important problems igcattering ,/6>1.) The parameter regimgs,~ is of
solid state physics, the description of electron-electron interinterest for recent experiments on metal nanoparticl€&n
actions in disordered normal-metal nanopartigless, “zero  which the magnetic-field dependences of many-electron lev-
dimensions) has been found to be remarkably simpfe: els has been measured using tunneling spectrosédpgre-

At a fixed number of electrons and without spin-orbit over, an analysis of the regime,,/5~ 1 serves as a model
scattering, the only relevant interaction term is a long-rangetudy of the breakdown of the universal interaction Hamil-
exchange interactidn tonian when the dimensionless conductance is small. A brief

account of some of our findings was previously published in
Hine=—JS%, (1)  Ref. 12.

Experimentally, the spin structure of electronic states can
that couples to the total spi@ of the nanoparticle. The ex- be measured through the magnetic-field dependence of steps
change constartis closely related to one of the Fermi liquid in the current-voltage characteristic of a metal nanoparticle
constants of the bulk metal, and is independent of the detailsoupled to source and drain electrodes via tunneling con-
of the impurity configuration inside the nanoparticle. Thetacts. These steps occur if the applied voltage is equal to the
interaction Hamiltonian(1), which is known as “universal difference of the energies of many-electron levéls,
interaction Hamiltonian,” is the only form of the electron- +1;k) and |[Ng;l) which haveN, and Ng+1 electrons,
electron interaction compatible with random matrix theory. respectively:®
Random matrix theory provides a valid description of single-
electron states as long as the dimensionless conducgeoice eVig=En_+1x—En_.i- 2
the nanoparticle, which is the ratio of the Thouless energy ¢ ¢
E+, and the mean level spaciny is large*® Residual inter-  The derivativesV,, /B of the voltage at which a step occurs
action terms not included in Eql) are sample specific and to the magnetic field is parametrized through ag‘factor,”
small in comparison to Eq1) by, at least, a factor @/

In the presence of spin-orbit scattering, spin is also ran- Nu +1
domized, giving rise to both sample-to-sample fluctuations e JB _—Egklfqu ©)

of the electron-electron interaction and a suppression of the
exchange interactiofil). Since the spin-orbit scattering rate where ug=|e|#/2mc is the Bohr magneton. Without spin-
vso= fl 755 plays the role of a “Thouless energy” for the spin orbit scattering, but with electron-electron interactions,
degree of freedom, for strong spin-orbit scattering the remany-electron states are characterized by their total Spin
sidual exchange interaction becomes small by a factoand by itsz component. Since tunneling spectroscopy mea-
vso/ =1 in comparison to the interaction strength withoutsures transitions in which the electron number changes by
spin-orbit scattering. However, the exchange interaction reene, the total spirs of the grain changes by 1/2 upon addi-
mains the dominant contribution to the electron-electron intion or removal of an electron. This “selection rule” renders
teraction as long ag.,/ 56<g. all observedy factors equal to 2, irrespective of the si8p

In this paper, we present a detailed analysis of the comand S; of the two many-electron levels participating in the
bined effect of spin-orbit scattering and electron-electron intransition. On the other hand, without interactions, the tun-
teractions in the regime of moderate spin-orbit scatteringneling spectroscopy factors correspond to the magnetic
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ken down by spin-orbit scattering, different transitions may
* have very different weights, in contrast to the noninteracting
case, for which all transitions have weights within a factor of
4 order unity from each othe(The “weight” of the transition
|

is the height of the corresponding step in the current-voltage
characteristics.

In principle, one should consider contributions to tpe
factor from the orbital magnetic moments of the energy lev-
els and from the spin magnetic moméntn this work, we
consider the spin contribution to thefactor only and ne-

A glect the orbital contribution. For the spin-orbit scattering
| ! | —3 ratesys./ 8~ 1 we consider here, this is justified if the elec-
v v v v tron motion in the metal grain is diffusive with mean free
path| much smaller than grain side!®°
(a) (b) ©) () We wish to point out that in the present paper nanopar-
ticles of sufficiently large size and irregular shape are inves-

FIG. 1. Occupation of single-electron levels for the lowest-lying tigated: it is in that case only that the dimensionless conduc-
many-electron states with total sp+0 (a) andS=1 (b), and for  tance is large enough to justify the use of random matrix
S=1/2(c) andS=3/2 (d). In the absence of exchange interactions, theory. For very small nanoparticles or for nanoparticles with
the states with spi®=0 andS= 1/2 are the ground states for even an integrable shape random matrix theory is not applicable;
and odd numbers of electrons, respectively. The exchange interafy such particles shell effects may be important. Recent nu-
tion compensate@art of) the kinetic-energy cost of the higher spin merical calculations based on a tight-binding model for non-
states. interacting electrons in an almost hemispherical Au nanopar-

ticle with ~150 atoms have shown that even the smallest
moment of one single-electron level only, giving rise to adeviations from an integrable shape resulgifactor statis-
distribution of g factors in which all levels have, at most, tics well described by random matrix thedfyThe inclusion
spin 1/21471®As was shown in Ref. 12, the combined effect Of the exchange interaction in the present work does not
of spin-orbit scattering and electron-electron interactions ighange the applicability of random matrix theory for such
to simultaneously suppress the spin of the many-electronanoparticles.
states and lift the selection rules, causing a much wider dis- The outline of this paper is as follows. In Sec. Il we
tribution of tunneling spectroscopyfactors than in the non- present the theoretical formalism. Since we only consider
interacting case. In particular, there is a significant probabilSpin-orbit scattering rategs,/5<g, random-matrix theory
ity to find g factors larger than 2 if spin-orbit scattering is not can be used to describe the single-electron states. In Sec. IlI
too strong @5,/ 5<2). The occurrence of factors larger We discuss the results of numerical simulations for the
than 2 is a unique signature of the interplay of electrong-factor distribution for transitions from thél.-electron
electron interactions and spin-orbit scattering. ground state to theNe+1)-electron ground state andN{

What are the main differences betwegifiactor distribu-  +1)-electron excited states, whelg, is taken even. The
tions with and without electron-electron interactions? In or-restriction to transitions starting from ti.-electron ground
der to answer that question, we note that the electronstate is appropriate if the metal nanoparticle relaxes to the
electron interactions has two main effects in a nanoparticleNe-electron ground state between tunneling events. In Sec.
to organize the many-electron states according to their totdV we discuss the consequences of our findings for various
spin§ i.e., to lift the degeneracy between states of differentmetals: our results depend on the rali@d, which strongly
S but with the same orbital content, andltaver the energy  depends on the metal under consideration. We conclude in
of a many electron state with spfd by the amountJ§(S  Sec. V. Finally, in the Appendix, we report an analytical cal-
+1), increasing the abundance of higtstates among low- culation of theg-factor distribution for weak spin-orbit scat-
energy excited states, see Fig(Ih fact, forJ/6=0.3, there tering, ys,/6<1, again paying special attention to differ-
is a significant probability that the ground state has a nonences between transitions involving ground states only and
trivial spin S>1/2, see, e.g., Refs. 17,18 is because of the transitions to or from an excited state.
combination of these two effects, together with the lifting of
selection rules by spin-orbit scattering, that electron-electron
interactions enhance the width of tgdactor distribution so Il. THEORETICAL DESCRIPTION
significantly. Moreover, because the relative abundance of
high-S states depends on the excitation energy,diiactor
distribution will be different for transitions to an excited state Random matrix theory can be used to describe the single-
than for transitions to the ground states. Again, this is differ-electron wave functions and energy levels of a metal grain.
ent from the noninteracting case, wheréactor distributions  For a metal grain with spin-orbit scattering, the appropriate
for transitions to the ground state and to excited states amandom matrix ensemble interpolates between the Gaussian
equal. A third difference between the cases with and withoubrthogonal ensembigOE) and the Gaussian symplectic en-
interactions is that, as the selection rules are gradually brcsemble(GSE) of random matrix theory,

