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Spin-dependent magnetotransport through a ring due to spin-orbit interaction
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Electron transport through a one-dimensional ring connected with two external leads, in the presence of
spin-orbit interactionSOI) of strengtha and a perpendicular magnetic field is studied. Applying Griffith’s
boundary conditions we derive analytic expressions for the reflection and transmission coefficients of the
corresponding one-electron scattering problem. We generalize earlier conductance resultsedyaN{téeppl.

Phys. Lett.75, 695(1999] and investigate the influence af temperature, and a weak magnetic field on the
conductance. Varying and temperature changes the position of the minima and maxima of the magnetic-field
dependent conductance, and it may even convert a maximum into a minimum and vice versa.
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[. INTRODUCTION elaborated in Ref. 17. The transmission coefficient of Ref. 17
coincides with ours forp=0 but it is less general in two
Recently, much attention has been paid to the manipulamportant aspects: it is valid only for zero temperature and in
tion of the spin degrees of freedom of conduction charges ithe absence of a magnetic field whereas ours is free from
low-dimensional semiconductor structures. An importantthese limitations.
feature of the electron transport in multiply connected sys- In this paper we present axact analytic treatment of
tems is that the conductance shows signatures of quantuthe influence of the SOI on the electron transport through the
interference that depend on the electromagnetic potentialspin-interference device of Ref. 1. Applying Griffith’s
Aharonov-Bohm and Aharonov-Casher efféctA compre-  boundary condition’s'? at the junction points we solve the
hensive review of results for metallic rings is given in Ref. corresponding scattering problem analytically, obtain the
11. Many devices have been proposed to utilize additionatorrect form of the conductandg, and show how for large
topological phases acquired by the electrons travelingy it is modulated approximately as predicted by Ef).
through quantum circuits!?~°Nitta et al. proposed apin-  Further, we assess the influence of a weak magnetic field on
interferencedevicé allowing considerable modulation of the this conductance, indicate the spin-filtering properties of the
electric current. This device is a one-dimensional ring con+ing, and generalize the result to finite temperatures. These
nected with two external leads, made of a semiconductolatter aspects were not studied at all in Ref. 17.
structure in which the Rashba spin-orbit interacti@0Ol) The paper is organized as follows. In Sec. Il we solve the
(Ref. 16 is the dominant spin-splitting mechanism. The keyone-electron problem for a ring in the presence of SOI at
idea was that, even in the absence of an external magnetzero magnetic field and apply Griffith’s boundary conditions.
field, the difference in the Aharonov-Casher pH&sac- In Sec. lll we evaluate in detail the transmission and reflec-
quired between carriers, traveling clockwise and countertion coefficients and the zero-temperature conductance. In
clockwise, would produce interference effects in the spin-Sec. IV we reevaluate the conductance in the presence of a
sensitive electron transport. By tuning the strengtbf the  weak magnetic field and point out the relevance of the results
SOl the phase difference could be changed, hence the cots spin filtering. In Sec. V we present the finite-temperature
ductance could be modulated. Nitet al® found that the conductance and some numerical results. Concluding re-
conductancés is given approximatively by marks follow in Sec. VI and details about the spin eigen-
states and probability currents are given in the Appendix.

e? am*
G~—|1+co8 27« , (D)
h 72 Il. ONE-ELECTRON PROBLEM
wherea is the radius of the ring anah* the effective mass of A. Hamiltonian

the carriers. It is of interest to Verify the VaIIdIty of this In the presence of SOI the Hamiltonian operator for a
strong sinusoidal modulation of the conductance, predicte@ne-dimensional ring structure is given by Ref. 21,

by Eq. (1).