1 1

A. Effective Hamiltonian
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Ho(N)=HgogtHedN). (4) state and for the excitation spectrum of a metal grain. Typi-
. , . cally, for most normal-metal grains and for quantum dats,
Writing the spin degrees of freedom explicitly, one has is estimated to be in the ranges/ <1, see Sec. IV. While
H.-=So1 (5) this implies that the effect of the exchange interaction cannot
GOE 21 - : . -
be treated in first-order perturbation theory, interaction ef-
i 3 fects only cause correlations in a small window around the
H N =——= > A®a;, (6) Fermi energy which is, in principle, available to direct nu-
2N =1 merical diagonalization. Hereto, we write the opereidor

wherel, is the 2x 2 unit matrix in spin spacer; is the Pauli the total electrpp spin in terms of thfa creation and ann|.h||a-
matrix (j=1,2,3), Sis anNXN real symmetric matrices, ton operatorsy,, and ¢, of the single-electron Hamil-
and A, is a real antisymmetric matrixj €1,2,3). The ele- tonianHo,

ments of the matrice§, A, A,, and A; are drawn from

independent Gaussian distributions with zero mean and with [ E ;ﬁf s b (9)
equal variances for the off-diagonal elements. The diagonal P = R

elements ofS have double variance, whereas the diagonal

elements ofA;, A,, andA; are zero because of the antisym- Where

metry constraint. In random matrix theory, the liit> is . o

taken at the end of the calculation. The random matrix de- (S1) wa,vp=2(vBloilua), =123 (10
scription is valid as long as energy differences of the energy ) ) ] L ]
levels and wave functions of interest are small compared to 1N€ quantity of interest in our calculation is the magnetic-

the Thouless energ§,.*S For a disordered metal grain of field dependence of the many-electron energy levels for
size L, mean free path, and Fermi velocityve, Eqp small magnetic fields and an odd number of electrons, which

~vel L2, is described through thgfactors, see Eq$2) and(3) above.

The magnetic-field dependence arises both through the Zee-
man coupling to the electron spin and through the orbital
coupling to the angular momentuti!® For large diffusive
metal grains and for not-too-large spin-orbit scattering
strengths 7, 0=1, the Zeeman coupling dominatEs:®°
Since the interaction effects studied here are most important
for 75,6~1 (see below, we neglect the orbital contribution
to theg factors in the discussion below. For a magnetic field
H along thez axis, the Zeeman coupling to the magnetic
field is described by the Hamiltonian

The parametek in Eq. (4) determines the strength of the
spin-orbit  scattering, N2= mys,/ 6= 7/ 1s,d, Where 7,
=1/ys, is the spin-orbit time and$ is the mean spacing
between(spin-degenerajeeigenvalues oHgoe, see Refs.
14-16. The casa =0 corresponds to the absence of spin-
orbit scattering, while the limik — oo describes the situation
when spin-rotation symmetry is completely broken. The fac
tor 1/\/N in front of Hy, ensures that the relation between
and the physical parameterg, and 6 does not involve the
matrix sizeN.

Each eigenvalue , of the Hamiltonian(4) is doubly de-
generate(Kgramers Jegenera}cyAfter diagonalizatior):, the Hz=—2ugHSs, 1D

HamiltonianH, can be written as where thez component of the total spiB; is given by Eq.
(9) above.
Ho=2 &u(Plathurt ¥lothuo), )
" B. Tunneling spectroscopy

where 7, and Y. are creation and annihilation operators  Following Ref. 13, we assume that the conductance of the
for an electron in the statfua), wherea=1,2 labels the  tunneling contact connecting the nanoparticle to the source
two t|me7re_versed states in the Kramers do_ublet. reservoirs is much smaller than the conductance of the con-
~ Combining the single-electron Hamiltoni&i@) and the  tacts connecting the particle to the drain reservoir, so that the
interaction Hamiltoniar(1), one finds the total Hamiltonian currentl through the grain is limited by the processes where

an electron tunnelsnto the particle. In this case, one can
A= e, (4 g+ o, — IS (8)  assume that relaxation is sufficiently fast that the nanopar-

PR ticle is in the Ng-particle ground statéNg,0) before each

Equation(8) is valid up to a charging energy that depends cmtunnelmg event. It follows that current steps occur in the

the electron numbeN,, only: the charging energy plays no current-voltage characteristic or, equivalently, a peak in the
role in the problem wee conéider grain's differential conductancél/dV, when the source-

In the absence of spin-orbit interaction, the exchange indrain voltageeV=eVio=En,+ 1k~ En,0. S€€ Eq(2). Fora
teraction[second term in Eq(8)] commutes with the nonin- point contact that injects electrons into the grain at position
teracting HamiltoniarH,, [first term in Eq.(8)]. The many- T the size of the current step is proportional to the matrix
electron eigenstates are found by diagonalizihgat a fixed ~element
value of the total spirs and itsz componentS,. With spin- . .
orbit interaction, however, the interaction does not commutew, =|(N+ 1 K| zﬂ(r)|Ne,0)|2+ [(Ng+ 1,k|¢I(r)|Ne,O)|2,
with Hy. This has important consequences for the ground (12)
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where the creation operatairf,(r) creates an electron with A, A A
spin o in the grain at positiorr. In terms of the basis of 1 A y
single-electron states, one has 0o A Al A ¢¢
-1 % AO A * AV
,] *
~ ~ ~ -2 Ry (Y P
U(N=2 (a(rolpl)+i(rolp2)). (13 - v \ v
Z () (b) (© (d)
. . 1
In random matrix theory, the matrix elemefito|pna), o
==*1, is replaced by an(arbitrary spinor in the e
2N-component vector representing the state, «=1,2. —ee e~ —————
In the presence of both spin-orbit scattering and electron-
electron interactions, thM.-electron state$N,|) are non- ﬂ
degener_ate for zEro magnetic fieldNf is even. In that case, A=0, J#0 xqt_o, J#0 A£0, J20
dE; /dH=0 atH=0. On the other hand,N,+ 1)-electron H=0 H=0 20
states are doubly degeneratéNif is even. These states split 0
in a magnetic field. For small magnetic fields the splitting is
linear. Hence, if\, is even, theg factor g, associated with FIG. 2. Top panel: Schematic representation of four lowest

voltageV,, at which a current steps occurs is directly relatedmany-electron levels for a grain with an odd number of particles
to the magnetic-field derivative of th&l{+ 1)-electron level  without spin-orbit scattering. The spacings between the single-
|Ne+ 1,|>, electron levels are as indicated in the figure. The figure represents
the case 8Ay+A;—3J<A,,A;. Note that the first excited state
has spinS=3/2 and is fourfold degenerate. Bottom panel: Evolu-
tion of energy levels of the grain for small spin-orbit scattering rates
N\ and magnetic fieldsl. Spin-orbit scattering separates the quadru-
plet (b) into two doublets with ill-defined spin. The magnetic field