The Rashba field involved in Ref. 1 results from the 9
asymmetric confinement along the directi@ perpendicu- A=—%0 — —ifiwe(Cospa,+singa )i
lar to the plane of the ring. A similar study but with this field dp? =0 ) Yoe
tilted away from thez direction, by an angleb, was made in
Ref. 17. The resulting Rashba field is weaker since the radial i %(cos oo —sineay) )
part of the confinement is much weakebut this was not 2 ¢y PO
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whereo,, oy, ando, are the Pauli matrices. The parameter Upper arm
Q denotesi/2m* a? and w,= a/ha is the frequency asso-
ciated to the SOI. The Rashba field we consider here results
from the asymmetric confinement along the directiprper-
pendicular to the plane of the ring. The parameterepre-
sents the average electric field along thdirection and is
assumed to be a tunable quantity. For an InGaAs-based two-
dimensional electron gasy can be controlled by a gate
voltage with typical values in the range (0.5-2.0)

X 10~ eVm.22Z Writing the Pauli matrices in cylindrical
coordinates,

Lower arm

o,=C0Spo,+Singo,, o,=C0Spo,—SiNpo,, (3) _ )
r_ X Y ¢ Y ] X. ) FIG. 1. Device geometry and the local coordinates X', ¢,
and usingyo, /d¢= o, one can recast the Hamiltonian in the and ') pertaining to different parts of the ring.

more compact form,
dW=—7[1+(— 1" 02, +Q*)YIQ]. 9)

4) Until now we have not specified the boundary conditions and
solved only the time-independent Sctimger equation.

An irrelevant additive constant termgolm has been ne- However, it can be seen from Eq§a) and (6b) that what-

glected in Eq(2). It should be emphasized that this Hamil- ever the boundary conditions, in the presence of SOI the

tonian is a Hermitian operatét,under proper boundary con- solution of the Schiinger equation differs from the unnor-

ditions, in contrast to the non-Hermitian one used in REf 1ma|ized, free_energy eigenstates 0n|y in the phase factor

As can be seen above, the SOI enters @g.as the spin-  exp(d{/27). In words Eq.(6b) means that the unnormal-

erendent vect_or pot_entialug(JIZQ)_ar . .It is convenient to  ,aq Spinor\pﬁu) picks up the Aharonov-Casher phaﬁ%
introduce the dimensionless Hamiltonian upon encircling the ring once.

1. . J  wgo z . .
=| —i % +Ear (5) B. Device geometry and boundary conditions
The ring connected to two leads is shown in Fig. 1 with

Then, as outlined in the Appendix, one can solve the eigenge |ocal coordinate systems attached to the different regions
value problem in a straightforward manner. The energy SpeGss the device. If the ring is not connected to any leads the

trum EYY” and unnormalized eigenstat#§) (the normal-  patural boundary condition is that the wave function has to
ization depends on the boundary conditipriabeled by the pe single valued when the argumeptis increased by an
index u=1,2, are found to be integral multiple of 2r; this entails that the quantum number
n [see Eq.(6b)] must be integer. Connecting the ring to ex-

(%) — (n— P (m) 2
B =(n—dyc/2m)?, (62 ternal leads alters this condition. In this case it is appropriate
. to apply a spin-dependent version of the Griffith’s boundary
() = @aine, (1)
Vi () =X (¢). 6D conditiond®2 at the intersections as we will specify below.

Here the mutually orthogonal spinosg™(¢) can be ex- This reduces the electron transport through the spin-
pressed in terms of the eigenvectofd, ((3) of the Pauli interference device to an exactly solvable, one-dimensional
matrix o, as scattering problem. According to these boundary conditions

at each junction(i) the wave function must be continuous,

0 and (ii) the spin probability current density must be con-
CO% served.
Xﬁ”(@)z , (7 In the present problem the total wave function in the in-
e“Psing coming and the outgoing lead can be expanded in terms of
2 spinorsy*) of Egs.(7a) and(7b) as
0
sin; W (x)= Elz‘Pf”)(X)x(“’(w), xe[—,0], (103
pn=1,
xi(¢)= ol (7b)
_ Al
ereos Vy(x)= 2 WEPEO)X0), X e[0x],
n=12
with the angled given by (10b
9= 2arctari — ,—TQZWLU)SO)/wso- ) respectively(See Fig. 1 for the local coordinatesandx’.)

The coefficients are the single spin-wave functiah”(x)
The spin-dependent terd{ is the Aharonov-Casher phase and ¥ {{/(x") having the form
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Wm(x)=(e"F,+e ), (113  where o/(¢')=0,(¢=—¢')=cos¢'ox—sing’a, because
of the orientation of the coordinate system in the lower arm
(M)(X )=elkx’ t, (11b) is opposite to that in the upper arm. The currents in the leads
are given by
respectively, wher& denotes the incident wave numbéy,
=cos(/2) and f,=sin(y/2). As it can be seerm,, is the JH(x) =2aRe{ (VM ) T(—ial gx) WM ()L
reflection coefficient whild , is the transmission coefficient (17a

for spin polarizationu («=1,2). In a similar fashion the
wave functions corresponding to the upper and lower arms of Jﬁ(x’):ZaRe{(\pl(ll“)X(#))T(_ i (;/axr)qu(lﬂ)x(u)}_
the ring can be written as (17b

Here it should be emphasized that the spingf&) (u
— (m) ) .
‘I’up(ﬁ”)_ﬂzlv2 WU%(¢)X(M)(¢)' ¢e[0m], (123 =1,2) are obviously the eigenstates of the operator
—idldp+ (wso/2Q) o, , which commutes witfd given by
, () (1) ) ) Eq. (4). Therefore J* are well-defined conserved spin-
Wiow(e )=M:Elz‘l’|ow(¢ X (—¢"), ¢ e[0m], current densities in the ring. Using the previous requirement
’ (12b) \If,(f‘,?)—\lffj‘g)=\l',(g\z, at the junctions, the conservation of the

) ) ) . spin-current densities can be simply written as
respectively(see Fig. 1 for coordinatgsThe corresponding

wave functions read ,9\1;(:“ | o= o(w)+t9‘1’|ow| — O(W)+aa\lf|,(|)|x '(xy=0=0.
2 (18)
‘Pﬁ’ﬁ)(ﬁo):;l al'e’e, (139 Evaluating the derivatives, one obtains
2 2
w_l -
Vigieh =2 bie e (13b) 2, afja— 2 bf =0, (198
Here the real numbens* (j=1,2), 2 Y o
J > af‘e'“f‘”—;l—jzl bre injm ] et fumr.=0.

K= (_1)] (m) =1
ni*=(—1)'ka+®yc/2m, (14 (19b)
are the splutlons of the equatld??.a =Enu eniunng tEe The variables ,, t,, can be eliminated using Eq&.59 and
conservation of energy. The coefficiens, t,,, af*, andbi® (151 Then the set of Eq$19a and(19b) is replaced by the

are not independent: they are connected to each other Vifhear set of algebraic equations for the coefficieiats, b/}
Griffith’s boundary conditions. First applying the continuity

conditions for the wave functions¥{{(0)=¥{(0) 2 nt+ka & n#
=¥(#(0) and¥{(0)=w{(m) =L (), one finds > at ’ka -> b,ﬂé:o, (209
=1 =1
2
at= D, bt=t,, 15 2 . 2 p
J'Zl . 121 b (o3 > af‘e'”” & ka—E bf'e”"™ ™ J——ZfM
=1 k =1
2 (20b)

2
T —infa_
]Zl af'e ’T—le bie™"™ T=r, +f,. (15b
I1l. TRANSMISSION AND REFLECTION COEFFICIENTS
Now let us turn to the second boundary condition. If one AND CONDUCTANCE
assumes that there are no spin-flip processes at the Junctlons,.l_he linear Eqs(159 and (15b) together with Eqs(208)

one re_quirgs that the spin probability_curredts for each and (20b) for the variables! andb! can be written in the
spin directionu should be conserved, i.elf,+Jfg,,+ J,(”) matrix form, ] ]

=0. As shown in the Appendix, the d|menS|0nIess spin cur-
rents in the ring arms are found to be

al 0

(@) =2Re (W XN (=19l 9@+ wsa0200) ak 0
) M# =2 , (22)

X W) x W}, (16a b 0

b f

Ioul@)=2RE (WX (—i10l0¢" — weeor/1202)
with the matrixM# depending only on the wave numbea
XWX}, (16b  andn’:
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1 1 -1 -1
eini”w eir‘l‘Z”W e—infﬂ' e—iﬂg’ﬂ
Mé— ni{+ka ny+ka B ﬂ B n_’z‘ 22)
ka ka ka ka
nf—ka , nb—ka ., nt 5
ns ns e T aTIntw —insm
_kael ka © ka® kaez_
|
Now let us calculate the transmission, ) and reflection 8icog @ 4/2)sin(kam)
(r,) coefficients which are connected to the incoming spinor T ,= TR .
according to the following equations: 1-5cog2kam)+4cosP )¢ +4isin(2kam) 08
28