In the remainder of this paper we continue to refer to thelfts the degeneracy of all remaining doublets.

even-electron ground state as theg*electron ground state”

and to the odd-electron states as theNi(-1)-electron can be larger than the spin-orbit rate. For such magnetic-field
states.” dependences of the levels, a different slope at zero field can

An example showing how the various degeneracies argasily go unnoticed.
lifted by the exchange interaction and by a magnetic field is Althoughg factors contain information on thositionsof
shown in Fig. 2. The top panel of the figure shows the fourP€aks in the tunneling spectrum of the grain, knowledge of
lowest many-electron states for an odd number of electronghe sizesof the peaks in the differential conductance is im-
for the specific case that the ground state has Spit/2 and  Portant for a correct interpretation of the results. Peak heights
the lowest excited state h&-=3/2 in the absence of spin- contain informqtion that would be_formglated in. terms of
orbit scattering. Without spin-orbit scattering, tige=3/2 sglchon rples mthe absgnce of spin-orbit scattering. Indeed,
state is fourfold degenerate. Spin-orbit scattering lifts theVithout spin-orbit scattering, the total spihand itsz com-
fourfold degeneracy of th&=3/2 quadruplet, separating it
into two doublets with ill-defined spifiower panel of Fig. 2, A
centej. Finally, an applied magnetic field lifts the degen-
eracy of all doublets. For an even-electron number, spin-orbit
scattering lifts all possible degeneracies; to first order in the
field, the applied magnetic field has no effect.

The definition thag factors are derivatives of energy lev-
els to the magnetic field implies that the Zeeman energy
scale is the smallest nonzero energy scale in the problem. In
particular, it is smaller than the spin-orbit induced splittings
of high-spin stategsee Fig. 2, these splittings being propor-
tional to the spin-orbit scattering rai«1/rs,. However,
when g factors are calculated without spin-orbit scattering,
the Zeeman energy iy definition larger than the spin- N
orbit rate. We'll find below that the two limits do not com-
mute in the presence of electron-electron interactions, i.e.,
that g-factor distributions calculated in the limit—0+ are FIG. 3. Left: Schematic representation of ground states for an
different from theg factors at = 0. (Without spin-orbit scat-  even number of electrons without spin-orbit scattering. Depending
tering all peaks in the differential conductance split with  on the strength of the exchange interaction, Kqeelectron ground
factor g=2.) It should be pointed out that experiment in- state may have spi$=0 (a) or S=1 (b). Right: three excited
volves finite magnetic fields, for which the Zeeman energy(N.+ 1)-electron states.

IEN_+1k

1
B T7%oms. Neeven. (14

I

A, A
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ponentS; can change by 1/2 at most in a tunneling processWhen spin-orbit scattering and exchange interactions are
which limits the possible transitions betwellg andN.+ 1 both present, th&l.-electron ground state is a superposition
electron states, and, hence, the possible locations of peaksaf the statega) and (b) and all possible transitions have a
the differential conductance. It is because of the selectiofinite matrix element. Note that, since the energy difference
rules that one does not obsergdactors larger than 2, de- between state¢a) and (b) is typically small—on average,
spite the fact that there exist high-spin many-electron stategqual to 6—2J, mixing of these two states is strong for
Similarly, without interactions, the occupation of single- spin-orbit scattering rates~ 1.

electron levels cannot change by more than one electron,

which also limits the number of allowed transitions in tun- C. Matrix elements of interaction Hamiltonian

neling spectroscopy. With spin-orbit scattering and interac- ) ) , o
tions, peaks that were previously “forbidden” are present, in For the construction of the interaction Hamiltonian in the

principle, although their height may be small. We return tobasis of many-electron eigenstates of the Hamiltortign
this issue in more detail in Sec. III. one needs explicit equations for the matrix elements of the

The example in Fig. 3 may further clarify the role of €xchange interaction in that basis. Since the exchange inter-
selection rules. The figure shows two possiblgelectron ~ action changes the single-electron states of at most two elec-
ground stategleft) and three Ko+ 1)-particle excited states [rons, the only nonzero matrix elements of the exchange in-
(right). Without spin-orbit scattering or without exchange in- teraction occur between states that can be written in the form
teractions, the state®) and (d) can be accessed from the IJJLQIAIBIF) and z/fl/a/df}ﬁ,lF), where|F) represents a cer-
N-particle ground statéa), but not statde). Similarly, state  tain reference noninteracting state. After some algebra one
(e) can be accessed from ground stidie but not(c) and(d). then finds

<F| ;1\[,1/',8’ ;bﬂ’a’szl’z/j—/,a&,j;ﬁ| F>: ( 5,4,4.01,,(1,’11’ 5VB,V’ﬁ’ - 5vﬁ,,u'a’ §Ma,v’ﬁ’)<F|52| F> - z[sv’ﬁ’,uuz' S/,L/CK,V,B_ S,u.’a’,,uuz' SV’B’,VB]

_251//3,11’3’05;6': [Su’a’mﬁv'S¢%Ma_su’a’,ﬂa’S¢%¢7]_25#am'ﬁ’¢;€': [Su’a’vv,fa”s¢%¢7_ SM,VB'SM’a’,M]

_25vﬁ,n'a'¢EF [Sv'ﬁ',;m'Smm_swm'Sv'ﬁ',¢y]_25ua,u'a'¢2 - 8oy S0y S0 g7 05 Spy0v ), (19
Yy e Yy e

where which follows from the observation that the staégsl) and
|$,2) are time reversed. The sums of the form

3 ) : | hi diti ince th

ey SN o e 617FSua.dy Spy.up @ISO Meet this condition, since the
(FISF) z(Nem2) 2¢,«YEEF ¢/§’EF [SsyarvSeryiev summand decreasesl/(sg—e4)? for ¢ well below the
Fermi level andu and v close to the Fermi levéf In the
~Spy,6y Sy gy ]- (16 diagonal matrix element16) the sum over ¢,y) and

The summations ovews and y extend over all single- (d)’,){’) is Iogant_hmlcally divergent as a function of the

electron statebd, ), y=1,2, that are occupied in the state Fermi energy. This, however, has no consequences for the

IF). magnetlc—f|e!d dependence of the many—electron states and
Similarly, matrix elements of the Zeeman eneidy are the peak heights, since the divergence is for all matrix ele-

nonzero only if many-electron states differ by not more thanents and simply corresponds to the overall shift of the

lectron. ie. between states of the fol IF) and ground-state energy. We conclude that random matrix theory
928 © o Oﬂf[. b can be used to access the many-electron ground state and the
¥,5|F). For those states, one needs the matrix elements  |ow-lying excited states.

Flg, .Sy |F)= +6 Sy, (1
(FlpStual F) =Sup. 0 ”ﬁ"‘“MEEF orgy- (D) IIl. RESULTS AND DISCUSSION

At this point, it is important to verify the applicability of I order to calculatg factors and peak heights, we have
the random matrix theory. In order for random matrix to diagonalized the Hamiltonia(8) numerically.
apply, summations over the Fermi sea should converge Our numerical procedure is as follows: We first diagonal-

within a Thouless energy from the Fermi level. In Eqs),  1zed the noninteracting Hamiltoniad,. The interaction is
(16), and (17), the sums of the fornE ¢S, 4, Clearly considered in a truncated basis of the many-electron states,
satisfy this condition, by virtue of the equality taking the 92 lowest-lying many-electron eigenstatesigf
for a N+ 1 electrons K ever), and the 76 lowest-lying
Sp1,611 Sp2,62=0, (18  states foiN, electrons. Finally, we diagonalized the truncated
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(48]

interaction and found thg factors of theM =8 lowest-lying
(Ne+1)-electron states, and the peak heights that follow for
transitions from theN-electron ground state. For the calcu-

I
N o

lation of theg factors we introduce a small magnetic field bo
and calculate the magnetic-field derivative numerically. We V15
verified that truncating the interaction Hamiltonian at the 1
lowest lying 92 and 76 many-electron states has no effect on

the final results by comparing our results to those that were 0.5

obtained using a smaller basis set.

We have investigated exchange-interaction strength rang-
ing fromJ=0 to J=0.66 which is valid for most metals, see
Sec. IV. The same parameter range should apply to quantum
dots. Analysis of the Coulomb blockade peak spacing
distributiorf® suggests thad/é is between 0.3 and 0.4 in
large quantum dots in a GaAs/GaAlAs heterostructure;
whereas recent density-functional studies of ground-state
spin distributions in ballistic quantum dots are compatible
with the Hamiltonian(8) only if J~0.65, see Ref. 21.

Important changes occur within the range of exchange
interactions we address here. Since the metal grain is as- 65 1 15 2 25
sumed to relax to th&l.-particle ground state between tun-
neling events, thdstatistical properties of theN.-particle
ground state play a key role in determining tiéactor dis-
tribution. Without spin-orbit scattering far<=0.35, there is
only a small probability that thBle-particle ground state has
spin one, and a vanishing probability that tig+ 1-particle
ground state has spin 3/N{ is assumed even’?? The
probability to find anNg-particle ground state witfs=1
becomes appreciable fd=0.3, whereas the probability to
find an (N¢+ 1)-particle ground with spin 3/2 becomes sig- 05 1 15 2 25
nificant for J=0.56 only. For the values o we consider,
states with spin=5/2 do not play a role; they have been
D e g aken OV, 3-8 3-04, 305, arda 05, i v

g factor {(g,) of first excited (¢+1)-particle state ford/é

grom 0 to 28 AtltTOUQ.h !%al[)g.e; Splnt-.orbltf.?czat[tterlng Strelrllgtps=0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Bottom: ensemble-averaged
0 occur in metal grains, = interaction efiects are small at ¢, ., averaged over the firdl =8 (N.+1)-electron states for

those values of\ and the noninteracting theory of Refs. J/5=0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.
14-16 works well.

The random matrices in our simulation are taken of size
2N=400. This ensures that the conditiad<N necessary The first observation to be made from Fig. 4 is that for
for the applicability of the random matrid) is satisfied for =0 45 and\ =<2 interactions lead to a significant increase
all values ofA. For A<2 we have taken 8=200 in the i\ the average factor. In fact, there is a significant param-

simulations. eter range for whickig)>2. The origin of the largg factors
is that exchange interactions lift the degeneracy with respect
to the total spirS. Hence, with exchange interactions, many-
A. Average g factors electron states with a finite spin are energetically separated
We have calculated ensemble averages ofgHactors ~ from states with spin O or 1/2. For the parameter range con-
{(gw), k=0,1,... M—1 of theM lowest N+ 1)-electron sidered here, the relevant nontrivial spin states Hawe/2
states. Here, is the g factor corresponding to thieth (N, ~ for an odd number of electrons. The role of spin-orbit scat-
+1)-electron systenk=0,1, ... M—1. The ensemble av- tering is to lift the fourfold degeneracy of tie=3/2 states
erage is taken over 300 realizations. In Fig. 4 we show thend, for larger spin-orbit strengths, to suppress the spin con-
ensemble-averagagifactors for the ground state and the first tent of the single-electron states that build the many-electron
excited state{gy) and{(g,), as well as the average over all state. Let us first discuss the effect of lifting the degeneracy

FIG. 4. Ensemble-averagegl factors. Top: Averageg factor
(go) of (Ne+1)-particle ground state fol=0 (the lowest solid

calculatedgy factors<5> of the S=3/2 state by spin-orbit scattering.
In general, spin-orbit scattering splits the fourfold degen-
M—1 erate S=3/2 state into two doublets. Neglecting contribu-
EZM—l E 9. (19) tions from other many-elect_ron states, each doublet consist
k=0 of two states that can be written in the form
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3/2 observedg factors should equaj=2. In Sec. Il we dis-
|state = E an|3/2n), (20 cussed why there can be a difference betwgactors in the
n=-32 limit A—0 andg factors calculated without spin-orbit scat-
and the time-reversed of E(R0), which is obtained by send- tering, i.e., a=0. In fact, in Fig. 4(g) is overestimated
ing a,—sign(n)a*,. Here|S,S,) is the (No+1)-electron for A—0, because the plain ensemble average does not take
state with total spirs andz component of the spin equal to tunneling spectroscopy peak heights or selection rules into

S. Because the spin-orbit matrix elements are random, th@ccount: The average is taken over aN(-1)-particle
amplitudesa, are essentially random as wel(lThis state- states irrespective of the height of the corresponding peak in

ment is verified in the AppendixThe g factor of the state the differential conductance. In particular for smajlone

(20) is expects that N+ 1)-electron states witly factors larger
than 2 are likely to have small tunneling spectroscopy peak
312 2 312 2 heights.
92:( > 4nla,)?| +| X, 4|nlaja_, (21 We have taken two different approaches in order to ac-
n=-3/2 n=-3/2 count for selection rules. First, we have replaced the en-

_ . _ _semble average by a “weighed” average, in which evgry
One easily verifies that this can be larger than two. Withestor is weighed by the normalized peak height
exchange interaction but without spin-orbit scattering, there

is a finite probability that théN.-particle ground stateNg L M-1 _ Mw,

even has spinS=1. In that case, it has two singly occupied (g)w=< > wkgk> y WyemmeT—- (22
orbitals and, hence, in principle, a finite overlap with a state k=0 W

of the form(20) after addition of an electron. With spin-orbit =

scattering, theNg-electron ground state is guaranteed to be .
nondegenerate, so that its derivative to the magnetic field i1 the second approach, we have removed all peaks with
zero. We conclude that, thgfactor of the staté20) can be  normalized weightv, below a certain threshold value, where
larger than 2, that it can correspond to a transition betweewe arbitrarily set the threshold 1= 0.1x max ,w,,
the Ne-electron ground state and aNd+ 1)-electron state,
and that the corresponding conductance peak has a finite - o~ 1 if we=w,
height. Wi W = [ (23

A finite amount of spin-orbit scattering stabilizes the
above arguments by increasing the splittings between many#n this method, the number of levels per realization depends
electron states that are degenerate in the absence of sp®n the realization,
orbit coupling. On the other hand, with moderate spin-orbit
scattering, more many-electron states are added in the dou- M =E W (24)
blet (20). This has two consequencé$) the spin content of e Tk
each of the underlying single-electron states is reduced, ) )
which, eventually, leads to a suppressiomyéctors, and2) ~ and the averagg factor is determined through
when more many-electron states are admixed, overlaps and, L M-
hence, peak heights are increased, so that the role of selec- ~_[ - =
tion rules is further diminished. In order to illustrate the <g>—< M, go Wk"gk>' (25
value of A needed to admix different many-electron states
we note that for theN.-particle ground state without spin-
orbit interaction, the energy separation betweerShkd and
S=0 ground states is2- 6 on average. Hence, even for a
relatively small spin-orbit scattering rake~0.5 the ground

0 if we<w;.