COY COy
(t1> . 5 [Tl o} 5 o33
t2 . sinz Lo T2 sinz |
> >
COY COS‘Z
fy %1 (R, © 2 ]
ry R . 10 Ry Y (230
Slnz SIHE

Both diagonal matrice¥ andR can be expressed in terms of
the inverse of the A4 matrix M# in the manner

T,=—2[(M*);+(M*)52], (243
R,=—2[eM (M) 1+e"27(M#), 2+ 1/2]. (24D
Calculating the fourth row of the inverse matrix gives
T,=—8icog® ,m)sin(A ,m)/d,, (253
R,=[cog2A ,m)—1]ka/A ,d,+4[cog20 ,m)
—coq2A ,m)]A ,/kad,, (25b
with the following notations:
d,=[coq2A ,m)—1]ka/A ,+4[cOog2A , )
—co920 ,m)]A , /ka—4isin(2A ,7), (268
A,=(n5—n)2, O ,=(ns+ni)/2. (26b)
One can verify that for each spin polarizatipn(u=1,2),
| Tul?+IR,[2=1. 27

Here we would like to point out that the expressionsTor
andR, above are quite general. They are still valid for other
Hamiltonians than the one used, provided the spir)ppls

and Xnts which travel clockwise and counterclockwise, re-

spectively, are along the same direction.

In the present casd ,—ka and ® ,=®Y4/27. Conse-
quently the concrete expression for the transmission ampl
tudes reads

15533

In the Landauer formalism the conductance is given by

G (29

2 2
e
== 2 (Tul®
h 5=1' *
In the present case the off-diagonal eleméntsand T, of

the transmission matrix are zero. Inserting E2g) in Eq.
(29) we obtain theexactconductance at zero temperature in

the form
G=(e*/h)go(k,Apc)[1—cogAnc)], (30)
where the dimensionless coefficiany is
Jo(K,Aac)
B 64sirf(kar)
[1—-5cog2kam)—4cosgAxc)]?+ 16sirf(2kam)
(31

Here Apc=(®R—d@)/2=x[(2m*alfi?)2a?+1]Y2 is

the half of the difference between the phases accumulated by
the different spinors. Comparing E0) with the approxi-
mate formula(1l) one can see that the conductance oscillates
with cos@A5¢) in a more complex manner. For large values of
the Rashba parameteran essential difference is7a phase
shift in the oscillation; however, the period remains the same.
An important feature is the presence of the factor Agg)in

the denominator of Eq.31). This makesy, not a constant
equal to 1, as found in Ref. 1, but a quantity that depends on
A ¢ and the incident energy throudh The full dependence

of go on A, ¢ for different temperatures, including=0, is
shown in Sec. V.

Figure 2 shows the conductanGeversusA ¢ at different
wave number&. Becausés is an even and periodic function
of ka (with period 1), it is sufficient to consider only the half
period kae[0,1/2]. One can see thdi=~0 (or for ka~I
eN) the conductance tends to a discontinuous function
which is nonzero only al 5= 7+ 2n7 (n is integej with
value 2?/h. This dependence dB on ka is absent in Eq.
(1). We note in passing that a transmission coefficient for-
imally equivalent to Eq(30) was derived earlier in Ref. 17
with very few details and starting with a Hamiltonian in

5-4
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20 L AN \)A,-w.\ P pg=27D/Dy=meBa/h, (33)

! and the dimensionless Hamiltonian in question reads

-\
|
|
\
' H=| —i—— ——+-—0] . (34)
|
15| b : . . .
Lo : When the Zeeman term is present, the interaction between
[ : the electron spin and a relativelyeakmagnetic fieldB can
[ ! i be treated by perturbation theory. Using the dimensionless
\ ! : field strengthb=g* eB/4m() the perturbation of the Hamil-
\l ; : tonian (34) is
\ N

|

i

1

|

|

|

\

1

|

i

\

i

G (e'h)

| Hp=bo,=(g* m*/m)® sg0,, (35)

i wherem is the bare electron mass agd the effective gy-
\ o romagnetic ratio. The matrix elementsef, in the basis of
! '; the normalized eigenstatdal”)=w{"(¢)/\27 are ob-
: tained as
05| ]
: ;oo L (WHHpWE)=(—1)*"1(g* m*/m)d sgcosd

I / n=20 \-\ =(—1)**1C,, (369

VA oM (WLH | W2)= (g* m*/m)® gsin d. (36b)
0.0 L~ ) 1 L \I\‘ k

2.0 25 3.0 3.5 4.0
AAC/TE

In the first-order approximation one neglects the off-diagonal
elements; this is reasonable if they are small, i.e., if
(g*m*/m)® rg<k?a®. To first order the eigenspinors are

not perturbed and their direction is still specified by the angle

FIG. 2. Dependence of the conductar@eon the Aharonov- 9 given by Eq.(8). Using the identity

Casher phasa 5 for different incident wave numbetsa at zero
temperatureG is a periodic and even function &h, henceka was
considered only in the intervaD,1/2]. _ 1-tarf(9/2)

cosd= =mlA e, 3
LrtarR(9/2) | AC 37

which the Rashba field is tilted away from thelirection by ~ Wwe obtain the energies, including the first-order corrections,
an angleg. It coincides with ours forp=0. As shown be-

low, however, ours takes into account finite temperatures and SV (I)AB_ D 2_ 1 Mg* * Wq) 38
a weak magnetic field whereas that of Ref. 17 does not. In n= (N 2 2 (-1 MAxc 7B (38)

addition, we give the reflection coefficient in E@5b).
The equation of energy conservatikfa?=E/, has the so-

IV. WEAK MAGNETIC PERTURBATION lutions
Our analytic result can be easily extended to the case of a  n#=—k%a?+(—1)“Cy+ D pp/2m+ DY/27,
weak magnetic perturbation. Let us suppose that an external (393
magnetic fieldB normal to the plane of the ring is present. —
Then the vector potential can be chosen to be tangential ny=\k%a?+(—1)“Cy+ @ ppl2m+ DYL/27. (39
. - Because the eigenspinors are not modified within this ap-
A=(Bai2)e,. (32 proximation the transmission matrix elements are given

L again by Eq.(253 but with the parameterd , and© , re-
First we take the effect of the magnetic fldk=afAde placed, respectively, by

encircled by the ring into consideration. It means that we

have to change the momentum operatar: V in the Hamil- A,=(nf—nf)/2= JkZaZ+(—1)#Cy, (403
tonian with —iAV —eA (“minimal coupling” substitution.

This leads to the appearance of the magnetic fu®, in ~ 2d

the Hamiltonian, whereby=h/e is the unit of flux, if the PPN () /o (%)
Zeeman termg*B-S is neglected. Then the Aharonov- ®”_(n2+nlVz_q)AB/ZWJF(DAC/ZW_q)/q)OJrq)AC/(igb)
Bohm phase picked up by an electron encircling this mag-

netic flux This leads to the transmission coefficient

155335-5
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. 8icog @ p/2+ DY/2)sin(C kaar) an
" C,'—(C, +4)cog2C kam)+4cog D g+ DYR) + 4isin(2C kam)

where C,= 1+ (—1)*Cy/k*a®. The resulting magneto- Cyka, respectively. Due to the inequalityg{m*/m)® g
conductance reads <k2a? we haveC,~1; hence the efficiency of the filtering
process is higher than 64%.