The threshold mimics the experimental reality that small
peaks cannot be distinguished from the noise, and, hence,
have theirg factors left out in the statistical analysis. While
the second method is closer to the way experiments are
state with spin-orbit scattering will have significant weight in analyzed—allg factors of (_:onductance _peaks that are ob-
served are taken equally into account in the average—the

both of these states. first method has the advantage that it d t contain th
Also note that, unlike in the noninteracting case, the av-"">t method has the advantage that it does not contain the

erageg factor depends on the excitation energy of the manysomewhat arbitrary threshold & =w;=0.1. Both methods
electron state fok<2, see Fig. 4. The origin of this depen- enforce the selection rules in the absence of spin-orbit scat-
dence is that, without spin-orbit scattering, the probabilitytering. They also give almost identical results for the average
that an (No+1)-particle state has nontrivial spirS% 3/2) g factor, as is seen from Fig. 5 where we show the weighted
increases with the excitation energy. As discussed above, gthsemble average of thgfactors of all levels considered
though spin-orbit scattering lifts the fourfold degeneracy of(g), as well as the ensemble average calculated using the
these states and suppresses the spin, it is the underlying notthreshold” method. As shown by comparison of Figs. 5 and
trivial spin character persisting to finite that gives rise to 4, in the limit\—0, the averagg factors are close to 2 for
the increasedj factors. small J, whereas(g) is significantly higher than 2 fod

A remarkable feature of Fig. 4 is that the ensemble-=(.3. In the inset of the lower panel of Figs. 5 we show the
averagedg factor (g) does not approach 2 in the limk  probability of the level to be visible, i.e., to have a peak
—0. On the other hand, without spin-orbit scattering, allheight above the threshold. Remarkably, the curvesJfor
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FIG. 6. Cumulative probability distributions function fgrfac-
tors for the cases\=0.7, J=0 (dashed curven=0.7, J=0.3
(solid), and A=0.9, J=0.3 (dotted. Even a relatively small
strength of the exchange interaction is enough in order to broaden
the distribution function significantly.

In Fig. 7 we show the probability for a level to havega
factor larger than 2. In an experiment, typicajyfactors of
5-10 consecutive levels can be measirédrom Fig. 7 we
then conclude that there is a significant probability that one

FIG. 5. Top: Average of all calculategl factors, where each  of theseg factors is larger than 2 i#=0.25. The bottom
factor is weighed by its normalized peak heig@®). Bottom: av-  pane| shows the probability that a leviél) has ag factor

erage pf all calculated factors for which the normalized peak larger than Zindaweightwk>wt. As a result of the break-
height is larger than 0.1. In both panels, results are showd/f®r . : - L
down of selection rules, this probabiliipcreaseswith in-

=0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Rbx 0 there is no difference . . bi . in th . .
with Fig. 4. Inset of lower panel: the probability for a level to be creasing spin-orbit scattering in the regians0.5: States

visible in the experiment, i.e., to have a weight larger than theVhich have largeg factors but small weights for smal
threshold one, see E@3). become visible for larger values af The ratio of the prob-
ability shown in the bottom plot of Fig. 7 and that in the top
plot of Fig. 7 is the probability that a random level can be
resolved in the experiment, see Fig. 5.

=0.36 have a maximum for moderate values of spin-orbit
scatteringh=1. This has a direct physical interpretation:
both for small and larg&, approximate selection rules are in

place. For smalk these selection rules represent the conser- 0.9
vation of spin al\ =0, whereas for larg& they follow from
the suppression of th@xchangg interaction, which causes Sos
the remaining physics to be single-particle like. cx
25 '/
B. fluctuations of g factors

Cumulative probability distributions ofg factors are % 75 : — 2
shown in Fig. 6 forJ=0, A=0.7, forJ=0.35, A=0.7, and ’ A
for J=0.35, A=0.9[we have taken into account only peaks 04
whose weights are nonzero according to the crite(@g)].
Comparing the two distributions at=0.7, one notes that the 0.3
exchange interaction has little effect on the tail of the S
g-factor distribution for very small factors. However, for RNo2
larger g factors, the weight of the probability distribution is 0_9 J/
shifted towards largeg factors, including a long tail in the 0.1
regiong>2. Figure 6 confirms the previous observation that
the effect of exchange interactions is to increase the average % 0.5 1 15 2

g factors. The spin-orbit scattering rate for the third probabil- A
ity distribution shown in Fig. 6A=0.9, has been chosen FIG. 7. Top: Probability for they factor of a level to be larger

such that the averaggfactor (g);~ 1.58 coincides with that  han 2.0 for the values of the exchange consf&n0.1+0.65 as a

of the caseJ=0, A=0.7. Comparing the two probability function of the spin-orbit scattering strengtrfor a random visible
distributions, we conclude that the interactions still lead to &j.e., satisfying the threshold criterion, see Sec. Illlavel. Bot-
significant increase of thg-factor fluctuations, including a tom: Probability for a random level to be visible and, at the same
large probability to findg factors larger than 2, even if the time, haveg>2. for the values of the exchange constdmt0.1
average is well below 2. +0.65 as a function of the spin-orbit scattering strength
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IV. MATERIAL DEPENDENCE

Petta and Ralph have measured the probability distribu-
tion of g factors of Cu, Au, and Ag nanoparticled’ Theo-
retical estimates and experimental investigations of the ex-
change interaction in the noble metals show thH& 0.1 for
Cu, Au, and Ag™?* Hence, the interaction effects in the
above materials are very small and it is natural that the ex-
isting experiments can be explained quantitatively using
theory for the noninteractingJ&0) case. Indeed, both the
average and the width of thgefactor probability distribution
measured in Refs. 9,10 were found to be in good agreement

FIG. 8. Probability to be in the noninteracting ground state forwith the noninteracting theory of Refs. 14,15 using a single
J=0.3—0.66. The horizontal lineP=1 corresponds to the cade fit parameter, the dimensionless spin-orbit scattering xate
=0. The spin-orbit scattering time used in the fits was in order-

of-magnitude agreement with previous measurements using

In addition to addressing the full probability distribution Weak Iopa||zat|or?.5 The observation that the width of the
of g factors, we should consider the possibility of correla-distribution agreed well with theory aftar has been chosen
tions betweery factors within one realization. In principle, gﬁ fit t;z% average was considered a success for random matrix

eory:

such correlations can exist, because, within one realization,~>' V" . . .
all g factors correspond to transitions from the same Significant deviations from the noninteracting theory can