2
e
G=F[|T1|2+|T2|2]. (42)
V. TEMPERATURE DEPENDENCE OF THE
At this point one can envisage an application of the device CONDUCTANCE
as a spin filter. Assuming one can tune the phabgs and A. Explicit expression

®{ (via the magnetic field and the Rashba strengdh
independently, one can make the ring almost transparent wit
high transmission probability only for electrons with spin
quantum number =1 (2) and totally opaque witlu =2 (1).
For instance, if one set® g+ DL and g+ D2 to be
(2p+1)7 and = into Eq. (41), whereq and p are inte-
gers, respectively, one obtains

h The conductance at finite temperatures is given by

If(E,u,T)

EITWBI (49

e? o
G(TM=—— > dE
h  S2Jo

wheref(E,«,T) is the Fermi functionT is the temperature,
IT,2=0 andT ,(E) is the single spin-transmission coefficient. In the
! ' absence of magnetic field the conductance can be written as

1+8C
ITol=| 1+ ——
32(C)?

As can be seer|T,|? has maxima equal to 1 and minima where the explicit form of the temperature depending coef-
equal to (1 1/4C,) 2 at integer and half-integer values of ficient gr(kg,Aac) iS given by

-1
[l—coSZCzkaw)]> . (43 G=(e?/h)gr(ke,Apc)(1—COSApQ), (45)

(32T /T)cosh [ (2~ ) Te/2T]sin(Lkeam)
[1-5c0%2kram) —4cogApc) ]2+ 16sif(2¢keam)

Or(ke Apc) = f;dzz (46

Here; is the (dimensionlesschemical potential in units of different values oka as indicated. As shown, the coefficient
the Fermi energfEr and T denotes the Fermi temperature. Jo(Aac) varies in a rather large range, 0—16, depending on
At T=0 the derivative of the Fermi function becomesSa the value ofka. The largest deviations from 1 occur at the
function, the integration in Eq46) can be carried out, and end of the period\oc/7=2 and 4. Agreement with Ref. 1
one obtains the previous resgi [Eq. (31)]. is obtained only for valued 5c/ in the neighborhood of 3.

In the present of a weak magnetic field (~1) the mag-  Thjs range is the widegapproximately between 2.5 and 3.5)
netoconductance reads for ka half integer. Forka integer this range collapses into

e? one single point because with this wave number the coeffi-
G=3, _212 g1lke, Pagt (—1)*Apc] cient g, is discontinuous having the value 1 only at
e Axc/7=3 and otherwise zero.
X{1l—cog§ ®pg+(—1)*Apxcl} 47 In Figs. 4a)—4(d) we investigate the temperature depen-

As can be seen, the total magnetoconductance for weak field€nce of the amplitudgr of the oscillations for different
is the sum of the two single spin magnetoconductances hayalues of wave numbeta=20, 20.25, and 20.5. The tem-
ing the same functional formef/2h)g+(kg,¢)[1—cosd] perature is expressed in units of the Fermi temperatigre
but due to the presence of the SOI they are shifted by thé&s seen, fokkga half integer raising the temperature reduces
spin-depending phase A 5 according to Eq(47). the value ofgt; however, for value&ga closer to an integer
the coefficientgy increases until its peaks reach a value
around 4. This happens for temperatlire 0.05T¢ ; and as

To stress the difference between our result and the one @he can see, by then the dependence on the fractional part of
Ref. 1 we plot in Figs. @) and 3b) the coefficientg, for kea has already been washed out, too. For a ring of radius

B. Numerical results

155335-6
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FIG. 4. Dependence of the coefficegt on the Aharonov-
Casher phasa 5 for different temperature$ and different values
FIG. 3. Dependence of the zero-temperature coeffiggon the  of the Fermi wave numbek;a.
Aharonov-Casher phask, for different wave numberka.