Ng-electron ground state N even. Although the be expected fod/ §=0.2 only. Although this condition is not
NZ—eIectron ground state does not affect the values of gpatisfied for the noble metals, the exchange interaction is
possibleg factors for the No+1)-particle levels, it does strong enough to significantly affect tigefactor distribution

affect the peak heights, and hence determines wifelstors 1N Most other metals, see Fig. 9, where a list of valued/ of
possibly “drown” in the noise. reported in the experimental and theoretical literature is

In order to quantifyg-factor correlations, we have looked 91Ven. The exchange interaction is particularly strong in Sc,
at the correlation function V, Y, Nb, Rh, and, especially, in P@d is very close to the
Stoner instabilityd/ 6=1).
For the collection of the data shown in Fig. 9, we used the
fact that the rati@l/ 6 is related to the Fermi-liquid parameter

1 — — a
C(IN)= gl W(gk—<g>)(gl—<g>> . (26 Fo
t

ground state grobability

O Q0 0O O«
o N » o =

001

05 1 15 2 25

JI6=—F§, (27)

For the calculation of .the correlgtion fupcﬂdh(J,A) We  gee Ref 22. The Fermi-liquid paramefe} appears in the
removed allg factors with normalized weight/, below the  expression for the paramagnetic susceptibility

threshold valuev,=0.1 from the average, which means that

the number level$/, considered in the summation becomes m*/m
dependent on the actual realization. For the range of ex- X=Xo , (28
change i i in-orbi i 1+F§

ge interactiond and spin-orbit scattering rates we 0

considered, the correlation functi@{(J,\) was nonzero, but
always smaller than 0.1. The maximum valdéJ,\)~0.1
was obtained foiA~0.5. Comparing the above difference
with the typical variance of factors, see Fig. 6, we conclude
that correlations between different levels within the same

grain are not important if the number gffactors measured ,uémpp
in a single metal nanoparticle does not exceed 10. Xo™™ 2p3

where m* is the effective electron mass, including band-
structure effects and interaction effeatsis the free-electron
mass, andy, is the Pauli susceptibility for free electrofis,

(29

The parameter 1/(£F3) is also known as the Stoner en-
hancement parameter.

In Fig. 8 we show the probability that the metal grain is  The dimensionless spin-orbit scattering paramaten-
found in the noninteracting ground staEermi seg as a creases with element’'s nucleus cha#@ydn experiments of
function of A andJ. For N.-electron states, the probability to Petta and Ralphstrong spin-orbit scattering was found for
find the grain in the noninteracting ground state deviates\u nanoparticles of a few nanometer in diameter=10),
quite significantly from 1 ifJ=0.4 and\=0."*®Upon in-  whereas moderate spin-orbit scattering strengths-1)
creasing\, the probability to be in the noninteracting ground were found in Cu and Ag nanoparticles of roughly equal size.
state increases and approaches unity when the spin-orlitrom this, we conclude that moderate spin-orbit scattering
scattering rate exceeds the exchange interaction. strengths can be expected for nanoparticles with a valie of

C. Probability of nontrivial ground state
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1 H 2 He
3 Li|4 Be 5 B|6 C|7 N|8 O|9 F |10 Ne
0.23 | 0.06—

0.08
11Na|12 Mg 13 Alj14 Si|15P |16 S |17 C1|18 A
022 | 0.27- —0.05-

0.32 =0.2
19 K |20Ca|21Sc|227Ti |23V |24 Cr [25Mn26 Fe|27 Cqd28Ni |[29Cu|30Zn|31 G432 Gq33 As34 Se|35 Br|36 Kif
0.29-] 0.16 | 0.59-| 0.26-] 0.57- -0.03
0.30 0.84 | 0.30 ] 0.63 0.09

37 RY38Sr |39 Y |40 Zr|41 Nb|42Md43 Tc |44 Ry45 RW46Pd |47 Ag|48Cd|49 In|50 Sn|51 Sb|52 Te|53 I |54Xe

030 | 0.00-| 0.53 | 0.16—| 0.39—| 0.13—] 0.24 | 025 | 0.41—| 0.84—] 0.02]
0.15 020 | 042 | 0.19 0.44 | 0.89 0.07

55Cs|56 Bal 57Lal 72Hf| 73 Ta] 74 W|75 Re76 Og77 Ir |78 Pt|79 Au|80Hg|81 T1|82 Pb|83 Bi|84 Po|85 At|86Rn

0.184 022 | 0.52 | 0.184 036 | 0.10 | 0.15 | 0.17 | 029 | 0.59-| 0.06
0.36 0.20 0.72

87 Fr 88Ra|89AclO4 105 [106 107 108 109 |110 |111 [112 |113 |114 |115 |116 |117 |118

FIG. 9. RatioJ/ § of the exchange-interaction constant and the mean level spacing. No value is listed for metals-f2drto 28 as they
are magnetically ordered as well as all lanthanidés §8, . . .,71) except for PmZ=61) for which no value was found in the literature.
Also, for Z>87 no data was found in the literature. For metals in the right-hand side of the periodi¢Xatiiecolumn and furtheronly
data on their Pauli susceptibility in the liquid form are available, see Ref. 27. For other metals, the data are taken from the following: Li,
experimeniRef. 24: Be, calculation of electronic structu(Befs. 28,29, Al, experiment(Ref. 30 (note the negative value of the exchange
constank, K, experimentgRefs. 31,32, Ca, Y, Tc, Ba, La, Ta, W, Re, Os, Ir, calculation of electronic struct®ef. 33; Sc, calculation of
electronic structuréRefs. 33,34 Ti, Zr, Hf, calculation of electronic structur@efs. 33,35 V, fit of theory (Ref. 39 and experimentRef.
37), and calculation of electronic structuiiRefs. 29,33 Cu, Ag, experimenfRef. 24 and calculation of electronic structufef. 23 (note
the negative exchange constant in the experiment for Rlo, Cs, experimeniRef. 31); Sr, Nb, Mo, Rh, calculation of electronic structure
(Refs. 29,33 Pd, fit of theory(Ref. 36 and experimen(Ref. 38; Pt, fit of theory(Ref. 39 and experimentRef. 40, and calculation of
electronic structuréRef. 33; Au, calculation of electronic structur@&ef. 23.

around those for Cu or Ag. From Fig. 9 it can be seen thaing §) may be typical of enhanced fluctuations of interaction
there are quite a few materials for which this is true and thanatrix elements that are expected to occur at the breakdown
criterion J/ 6>0.2 is satisfied. of random matrix theorydimensionless conductaneel).
There are~20 metallic elements in the periodic table for
which the electron-electron interactions are sufficiently
V. CONCLUSION strong that the phenomena described here can be measured.
, , ) ) , Existing measurements af factors in nanoparticles have
In this work we investigated the combined influence ofpyaen made for Al and the noble metals only; in these metals,

electron-electron interactions and spin-orbit scattering on thg teraction effects are weak. We hope that our findings stimu-
g factors of metal nanoparticles. In the presence of electrongte experiments on other metals.