=d,/(a’m)=21.06 mT for various values of the SOI
a=0.25um and a Fermi wave numb&g=20.5a, withthe  strengtha and for fixed Fermi wave numbéds-a=20.5 at
effective mass of InAsn* =0.023, the Fermi enerdyr and  T=0.001IT andT=0.05T ¢, respectively. In both figures the
the Fermi temperaturé: are 11.13 meV and 129.27 K, re- values ofa were chosen such that with the above parameters
spectively. With this choice of parametefs-0.05T: above  m* anda they correspond to an Aharonov-Casher phase shift
corresponds to 6.46 K. Further increasing the temperature\ . equal to 57/4, 3w/2, and 27 for a=0.497x,,
now by larger steps as shown in Figd# we find thatgr  0.741a,, and 1.148,, respectively, withay=10"1* eV m.
decreases more slowly. We also notice that the curves in Figdne can see that the presence of SOI can alter the period of
4(d) for differentkga and these high temperatures practically the oscillations, which in its absence is equaBp**
collapse onto a single curve since for small differences in In order to get better insight into the positions of extrema
kra, Akg/kg=0.025, the difference igr is always less in the magnetoconductance we plotted in Figs) &nd 8b)
than 10°° and results from this high-temperature behavior ofthose positions as function of the SOI strengtHor fixed
the integrand in Eq(46). temperaturega) T=0.00IT and (b) T=0.05T¢, respec-
For the sake of completeness, in Figéa)55(b), and §c)  tively. Comparing the figure at large temperature with the
we present the conductan@= (e€/h)g[1—cos@,c)] for one at low temperature, it can be seen that the additional
the same temperatures and valuekgd as in Fig. 4. One  substructure of two maxima and a minimum, which is
can see that by increasing the temperature the “camgbresent atT=0.00IT and connected with the “camel
hump-like” pattern forkra around half integers disappears hump” pattern of the magnetoconductance oscillation, has
andG becomes less sensitive to the fractional paitgd. A been contracted into a single maximum. Further, at both tem-
more complete dependence of the conductanckeoanda  peratures, near certain valuesaf minima(maxima disap-
at zero temperature is shown in Fig. 6. As can be inferredpear, and instead of them, a new maximiminimum) ap-
e.g., by moving along lines of constamtor ka, the conduc- pears, in other words a bifurcation occurs, in the oscillation
tance depends in a complex mannersoandka. Note that  of the magnetoconductance B0, By/2, andB,. These
the dependence of the conductancekanis completely ab- intersections of maximum and minimum curves correspond
sent in Eq.(1). to saddle points on the surface of the conductaBckepend-
Figures Ta) and 1b) show the oscillations of the magne- ing on bothB and «. To show more clearly how changing
toconductance versus magnetic fieRl in units of By  the strengtha can convert a minimum{maximum to a
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FIG. 5. Dependence of the conductan®eon the Aharonov-
Casher phasa 5 at different temperaturéBand Fermi wave num-

FIG. 7. Magnetoconductance for various valuegofn units of
berskga.

ap=10" evm, and at low(a) and high(b) temperatures.

maximum (minimum), we plot in Figs. 9a) and 9b) the  tjvely small increasédecreaskgin « around 0.4@ (1.02x,)

magnetoconductance in the neighborhood of two saddlg minimum turns into a maximum surrounded with two
points for temperatures=0.00IT¢ andT=0.05T¢, respec-  minima atB=B,/2 (B=B).
tively. For instance, in Fig. ®) one can see that for a rela-

VI. CONCLUDING REMARKS

We derived an exact expression for the zero-temperature
conductance of a one-dimensional ring connected to two
leads in the presence of SOI. In addition, we generalized the
result to finite temperatures angeak magnetic fields for
which the Zeeman term can be treated by perturbation
theory. Since we used the Landauerttiker formalism, the
conductance expressions are valid in the ballistic regime.

As specified in the text, the zero-temperature conductance
is not as simple as presented in Ref. 1. Apart from the phase
shift = between the two expressions cf., E¢b. and (30),
the quantityg, is not equal to 1, as deduced from Ed),
but depends on the strength of the SOI, on the incident
energy, and the temperature, cf. Sec. V. We attribute this
difference to the non-Hermitian Hamiltonian and also to the
boundary conditions used in Ref. 1. However, the sinusoidal
dependence dB on « as predicted in Ref. 1 is recovered by
our exact expression only in the limit of large valuesaof

The results presented here are valid for a strictly one-
dimensional ring. They can be extended to rings of finite
width w provided the inequalityv<<a holds and an infinite-