electron interactiongy factors must be attributed tdransi- In our calculations we have omitted the orbital contribu-
tions between many-electron states, instead of single-tion to theg factors. The orbital contribution arises from the
electron states. Many-electron states can hgvéactors  fact that single-electron wave functions are complex if spin-
larger than 2, although these cannot be observed by tunnelingrbit scattering is present, instead of real, so that they carry a
spectroscopy because of selection rules as long as spifinite current density. For the parameter regime we consider
rotation symmetry is present. Spin-orbit scattering breakfere,r,,6=1, the single-electron wave functions are mostly
spin-rotation symmetry and thus removes the selection ruleseal, and we expect the orbital contribution to théactor to
While this leads to a suppression of thefactors for large  be smaller than the spin contribution™®*°We expect that
spin-orbit scattering rates, we find thgafactors larger than 2 taking into account dsmal) orbital contribution causes a
occur with significant probability if the spin-orbit scattering Slight increase of the averagefactor and a further broaden-
rate 1k, is moderates,,0=<1, wheres is the mean spacing ng of the distribution.

between single-electron energy levels in the grain. We have
studied theg factor distribution quantitatively using random ACKNOWLEDGMENTS

matrix theory and the universal interaction Hamiltontarin We thank S. Adam, D. Huertas-Hernando, A. Kaminski,
addition to a confirmation of the scenario outlined above—A. H. MacDonald, J. Petta, and D. C. Ralph for helpful dis-
occurrence of factors larger than 2—we found that interac- cussions. This work was supported by the NSF under Grant
tions increase the width of thg-factor distribution forr,, ~ No. DMR 0086509 and by the Packard foundation.

=<1 and that they-factors probability distribution function is
different for transitions to the odd-electron ground state an
odd-electron excited states. The enhanced fluctuations occur-
ring for moderate spin-orbit scattering strengtspin-orbit In this appendix, we calculaggfactors to lowest order in
scattering rateys, comparable to single-electron level spac-the dimensionless spin-orbit scattering rate=or a state that

d APPENDIX: g FACTORS IN THE WEAK SPIN-ORBIT
SCATTERING LIMIT
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is twofold degenerate in the absence of spin-orbit scattering,
spin-orbit scattering does not affect the spin contributiog to
factors up to linear order in.*? Our calculation addresses
the case of a fourfold degenerate level, and shows that its
factor is affected to zeroth order \1 This calculation shows
explicitly that the limitA — 0 is singular.

Let us start by writing the spin-orbit Hamiltonian in terms
of the basis of single-electron eigenstates of the Hamiltonian
H coe Without spin-orbit scattering, see E@) above,

in .y o
Hso=m 2 [(A) u W1 = UL )

£t
Fatl
Frtl T
SRl

+(A1+iAz)WlLﬂ?’w*’(Al_iAz),w':/lelz/uT]- (a) ®) (c) ()

(A1) FIG. 10. AnS=3/2 state and the three relevant types of excited
Here the Greek indiceg and v refer to the eigenvalues of states{a the fourfold degenerat8=3/2 ground state(b) twofold
Hgoe, and not to the eigenvalues of the total single-electrorflégenerat&=1/2 excited state(c) fourfold degenerat&=3/2 ex-
HamiltonianH goet He, as in Sec. II. cited state;(d) fourfold degenerat&=1/2 excited state, note that
In order to study the effect of spin-orbit scattering on thelhis state is entangled, see HAS).

g factor of a many-electron eigenstate ooz with spin S ) _ o
=3/2, one needs to calculate matrix elements between thEXd]. There exist two variants of the states shown in Fig.
four members of the quadruplet. Labeling the four memberd®€) and 1@d), depending on whether an empty single-
of the quadruplet by the component of the spinS,=p electron level is filled apove the Fermi level or a hole is
—5/2, p=1,2,3,4, these matrix elements can be arranged iﬁ:eat_ed be|0W the Ferml_ Ievel: 'I_'he former case is show_n in
; the figure. Since the spin-orbit interaction is a one-particle
a 4xX4 matrix V of the form T .
operator, only the states of the form shown in Fig. 10 which

—a—d b c 0 differ by not more than one electron-hole excitation are im-
b* a4 0 . portant. o
V= . (A2) _\Artual excitations to twofold degenerate=3/2 _state.ln
c* 0 —a+d -b this case, the transition from the stateto m involves
0 c* —b* —a—d a transition of an electron from the singly occupied level

w to the already(singly) occupied levelv, see Figs. 1@)
with a andd are real numbers anlol and c represents com- and 1Q@b). Representing the members of the spin3/2 qua-
plex numbers. The specific form 0A2) follows from time-  druplet as|3/2S,) with S,=—3/2,—1/2,1/2,3/2, and the
reversal symmetry and guarantees that the eigenvalu¥s of members of the spir6=1/2 doublet as|1/2S,) with S,
are double degenerate, in accordance with Kramers’ theorem 1/2,—1/2, we find the following matrix elements of the

One quickly verifies that all matrix elements\dfare zero  spin-orbit HamiltonianH ,
to first order inHg,. This is the consequence of the fact that
the matricesA;, j=1,2,3, in Eq.(A1) are antisymmetric, S0 Y
that the spin-orbit interaction does not mix the states with (3124 3/24Hd1/2,+ 112y = —— (A —iA3) ., ,
opposite spin belonging to the same energy level. In this VAN
situation one has to calculate elementsv/ao second order
in Hg,.*® Denoting the many-electron states with roman in- (3/2,+3/2|Hgd1/2,~ 1/2)=0,
dices, the matrix elements between the many-electron states

nandn’ (both taken from the same quadruplate given by ix
(32, +1/2H1/2,+ 1/2)= — R(Ag,)w ,

vV :2 (Hso)nm(Hso)mn' (A3) \/_
nn’ = EEO)_ EEY?) ! .
i
with m is summed over all many-electron states Wi, (32+ 1/2AHd1/2,~ 1/2>:\/ﬁ(A1_'A2)wv
#E, andE”) andE{? the corresponding many-electron en-
ergies. .

The quadruplet state is represented schematically in Fig. _ _ | :
10(a). For the calculation of the splitting of a quadruplet, it is (3/2.~1/2H 112+ 1/2)= @(Aﬁ 1A2) o
enough to consider states of the form indicated in Figs.

10(b), 10(c), and 1Qd). These are: a twofold degenerdie i
=1/2 state[Fig. 1Qb)], a fourfold degenerat&=3/2 state (312~ 1/2HJ1/2,~ 1/2)= — I_(Ag) '
[Fig. 100)], and a fourfold degeneratd=1/2 state[Fig. JaN© A
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(3/2,~312|H¢{1/2,+1/2)=0, Performing the calculations as before, we find
i b :)\Z(Al_iAZ)Mv(AB),uV
(3/2,-3/2H¢d1/2,~ 1/2)=—W(Al+iA2),”. (A4) Sy 6N(8V_8#+3J)\/§ '
Further, in this case the energy difference c N2(AL—iAL)%,
3.uv

EQ-EQ=5,~5,+3J. (A5) 6N(e,~2,+33)\3
2 2 2 2 _oy2 2

Substituting these matrix elements and the energy difference :}‘ (A A (A2)yy = 2M(Ag)y,

into Eq. (A3) we find the following contributions to the ele- Sy 18N(e,—¢,+3J)

ments of the matri¥/ of Eq. (A2):

Denoting the set of doubly occupied single-electron levels

N2A(AL—iAL) (A3 by “0,” the set of singly occupied single-electron levels by

Tuv= = =5 “1" and the set of unoccupied single-electron levels by “2,”
4N(8v_8u+3‘])\/§ we then sum over all virtual excitations and find

N2(A—iAL)2,

Cl,/.LV: : 2 y b: E bl,MV+ 2 2 (b2,;LV+b3,MV)

4N(e,—e,+30)V3 pivel fel ve2
2 2 2 2 2 2
) :)\ (AL T A (A2) L, — 2N (A3)y, + 2 2 (D2t D3,), (A7)
e 12N(e,—¢,+3J) ' e

(We have not listed the value afin the matrixV of Eq. (A2) and similar expressions for the coefficiemt@and d in Eq.

since this coefficient does not contribute to théactor and (A2). ) ) )
splitting of theS=3/2 quadruplej. The matrix(A2) can be diagonalized for all values of the

Virtual excitations to fourfold degenerate=S/2 state. ~Parameters, b, ¢, andd, and the correspondirgfactors can

These excitations involve a transition of an electron from &€ found exactly. After diagonalization we find that the qua-
singly occupied levek to an unoccupied levet, see Fig. druplet is split into two doublets with energy separation

10, or the tra_nsmon of an electron from a_doubly ocgupled (AE)?=4d?+4|b|?+4]c|2. (A8)
level u to a singly occupied levet. Calculating the various
matrix elements as before, we find after somewhat cumbetn the 4X 4 matrix notation of Eq(A2), the Zeeman Hamil-

some algebra tonian reads
b )\Z(Al_iAZ),uv(Afi)MV _3/-LBH
2uv— ! - H
- e
6N(e, s,u)\/g H,— B ., . (A9)
)\Z(Al_iAz),zw He
CZ /,“/: NN 3Iu‘BH
' 6N(z,~£,)\3 -
Lifting the degeneracy of the two doublets by the Zeeman
- N(ADZ, AN AL, — 20 (A2, energy, we findy factors
i 18N(e,—¢,) '
3|b|2+ (2d+ AE)?
Virtual excitations to fourfold degenerate=3/2 state.As - d2+|b|2+|c|? ' (A10)

in the previous case, these excitations involve a transition of
an electron from a singly occupied levelto an unoccupied where the= sign refers to the two doublets. This result
level v, see Fig. 10, or the transition of an electron from aconfirms the assertion made earlier, that spin-orbit scattering
doubly occupied level to a singly occupied leveb. The  affects theg factors of theS= 3/2 states to zeroth order in the
four S=1/2 are labeled by5,= +1/2 and by an additional spin-orbit scattering rate. Of course, for smalk the energy
degeneracy parametge + 1, splitting AE is small as well, and thg factor of Eq.(A10)
can be observed for magnetic fields such thaH<AE
only, which limits the practical observability of thegefactor
(A10) for very small spin-orbit scattering ratas<1.
_ In the remainder of this appendix we investigate Eg.
+]117)e” @799, (A10) for the special case that one state is very close to the
S=3/2 state of interest and virtual excitations to that state

1 .
[1/241/120)= ﬁ(|TTl>+|TlT>el(2wq/3)

1 i(270/3) dominate the spin-orbit matri¥ in Eq. (A2). One important
|1/2,—-1/120)= ﬁ(HlT)ﬂlTl)e example is the case when the ground state has$pi&/2,
which is expected with small probability fal/ 6=0.3, see

+]111)ye1(2mad), (A6)  Fig. 11. Indeed, the energy difference between $e3/2
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2 <g>
<g’>
<g’™>
<g> 2
%/2 I-P 312
(a) (b)

FIG. 11. Two different possibilities{a) S=3/2 state is the
ground state with the probabilifys,; (b) S=1/2 state is the ground
state with the probability + P5,. Note that due to the sign change
in the energy denominator, see EA3) the averageg factors(g)
and(g’) are inverted.

state and the lowest-lyin§=1/2 state ise) ,,—&,—3J, A
being the index of the lowest singly occupied level in the

=3/2 state. Typically, this energy difference is small, given

the small likelihood of it being positive.
Substituting the general expressions for the coefficibnts

¢, andd into Eqg. (A10) and noting that one energy denomi-

nator is much smaller than all others, we find that &n
=3/2 quadruplet splits into two doublets withfactors

/ 3(A%+A2
g=2 1+ 2(1—22)2,
A2+ A2+ A2
A3
'=/48-3¢%=6\/ —o—, (A1l
g g A2+ A3+ A3 )

where we have omitted the indices referring to the leyels

andv involved as we deal with one excited state only. If the

quadruplet state is the ground statecorresponds to the
lower-lying doublet.

In the special case of aB=3/2 ground state, EA11)
shows that thg factor takes values in the inter&,4] only.
One hagy=2 only if A;=A,=0. The corresponding eigen-
states ard3/2,=1/2). In the opposite casd;=0, one has

g=4 in the ground state and the corresponding eigenstates

are (,/3/2)|3/2,23/2)—(€?'*/2)|3/271/2), where e ¢
=(A,+iA1)/|A,+iA4]. Infact, one can find the entire prob-
ability distribution ofg in this case, using the fact that, ,

PHYSICAL REVIEW &9, 155417 (2004

(A12)

P(g)— — 9
(g)_Z\/§ /—16_92-

The averageg factor for an S=3/2 ground state with a
nearbyS=1/2 state is then

~3.418. (A13)

4(77 1 3
(g>=ﬁ 5 arcsin + -

For J=0.66, the probability to find a ground state with
=3/2 isP4,~0.38(see Ref. 22 or Fig.)8 Since theg factor
is unaffected to first order i if the ground state has spin
1/2, we expect the true average ground stafactor to be
approximately equal to

(90)~3.418P 3+ 2(1—P3p)~2.54.  (Al4)

This value is very close to that found in the numerical simu-
lations of the ground statg factor ~2.5, see Fig. 4.

The distribution ofg’ can be found from EqgA11) and
(A12). One finds the particularly simple result

P(g')=%.

The averaggg’)=3. In the limiting casegy’'=6 andg’

=0 the doubly degenerate eigenstates have the {G/2)
+3/2) and (1/2)3/2,+3/2) — (\/3/2)e? ?|3/2,% 1/2), respec-
tively. We can use these results to calculate the avegage
factors of the lowest excited states. For the first excited state

(91)=(9")P3ot(9")(1—P3)=(g")=3,

where we assumed that without spin-orbit scattering the
ground state has spB= 3/2 or the first excited state has spin
S=3/2 and is slightly below a®$=1/2 doublet, see Fig. 11.
(Hence, we neglect the possibilities that the first excited state
has spinS=1/2 or that the first excited state has sfBn
=3/2 and is far away from the nex8=1/2 state. Our ap-
proximation should slightly overestimafg,).) The simula-
tions give(g;)~3.00, see Fig. 4. With the same approxima-
tions, we find that the averaggfactor of the second excited
many-electron state is

0<g'<6. (A15)

(A16)

(92) =2P3;+(9)(1—Pgp)~2.87.

The result of the simulation is 2.78, in good agreement with
the estimatgA17). Note that the above nontrivial distribu-
tions of g factors can be observed in a small magnetic field

(A17)

A,, andA; are taken from identical and independent Gausseonly (ugH<\28). For larger fields they factors are the

ian distributions,

same as in the absence of spin-orbit coupling.
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