FIG. 6. Dependence @ on the SOI strengtla andka at zero
temperatureg, is the value 10! eV m.
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FIG. 8. Positions of extrema in the magnetoconductance oscil-

lation as a function ofr at low (a) and high(b) temperature. FIG. 9. Minimum-maximum conversions in the oscillations of

the magnetoconductance due to changes in the SOI strenfyih

. . . . . two values of the temperature.
wall confinement is assumed along the radial direction. In P

this case the radial and angular motion are decoupled and the a
energy levels are shifted by?12/2m* w?, wherel is an inte- V(o) =ein® :einxp( ' ) A2
ger. The results presented in our paper correspond then to the (¢) x(¢) be'¢)’ (A2)

lowestl =1 mode. .
we obtain
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coefficients of the corresponding eigenvectors can be chosen
APPENDIX as a;=cos#l2, b,=sinfl2, a,=sin@l2, and b,

Below we give some details of the derivation of the un-= —C0s6/2, with tan6/2=[ 1/2— \1/4+ w407
normalized eigenstatek” , Eq. (6b), and of the spin prob- X(2Q/wso) =[Q— Q%+ w5,|/ws,. The resulting energy

ability currents in Eqs(16a and(16b). eigenvalues and unnormalized eigenfunctions are given, re-
(i) Eigenfunctions¥")(¢): It is sufficient to solve the spectively, by Eqs(6a and(6b).
eigenvalue problerti ¥ (o) =EW (¢), (i) Spin probability currents: The derivation is given as
follows.
(=10l 0+ wsoo [2Q)V (@) =AW (@), (A1) (a) We denote a two-component spinor ﬂyz(&) and
with energy eigenvalu&=A2. Writing ¥(¢) in the form its complex conjugate bﬁ_f. Further, we introduce the bilin-
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ear product by @,¥)=®,¥,+d,¥,. Notice thatthis is  The derivativedp/dt is given by @W/dt,¥)+(¥,d¥/at)
not a scalar product of the Hilbert spac®ne can show that =i{(ﬁ q,)_(q—, HW)}. Thereforedp/dt can be written
the following continuity equation is valid for the spindr ' ' '

- as
obeying the Schminger equationio¥/ot=HW¥ with H
given by Eq.(5): o
oo ap |(q_, azqf) Fan vl wso(_ a\If)
p =i |V 5 i | Vo~
= at 2 2 Q J
ot e (AS) Pe) \ e ¢
where the probability density js= (¥, ¥) and the probabil- e IV weo| — do,
ity current density J=2Re(V,(—id¥/dep +'ﬁ %"Tflp N ‘P’%\P (A10)

+(0s/20) 7, V). )
Proof. We start with the Schiinger equationi gW¥/at

—HW written explicitly as The resulting continuity equation takes the form

2

NA 4 PV s IV wgo doy Wso — ¥ &‘I_’
i—=—————0,— iz —V+—V, ] Tl B _
t P QA Tde 20 de 402 ap ( ' 0@) T ) L wso A(V,00W)
(A6) at - Jde o 0 ade
take its and complex conjugate, and consider the products (Al11)

(¥, HV) and HY,¥),
and the currend is given by

— — PV wg— IV
(V,HY)=—| ¥, — —ig | Voo~
¢ I¢ AV we, oY we
J=\| - i—+— ¥,V |+|V,—i —+ —0, ¥
. Wso| — ao'r\l, wgo ‘F\I’ A7 de 20 do 20
50 e +4Q2( ), (A7) (A12)
S e wso — I or
(HV,W)=—| — ¥ |+i"| o>, ¥
P Q de
— 0V wg
o oo 0)2 J:2R4(‘P,—Iﬁ—+50’rq’)]
so r= S0 , o (2]
150 &QD\P,‘P +4QZ(\P,‘I’). (A8) .
_ _ d Wso
Using the fact ¢, ®,¥)=(d,o, V) the latter product can be =2R€|‘PT( —la—+ﬁﬂr‘1’> ] (AL13)
written as ¢
) —
—_ d  Wgo[ IV . . . .
(HV W)= — 2—,\1} +i o a—,or\lf (b) Because the orientation of the coordinate system in the
¢ ¢ upper arm is opposite to that in the lower arm, the current in
2 the latter is given byf;,(¢') = = J{(¢=—¢"). The result-
+i %’( 7, @qf + @so (W, ¥). (A9) ing forms of the two currents are given, respectively, by Eqs.
2Q de 4072 (16a and(16b).
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